| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "inliner.h" |
| |
| #include "art_method-inl.h" |
| #include "base/enums.h" |
| #include "base/logging.h" |
| #include "builder.h" |
| #include "class_linker.h" |
| #include "class_root.h" |
| #include "constant_folding.h" |
| #include "data_type-inl.h" |
| #include "dead_code_elimination.h" |
| #include "dex/inline_method_analyser.h" |
| #include "dex/verification_results.h" |
| #include "dex/verified_method.h" |
| #include "driver/compiler_options.h" |
| #include "driver/dex_compilation_unit.h" |
| #include "instruction_simplifier.h" |
| #include "intrinsics.h" |
| #include "jit/jit.h" |
| #include "jit/jit_code_cache.h" |
| #include "mirror/class_loader.h" |
| #include "mirror/dex_cache.h" |
| #include "mirror/object_array-alloc-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "nodes.h" |
| #include "reference_type_propagation.h" |
| #include "register_allocator_linear_scan.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "sharpening.h" |
| #include "ssa_builder.h" |
| #include "ssa_phi_elimination.h" |
| #include "thread.h" |
| |
| namespace art { |
| |
| // Instruction limit to control memory. |
| static constexpr size_t kMaximumNumberOfTotalInstructions = 1024; |
| |
| // Maximum number of instructions for considering a method small, |
| // which we will always try to inline if the other non-instruction limits |
| // are not reached. |
| static constexpr size_t kMaximumNumberOfInstructionsForSmallMethod = 3; |
| |
| // Limit the number of dex registers that we accumulate while inlining |
| // to avoid creating large amount of nested environments. |
| static constexpr size_t kMaximumNumberOfCumulatedDexRegisters = 32; |
| |
| // Limit recursive call inlining, which do not benefit from too |
| // much inlining compared to code locality. |
| static constexpr size_t kMaximumNumberOfRecursiveCalls = 4; |
| |
| // Controls the use of inline caches in AOT mode. |
| static constexpr bool kUseAOTInlineCaches = true; |
| |
| // We check for line numbers to make sure the DepthString implementation |
| // aligns the output nicely. |
| #define LOG_INTERNAL(msg) \ |
| static_assert(__LINE__ > 10, "Unhandled line number"); \ |
| static_assert(__LINE__ < 10000, "Unhandled line number"); \ |
| VLOG(compiler) << DepthString(__LINE__) << msg |
| |
| #define LOG_TRY() LOG_INTERNAL("Try inlinining call: ") |
| #define LOG_NOTE() LOG_INTERNAL("Note: ") |
| #define LOG_SUCCESS() LOG_INTERNAL("Success: ") |
| #define LOG_FAIL(stats_ptr, stat) MaybeRecordStat(stats_ptr, stat); LOG_INTERNAL("Fail: ") |
| #define LOG_FAIL_NO_STAT() LOG_INTERNAL("Fail: ") |
| |
| std::string HInliner::DepthString(int line) const { |
| std::string value; |
| // Indent according to the inlining depth. |
| size_t count = depth_; |
| // Line numbers get printed in the log, so add a space if the log's line is less |
| // than 1000, and two if less than 100. 10 cannot be reached as it's the copyright. |
| if (!kIsTargetBuild) { |
| if (line < 100) { |
| value += " "; |
| } |
| if (line < 1000) { |
| value += " "; |
| } |
| // Safeguard if this file reaches more than 10000 lines. |
| DCHECK_LT(line, 10000); |
| } |
| for (size_t i = 0; i < count; ++i) { |
| value += " "; |
| } |
| return value; |
| } |
| |
| static size_t CountNumberOfInstructions(HGraph* graph) { |
| size_t number_of_instructions = 0; |
| for (HBasicBlock* block : graph->GetReversePostOrderSkipEntryBlock()) { |
| for (HInstructionIterator instr_it(block->GetInstructions()); |
| !instr_it.Done(); |
| instr_it.Advance()) { |
| ++number_of_instructions; |
| } |
| } |
| return number_of_instructions; |
| } |
| |
| void HInliner::UpdateInliningBudget() { |
| if (total_number_of_instructions_ >= kMaximumNumberOfTotalInstructions) { |
| // Always try to inline small methods. |
| inlining_budget_ = kMaximumNumberOfInstructionsForSmallMethod; |
| } else { |
| inlining_budget_ = std::max( |
| kMaximumNumberOfInstructionsForSmallMethod, |
| kMaximumNumberOfTotalInstructions - total_number_of_instructions_); |
| } |
| } |
| |
| bool HInliner::Run() { |
| if (codegen_->GetCompilerOptions().GetInlineMaxCodeUnits() == 0) { |
| // Inlining effectively disabled. |
| return false; |
| } else if (graph_->IsDebuggable()) { |
| // For simplicity, we currently never inline when the graph is debuggable. This avoids |
| // doing some logic in the runtime to discover if a method could have been inlined. |
| return false; |
| } |
| |
| bool didInline = false; |
| |
| // Initialize the number of instructions for the method being compiled. Recursive calls |
| // to HInliner::Run have already updated the instruction count. |
| if (outermost_graph_ == graph_) { |
| total_number_of_instructions_ = CountNumberOfInstructions(graph_); |
| } |
| |
| UpdateInliningBudget(); |
| DCHECK_NE(total_number_of_instructions_, 0u); |
| DCHECK_NE(inlining_budget_, 0u); |
| |
| // If we're compiling with a core image (which is only used for |
| // test purposes), honor inlining directives in method names: |
| // - if a method's name contains the substring "$noinline$", do not |
| // inline that method; |
| // - if a method's name contains the substring "$inline$", ensure |
| // that this method is actually inlined. |
| // We limit the latter to AOT compilation, as the JIT may or may not inline |
| // depending on the state of classes at runtime. |
| const bool honor_noinline_directives = codegen_->GetCompilerOptions().CompilingWithCoreImage(); |
| const bool honor_inline_directives = |
| honor_noinline_directives && Runtime::Current()->IsAotCompiler(); |
| |
| // Keep a copy of all blocks when starting the visit. |
| ArenaVector<HBasicBlock*> blocks = graph_->GetReversePostOrder(); |
| DCHECK(!blocks.empty()); |
| // Because we are changing the graph when inlining, |
| // we just iterate over the blocks of the outer method. |
| // This avoids doing the inlining work again on the inlined blocks. |
| for (HBasicBlock* block : blocks) { |
| for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) { |
| HInstruction* next = instruction->GetNext(); |
| HInvoke* call = instruction->AsInvoke(); |
| // As long as the call is not intrinsified, it is worth trying to inline. |
| if (call != nullptr && call->GetIntrinsic() == Intrinsics::kNone) { |
| if (honor_noinline_directives) { |
| // Debugging case: directives in method names control or assert on inlining. |
| std::string callee_name = outer_compilation_unit_.GetDexFile()->PrettyMethod( |
| call->GetDexMethodIndex(), /* with_signature= */ false); |
| // Tests prevent inlining by having $noinline$ in their method names. |
| if (callee_name.find("$noinline$") == std::string::npos) { |
| if (TryInline(call)) { |
| didInline = true; |
| } else if (honor_inline_directives) { |
| bool should_have_inlined = (callee_name.find("$inline$") != std::string::npos); |
| CHECK(!should_have_inlined) << "Could not inline " << callee_name; |
| } |
| } |
| } else { |
| DCHECK(!honor_inline_directives); |
| // Normal case: try to inline. |
| if (TryInline(call)) { |
| didInline = true; |
| } |
| } |
| } |
| instruction = next; |
| } |
| } |
| |
| return didInline; |
| } |
| |
| static bool IsMethodOrDeclaringClassFinal(ArtMethod* method) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| return method->IsFinal() || method->GetDeclaringClass()->IsFinal(); |
| } |
| |
| /** |
| * Given the `resolved_method` looked up in the dex cache, try to find |
| * the actual runtime target of an interface or virtual call. |
| * Return nullptr if the runtime target cannot be proven. |
| */ |
| static ArtMethod* FindVirtualOrInterfaceTarget(HInvoke* invoke, ArtMethod* resolved_method) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (IsMethodOrDeclaringClassFinal(resolved_method)) { |
| // No need to lookup further, the resolved method will be the target. |
| return resolved_method; |
| } |
| |
| HInstruction* receiver = invoke->InputAt(0); |
| if (receiver->IsNullCheck()) { |
| // Due to multiple levels of inlining within the same pass, it might be that |
| // null check does not have the reference type of the actual receiver. |
| receiver = receiver->InputAt(0); |
| } |
| ReferenceTypeInfo info = receiver->GetReferenceTypeInfo(); |
| DCHECK(info.IsValid()) << "Invalid RTI for " << receiver->DebugName(); |
| if (!info.IsExact()) { |
| // We currently only support inlining with known receivers. |
| // TODO: Remove this check, we should be able to inline final methods |
| // on unknown receivers. |
| return nullptr; |
| } else if (info.GetTypeHandle()->IsInterface()) { |
| // Statically knowing that the receiver has an interface type cannot |
| // help us find what is the target method. |
| return nullptr; |
| } else if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(info.GetTypeHandle().Get())) { |
| // The method that we're trying to call is not in the receiver's class or super classes. |
| return nullptr; |
| } else if (info.GetTypeHandle()->IsErroneous()) { |
| // If the type is erroneous, do not go further, as we are going to query the vtable or |
| // imt table, that we can only safely do on non-erroneous classes. |
| return nullptr; |
| } |
| |
| ClassLinker* cl = Runtime::Current()->GetClassLinker(); |
| PointerSize pointer_size = cl->GetImagePointerSize(); |
| if (invoke->IsInvokeInterface()) { |
| resolved_method = info.GetTypeHandle()->FindVirtualMethodForInterface( |
| resolved_method, pointer_size); |
| } else { |
| DCHECK(invoke->IsInvokeVirtual()); |
| resolved_method = info.GetTypeHandle()->FindVirtualMethodForVirtual( |
| resolved_method, pointer_size); |
| } |
| |
| if (resolved_method == nullptr) { |
| // The information we had on the receiver was not enough to find |
| // the target method. Since we check above the exact type of the receiver, |
| // the only reason this can happen is an IncompatibleClassChangeError. |
| return nullptr; |
| } else if (!resolved_method->IsInvokable()) { |
| // The information we had on the receiver was not enough to find |
| // the target method. Since we check above the exact type of the receiver, |
| // the only reason this can happen is an IncompatibleClassChangeError. |
| return nullptr; |
| } else if (IsMethodOrDeclaringClassFinal(resolved_method)) { |
| // A final method has to be the target method. |
| return resolved_method; |
| } else if (info.IsExact()) { |
| // If we found a method and the receiver's concrete type is statically |
| // known, we know for sure the target. |
| return resolved_method; |
| } else { |
| // Even if we did find a method, the receiver type was not enough to |
| // statically find the runtime target. |
| return nullptr; |
| } |
| } |
| |
| static uint32_t FindMethodIndexIn(ArtMethod* method, |
| const DexFile& dex_file, |
| uint32_t name_and_signature_index) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (IsSameDexFile(*method->GetDexFile(), dex_file)) { |
| return method->GetDexMethodIndex(); |
| } else { |
