| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <string> |
| #include <inttypes.h> |
| |
| #include "codegen_x86.h" |
| #include "dex/compiler_internals.h" |
| #include "dex/quick/mir_to_lir-inl.h" |
| #include "dex/reg_storage_eq.h" |
| #include "mirror/array.h" |
| #include "mirror/string.h" |
| #include "x86_lir.h" |
| |
| namespace art { |
| |
| static constexpr RegStorage core_regs_arr_32[] = { |
| rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI, |
| }; |
| static constexpr RegStorage core_regs_arr_64[] = { |
| rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI, |
| rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15 |
| }; |
| static constexpr RegStorage core_regs_arr_64q[] = { |
| rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q, |
| rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q |
| }; |
| static constexpr RegStorage sp_regs_arr_32[] = { |
| rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, |
| }; |
| static constexpr RegStorage sp_regs_arr_64[] = { |
| rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, |
| rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15 |
| }; |
| static constexpr RegStorage dp_regs_arr_32[] = { |
| rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, |
| }; |
| static constexpr RegStorage dp_regs_arr_64[] = { |
| rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, |
| rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15 |
| }; |
| static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32}; |
| static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32}; |
| static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64}; |
| static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX}; |
| static constexpr RegStorage core_temps_arr_64[] = { |
| rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI, |
| rs_r8, rs_r9, rs_r10, rs_r11 |
| }; |
| static constexpr RegStorage core_temps_arr_64q[] = { |
| rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q, |
| rs_r8q, rs_r9q, rs_r10q, rs_r11q |
| }; |
| static constexpr RegStorage sp_temps_arr_32[] = { |
| rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, |
| }; |
| static constexpr RegStorage sp_temps_arr_64[] = { |
| rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7, |
| rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15 |
| }; |
| static constexpr RegStorage dp_temps_arr_32[] = { |
| rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, |
| }; |
| static constexpr RegStorage dp_temps_arr_64[] = { |
| rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7, |
| rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15 |
| }; |
| |
| static constexpr RegStorage xp_temps_arr_32[] = { |
| rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7, |
| }; |
| static constexpr RegStorage xp_temps_arr_64[] = { |
| rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7, |
| rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15 |
| }; |
| |
| static constexpr ArrayRef<const RegStorage> empty_pool; |
| static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32); |
| static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64); |
| static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q); |
| static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32); |
| static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64); |
| static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32); |
| static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64); |
| static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32); |
| static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64); |
| static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q); |
| static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32); |
| static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64); |
| static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q); |
| static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32); |
| static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64); |
| static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32); |
| static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64); |
| |
| static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32); |
| static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64); |
| |
| RegStorage rs_rX86_SP; |
| |
| X86NativeRegisterPool rX86_ARG0; |
| X86NativeRegisterPool rX86_ARG1; |
| X86NativeRegisterPool rX86_ARG2; |
| X86NativeRegisterPool rX86_ARG3; |
| X86NativeRegisterPool rX86_ARG4; |
| X86NativeRegisterPool rX86_ARG5; |
| X86NativeRegisterPool rX86_FARG0; |
| X86NativeRegisterPool rX86_FARG1; |
| X86NativeRegisterPool rX86_FARG2; |
| X86NativeRegisterPool rX86_FARG3; |
| X86NativeRegisterPool rX86_FARG4; |
| X86NativeRegisterPool rX86_FARG5; |
| X86NativeRegisterPool rX86_FARG6; |
| X86NativeRegisterPool rX86_FARG7; |
| X86NativeRegisterPool rX86_RET0; |
| X86NativeRegisterPool rX86_RET1; |
| X86NativeRegisterPool rX86_INVOKE_TGT; |
| X86NativeRegisterPool rX86_COUNT; |
| |
| RegStorage rs_rX86_ARG0; |
| RegStorage rs_rX86_ARG1; |
| RegStorage rs_rX86_ARG2; |
| RegStorage rs_rX86_ARG3; |
| RegStorage rs_rX86_ARG4; |
| RegStorage rs_rX86_ARG5; |
| RegStorage rs_rX86_FARG0; |
| RegStorage rs_rX86_FARG1; |
| RegStorage rs_rX86_FARG2; |
| RegStorage rs_rX86_FARG3; |
| RegStorage rs_rX86_FARG4; |
| RegStorage rs_rX86_FARG5; |
| RegStorage rs_rX86_FARG6; |
| RegStorage rs_rX86_FARG7; |
| RegStorage rs_rX86_RET0; |
| RegStorage rs_rX86_RET1; |
| RegStorage rs_rX86_INVOKE_TGT; |
| RegStorage rs_rX86_COUNT; |
| |
| RegLocation X86Mir2Lir::LocCReturn() { |
| return x86_loc_c_return; |
| } |
| |
| RegLocation X86Mir2Lir::LocCReturnRef() { |
| return cu_->target64 ? x86_64_loc_c_return_ref : x86_loc_c_return_ref; |
| } |
| |
| RegLocation X86Mir2Lir::LocCReturnWide() { |
| return cu_->target64 ? x86_64_loc_c_return_wide : x86_loc_c_return_wide; |
| } |
| |
| RegLocation X86Mir2Lir::LocCReturnFloat() { |
| return x86_loc_c_return_float; |
| } |
| |
| RegLocation X86Mir2Lir::LocCReturnDouble() { |
| return x86_loc_c_return_double; |
| } |
| |
| // Return a target-dependent special register for 32-bit. |
| RegStorage X86Mir2Lir::TargetReg32(SpecialTargetRegister reg) { |
| RegStorage res_reg = RegStorage::InvalidReg(); |
| switch (reg) { |
| case kSelf: res_reg = RegStorage::InvalidReg(); break; |
| case kSuspend: res_reg = RegStorage::InvalidReg(); break; |
| case kLr: res_reg = RegStorage::InvalidReg(); break; |
| case kPc: res_reg = RegStorage::InvalidReg(); break; |
| case kSp: res_reg = rs_rX86_SP; break; |
| case kArg0: res_reg = rs_rX86_ARG0; break; |
| case kArg1: res_reg = rs_rX86_ARG1; break; |
| case kArg2: res_reg = rs_rX86_ARG2; break; |
| case kArg3: res_reg = rs_rX86_ARG3; break; |
| case kArg4: res_reg = rs_rX86_ARG4; break; |
| case kArg5: res_reg = rs_rX86_ARG5; break; |
| case kFArg0: res_reg = rs_rX86_FARG0; break; |
| case kFArg1: res_reg = rs_rX86_FARG1; break; |
| case kFArg2: res_reg = rs_rX86_FARG2; break; |
| case kFArg3: res_reg = rs_rX86_FARG3; break; |
| case kFArg4: res_reg = rs_rX86_FARG4; break; |
| case kFArg5: res_reg = rs_rX86_FARG5; break; |
| case kFArg6: res_reg = rs_rX86_FARG6; break; |
| case kFArg7: res_reg = rs_rX86_FARG7; break; |
| case kRet0: res_reg = rs_rX86_RET0; break; |
| case kRet1: res_reg = rs_rX86_RET1; break; |