| return method->FindDexMethodIndexInOtherDexFile(dex_file, name_and_signature_index); |
| } |
| } |
| |
| static dex::TypeIndex FindClassIndexIn(ObjPtr<mirror::Class> cls, |
| const DexCompilationUnit& compilation_unit) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| const DexFile& dex_file = *compilation_unit.GetDexFile(); |
| dex::TypeIndex index; |
| if (cls->GetDexCache() == nullptr) { |
| DCHECK(cls->IsArrayClass()) << cls->PrettyClass(); |
| index = cls->FindTypeIndexInOtherDexFile(dex_file); |
| } else if (!cls->GetDexTypeIndex().IsValid()) { |
| DCHECK(cls->IsProxyClass()) << cls->PrettyClass(); |
| // TODO: deal with proxy classes. |
| } else if (IsSameDexFile(cls->GetDexFile(), dex_file)) { |
| DCHECK_EQ(cls->GetDexCache(), compilation_unit.GetDexCache().Get()); |
| index = cls->GetDexTypeIndex(); |
| } else { |
| index = cls->FindTypeIndexInOtherDexFile(dex_file); |
| // We cannot guarantee the entry will resolve to the same class, |
| // as there may be different class loaders. So only return the index if it's |
| // the right class already resolved with the class loader. |
| if (index.IsValid()) { |
| ObjPtr<mirror::Class> resolved = compilation_unit.GetClassLinker()->LookupResolvedType( |
| index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get()); |
| if (resolved != cls) { |
| index = dex::TypeIndex::Invalid(); |
| } |
| } |
| } |
| |
| return index; |
| } |
| |
| class ScopedProfilingInfoInlineUse { |
| public: |
| explicit ScopedProfilingInfoInlineUse(ArtMethod* method, Thread* self) |
| : method_(method), |
| self_(self), |
| // Fetch the profiling info ahead of using it. If it's null when fetching, |
| // we should not call JitCodeCache::DoneInlining. |
| profiling_info_( |
| Runtime::Current()->GetJit()->GetCodeCache()->NotifyCompilerUse(method, self)) { |
| } |
| |
| ~ScopedProfilingInfoInlineUse() { |
| if (profiling_info_ != nullptr) { |
| PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); |
| DCHECK_EQ(profiling_info_, method_->GetProfilingInfo(pointer_size)); |
| Runtime::Current()->GetJit()->GetCodeCache()->DoneCompilerUse(method_, self_); |
| } |
| } |
| |
| ProfilingInfo* GetProfilingInfo() const { return profiling_info_; } |
| |
| private: |
| ArtMethod* const method_; |
| Thread* const self_; |
| ProfilingInfo* const profiling_info_; |
| }; |
| |
| HInliner::InlineCacheType HInliner::GetInlineCacheType( |
| const Handle<mirror::ObjectArray<mirror::Class>>& classes) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| uint8_t number_of_types = 0; |
| for (; number_of_types < InlineCache::kIndividualCacheSize; ++number_of_types) { |
| if (classes->Get(number_of_types) == nullptr) { |
| break; |
| } |
| } |
| |
| if (number_of_types == 0) { |
| return kInlineCacheUninitialized; |
| } else if (number_of_types == 1) { |
| return kInlineCacheMonomorphic; |
| } else if (number_of_types == InlineCache::kIndividualCacheSize) { |
| return kInlineCacheMegamorphic; |
| } else { |
| return kInlineCachePolymorphic; |
| } |
| } |
| |
| static ObjPtr<mirror::Class> GetMonomorphicType(Handle<mirror::ObjectArray<mirror::Class>> classes) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(classes->Get(0) != nullptr); |
| return classes->Get(0); |
| } |
| |
| ArtMethod* HInliner::TryCHADevirtualization(ArtMethod* resolved_method) { |
| if (!resolved_method->HasSingleImplementation()) { |
| return nullptr; |
| } |
| if (Runtime::Current()->IsAotCompiler()) { |
| // No CHA-based devirtulization for AOT compiler (yet). |
| return nullptr; |
| } |
| if (Runtime::Current()->IsZygote()) { |
| // No CHA-based devirtulization for Zygote, as it compiles with |
| // offline information. |
| return nullptr; |
| } |
| if (outermost_graph_->IsCompilingOsr()) { |
| // We do not support HDeoptimize in OSR methods. |
| return nullptr; |
| } |
| PointerSize pointer_size = caller_compilation_unit_.GetClassLinker()->GetImagePointerSize(); |
| ArtMethod* single_impl = resolved_method->GetSingleImplementation(pointer_size); |
| if (single_impl == nullptr) { |
| return nullptr; |
| } |
| if (single_impl->IsProxyMethod()) { |
| // Proxy method is a generic invoker that's not worth |
| // devirtualizing/inlining. It also causes issues when the proxy |
| // method is in another dex file if we try to rewrite invoke-interface to |
| // invoke-virtual because a proxy method doesn't have a real dex file. |
| return nullptr; |
| } |
| if (!single_impl->GetDeclaringClass()->IsResolved()) { |
| // There's a race with the class loading, which updates the CHA info |
| // before setting the class to resolved. So we just bail for this |
| // rare occurence. |
| return nullptr; |
| } |
| return single_impl; |
| } |
| |
| static bool IsMethodUnverified(const CompilerOptions& compiler_options, ArtMethod* method) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (!method->GetDeclaringClass()->IsVerified()) { |
| if (Runtime::Current()->UseJitCompilation()) { |
| // We're at runtime, we know this is cold code if the class |
| // is not verified, so don't bother analyzing. |
| return true; |
| } |
| uint16_t class_def_idx = method->GetDeclaringClass()->GetDexClassDefIndex(); |
| if (!compiler_options.IsMethodVerifiedWithoutFailures(method->GetDexMethodIndex(), |
| class_def_idx, |
| *method->GetDexFile())) { |
| // Method has soft or hard failures, don't analyze. |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static bool AlwaysThrows(const CompilerOptions& compiler_options, ArtMethod* method) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(method != nullptr); |
| // Skip non-compilable and unverified methods. |
| if (!method->IsCompilable() || IsMethodUnverified(compiler_options, method)) { |
| return false; |
| } |
| // Skip native methods, methods with try blocks, and methods that are too large. |
| CodeItemDataAccessor accessor(method->DexInstructionData()); |
| if (!accessor.HasCodeItem() || |
| accessor.TriesSize() != 0 || |
| accessor.InsnsSizeInCodeUnits() > kMaximumNumberOfTotalInstructions) { |
| return false; |
| } |
| // Scan for exits. |
| bool throw_seen = false; |
| for (const DexInstructionPcPair& pair : accessor) { |
| switch (pair.Inst().Opcode()) { |
| case Instruction::RETURN: |
| case Instruction::RETURN_VOID: |
| case Instruction::RETURN_WIDE: |
| case Instruction::RETURN_OBJECT: |
| case Instruction::RETURN_VOID_NO_BARRIER: |
| return false; // found regular control flow back |
| case Instruction::THROW: |
| throw_seen = true; |
| break; |
| default: |
| break; |
| } |
| } |
| return throw_seen; |
| } |
| |
| bool HInliner::TryInline(HInvoke* invoke_instruction) { |
| if (invoke_instruction->IsInvokeUnresolved() || |
| invoke_instruction->IsInvokePolymorphic() || |
| invoke_instruction->IsInvokeCustom()) { |
| return false; // Don't bother to move further if we know the method is unresolved or the |
| // invocation is polymorphic (invoke-{polymorphic,custom}). |
| } |
| |
| ScopedObjectAccess soa(Thread::Current()); |
| uint32_t method_index = invoke_instruction->GetDexMethodIndex(); |
| const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile(); |
| LOG_TRY() << caller_dex_file.PrettyMethod(method_index); |
| |
| ArtMethod* resolved_method = invoke_instruction->GetResolvedMethod(); |
| if (resolved_method == nullptr) { |
| DCHECK(invoke_instruction->IsInvokeStaticOrDirect()); |
| DCHECK(invoke_instruction->AsInvokeStaticOrDirect()->IsStringInit()); |
| LOG_FAIL_NO_STAT() << "Not inlining a String.<init> method"; |
| return false; |
| } |
| ArtMethod* actual_method = nullptr; |
| |
| if (invoke_instruction->IsInvokeStaticOrDirect()) { |
| actual_method = resolved_method; |
| } else { |
| // Check if we can statically find the method. |
| actual_method = FindVirtualOrInterfaceTarget(invoke_instruction, resolved_method); |
| } |
| |
| bool cha_devirtualize = false; |
| if (actual_method == nullptr) { |
| ArtMethod* method = TryCHADevirtualization(resolved_method); |
| if (method != nullptr) { |
| cha_devirtualize = true; |
| actual_method = method; |
| LOG_NOTE() << "Try CHA-based inlining of " << actual_method->PrettyMethod(); |
| } |
| } |
| |
| if (actual_method != nullptr) { |
| // Single target. |
| bool result = TryInlineAndReplace(invoke_instruction, |
| actual_method, |
| ReferenceTypeInfo::CreateInvalid(), |
| /* do_rtp= */ true, |
| cha_devirtualize); |
| if (result) { |
| // Successfully inlined. |
| if (!invoke_instruction->IsInvokeStaticOrDirect()) { |
| if (cha_devirtualize) { |
| // Add dependency due to devirtualization. We've assumed resolved_method |
| // has single implementation. |
| outermost_graph_->AddCHASingleImplementationDependency(resolved_method); |
| MaybeRecordStat(stats_, MethodCompilationStat::kCHAInline); |
| } else { |
| MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvokeVirtualOrInterface); |
| } |
| } |
| } else if (!cha_devirtualize && AlwaysThrows(codegen_->GetCompilerOptions(), actual_method)) { |
| // Set always throws property for non-inlined method call with single target |
| // (unless it was obtained through CHA, because that would imply we have |
| // to add the CHA dependency, which seems not worth it). |
| invoke_instruction->SetAlwaysThrows(true); |
| } |
| return result; |
| } |
| DCHECK(!invoke_instruction->IsInvokeStaticOrDirect()); |
| |
| // Try using inline caches. |
| return TryInlineFromInlineCache(caller_dex_file, invoke_instruction, resolved_method); |
| } |
| |
| static Handle<mirror::ObjectArray<mirror::Class>> AllocateInlineCacheHolder( |
| const DexCompilationUnit& compilation_unit, |
| StackHandleScope<1>* hs) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| Thread* self = Thread::Current(); |
| ClassLinker* class_linker = compilation_unit.GetClassLinker(); |
| Handle<mirror::ObjectArray<mirror::Class>> inline_cache = hs->NewHandle( |
| mirror::ObjectArray<mirror::Class>::Alloc( |
| self, |
| GetClassRoot<mirror::ObjectArray<mirror::Class>>(class_linker), |
| InlineCache::kIndividualCacheSize)); |
| if (inline_cache == nullptr) { |
| // We got an OOME. Just clear the exception, and don't inline. |
| DCHECK(self->IsExceptionPending()); |
| self->ClearException(); |
| VLOG(compiler) << "Out of memory in the compiler when trying to inline"; |
| } |
| return inline_cache; |
| } |
| |
| bool HInliner::UseOnlyPolymorphicInliningWithNoDeopt() { |
| // If we are compiling AOT or OSR, pretend the call using inline caches is polymorphic and |
| // do not generate a deopt. |
| // |
| // For AOT: |
| // Generating a deopt does not ensure that we will actually capture the new types; |
| // and the danger is that we could be stuck in a loop with "forever" deoptimizations. |
| // Take for example the following scenario: |
| // - we capture the inline cache in one run |
| // - the next run, we deoptimize because we miss a type check, but the method |
| // never becomes hot again |
| // In this case, the inline cache will not be updated in the profile and the AOT code |
| // will keep deoptimizing. |