| case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break; |
| case kHiddenArg: res_reg = rs_rAX; break; |
| case kHiddenFpArg: DCHECK(!cu_->target64); res_reg = rs_fr0; break; |
| case kCount: res_reg = rs_rX86_COUNT; break; |
| default: res_reg = RegStorage::InvalidReg(); |
| } |
| return res_reg; |
| } |
| |
| RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) { |
| LOG(FATAL) << "Do not use this function!!!"; |
| return RegStorage::InvalidReg(); |
| } |
| |
| /* |
| * Decode the register id. |
| */ |
| ResourceMask X86Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const { |
| /* Double registers in x86 are just a single FP register. This is always just a single bit. */ |
| return ResourceMask::Bit( |
| /* FP register starts at bit position 16 */ |
| ((reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0) + reg.GetRegNum()); |
| } |
| |
| ResourceMask X86Mir2Lir::GetPCUseDefEncoding() const { |
| /* |
| * FIXME: might make sense to use a virtual resource encoding bit for pc. Might be |
| * able to clean up some of the x86/Arm_Mips differences |
| */ |
| LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for x86"; |
| return kEncodeNone; |
| } |
| |
| void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags, |
| ResourceMask* use_mask, ResourceMask* def_mask) { |
| DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64); |
| DCHECK(!lir->flags.use_def_invalid); |
| |
| // X86-specific resource map setup here. |
| if (flags & REG_USE_SP) { |
| use_mask->SetBit(kX86RegSP); |
| } |
| |
| if (flags & REG_DEF_SP) { |
| def_mask->SetBit(kX86RegSP); |
| } |
| |
| if (flags & REG_DEFA) { |
| SetupRegMask(def_mask, rs_rAX.GetReg()); |
| } |
| |
| if (flags & REG_DEFD) { |
| SetupRegMask(def_mask, rs_rDX.GetReg()); |
| } |
| if (flags & REG_USEA) { |
| SetupRegMask(use_mask, rs_rAX.GetReg()); |
| } |
| |
| if (flags & REG_USEC) { |
| SetupRegMask(use_mask, rs_rCX.GetReg()); |
| } |
| |
| if (flags & REG_USED) { |
| SetupRegMask(use_mask, rs_rDX.GetReg()); |
| } |
| |
| if (flags & REG_USEB) { |
| SetupRegMask(use_mask, rs_rBX.GetReg()); |
| } |
| |
| // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI. |
| if (lir->opcode == kX86RepneScasw) { |
| SetupRegMask(use_mask, rs_rAX.GetReg()); |
| SetupRegMask(use_mask, rs_rCX.GetReg()); |
| SetupRegMask(use_mask, rs_rDI.GetReg()); |
| SetupRegMask(def_mask, rs_rDI.GetReg()); |
| } |
| |
| if (flags & USE_FP_STACK) { |
| use_mask->SetBit(kX86FPStack); |
| def_mask->SetBit(kX86FPStack); |
| } |
| } |
| |
| /* For dumping instructions */ |
| static const char* x86RegName[] = { |
| "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", |
| "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" |
| }; |
| |
| static const char* x86CondName[] = { |
| "O", |
| "NO", |
| "B/NAE/C", |
| "NB/AE/NC", |
| "Z/EQ", |
| "NZ/NE", |
| "BE/NA", |
| "NBE/A", |
| "S", |
| "NS", |
| "P/PE", |
| "NP/PO", |
| "L/NGE", |
| "NL/GE", |
| "LE/NG", |
| "NLE/G" |
| }; |
| |
| /* |
| * Interpret a format string and build a string no longer than size |
| * See format key in Assemble.cc. |
| */ |
| std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) { |
| std::string buf; |
| size_t i = 0; |
| size_t fmt_len = strlen(fmt); |
| while (i < fmt_len) { |
| if (fmt[i] != '!') { |
| buf += fmt[i]; |
| i++; |
| } else { |
| i++; |
| DCHECK_LT(i, fmt_len); |
| char operand_number_ch = fmt[i]; |
| i++; |
| if (operand_number_ch == '!') { |
| buf += "!"; |
| } else { |
| int operand_number = operand_number_ch - '0'; |
| DCHECK_LT(operand_number, 6); // Expect upto 6 LIR operands. |
| DCHECK_LT(i, fmt_len); |
| int operand = lir->operands[operand_number]; |
| switch (fmt[i]) { |
| case 'c': |
| DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName)); |
| buf += x86CondName[operand]; |
| break; |
| case 'd': |
| buf += StringPrintf("%d", operand); |
| break; |
| case 'q': { |
| int64_t value = static_cast<int64_t>(static_cast<int64_t>(operand) << 32 | |
| static_cast<uint32_t>(lir->operands[operand_number+1])); |
| buf +=StringPrintf("%" PRId64, value); |
| } |
| case 'p': { |
| EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand)); |
| buf += StringPrintf("0x%08x", tab_rec->offset); |
| break; |
| } |
| case 'r': |
| if (RegStorage::IsFloat(operand)) { |
| int fp_reg = RegStorage::RegNum(operand); |
| buf += StringPrintf("xmm%d", fp_reg); |
| } else { |
| int reg_num = RegStorage::RegNum(operand); |
| DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName)); |
| buf += x86RegName[reg_num]; |
| } |
| break; |
| case 't': |
| buf += StringPrintf("0x%08" PRIxPTR " (L%p)", |
| reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand, |
| lir->target); |
| break; |
| default: |
| buf += StringPrintf("DecodeError '%c'", fmt[i]); |
| break; |
| } |
| i++; |
| } |
| } |
| } |
| return buf; |
| } |
| |
| void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, const ResourceMask& mask, const char *prefix) { |
| char buf[256]; |
| buf[0] = 0; |
| |
| if (mask.Equals(kEncodeAll)) { |
| strcpy(buf, "all"); |
| } else { |
| char num[8]; |
| int i; |
| |
| for (i = 0; i < kX86RegEnd; i++) { |
| if (mask.HasBit(i)) { |
| snprintf(num, arraysize(num), "%d ", i); |
| strcat(buf, num); |
| } |
| } |
| |
| if (mask.HasBit(ResourceMask::kCCode)) { |
| strcat(buf, "cc "); |
| } |
| /* Memory bits */ |
| if (x86LIR && (mask.HasBit(ResourceMask::kDalvikReg))) { |
| snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s", |
| DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info), |
| (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : ""); |
| } |
| if (mask.HasBit(ResourceMask::kLiteral)) { |
| strcat(buf, "lit "); |
| } |
| |
| if (mask.HasBit(ResourceMask::kHeapRef)) { |
| strcat(buf, "heap "); |
| } |
| if (mask.HasBit(ResourceMask::kMustNotAlias)) { |
| strcat(buf, "noalias "); |
| } |
| } |
| if (buf[0]) { |
| LOG(INFO) << prefix << ": " << buf; |
| } |
| } |
| |
| void X86Mir2Lir::AdjustSpillMask() { |
| // Adjustment for LR spilling, x86 has no LR so nothing to do here |
| core_spill_mask_ |= (1 << rs_rRET.GetRegNum()); |
| num_core_spills_++; |
| } |
| |
| RegStorage X86Mir2Lir::AllocateByteRegister() { |
| RegStorage reg = AllocTypedTemp(false, kCoreReg); |
| if (!cu_->target64) { |
| DCHECK_LT(reg.GetRegNum(), rs_rX86_SP.GetRegNum()); |
| } |
| return reg; |
| } |
| |
| bool X86Mir2Lir::IsByteRegister(RegStorage reg) { |
| return cu_->target64 || reg.GetRegNum() < rs_rX86_SP.GetRegNum(); |
| } |
| |
| /* Clobber all regs that might be used by an external C call */ |
| void X86Mir2Lir::ClobberCallerSave() { |
| Clobber(rs_rAX); |
| Clobber(rs_rCX); |
| Clobber(rs_rDX); |
| Clobber(rs_rBX); |
| |
| Clobber(rs_fr0); |
| Clobber(rs_fr1); |
| Clobber(rs_fr2); |
| Clobber(rs_fr3); |
| Clobber(rs_fr4); |
| Clobber(rs_fr5); |
| Clobber(rs_fr6); |
| Clobber(rs_fr7); |
| |
| if (cu_->target64) { |
| Clobber(rs_r8); |
| Clobber(rs_r9); |
| Clobber(rs_r10); |
| Clobber(rs_r11); |
| |
| Clobber(rs_fr8); |
| Clobber(rs_fr9); |
| Clobber(rs_fr10); |
| Clobber(rs_fr11); |
| Clobber(rs_fr12); |
| Clobber(rs_fr13); |
| Clobber(rs_fr14); |
| Clobber(rs_fr15); |
| } |
| } |
| |
| RegLocation X86Mir2Lir::GetReturnWideAlt() { |
| RegLocation res = LocCReturnWide(); |
| DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg()); |
| DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg()); |
| Clobber(rs_rAX); |