| // Another scenario is if we use profile compilation for a process which is not allowed |
| // to JIT (e.g. system server). If we deoptimize we will run interpreted code for the |
| // rest of the lifetime. |
| // TODO(calin): |
| // This is a compromise because we will most likely never update the inline cache |
| // in the profile (unless there's another reason to deopt). So we might be stuck with |
| // a sub-optimal inline cache. |
| // We could be smarter when capturing inline caches to mitigate this. |
| // (e.g. by having different thresholds for new and old methods). |
| // |
| // For OSR: |
| // We may come from the interpreter and it may have seen different receiver types. |
| return Runtime::Current()->IsAotCompiler() || outermost_graph_->IsCompilingOsr(); |
| } |
| bool HInliner::TryInlineFromInlineCache(const DexFile& caller_dex_file, |
| HInvoke* invoke_instruction, |
| ArtMethod* resolved_method) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (Runtime::Current()->IsAotCompiler() && !kUseAOTInlineCaches) { |
| return false; |
| } |
| |
| StackHandleScope<1> hs(Thread::Current()); |
| Handle<mirror::ObjectArray<mirror::Class>> inline_cache; |
| // The Zygote JIT compiles based on a profile, so we shouldn't use runtime inline caches |
| // for it. |
| InlineCacheType inline_cache_type = |
| (Runtime::Current()->IsAotCompiler() || Runtime::Current()->IsZygote()) |
| ? GetInlineCacheAOT(caller_dex_file, invoke_instruction, &hs, &inline_cache) |
| : GetInlineCacheJIT(invoke_instruction, &hs, &inline_cache); |
| |
| switch (inline_cache_type) { |
| case kInlineCacheNoData: { |
| LOG_FAIL_NO_STAT() |
| << "Interface or virtual call to " |
| << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex()) |
| << " could not be statically determined"; |
| return false; |
| } |
| |
| case kInlineCacheUninitialized: { |
| LOG_FAIL_NO_STAT() |
| << "Interface or virtual call to " |
| << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex()) |
| << " is not hit and not inlined"; |
| return false; |
| } |
| |
| case kInlineCacheMonomorphic: { |
| MaybeRecordStat(stats_, MethodCompilationStat::kMonomorphicCall); |
| if (UseOnlyPolymorphicInliningWithNoDeopt()) { |
| return TryInlinePolymorphicCall(invoke_instruction, resolved_method, inline_cache); |
| } else { |
| return TryInlineMonomorphicCall(invoke_instruction, resolved_method, inline_cache); |
| } |
| } |
| |
| case kInlineCachePolymorphic: { |
| MaybeRecordStat(stats_, MethodCompilationStat::kPolymorphicCall); |
| return TryInlinePolymorphicCall(invoke_instruction, resolved_method, inline_cache); |
| } |
| |
| case kInlineCacheMegamorphic: { |
| LOG_FAIL_NO_STAT() |
| << "Interface or virtual call to " |
| << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex()) |
| << " is megamorphic and not inlined"; |
| MaybeRecordStat(stats_, MethodCompilationStat::kMegamorphicCall); |
| return false; |
| } |
| |
| case kInlineCacheMissingTypes: { |
| LOG_FAIL_NO_STAT() |
| << "Interface or virtual call to " |
| << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex()) |
| << " is missing types and not inlined"; |
| return false; |
| } |
| } |
| UNREACHABLE(); |
| } |
| |
| HInliner::InlineCacheType HInliner::GetInlineCacheJIT( |
| HInvoke* invoke_instruction, |
| StackHandleScope<1>* hs, |
| /*out*/Handle<mirror::ObjectArray<mirror::Class>>* inline_cache) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(Runtime::Current()->UseJitCompilation()); |
| |
| ArtMethod* caller = graph_->GetArtMethod(); |
| // Under JIT, we should always know the caller. |
| DCHECK(caller != nullptr); |
| ScopedProfilingInfoInlineUse spiis(caller, Thread::Current()); |
| ProfilingInfo* profiling_info = spiis.GetProfilingInfo(); |
| |
| if (profiling_info == nullptr) { |
| return kInlineCacheNoData; |
| } |
| |
| *inline_cache = AllocateInlineCacheHolder(caller_compilation_unit_, hs); |
| if (inline_cache->Get() == nullptr) { |
| // We can't extract any data if we failed to allocate; |
| return kInlineCacheNoData; |
| } else { |
| Runtime::Current()->GetJit()->GetCodeCache()->CopyInlineCacheInto( |
| *profiling_info->GetInlineCache(invoke_instruction->GetDexPc()), |
| *inline_cache); |
| return GetInlineCacheType(*inline_cache); |
| } |
| } |
| |
| HInliner::InlineCacheType HInliner::GetInlineCacheAOT( |
| const DexFile& caller_dex_file, |
| HInvoke* invoke_instruction, |
| StackHandleScope<1>* hs, |
| /*out*/Handle<mirror::ObjectArray<mirror::Class>>* inline_cache) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| const ProfileCompilationInfo* pci = codegen_->GetCompilerOptions().GetProfileCompilationInfo(); |
| if (pci == nullptr) { |
| return kInlineCacheNoData; |
| } |
| |
| std::unique_ptr<ProfileCompilationInfo::OfflineProfileMethodInfo> offline_profile = |
| pci->GetMethod(caller_dex_file.GetLocation(), |
| caller_dex_file.GetLocationChecksum(), |
| caller_compilation_unit_.GetDexMethodIndex()); |
| if (offline_profile == nullptr) { |
| return kInlineCacheNoData; // no profile information for this invocation. |
| } |
| |
| *inline_cache = AllocateInlineCacheHolder(caller_compilation_unit_, hs); |
| if (inline_cache == nullptr) { |
| // We can't extract any data if we failed to allocate; |
| return kInlineCacheNoData; |
| } else { |
| return ExtractClassesFromOfflineProfile(invoke_instruction, |
| *(offline_profile.get()), |
| *inline_cache); |
| } |
| } |
| |
| HInliner::InlineCacheType HInliner::ExtractClassesFromOfflineProfile( |
| const HInvoke* invoke_instruction, |
| const ProfileCompilationInfo::OfflineProfileMethodInfo& offline_profile, |
| /*out*/Handle<mirror::ObjectArray<mirror::Class>> inline_cache) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| const auto it = offline_profile.inline_caches->find(invoke_instruction->GetDexPc()); |
| if (it == offline_profile.inline_caches->end()) { |
| return kInlineCacheUninitialized; |
| } |
| |
| const ProfileCompilationInfo::DexPcData& dex_pc_data = it->second; |
| |
| if (dex_pc_data.is_missing_types) { |
| return kInlineCacheMissingTypes; |
| } |
| if (dex_pc_data.is_megamorphic) { |
| return kInlineCacheMegamorphic; |
| } |
| |
| DCHECK_LE(dex_pc_data.classes.size(), InlineCache::kIndividualCacheSize); |
| Thread* self = Thread::Current(); |
| // We need to resolve the class relative to the containing dex file. |
| // So first, build a mapping from the index of dex file in the profile to |
| // its dex cache. This will avoid repeating the lookup when walking over |
| // the inline cache types. |
| std::vector<ObjPtr<mirror::DexCache>> dex_profile_index_to_dex_cache( |
| offline_profile.dex_references.size()); |
| for (size_t i = 0; i < offline_profile.dex_references.size(); i++) { |
| bool found = false; |
| for (const DexFile* dex_file : codegen_->GetCompilerOptions().GetDexFilesForOatFile()) { |
| if (offline_profile.dex_references[i].MatchesDex(dex_file)) { |
| dex_profile_index_to_dex_cache[i] = |
| caller_compilation_unit_.GetClassLinker()->FindDexCache(self, *dex_file); |
| found = true; |
| } |
| } |
| if (!found) { |
| VLOG(compiler) << "Could not find profiled dex file: " |
| << offline_profile.dex_references[i].dex_location; |
| return kInlineCacheMissingTypes; |
| } |
| } |
| |
| // Walk over the classes and resolve them. If we cannot find a type we return |
| // kInlineCacheMissingTypes. |
| int ic_index = 0; |
| for (const ProfileCompilationInfo::ClassReference& class_ref : dex_pc_data.classes) { |
| ObjPtr<mirror::DexCache> dex_cache = |
| dex_profile_index_to_dex_cache[class_ref.dex_profile_index]; |
| DCHECK(dex_cache != nullptr); |
| |
| if (!dex_cache->GetDexFile()->IsTypeIndexValid(class_ref.type_index)) { |
| VLOG(compiler) << "Profile data corrupt: type index " << class_ref.type_index |
| << "is invalid in location" << dex_cache->GetDexFile()->GetLocation(); |
| return kInlineCacheNoData; |
| } |
| ObjPtr<mirror::Class> clazz = caller_compilation_unit_.GetClassLinker()->LookupResolvedType( |
| class_ref.type_index, |
| dex_cache, |
| caller_compilation_unit_.GetClassLoader().Get()); |
| if (clazz != nullptr) { |
| inline_cache->Set(ic_index++, clazz); |
| } else { |
| VLOG(compiler) << "Could not resolve class from inline cache in AOT mode " |
| << caller_compilation_unit_.GetDexFile()->PrettyMethod( |
| invoke_instruction->GetDexMethodIndex()) << " : " |
| << caller_compilation_unit_ |
| .GetDexFile()->StringByTypeIdx(class_ref.type_index); |
| return kInlineCacheMissingTypes; |
| } |
| } |
| return GetInlineCacheType(inline_cache); |
| } |
| |
| HInstanceFieldGet* HInliner::BuildGetReceiverClass(ClassLinker* class_linker, |
| HInstruction* receiver, |
| uint32_t dex_pc) const { |
| ArtField* field = GetClassRoot<mirror::Object>(class_linker)->GetInstanceField(0); |
| DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_"); |
| HInstanceFieldGet* result = new (graph_->GetAllocator()) HInstanceFieldGet( |
| receiver, |
| field, |
| DataType::Type::kReference, |
| field->GetOffset(), |
| field->IsVolatile(), |
| field->GetDexFieldIndex(), |
| field->GetDeclaringClass()->GetDexClassDefIndex(), |
| *field->GetDexFile(), |
| dex_pc); |
| // The class of a field is effectively final, and does not have any memory dependencies. |
| result->SetSideEffects(SideEffects::None()); |
| return result; |
| } |
| |
| static ArtMethod* ResolveMethodFromInlineCache(Handle<mirror::Class> klass, |
| ArtMethod* resolved_method, |
| HInstruction* invoke_instruction, |
| PointerSize pointer_size) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (Runtime::Current()->IsAotCompiler()) { |
| // We can get unrelated types when working with profiles (corruption, |
| // systme updates, or anyone can write to it). So first check if the class |
| // actually implements the declaring class of the method that is being |
| // called in bytecode. |
| // Note: the lookup methods used below require to have assignable types. |
| if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(klass.Get())) { |
| return nullptr; |
| } |
| } |
| |
| if (invoke_instruction->IsInvokeInterface()) { |
| resolved_method = klass->FindVirtualMethodForInterface(resolved_method, pointer_size); |
| } else { |
| DCHECK(invoke_instruction->IsInvokeVirtual()); |
| resolved_method = klass->FindVirtualMethodForVirtual(resolved_method, pointer_size); |
| } |
| DCHECK(resolved_method != nullptr); |
| return resolved_method; |
| } |
| |
| bool HInliner::TryInlineMonomorphicCall(HInvoke* invoke_instruction, |
| ArtMethod* resolved_method, |
| Handle<mirror::ObjectArray<mirror::Class>> classes) { |
| DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface()) |
| << invoke_instruction->DebugName(); |
| |
| dex::TypeIndex class_index = FindClassIndexIn( |
| GetMonomorphicType(classes), caller_compilation_unit_); |
| if (!class_index.IsValid()) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCache) |
| << "Call to " << ArtMethod::PrettyMethod(resolved_method) |
| << " from inline cache is not inlined because its class is not" |