| Clobber(rs_rDX); |
| MarkInUse(rs_rAX); |
| MarkInUse(rs_rDX); |
| MarkWide(res.reg); |
| return res; |
| } |
| |
| RegLocation X86Mir2Lir::GetReturnAlt() { |
| RegLocation res = LocCReturn(); |
| res.reg.SetReg(rs_rDX.GetReg()); |
| Clobber(rs_rDX); |
| MarkInUse(rs_rDX); |
| return res; |
| } |
| |
| /* To be used when explicitly managing register use */ |
| void X86Mir2Lir::LockCallTemps() { |
| LockTemp(rs_rX86_ARG0); |
| LockTemp(rs_rX86_ARG1); |
| LockTemp(rs_rX86_ARG2); |
| LockTemp(rs_rX86_ARG3); |
| if (cu_->target64) { |
| LockTemp(rs_rX86_ARG4); |
| LockTemp(rs_rX86_ARG5); |
| LockTemp(rs_rX86_FARG0); |
| LockTemp(rs_rX86_FARG1); |
| LockTemp(rs_rX86_FARG2); |
| LockTemp(rs_rX86_FARG3); |
| LockTemp(rs_rX86_FARG4); |
| LockTemp(rs_rX86_FARG5); |
| LockTemp(rs_rX86_FARG6); |
| LockTemp(rs_rX86_FARG7); |
| } |
| } |
| |
| /* To be used when explicitly managing register use */ |
| void X86Mir2Lir::FreeCallTemps() { |
| FreeTemp(rs_rX86_ARG0); |
| FreeTemp(rs_rX86_ARG1); |
| FreeTemp(rs_rX86_ARG2); |
| FreeTemp(rs_rX86_ARG3); |
| if (cu_->target64) { |
| FreeTemp(rs_rX86_ARG4); |
| FreeTemp(rs_rX86_ARG5); |
| FreeTemp(rs_rX86_FARG0); |
| FreeTemp(rs_rX86_FARG1); |
| FreeTemp(rs_rX86_FARG2); |
| FreeTemp(rs_rX86_FARG3); |
| FreeTemp(rs_rX86_FARG4); |
| FreeTemp(rs_rX86_FARG5); |
| FreeTemp(rs_rX86_FARG6); |
| FreeTemp(rs_rX86_FARG7); |
| } |
| } |
| |
| bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) { |
| switch (opcode) { |
| case kX86LockCmpxchgMR: |
| case kX86LockCmpxchgAR: |
| case kX86LockCmpxchg64M: |
| case kX86LockCmpxchg64A: |
| case kX86XchgMR: |
| case kX86Mfence: |
| // Atomic memory instructions provide full barrier. |
| return true; |
| default: |
| break; |
| } |
| |
| // Conservative if cannot prove it provides full barrier. |
| return false; |
| } |
| |
| bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) { |
| #if ANDROID_SMP != 0 |
| // Start off with using the last LIR as the barrier. If it is not enough, then we will update it. |
| LIR* mem_barrier = last_lir_insn_; |
| |
| bool ret = false; |
| /* |
| * According to the JSR-133 Cookbook, for x86 only StoreLoad barriers need memory fence. All other barriers |
| * (LoadLoad, LoadStore, StoreStore) are nops due to the x86 memory model. For those cases, all we need |
| * to ensure is that there is a scheduling barrier in place. |
| */ |
| if (barrier_kind == kStoreLoad) { |
| // If no LIR exists already that can be used a barrier, then generate an mfence. |
| if (mem_barrier == nullptr) { |
| mem_barrier = NewLIR0(kX86Mfence); |
| ret = true; |
| } |
| |
| // If last instruction does not provide full barrier, then insert an mfence. |
| if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) { |
| mem_barrier = NewLIR0(kX86Mfence); |
| ret = true; |
| } |
| } |
| |
| // Now ensure that a scheduling barrier is in place. |
| if (mem_barrier == nullptr) { |
| GenBarrier(); |
| } else { |
| // Mark as a scheduling barrier. |
| DCHECK(!mem_barrier->flags.use_def_invalid); |
| mem_barrier->u.m.def_mask = &kEncodeAll; |
| } |
| return ret; |
| #else |
| return false; |
| #endif |
| } |
| |
| void X86Mir2Lir::CompilerInitializeRegAlloc() { |
| if (cu_->target64) { |
| reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64, |
| dp_regs_64, reserved_regs_64, reserved_regs_64q, |
| core_temps_64, core_temps_64q, sp_temps_64, dp_temps_64); |
| } else { |
| reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32, |
| dp_regs_32, reserved_regs_32, empty_pool, |
| core_temps_32, empty_pool, sp_temps_32, dp_temps_32); |
| } |
| |
| // Target-specific adjustments. |
| |
| // Add in XMM registers. |
| const ArrayRef<const RegStorage> *xp_temps = cu_->target64 ? &xp_temps_64 : &xp_temps_32; |