| << " accessible to the caller"; |
| return false; |
| } |
| |
| ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); |
| PointerSize pointer_size = class_linker->GetImagePointerSize(); |
| Handle<mirror::Class> monomorphic_type = handles_->NewHandle(GetMonomorphicType(classes)); |
| resolved_method = ResolveMethodFromInlineCache( |
| monomorphic_type, resolved_method, invoke_instruction, pointer_size); |
| |
| LOG_NOTE() << "Try inline monomorphic call to " << resolved_method->PrettyMethod(); |
| if (resolved_method == nullptr) { |
| // Bogus AOT profile, bail. |
| DCHECK(Runtime::Current()->IsAotCompiler()); |
| return false; |
| } |
| |
| HInstruction* receiver = invoke_instruction->InputAt(0); |
| HInstruction* cursor = invoke_instruction->GetPrevious(); |
| HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); |
| if (!TryInlineAndReplace(invoke_instruction, |
| resolved_method, |
| ReferenceTypeInfo::Create(monomorphic_type, /* is_exact= */ true), |
| /* do_rtp= */ false, |
| /* cha_devirtualize= */ false)) { |
| return false; |
| } |
| |
| // We successfully inlined, now add a guard. |
| AddTypeGuard(receiver, |
| cursor, |
| bb_cursor, |
| class_index, |
| monomorphic_type, |
| invoke_instruction, |
| /* with_deoptimization= */ true); |
| |
| // Run type propagation to get the guard typed, and eventually propagate the |
| // type of the receiver. |
| ReferenceTypePropagation rtp_fixup(graph_, |
| outer_compilation_unit_.GetClassLoader(), |
| outer_compilation_unit_.GetDexCache(), |
| handles_, |
| /* is_first_run= */ false); |
| rtp_fixup.Run(); |
| |
| MaybeRecordStat(stats_, MethodCompilationStat::kInlinedMonomorphicCall); |
| return true; |
| } |
| |
| void HInliner::AddCHAGuard(HInstruction* invoke_instruction, |
| uint32_t dex_pc, |
| HInstruction* cursor, |
| HBasicBlock* bb_cursor) { |
| HShouldDeoptimizeFlag* deopt_flag = new (graph_->GetAllocator()) |
| HShouldDeoptimizeFlag(graph_->GetAllocator(), dex_pc); |
| HInstruction* compare = new (graph_->GetAllocator()) HNotEqual( |
| deopt_flag, graph_->GetIntConstant(0, dex_pc)); |
| HInstruction* deopt = new (graph_->GetAllocator()) HDeoptimize( |
| graph_->GetAllocator(), compare, DeoptimizationKind::kCHA, dex_pc); |
| |
| if (cursor != nullptr) { |
| bb_cursor->InsertInstructionAfter(deopt_flag, cursor); |
| } else { |
| bb_cursor->InsertInstructionBefore(deopt_flag, bb_cursor->GetFirstInstruction()); |
| } |
| bb_cursor->InsertInstructionAfter(compare, deopt_flag); |
| bb_cursor->InsertInstructionAfter(deopt, compare); |
| |
| // Add receiver as input to aid CHA guard optimization later. |
| deopt_flag->AddInput(invoke_instruction->InputAt(0)); |
| DCHECK_EQ(deopt_flag->InputCount(), 1u); |
| deopt->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); |
| outermost_graph_->IncrementNumberOfCHAGuards(); |
| } |
| |
| HInstruction* HInliner::AddTypeGuard(HInstruction* receiver, |
| HInstruction* cursor, |
| HBasicBlock* bb_cursor, |
| dex::TypeIndex class_index, |
| Handle<mirror::Class> klass, |
| HInstruction* invoke_instruction, |
| bool with_deoptimization) { |
| ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); |
| HInstanceFieldGet* receiver_class = BuildGetReceiverClass( |
| class_linker, receiver, invoke_instruction->GetDexPc()); |
| if (cursor != nullptr) { |
| bb_cursor->InsertInstructionAfter(receiver_class, cursor); |
| } else { |
| bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction()); |
| } |
| |
| const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile(); |
| bool is_referrer; |
| ArtMethod* outermost_art_method = outermost_graph_->GetArtMethod(); |
| if (outermost_art_method == nullptr) { |
| DCHECK(Runtime::Current()->IsAotCompiler()); |
| // We are in AOT mode and we don't have an ART method to determine |
| // if the inlined method belongs to the referrer. Assume it doesn't. |
| is_referrer = false; |
| } else { |
| is_referrer = klass.Get() == outermost_art_method->GetDeclaringClass(); |
| } |
| |
| // Note that we will just compare the classes, so we don't need Java semantics access checks. |
| // Note that the type index and the dex file are relative to the method this type guard is |
| // inlined into. |
| HLoadClass* load_class = new (graph_->GetAllocator()) HLoadClass(graph_->GetCurrentMethod(), |
| class_index, |
| caller_dex_file, |
| klass, |
| is_referrer, |
| invoke_instruction->GetDexPc(), |
| /* needs_access_check= */ false); |
| HLoadClass::LoadKind kind = HSharpening::ComputeLoadClassKind( |
| load_class, codegen_, caller_compilation_unit_); |
| DCHECK(kind != HLoadClass::LoadKind::kInvalid) |
| << "We should always be able to reference a class for inline caches"; |
| // Load kind must be set before inserting the instruction into the graph. |
| load_class->SetLoadKind(kind); |
| bb_cursor->InsertInstructionAfter(load_class, receiver_class); |
| // In AOT mode, we will most likely load the class from BSS, which will involve a call |
| // to the runtime. In this case, the load instruction will need an environment so copy |
| // it from the invoke instruction. |
| if (load_class->NeedsEnvironment()) { |
| DCHECK(Runtime::Current()->IsAotCompiler()); |
| load_class->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); |
| } |
| |
| HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(load_class, receiver_class); |
| bb_cursor->InsertInstructionAfter(compare, load_class); |
| if (with_deoptimization) { |
| HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize( |
| graph_->GetAllocator(), |
| compare, |
| receiver, |
| Runtime::Current()->IsAotCompiler() |
| ? DeoptimizationKind::kAotInlineCache |
| : DeoptimizationKind::kJitInlineCache, |
| invoke_instruction->GetDexPc()); |
| bb_cursor->InsertInstructionAfter(deoptimize, compare); |
| deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); |
| DCHECK_EQ(invoke_instruction->InputAt(0), receiver); |
| receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize); |
| deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo()); |
| } |
| return compare; |
| } |
| |
| bool HInliner::TryInlinePolymorphicCall(HInvoke* invoke_instruction, |
| ArtMethod* resolved_method, |
| Handle<mirror::ObjectArray<mirror::Class>> classes) { |
| DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface()) |
| << invoke_instruction->DebugName(); |
| |
| if (TryInlinePolymorphicCallToSameTarget(invoke_instruction, resolved_method, classes)) { |
| return true; |
| } |
| |
| ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); |
| PointerSize pointer_size = class_linker->GetImagePointerSize(); |
| |
| bool all_targets_inlined = true; |
| bool one_target_inlined = false; |
| for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) { |
| if (classes->Get(i) == nullptr) { |
| break; |
| } |
| ArtMethod* method = nullptr; |
| |
| Handle<mirror::Class> handle = handles_->NewHandle(classes->Get(i)); |
| method = ResolveMethodFromInlineCache( |
| handle, resolved_method, invoke_instruction, pointer_size); |
| if (method == nullptr) { |
| DCHECK(Runtime::Current()->IsAotCompiler()); |
| // AOT profile is bogus. This loop expects to iterate over all entries, |
| // so just just continue. |
| all_targets_inlined = false; |
| continue; |
| } |
| |
| HInstruction* receiver = invoke_instruction->InputAt(0); |
| HInstruction* cursor = invoke_instruction->GetPrevious(); |
| HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); |
| |
| dex::TypeIndex class_index = FindClassIndexIn(handle.Get(), caller_compilation_unit_); |
| HInstruction* return_replacement = nullptr; |
| LOG_NOTE() << "Try inline polymorphic call to " << method->PrettyMethod(); |
| if (!class_index.IsValid() || |
| !TryBuildAndInline(invoke_instruction, |
| method, |
| ReferenceTypeInfo::Create(handle, /* is_exact= */ true), |
| &return_replacement)) { |
| all_targets_inlined = false; |
| } else { |
| one_target_inlined = true; |
| |
| LOG_SUCCESS() << "Polymorphic call to " << ArtMethod::PrettyMethod(resolved_method) |
| << " has inlined " << ArtMethod::PrettyMethod(method); |
| |
| // If we have inlined all targets before, and this receiver is the last seen, |
| // we deoptimize instead of keeping the original invoke instruction. |
| bool deoptimize = !UseOnlyPolymorphicInliningWithNoDeopt() && |
| all_targets_inlined && |
| (i != InlineCache::kIndividualCacheSize - 1) && |
| (classes->Get(i + 1) == nullptr); |
| |
| HInstruction* compare = AddTypeGuard(receiver, |
| cursor, |
| bb_cursor, |
| class_index, |
| handle, |
| invoke_instruction, |
| deoptimize); |
| if (deoptimize) { |
| if (return_replacement != nullptr) { |
| invoke_instruction->ReplaceWith(return_replacement); |
| } |
| invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction); |
| // Because the inline cache data can be populated concurrently, we force the end of the |
| // iteration. Otherwise, we could see a new receiver type. |
| break; |
| } else { |
| CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction); |
| } |
| } |
| } |
| |
| if (!one_target_inlined) { |
| LOG_FAIL_NO_STAT() |
| << "Call to " << ArtMethod::PrettyMethod(resolved_method) |
| << " from inline cache is not inlined because none" |
| << " of its targets could be inlined"; |
| return false; |
| } |
| |
| MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall); |
| |
| // Run type propagation to get the guards typed. |
| ReferenceTypePropagation rtp_fixup(graph_, |
| outer_compilation_unit_.GetClassLoader(), |
| outer_compilation_unit_.GetDexCache(), |
| handles_, |
| /* is_first_run= */ false); |
| rtp_fixup.Run(); |
| return true; |
| } |
| |
| void HInliner::CreateDiamondPatternForPolymorphicInline(HInstruction* compare, |
| HInstruction* return_replacement, |
| HInstruction* invoke_instruction) { |
| uint32_t dex_pc = invoke_instruction->GetDexPc(); |
| HBasicBlock* cursor_block = compare->GetBlock(); |
| HBasicBlock* original_invoke_block = invoke_instruction->GetBlock(); |
| ArenaAllocator* allocator = graph_->GetAllocator(); |
| |
| // Spit the block after the compare: `cursor_block` will now be the start of the diamond, |
| // and the returned block is the start of the then branch (that could contain multiple blocks). |
| HBasicBlock* then = cursor_block->SplitAfterForInlining(compare); |
| |
| // Split the block containing the invoke before and after the invoke. The returned block |
| // of the split before will contain the invoke and will be the otherwise branch of |
| // the diamond. The returned block of the split after will be the merge block |
| // of the diamond. |
| HBasicBlock* end_then = invoke_instruction->GetBlock(); |
| HBasicBlock* otherwise = end_then->SplitBeforeForInlining(invoke_instruction); |
| HBasicBlock* merge = otherwise->SplitAfterForInlining(invoke_instruction); |
| |
| // If the methods we are inlining return a value, we create a phi in the merge block |
| // that will have the `invoke_instruction and the `return_replacement` as inputs. |
| if (return_replacement != nullptr) { |
| HPhi* phi = new (allocator) HPhi( |
| allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke_instruction->GetType()), dex_pc); |
| merge->AddPhi(phi); |
| invoke_instruction->ReplaceWith(phi); |
| phi->AddInput(return_replacement); |
| phi->AddInput(invoke_instruction); |
| } |
| |
| // Add the control flow instructions. |
| otherwise->AddInstruction(new (allocator) HGoto(dex_pc)); |
| end_then->AddInstruction(new (allocator) HGoto(dex_pc)); |
| cursor_block->AddInstruction(new (allocator) HIf(compare, dex_pc)); |
| |
| // Add the newly created blocks to the graph. |
| graph_->AddBlock(then); |
| graph_->AddBlock(otherwise); |
| graph_->AddBlock(merge); |
| |
| // Set up successor (and implictly predecessor) relations. |
| cursor_block->AddSuccessor(otherwise); |
| cursor_block->AddSuccessor(then); |
| end_then->AddSuccessor(merge); |
| otherwise->AddSuccessor(merge); |
| |
| // Set up dominance information. |
| then->SetDominator(cursor_block); |
| cursor_block->AddDominatedBlock(then); |
| otherwise->SetDominator(cursor_block); |
| cursor_block->AddDominatedBlock(otherwise); |
| merge->SetDominator(cursor_block); |
| cursor_block->AddDominatedBlock(merge); |
| |
| // Update the revert post order. |
| size_t index = IndexOfElement(graph_->reverse_post_order_, cursor_block); |
| MakeRoomFor(&graph_->reverse_post_order_, 1, index); |
| graph_->reverse_post_order_[++index] = then; |
| index = IndexOfElement(graph_->reverse_post_order_, end_then); |
| MakeRoomFor(&graph_->reverse_post_order_, 2, index); |
| graph_->reverse_post_order_[++index] = otherwise; |
| graph_->reverse_post_order_[++index] = merge; |
| |
| |
| graph_->UpdateLoopAndTryInformationOfNewBlock( |
| then, original_invoke_block, /* replace_if_back_edge= */ false); |
| graph_->UpdateLoopAndTryInformationOfNewBlock( |
| otherwise, original_invoke_block, /* replace_if_back_edge= */ false); |
| |
| // In case the original invoke location was a back edge, we need to update |
| // the loop to now have the merge block as a back edge. |
| graph_->UpdateLoopAndTryInformationOfNewBlock( |
| merge, original_invoke_block, /* replace_if_back_edge= */ true); |
| } |
| |
| bool HInliner::TryInlinePolymorphicCallToSameTarget( |
| HInvoke* invoke_instruction, |
| ArtMethod* resolved_method, |
| Handle<mirror::ObjectArray<mirror::Class>> classes) { |
| // This optimization only works under JIT for now. |
| if (!Runtime::Current()->UseJitCompilation()) { |
| return false; |
| } |
| |
| ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); |
| PointerSize pointer_size = class_linker->GetImagePointerSize(); |
| |
| DCHECK(resolved_method != nullptr); |
| ArtMethod* actual_method = nullptr; |
| size_t method_index = invoke_instruction->IsInvokeVirtual() |
| ? invoke_instruction->AsInvokeVirtual()->GetVTableIndex() |
| : invoke_instruction->AsInvokeInterface()->GetImtIndex(); |
| |
| // Check whether we are actually calling the same method among |
| // the different types seen. |
| for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) { |
| if (classes->Get(i) == nullptr) { |
| break; |
| } |
| ArtMethod* new_method = nullptr; |
| if (invoke_instruction->IsInvokeInterface()) { |
| new_method = classes->Get(i)->GetImt(pointer_size)->Get( |
| method_index, pointer_size); |
| if (new_method->IsRuntimeMethod()) { |
| // Bail out as soon as we see a conflict trampoline in one of the target's |
| // interface table. |
| return false; |
| } |
| } else { |
| DCHECK(invoke_instruction->IsInvokeVirtual()); |
| new_method = classes->Get(i)->GetEmbeddedVTableEntry(method_index, pointer_size); |
| } |
| DCHECK(new_method != nullptr); |
| if (actual_method == nullptr) { |
| actual_method = new_method; |
| } else if (actual_method != new_method) { |
| // Different methods, bailout. |
| return false; |
| } |
| } |
| |
| HInstruction* receiver = invoke_instruction->InputAt(0); |
| HInstruction* cursor = invoke_instruction->GetPrevious(); |
| HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); |
| |
| HInstruction* return_replacement = nullptr; |
| if (!TryBuildAndInline(invoke_instruction, |
| actual_method, |
| ReferenceTypeInfo::CreateInvalid(), |
| &return_replacement)) { |
| return false; |
| } |
| |
| // We successfully inlined, now add a guard. |
| HInstanceFieldGet* receiver_class = BuildGetReceiverClass( |
| class_linker, receiver, invoke_instruction->GetDexPc()); |
| |
| DataType::Type type = Is64BitInstructionSet(graph_->GetInstructionSet()) |
| ? DataType::Type::kInt64 |
| : DataType::Type::kInt32; |
| HClassTableGet* class_table_get = new (graph_->GetAllocator()) HClassTableGet( |
| receiver_class, |
| type, |
| invoke_instruction->IsInvokeVirtual() ? HClassTableGet::TableKind::kVTable |
| : HClassTableGet::TableKind::kIMTable, |
| method_index, |
| invoke_instruction->GetDexPc()); |
| |
| HConstant* constant; |
| if (type == DataType::Type::kInt64) { |
| constant = graph_->GetLongConstant( |
| reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc()); |
| } else { |
| constant = graph_->GetIntConstant( |
| reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc()); |
| } |
| |
| HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(class_table_get, constant); |
| if (cursor != nullptr) { |
| bb_cursor->InsertInstructionAfter(receiver_class, cursor); |
| } else { |
| bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction()); |
| } |
| bb_cursor->InsertInstructionAfter(class_table_get, receiver_class); |
| bb_cursor->InsertInstructionAfter(compare, class_table_get); |
| |
| if (outermost_graph_->IsCompilingOsr()) { |
| CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction); |
| } else { |
| HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize( |
| graph_->GetAllocator(), |
| compare, |
| receiver, |
| DeoptimizationKind::kJitSameTarget, |
| invoke_instruction->GetDexPc()); |
| bb_cursor->InsertInstructionAfter(deoptimize, compare); |
| deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); |
| if (return_replacement != nullptr) { |
| invoke_instruction->ReplaceWith(return_replacement); |
| } |
| receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize); |
| invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction); |
| deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo()); |
| } |
| |
| // Run type propagation to get the guard typed. |
| ReferenceTypePropagation rtp_fixup(graph_, |
| outer_compilation_unit_.GetClassLoader(), |
| outer_compilation_unit_.GetDexCache(), |
| handles_, |
| /* is_first_run= */ false); |
| rtp_fixup.Run(); |
| |
| MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall); |
| |
| LOG_SUCCESS() << "Inlined same polymorphic target " << actual_method->PrettyMethod(); |
| return true; |
| } |
| |
| bool HInliner::TryInlineAndReplace(HInvoke* invoke_instruction, |
| ArtMethod* method, |
| ReferenceTypeInfo receiver_type, |
| bool do_rtp, |
| bool cha_devirtualize) { |
| DCHECK(!invoke_instruction->IsIntrinsic()); |
| HInstruction* return_replacement = nullptr; |
| uint32_t dex_pc = invoke_instruction->GetDexPc(); |
| HInstruction* cursor = invoke_instruction->GetPrevious(); |
| HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); |
| bool should_remove_invoke_instruction = false; |
| |
| // If invoke_instruction is devirtualized to a different method, give intrinsics |
| // another chance before we try to inline it. |
| if (invoke_instruction->GetResolvedMethod() != method && method->IsIntrinsic()) { |
| MaybeRecordStat(stats_, MethodCompilationStat::kIntrinsicRecognized); |
| if (invoke_instruction->IsInvokeInterface()) { |
| // We don't intrinsify an invoke-interface directly. |
| // Replace the invoke-interface with an invoke-virtual. |
| HInvokeVirtual* new_invoke = new (graph_->GetAllocator()) HInvokeVirtual( |
| graph_->GetAllocator(), |
| invoke_instruction->GetNumberOfArguments(), |
| invoke_instruction->GetType(), |
| invoke_instruction->GetDexPc(), |
| invoke_instruction->GetDexMethodIndex(), // Use interface method's dex method index. |
| method, |
| method->GetMethodIndex()); |
| DCHECK_NE(new_invoke->GetIntrinsic(), Intrinsics::kNone); |
| HInputsRef inputs = invoke_instruction->GetInputs(); |
| for (size_t index = 0; index != inputs.size(); ++index) { |
| new_invoke->SetArgumentAt(index, inputs[index]); |
| } |
| invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction); |
| new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); |
| if (invoke_instruction->GetType() == DataType::Type::kReference) { |
| new_invoke->SetReferenceTypeInfo(invoke_instruction->GetReferenceTypeInfo()); |
| } |
| return_replacement = new_invoke; |
| // invoke_instruction is replaced with new_invoke. |
| should_remove_invoke_instruction = true; |
| } else { |
| invoke_instruction->SetResolvedMethod(method); |
| } |
| } else if (!TryBuildAndInline(invoke_instruction, method, receiver_type, &return_replacement)) { |
| if (invoke_instruction->IsInvokeInterface()) { |
| DCHECK(!method->IsProxyMethod()); |
| // Turn an invoke-interface into an invoke-virtual. An invoke-virtual is always |
| // better than an invoke-interface because: |
| // 1) In the best case, the interface call has one more indirection (to fetch the IMT). |
| // 2) We will not go to the conflict trampoline with an invoke-virtual. |
| // TODO: Consider sharpening once it is not dependent on the compiler driver. |
| |
| if (method->IsDefault() && !method->IsCopied()) { |
| // Changing to invoke-virtual cannot be done on an original default method |
| // since it's not in any vtable. Devirtualization by exact type/inline-cache |
| // always uses a method in the iftable which is never an original default |
| // method. |
| // On the other hand, inlining an original default method by CHA is fine. |
| DCHECK(cha_devirtualize); |
| return false; |
| } |
| |
| const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile(); |
| uint32_t dex_method_index = FindMethodIndexIn( |
| method, caller_dex_file, invoke_instruction->GetDexMethodIndex()); |
| if (dex_method_index == dex::kDexNoIndex) { |
| return false; |
| } |
| HInvokeVirtual* new_invoke = new (graph_->GetAllocator()) HInvokeVirtual( |
| graph_->GetAllocator(), |
| invoke_instruction->GetNumberOfArguments(), |
| invoke_instruction->GetType(), |
| invoke_instruction->GetDexPc(), |
| dex_method_index, |
| method, |
| method->GetMethodIndex()); |
| HInputsRef inputs = invoke_instruction->GetInputs(); |
| for (size_t index = 0; index != inputs.size(); ++index) { |
| new_invoke->SetArgumentAt(index, inputs[index]); |
| } |
| invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction); |
| new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); |
| if (invoke_instruction->GetType() == DataType::Type::kReference) { |
| new_invoke->SetReferenceTypeInfo(invoke_instruction->GetReferenceTypeInfo()); |
| } |
| return_replacement = new_invoke; |
| // invoke_instruction is replaced with new_invoke. |
| should_remove_invoke_instruction = true; |