| for (RegStorage reg : *xp_temps) { |
| RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg)); |
| reginfo_map_.Put(reg.GetReg(), info); |
| info->SetIsTemp(true); |
| } |
| |
| // Alias single precision xmm to double xmms. |
| // TODO: as needed, add larger vector sizes - alias all to the largest. |
| GrowableArray<RegisterInfo*>::Iterator it(®_pool_->sp_regs_); |
| for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) { |
| int sp_reg_num = info->GetReg().GetRegNum(); |
| RegStorage xp_reg = RegStorage::Solo128(sp_reg_num); |
| RegisterInfo* xp_reg_info = GetRegInfo(xp_reg); |
| // 128-bit xmm vector register's master storage should refer to itself. |
| DCHECK_EQ(xp_reg_info, xp_reg_info->Master()); |
| |
| // Redirect 32-bit vector's master storage to 128-bit vector. |
| info->SetMaster(xp_reg_info); |
| |
| RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num); |
| RegisterInfo* dp_reg_info = GetRegInfo(dp_reg); |
| // Redirect 64-bit vector's master storage to 128-bit vector. |
| dp_reg_info->SetMaster(xp_reg_info); |
| // Singles should show a single 32-bit mask bit, at first referring to the low half. |
| DCHECK_EQ(info->StorageMask(), 0x1U); |
| } |
| |
| if (cu_->target64) { |
| // Alias 32bit W registers to corresponding 64bit X registers. |
| GrowableArray<RegisterInfo*>::Iterator w_it(®_pool_->core_regs_); |
| for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) { |
| int x_reg_num = info->GetReg().GetRegNum(); |
| RegStorage x_reg = RegStorage::Solo64(x_reg_num); |
| RegisterInfo* x_reg_info = GetRegInfo(x_reg); |
| // 64bit X register's master storage should refer to itself. |
| DCHECK_EQ(x_reg_info, x_reg_info->Master()); |
| // Redirect 32bit W master storage to 64bit X. |
| info->SetMaster(x_reg_info); |
| // 32bit W should show a single 32-bit mask bit, at first referring to the low half. |
| DCHECK_EQ(info->StorageMask(), 0x1U); |
| } |
| } |
| |
| // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods. |
| // TODO: adjust for x86/hard float calling convention. |
| reg_pool_->next_core_reg_ = 2; |
| reg_pool_->next_sp_reg_ = 2; |
| reg_pool_->next_dp_reg_ = 1; |
| } |
| |
| void X86Mir2Lir::SpillCoreRegs() { |
| if (num_core_spills_ == 0) { |
| return; |
| } |
| // Spill mask not including fake return address register |
| uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum()); |
| int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_); |
| for (int reg = 0; mask; mask >>= 1, reg++) { |
| if (mask & 0x1) { |
| StoreWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg)); |
| offset += GetInstructionSetPointerSize(cu_->instruction_set); |
| } |
| } |
| } |
| |
| void X86Mir2Lir::UnSpillCoreRegs() { |
| if (num_core_spills_ == 0) { |
| return; |
| } |
| // Spill mask not including fake return address register |
| uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum()); |
| int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_); |
| for (int reg = 0; mask; mask >>= 1, reg++) { |
| if (mask & 0x1) { |
| LoadWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg)); |
| offset += GetInstructionSetPointerSize(cu_->instruction_set); |
| } |
| } |
| } |
| |
| bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) { |
| return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32); |
| } |
| |
| bool X86Mir2Lir::SupportsVolatileLoadStore(OpSize size) { |
| return true; |
| } |
| |
| RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) { |
| // X86_64 can handle any size. |
| if (cu_->target64) { |
| if (size == kReference) { |
| return kRefReg; |
| } |
| return kCoreReg; |
| } |
| |
| if (UNLIKELY(is_volatile)) { |