| } else { |
| // TODO: Consider sharpening an invoke virtual once it is not dependent on the |
| // compiler driver. |
| return false; |
| } |
| } else { |
| // invoke_instruction is inlined. |
| should_remove_invoke_instruction = true; |
| } |
| |
| if (cha_devirtualize) { |
| AddCHAGuard(invoke_instruction, dex_pc, cursor, bb_cursor); |
| } |
| if (return_replacement != nullptr) { |
| invoke_instruction->ReplaceWith(return_replacement); |
| } |
| if (should_remove_invoke_instruction) { |
| invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction); |
| } |
| FixUpReturnReferenceType(method, return_replacement); |
| if (do_rtp && ReturnTypeMoreSpecific(invoke_instruction, return_replacement)) { |
| // Actual return value has a more specific type than the method's declared |
| // return type. Run RTP again on the outer graph to propagate it. |
| ReferenceTypePropagation(graph_, |
| outer_compilation_unit_.GetClassLoader(), |
| outer_compilation_unit_.GetDexCache(), |
| handles_, |
| /* is_first_run= */ false).Run(); |
| } |
| return true; |
| } |
| |
| size_t HInliner::CountRecursiveCallsOf(ArtMethod* method) const { |
| const HInliner* current = this; |
| size_t count = 0; |
| do { |
| if (current->graph_->GetArtMethod() == method) { |
| ++count; |
| } |
| current = current->parent_; |
| } while (current != nullptr); |
| return count; |
| } |
| |
| static inline bool MayInline(const CompilerOptions& compiler_options, |
| const DexFile& inlined_from, |
| const DexFile& inlined_into) { |
| // We're not allowed to inline across dex files if we're the no-inline-from dex file. |
| if (!IsSameDexFile(inlined_from, inlined_into) && |
| ContainsElement(compiler_options.GetNoInlineFromDexFile(), &inlined_from)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool HInliner::TryBuildAndInline(HInvoke* invoke_instruction, |
| ArtMethod* method, |
| ReferenceTypeInfo receiver_type, |
| HInstruction** return_replacement) { |
| if (method->IsProxyMethod()) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedProxy) |
| << "Method " << method->PrettyMethod() |
| << " is not inlined because of unimplemented inline support for proxy methods."; |
| return false; |
| } |
| |
| if (CountRecursiveCallsOf(method) > kMaximumNumberOfRecursiveCalls) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedRecursiveBudget) |
| << "Method " |
| << method->PrettyMethod() |
| << " is not inlined because it has reached its recursive call budget."; |
| return false; |
| } |
| |
| // Check whether we're allowed to inline. The outermost compilation unit is the relevant |
| // dex file here (though the transitivity of an inline chain would allow checking the calller). |
| if (!MayInline(codegen_->GetCompilerOptions(), |
| *method->GetDexFile(), |
| *outer_compilation_unit_.GetDexFile())) { |
| if (TryPatternSubstitution(invoke_instruction, method, return_replacement)) { |
| LOG_SUCCESS() << "Successfully replaced pattern of invoke " |
| << method->PrettyMethod(); |
| MaybeRecordStat(stats_, MethodCompilationStat::kReplacedInvokeWithSimplePattern); |
| return true; |
| } |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedWont) |
| << "Won't inline " << method->PrettyMethod() << " in " |
| << outer_compilation_unit_.GetDexFile()->GetLocation() << " (" |
| << caller_compilation_unit_.GetDexFile()->GetLocation() << ") from " |
| << method->GetDexFile()->GetLocation(); |
| return false; |
| } |
| |
| bool same_dex_file = IsSameDexFile(*outer_compilation_unit_.GetDexFile(), *method->GetDexFile()); |
| |
| CodeItemDataAccessor accessor(method->DexInstructionData()); |
| |
| if (!accessor.HasCodeItem()) { |
| LOG_FAIL_NO_STAT() |
| << "Method " << method->PrettyMethod() << " is not inlined because it is native"; |
| return false; |
| } |
| |
| size_t inline_max_code_units = codegen_->GetCompilerOptions().GetInlineMaxCodeUnits(); |
| if (accessor.InsnsSizeInCodeUnits() > inline_max_code_units) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCodeItem) |
| << "Method " << method->PrettyMethod() |
| << " is not inlined because its code item is too big: " |
| << accessor.InsnsSizeInCodeUnits() |
| << " > " |
| << inline_max_code_units; |
| return false; |
| } |
| |
| if (accessor.TriesSize() != 0) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatch) |
| << "Method " << method->PrettyMethod() << " is not inlined because of try block"; |
| return false; |
| } |
| |
| if (!method->IsCompilable()) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotVerified) |
| << "Method " << method->PrettyMethod() |
| << " has soft failures un-handled by the compiler, so it cannot be inlined"; |
| return false; |
| } |
| |
| if (IsMethodUnverified(codegen_->GetCompilerOptions(), method)) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotVerified) |
| << "Method " << method->PrettyMethod() |
| << " couldn't be verified, so it cannot be inlined"; |
| return false; |
| } |
| |
| if (invoke_instruction->IsInvokeStaticOrDirect() && |
| invoke_instruction->AsInvokeStaticOrDirect()->IsStaticWithImplicitClinitCheck()) { |
| // Case of a static method that cannot be inlined because it implicitly |
| // requires an initialization check of its declaring class. |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCache) |
| << "Method " << method->PrettyMethod() |
| << " is not inlined because it is static and requires a clinit" |
| << " check that cannot be emitted due to Dex cache limitations"; |
| return false; |
| } |
| |
| if (!TryBuildAndInlineHelper( |
| invoke_instruction, method, receiver_type, same_dex_file, return_replacement)) { |
| return false; |
| } |
| |
| LOG_SUCCESS() << method->PrettyMethod(); |
| MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvoke); |
| return true; |
| } |
| |
| static HInstruction* GetInvokeInputForArgVRegIndex(HInvoke* invoke_instruction, |
| size_t arg_vreg_index) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| size_t input_index = 0; |
| for (size_t i = 0; i < arg_vreg_index; ++i, ++input_index) { |
| DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments()); |
| if (DataType::Is64BitType(invoke_instruction->InputAt(input_index)->GetType())) { |
| ++i; |
| DCHECK_NE(i, arg_vreg_index); |
| } |
| } |
| DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments()); |
| return invoke_instruction->InputAt(input_index); |
| } |
| |
| // Try to recognize known simple patterns and replace invoke call with appropriate instructions. |
| bool HInliner::TryPatternSubstitution(HInvoke* invoke_instruction, |
| ArtMethod* resolved_method, |
| HInstruction** return_replacement) { |
| InlineMethod inline_method; |
| if (!InlineMethodAnalyser::AnalyseMethodCode(resolved_method, &inline_method)) { |
| return false; |
| } |
| |
| switch (inline_method.opcode) { |
| case kInlineOpNop: |
| DCHECK_EQ(invoke_instruction->GetType(), DataType::Type::kVoid); |
| *return_replacement = nullptr; |
| break; |
| case kInlineOpReturnArg: |
| *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, |
| inline_method.d.return_data.arg); |
| break; |
| case kInlineOpNonWideConst: |
| if (resolved_method->GetShorty()[0] == 'L') { |
| DCHECK_EQ(inline_method.d.data, 0u); |
| *return_replacement = graph_->GetNullConstant(); |
| } else { |
| *return_replacement = graph_->GetIntConstant(static_cast<int32_t>(inline_method.d.data)); |
| } |
| break; |
| case kInlineOpIGet: { |
| const InlineIGetIPutData& data = inline_method.d.ifield_data; |
| if (data.method_is_static || data.object_arg != 0u) { |
| // TODO: Needs null check. |
| return false; |
| } |
| HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg); |
| HInstanceFieldGet* iget = CreateInstanceFieldGet(data.field_idx, resolved_method, obj); |
| DCHECK_EQ(iget->GetFieldOffset().Uint32Value(), data.field_offset); |
| DCHECK_EQ(iget->IsVolatile() ? 1u : 0u, data.is_volatile); |
| invoke_instruction->GetBlock()->InsertInstructionBefore(iget, invoke_instruction); |
| *return_replacement = iget; |
| break; |
| } |
| case kInlineOpIPut: { |
| const InlineIGetIPutData& data = inline_method.d.ifield_data; |
| if (data.method_is_static || data.object_arg != 0u) { |
| // TODO: Needs null check. |
| return false; |
| } |
| HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg); |
| HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, data.src_arg); |
| HInstanceFieldSet* iput = CreateInstanceFieldSet(data.field_idx, resolved_method, obj, value); |
| DCHECK_EQ(iput->GetFieldOffset().Uint32Value(), data.field_offset); |
| DCHECK_EQ(iput->IsVolatile() ? 1u : 0u, data.is_volatile); |
| invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction); |
| if (data.return_arg_plus1 != 0u) { |
| size_t return_arg = data.return_arg_plus1 - 1u; |
| *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, return_arg); |
| } |
| break; |
| } |
| case kInlineOpConstructor: { |
| const InlineConstructorData& data = inline_method.d.constructor_data; |
| // Get the indexes to arrays for easier processing. |
| uint16_t iput_field_indexes[] = { |
| data.iput0_field_index, data.iput1_field_index, data.iput2_field_index |
| }; |
| uint16_t iput_args[] = { data.iput0_arg, data.iput1_arg, data.iput2_arg }; |
| static_assert(arraysize(iput_args) == arraysize(iput_field_indexes), "Size mismatch"); |
| // Count valid field indexes. |
| size_t number_of_iputs = 0u; |
| while (number_of_iputs != arraysize(iput_field_indexes) && |
| iput_field_indexes[number_of_iputs] != DexFile::kDexNoIndex16) { |
| // Check that there are no duplicate valid field indexes. |
| DCHECK_EQ(0, std::count(iput_field_indexes + number_of_iputs + 1, |
| iput_field_indexes + arraysize(iput_field_indexes), |
| iput_field_indexes[number_of_iputs])); |
| ++number_of_iputs; |
| } |
| // Check that there are no valid field indexes in the rest of the array. |
| DCHECK_EQ(0, std::count_if(iput_field_indexes + number_of_iputs, |
| iput_field_indexes + arraysize(iput_field_indexes), |
| [](uint16_t index) { return index != DexFile::kDexNoIndex16; })); |
| |
| // Create HInstanceFieldSet for each IPUT that stores non-zero data. |
| HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, |
| /* arg_vreg_index= */ 0u); |
| bool needs_constructor_barrier = false; |
| for (size_t i = 0; i != number_of_iputs; ++i) { |
| HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, iput_args[i]); |
| if (!value->IsConstant() || !value->AsConstant()->IsZeroBitPattern()) { |
| uint16_t field_index = iput_field_indexes[i]; |
| bool is_final; |
| HInstanceFieldSet* iput = |
| CreateInstanceFieldSet(field_index, resolved_method, obj, value, &is_final); |
| invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction); |
| |
| // Check whether the field is final. If it is, we need to add a barrier. |
| if (is_final) { |
| needs_constructor_barrier = true; |
| } |
| } |
| } |
| if (needs_constructor_barrier) { |
| // See DexCompilationUnit::RequiresConstructorBarrier for more details. |
| DCHECK(obj != nullptr) << "only non-static methods can have a constructor fence"; |
| |
| HConstructorFence* constructor_fence = |
| new (graph_->GetAllocator()) HConstructorFence(obj, kNoDexPc, graph_->GetAllocator()); |
| invoke_instruction->GetBlock()->InsertInstructionBefore(constructor_fence, |
| invoke_instruction); |
| } |
| *return_replacement = nullptr; |
| break; |
| } |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| return true; |
| } |
| |
| HInstanceFieldGet* HInliner::CreateInstanceFieldGet(uint32_t field_index, |
| ArtMethod* referrer, |
| HInstruction* obj) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| ArtField* resolved_field = |
| class_linker->LookupResolvedField(field_index, referrer, /* is_static= */ false); |
| DCHECK(resolved_field != nullptr); |
| HInstanceFieldGet* iget = new (graph_->GetAllocator()) HInstanceFieldGet( |
| obj, |
| resolved_field, |
| DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]), |
| resolved_field->GetOffset(), |
| resolved_field->IsVolatile(), |
| field_index, |
| resolved_field->GetDeclaringClass()->GetDexClassDefIndex(), |
| *referrer->GetDexFile(), |
| // Read barrier generates a runtime call in slow path and we need a valid |
| // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537. |
| /* dex_pc= */ 0); |
| if (iget->GetType() == DataType::Type::kReference) { |
| // Use the same dex_cache that we used for field lookup as the hint_dex_cache. |
| Handle<mirror::DexCache> dex_cache = handles_->NewHandle(referrer->GetDexCache()); |
| ReferenceTypePropagation rtp(graph_, |
| outer_compilation_unit_.GetClassLoader(), |
| dex_cache, |
| handles_, |
| /* is_first_run= */ false); |
| rtp.Visit(iget); |
| } |
| return iget; |
| } |
| |
| HInstanceFieldSet* HInliner::CreateInstanceFieldSet(uint32_t field_index, |
| ArtMethod* referrer, |
| HInstruction* obj, |
| HInstruction* value, |
| bool* is_final) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| ArtField* resolved_field = |
| class_linker->LookupResolvedField(field_index, referrer, /* is_static= */ false); |
| DCHECK(resolved_field != nullptr); |
| if (is_final != nullptr) { |
| // This information is needed only for constructors. |
| DCHECK(referrer->IsConstructor()); |
| *is_final = resolved_field->IsFinal(); |
| } |
| HInstanceFieldSet* iput = new (graph_->GetAllocator()) HInstanceFieldSet( |
| obj, |
| value, |
| resolved_field, |
| DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]), |
| resolved_field->GetOffset(), |
| resolved_field->IsVolatile(), |
| field_index, |
| resolved_field->GetDeclaringClass()->GetDexClassDefIndex(), |
| *referrer->GetDexFile(), |
| // Read barrier generates a runtime call in slow path and we need a valid |
| // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537. |
| /* dex_pc= */ 0); |
| return iput; |
| } |
| |
| template <typename T> |
| static inline Handle<T> NewHandleIfDifferent(ObjPtr<T> object, |
| Handle<T> hint, |
| VariableSizedHandleScope* handles) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| return (object != hint.Get()) ? handles->NewHandle(object) : hint; |
| } |
| |
| static bool CanEncodeInlinedMethodInStackMap(const DexFile& caller_dex_file, ArtMethod* callee) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (!Runtime::Current()->IsAotCompiler()) { |
| // JIT can always encode methods in stack maps. |
| return true; |
| } |
| if (IsSameDexFile(caller_dex_file, *callee->GetDexFile())) { |
| return true; |
| } |
| // TODO(ngeoffray): Support more AOT cases for inlining: |
| // - methods in multidex |
| // - methods in boot image for on-device non-PIC compilation. |
| return false; |
| } |
| |
| bool HInliner::TryBuildAndInlineHelper(HInvoke* invoke_instruction, |
| ArtMethod* resolved_method, |
| ReferenceTypeInfo receiver_type, |
| bool same_dex_file, |
| HInstruction** return_replacement) { |
| DCHECK(!(resolved_method->IsStatic() && receiver_type.IsValid())); |
| ScopedObjectAccess soa(Thread::Current()); |
| const dex::CodeItem* code_item = resolved_method->GetCodeItem(); |
| const DexFile& callee_dex_file = *resolved_method->GetDexFile(); |
| uint32_t method_index = resolved_method->GetDexMethodIndex(); |
| CodeItemDebugInfoAccessor code_item_accessor(resolved_method->DexInstructionDebugInfo()); |
| ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); |
| Handle<mirror::DexCache> dex_cache = NewHandleIfDifferent(resolved_method->GetDexCache(), |
| caller_compilation_unit_.GetDexCache(), |
| handles_); |
| Handle<mirror::ClassLoader> class_loader = |
| NewHandleIfDifferent(resolved_method->GetDeclaringClass()->GetClassLoader(), |
| caller_compilation_unit_.GetClassLoader(), |
| handles_); |
| |
| Handle<mirror::Class> compiling_class = handles_->NewHandle(resolved_method->GetDeclaringClass()); |
| DexCompilationUnit dex_compilation_unit( |
| class_loader, |
| class_linker, |
| callee_dex_file, |
| code_item, |
| resolved_method->GetDeclaringClass()->GetDexClassDefIndex(), |
| method_index, |
| resolved_method->GetAccessFlags(), |
| /* verified_method= */ nullptr, |
| dex_cache, |
| compiling_class); |
| |
| InvokeType invoke_type = invoke_instruction->GetInvokeType(); |
| if (invoke_type == kInterface) { |
| // We have statically resolved the dispatch. To please the class linker |
| // at runtime, we change this call as if it was a virtual call. |
| invoke_type = kVirtual; |
| } |
| |
| bool caller_dead_reference_safe = graph_->IsDeadReferenceSafe(); |
| const dex::ClassDef& callee_class = resolved_method->GetClassDef(); |
| // MethodContainsRSensitiveAccess is currently slow, but HasDeadReferenceSafeAnnotation() |
| // is currently rarely true. |
| bool callee_dead_reference_safe = |
| annotations::HasDeadReferenceSafeAnnotation(callee_dex_file, callee_class) |
| && !annotations::MethodContainsRSensitiveAccess(callee_dex_file, callee_class, method_index); |
| |
| const int32_t caller_instruction_counter = graph_->GetCurrentInstructionId(); |
| HGraph* callee_graph = new (graph_->GetAllocator()) HGraph( |
| graph_->GetAllocator(), |
| graph_->GetArenaStack(), |
| callee_dex_file, |
| method_index, |
| codegen_->GetCompilerOptions().GetInstructionSet(), |
| invoke_type, |
| callee_dead_reference_safe, |
| graph_->IsDebuggable(), |
| /* osr= */ false, |
| caller_instruction_counter); |
| callee_graph->SetArtMethod(resolved_method); |
| |
| // When they are needed, allocate `inline_stats_` on the Arena instead |
| // of on the stack, as Clang might produce a stack frame too large |
| // for this function, that would not fit the requirements of the |
| // `-Wframe-larger-than` option. |
| if (stats_ != nullptr) { |
| // Reuse one object for all inline attempts from this caller to keep Arena memory usage low. |
| if (inline_stats_ == nullptr) { |
| void* storage = graph_->GetAllocator()->Alloc<OptimizingCompilerStats>(kArenaAllocMisc); |
| inline_stats_ = new (storage) OptimizingCompilerStats; |
| } else { |
| inline_stats_->Reset(); |
| } |
| } |
| HGraphBuilder builder(callee_graph, |
| code_item_accessor, |
| &dex_compilation_unit, |
| &outer_compilation_unit_, |
| codegen_, |
| inline_stats_, |
| resolved_method->GetQuickenedInfo(), |
| handles_); |
| |
| if (builder.BuildGraph() != kAnalysisSuccess) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCannotBuild) |
| << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " could not be built, so cannot be inlined"; |
| return false; |
| } |
| |
| if (!RegisterAllocator::CanAllocateRegistersFor( |
| *callee_graph, codegen_->GetCompilerOptions().GetInstructionSet())) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedRegisterAllocator) |
| << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " cannot be inlined because of the register allocator"; |
| return false; |
| } |
| |
| size_t parameter_index = 0; |
| bool run_rtp = false; |
| for (HInstructionIterator instructions(callee_graph->GetEntryBlock()->GetInstructions()); |
| !instructions.Done(); |
| instructions.Advance()) { |
| HInstruction* current = instructions.Current(); |
| if (current->IsParameterValue()) { |
| HInstruction* argument = invoke_instruction->InputAt(parameter_index); |
| if (argument->IsNullConstant()) { |
| current->ReplaceWith(callee_graph->GetNullConstant()); |
| } else if (argument->IsIntConstant()) { |
| current->ReplaceWith(callee_graph->GetIntConstant(argument->AsIntConstant()->GetValue())); |
| } else if (argument->IsLongConstant()) { |
| current->ReplaceWith(callee_graph->GetLongConstant(argument->AsLongConstant()->GetValue())); |
| } else if (argument->IsFloatConstant()) { |
| current->ReplaceWith( |
| callee_graph->GetFloatConstant(argument->AsFloatConstant()->GetValue())); |
| } else if (argument->IsDoubleConstant()) { |
| current->ReplaceWith( |
| callee_graph->GetDoubleConstant(argument->AsDoubleConstant()->GetValue())); |
| } else if (argument->GetType() == DataType::Type::kReference) { |
| if (!resolved_method->IsStatic() && parameter_index == 0 && receiver_type.IsValid()) { |
| run_rtp = true; |
| current->SetReferenceTypeInfo(receiver_type); |
| } else { |
| current->SetReferenceTypeInfo(argument->GetReferenceTypeInfo()); |
| } |
| current->AsParameterValue()->SetCanBeNull(argument->CanBeNull()); |
| } |
| ++parameter_index; |
| } |
| } |
| |
| // We have replaced formal arguments with actual arguments. If actual types |
| // are more specific than the declared ones, run RTP again on the inner graph. |
| if (run_rtp || ArgumentTypesMoreSpecific(invoke_instruction, resolved_method)) { |
| ReferenceTypePropagation(callee_graph, |
| outer_compilation_unit_.GetClassLoader(), |
| dex_compilation_unit.GetDexCache(), |
| handles_, |
| /* is_first_run= */ false).Run(); |
| } |
| |
| RunOptimizations(callee_graph, code_item, dex_compilation_unit); |
| |
| HBasicBlock* exit_block = callee_graph->GetExitBlock(); |
| if (exit_block == nullptr) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop) |
| << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " could not be inlined because it has an infinite loop"; |
| return false; |
| } |
| |
| bool has_one_return = false; |
| for (HBasicBlock* predecessor : exit_block->GetPredecessors()) { |
| if (predecessor->GetLastInstruction()->IsThrow()) { |
| if (invoke_instruction->GetBlock()->IsTryBlock()) { |
| // TODO(ngeoffray): Support adding HTryBoundary in Hgraph::InlineInto. |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatch) |
| << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " could not be inlined because one branch always throws and" |
| << " caller is in a try/catch block"; |
| return false; |
| } else if (graph_->GetExitBlock() == nullptr) { |
| // TODO(ngeoffray): Support adding HExit in the caller graph. |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop) |
| << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " could not be inlined because one branch always throws and" |
| << " caller does not have an exit block"; |
| return false; |
| } else if (graph_->HasIrreducibleLoops()) { |
| // TODO(ngeoffray): Support re-computing loop information to graphs with |
| // irreducible loops? |
| VLOG(compiler) << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " could not be inlined because one branch always throws and" |
| << " caller has irreducible loops"; |
| return false; |
| } |
| } else { |
| has_one_return = true; |
| } |
| } |
| |
| if (!has_one_return) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedAlwaysThrows) |
| << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " could not be inlined because it always throws"; |
| return false; |
| } |
| |
| size_t number_of_instructions = 0; |
| // Skip the entry block, it does not contain instructions that prevent inlining. |
| for (HBasicBlock* block : callee_graph->GetReversePostOrderSkipEntryBlock()) { |
| if (block->IsLoopHeader()) { |
| if (block->GetLoopInformation()->IsIrreducible()) { |
| // Don't inline methods with irreducible loops, they could prevent some |
| // optimizations to run. |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedIrreducibleLoop) |
| << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " could not be inlined because it contains an irreducible loop"; |
| return false; |
| } |
| if (!block->GetLoopInformation()->HasExitEdge()) { |
| // Don't inline methods with loops without exit, since they cause the |
| // loop information to be computed incorrectly when updating after |
| // inlining. |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedLoopWithoutExit) |
| << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " could not be inlined because it contains a loop with no exit"; |
| return false; |
| } |
| } |
| |
| for (HInstructionIterator instr_it(block->GetInstructions()); |
| !instr_it.Done(); |
| instr_it.Advance()) { |
| if (++number_of_instructions >= inlining_budget_) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInstructionBudget) |
| << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " is not inlined because the outer method has reached" |
| << " its instruction budget limit."; |
| return false; |
| } |
| HInstruction* current = instr_it.Current(); |
| if (current->NeedsEnvironment() && |
| (total_number_of_dex_registers_ >= kMaximumNumberOfCumulatedDexRegisters)) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedEnvironmentBudget) |
| << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " is not inlined because its caller has reached" |
| << " its environment budget limit."; |
| return false; |
| } |
| |
| if (current->NeedsEnvironment() && |
| !CanEncodeInlinedMethodInStackMap(*caller_compilation_unit_.GetDexFile(), |
| resolved_method)) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedStackMaps) |
| << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " could not be inlined because " << current->DebugName() |
| << " needs an environment, is in a different dex file" |
| << ", and cannot be encoded in the stack maps."; |
| return false; |
| } |
| |
| if (!same_dex_file && current->NeedsDexCacheOfDeclaringClass()) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCache) |
| << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " could not be inlined because " << current->DebugName() |
| << " it is in a different dex file and requires access to the dex cache"; |
| return false; |
| } |
| |
| if (current->IsUnresolvedStaticFieldGet() || |
| current->IsUnresolvedInstanceFieldGet() || |
| current->IsUnresolvedStaticFieldSet() || |
| current->IsUnresolvedInstanceFieldSet()) { |
| // Entrypoint for unresolved fields does not handle inlined frames. |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedUnresolvedEntrypoint) |
| << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " could not be inlined because it is using an unresolved" |
| << " entrypoint"; |
| return false; |
| } |
| } |
| } |
| DCHECK_EQ(caller_instruction_counter, graph_->GetCurrentInstructionId()) |
| << "No instructions can be added to the outer graph while inner graph is being built"; |
| |
| // Inline the callee graph inside the caller graph. |
| const int32_t callee_instruction_counter = callee_graph->GetCurrentInstructionId(); |
| graph_->SetCurrentInstructionId(callee_instruction_counter); |
| *return_replacement = callee_graph->InlineInto(graph_, invoke_instruction); |
| // Update our budget for other inlining attempts in `caller_graph`. |
| total_number_of_instructions_ += number_of_instructions; |
| UpdateInliningBudget(); |
| |
| DCHECK_EQ(callee_instruction_counter, callee_graph->GetCurrentInstructionId()) |
| << "No instructions can be added to the inner graph during inlining into the outer graph"; |
| |
| if (stats_ != nullptr) { |
| DCHECK(inline_stats_ != nullptr); |
| inline_stats_->AddTo(stats_); |
| } |
| |
| if (caller_dead_reference_safe && !callee_dead_reference_safe) { |
| // Caller was dead reference safe, but is not anymore, since we inlined dead |
| // reference unsafe code. Prior transformations remain valid, since they did not |
| // affect the inlined code. |
| graph_->MarkDeadReferenceUnsafe(); |
| } |
| |
| return true; |
| } |
| |
| void HInliner::RunOptimizations(HGraph* callee_graph, |
| const dex::CodeItem* code_item, |
| const DexCompilationUnit& dex_compilation_unit) { |
| // Note: if the outermost_graph_ is being compiled OSR, we should not run any |
| // optimization that could lead to a HDeoptimize. The following optimizations do not. |
| HDeadCodeElimination dce(callee_graph, inline_stats_, "dead_code_elimination$inliner"); |
| HConstantFolding fold(callee_graph, "constant_folding$inliner"); |
| InstructionSimplifier simplify(callee_graph, codegen_, inline_stats_); |
| |
| HOptimization* optimizations[] = { |
| &simplify, |
| &fold, |
| &dce, |
| }; |
| |
| for (size_t i = 0; i < arraysize(optimizations); ++i) { |
| HOptimization* optimization = optimizations[i]; |
| optimization->Run(); |
| } |
| |
| // Bail early for pathological cases on the environment (for example recursive calls, |
| // or too large environment). |
| if (total_number_of_dex_registers_ >= kMaximumNumberOfCumulatedDexRegisters) { |
| LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod() |
| << " will not be inlined because the outer method has reached" |
| << " its environment budget limit."; |
| return; |
| } |
| |
| // Bail early if we know we already are over the limit. |
| size_t number_of_instructions = CountNumberOfInstructions(callee_graph); |
| if (number_of_instructions > inlining_budget_) { |
| LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod() |
| << " will not be inlined because the outer method has reached" |
| << " its instruction budget limit. " << number_of_instructions; |
| return; |
| } |
| |
| CodeItemDataAccessor accessor(callee_graph->GetDexFile(), code_item); |
| HInliner inliner(callee_graph, |
| outermost_graph_, |
| codegen_, |
| outer_compilation_unit_, |
| dex_compilation_unit, |
| handles_, |
| inline_stats_, |
| total_number_of_dex_registers_ + accessor.RegistersSize(), |
| total_number_of_instructions_ + number_of_instructions, |
| this, |
| depth_ + 1); |
| inliner.Run(); |
| } |
| |
| static bool IsReferenceTypeRefinement(ReferenceTypeInfo declared_rti, |
| bool declared_can_be_null, |
| HInstruction* actual_obj) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (declared_can_be_null && !actual_obj->CanBeNull()) { |
| return true; |
| } |
| |
| ReferenceTypeInfo actual_rti = actual_obj->GetReferenceTypeInfo(); |
| return (actual_rti.IsExact() && !declared_rti.IsExact()) || |
| declared_rti.IsStrictSupertypeOf(actual_rti); |
| } |
| |
| ReferenceTypeInfo HInliner::GetClassRTI(ObjPtr<mirror::Class> klass) { |
| return ReferenceTypePropagation::IsAdmissible(klass) |
| ? ReferenceTypeInfo::Create(handles_->NewHandle(klass)) |
| : graph_->GetInexactObjectRti(); |
| } |
| |
| bool HInliner::ArgumentTypesMoreSpecific(HInvoke* invoke_instruction, ArtMethod* resolved_method) { |
| // If this is an instance call, test whether the type of the `this` argument |
| // is more specific than the class which declares the method. |
| if (!resolved_method->IsStatic()) { |
| if (IsReferenceTypeRefinement(GetClassRTI(resolved_method->GetDeclaringClass()), |
| /* declared_can_be_null= */ false, |
| invoke_instruction->InputAt(0u))) { |
| return true; |
| } |
| } |
| |
| // Iterate over the list of parameter types and test whether any of the |
| // actual inputs has a more specific reference type than the type declared in |
| // the signature. |
| const dex::TypeList* param_list = resolved_method->GetParameterTypeList(); |
| for (size_t param_idx = 0, |
| input_idx = resolved_method->IsStatic() ? 0 : 1, |
| e = (param_list == nullptr ? 0 : param_list->Size()); |
| param_idx < e; |
| ++param_idx, ++input_idx) { |
| HInstruction* input = invoke_instruction->InputAt(input_idx); |
| if (input->GetType() == DataType::Type::kReference) { |
| ObjPtr<mirror::Class> param_cls = resolved_method->LookupResolvedClassFromTypeIndex( |
| param_list->GetTypeItem(param_idx).type_idx_); |
| if (IsReferenceTypeRefinement(GetClassRTI(param_cls), |
| /* declared_can_be_null= */ true, |
| input)) { |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| bool HInliner::ReturnTypeMoreSpecific(HInvoke* invoke_instruction, |
| HInstruction* return_replacement) { |
| // Check the integrity of reference types and run another type propagation if needed. |
| if (return_replacement != nullptr) { |
| if (return_replacement->GetType() == DataType::Type::kReference) { |
| // Test if the return type is a refinement of the declared return type. |
| if (IsReferenceTypeRefinement(invoke_instruction->GetReferenceTypeInfo(), |
| /* declared_can_be_null= */ true, |
| return_replacement)) { |
| return true; |
| } else if (return_replacement->IsInstanceFieldGet()) { |
| HInstanceFieldGet* field_get = return_replacement->AsInstanceFieldGet(); |
| if (field_get->GetFieldInfo().GetField() == |
| GetClassRoot<mirror::Object>()->GetInstanceField(0)) { |
| return true; |
| } |
| } |
| } else if (return_replacement->IsInstanceOf()) { |
| // Inlining InstanceOf into an If may put a tighter bound on reference types. |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| void HInliner::FixUpReturnReferenceType(ArtMethod* resolved_method, |
| HInstruction* return_replacement) { |
| if (return_replacement != nullptr) { |
| if (return_replacement->GetType() == DataType::Type::kReference) { |
| if (!return_replacement->GetReferenceTypeInfo().IsValid()) { |
| // Make sure that we have a valid type for the return. We may get an invalid one when |
| // we inline invokes with multiple branches and create a Phi for the result. |
| // TODO: we could be more precise by merging the phi inputs but that requires |
| // some functionality from the reference type propagation. |
| DCHECK(return_replacement->IsPhi()); |
| ObjPtr<mirror::Class> cls = resolved_method->LookupResolvedReturnType(); |
| return_replacement->SetReferenceTypeInfo(GetClassRTI(cls)); |
| } |
| } |
| } |
| } |
| |
| } // namespace art |