| // On x86, atomic 64-bit load/store requires an fp register. |
| // Smaller aligned load/store is atomic for both core and fp registers. |
| if (size == k64 || size == kDouble) { |
| return kFPReg; |
| } |
| } |
| return RegClassBySize(size); |
| } |
| |
| X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena) |
| : Mir2Lir(cu, mir_graph, arena), |
| base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false), |
| method_address_insns_(arena, 100, kGrowableArrayMisc), |
| class_type_address_insns_(arena, 100, kGrowableArrayMisc), |
| call_method_insns_(arena, 100, kGrowableArrayMisc), |
| stack_decrement_(nullptr), stack_increment_(nullptr), |
| const_vectors_(nullptr) { |
| store_method_addr_used_ = false; |
| if (kIsDebugBuild) { |
| for (int i = 0; i < kX86Last; i++) { |
| if (X86Mir2Lir::EncodingMap[i].opcode != i) { |
| LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name |
| << " is wrong: expecting " << i << ", seeing " |
| << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode); |
| } |
| } |
| } |
| if (cu_->target64) { |
| rs_rX86_SP = rs_rX86_SP_64; |
| |
| rs_rX86_ARG0 = rs_rDI; |
| rs_rX86_ARG1 = rs_rSI; |
| rs_rX86_ARG2 = rs_rDX; |
| rs_rX86_ARG3 = rs_rCX; |
| rs_rX86_ARG4 = rs_r8; |
| rs_rX86_ARG5 = rs_r9; |
| rs_rX86_FARG0 = rs_fr0; |
| rs_rX86_FARG1 = rs_fr1; |
| rs_rX86_FARG2 = rs_fr2; |
| rs_rX86_FARG3 = rs_fr3; |
| rs_rX86_FARG4 = rs_fr4; |
| rs_rX86_FARG5 = rs_fr5; |
| rs_rX86_FARG6 = rs_fr6; |
| rs_rX86_FARG7 = rs_fr7; |
| rX86_ARG0 = rDI; |
| rX86_ARG1 = rSI; |
| rX86_ARG2 = rDX; |
| rX86_ARG3 = rCX; |
| rX86_ARG4 = r8; |
| rX86_ARG5 = r9; |
| rX86_FARG0 = fr0; |
| rX86_FARG1 = fr1; |
| rX86_FARG2 = fr2; |
| rX86_FARG3 = fr3; |
| rX86_FARG4 = fr4; |
| rX86_FARG5 = fr5; |
| rX86_FARG6 = fr6; |
| rX86_FARG7 = fr7; |
| rs_rX86_INVOKE_TGT = rs_rDI; |
| } else { |
| rs_rX86_SP = rs_rX86_SP_32; |
| |
| rs_rX86_ARG0 = rs_rAX; |
| rs_rX86_ARG1 = rs_rCX; |
| rs_rX86_ARG2 = rs_rDX; |
| rs_rX86_ARG3 = rs_rBX; |
| rs_rX86_ARG4 = RegStorage::InvalidReg(); |
| rs_rX86_ARG5 = RegStorage::InvalidReg(); |
| rs_rX86_FARG0 = rs_rAX; |
| rs_rX86_FARG1 = rs_rCX; |
| rs_rX86_FARG2 = rs_rDX; |
| rs_rX86_FARG3 = rs_rBX; |
| rs_rX86_FARG4 = RegStorage::InvalidReg(); |
| rs_rX86_FARG5 = RegStorage::InvalidReg(); |
| rs_rX86_FARG6 = RegStorage::InvalidReg(); |
| rs_rX86_FARG7 = RegStorage::InvalidReg(); |
| rX86_ARG0 = rAX; |
| rX86_ARG1 = rCX; |
| rX86_ARG2 = rDX; |
| rX86_ARG3 = rBX; |
| rX86_FARG0 = rAX; |
| rX86_FARG1 = rCX; |
| rX86_FARG2 = rDX; |
| rX86_FARG3 = rBX; |
| rs_rX86_INVOKE_TGT = rs_rAX; |
| // TODO(64): Initialize with invalid reg |
| // rX86_ARG4 = RegStorage::InvalidReg(); |
| // rX86_ARG5 = RegStorage::InvalidReg(); |
| } |
| rs_rX86_RET0 = rs_rAX; |
| rs_rX86_RET1 = rs_rDX; |
| rs_rX86_COUNT = rs_rCX; |
| rX86_RET0 = rAX; |
| rX86_RET1 = rDX; |
| rX86_INVOKE_TGT = rAX; |
| rX86_COUNT = rCX; |
| } |
| |
| Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph, |
| ArenaAllocator* const arena) { |
| return new X86Mir2Lir(cu, mir_graph, arena); |
| } |
| |
| // Not used in x86 |
| RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<4> offset) { |
| LOG(FATAL) << "Unexpected use of LoadHelper in x86"; |
| return RegStorage::InvalidReg(); |
| } |
| |
| // Not used in x86 |
| RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<8> offset) { |
| LOG(FATAL) << "Unexpected use of LoadHelper in x86"; |
| return RegStorage::InvalidReg(); |
| } |
| |
| LIR* X86Mir2Lir::CheckSuspendUsingLoad() { |
| LOG(FATAL) << "Unexpected use of CheckSuspendUsingLoad in x86"; |
| return nullptr; |
| } |
| |
| uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) { |
| DCHECK(!IsPseudoLirOp(opcode)); |
| return X86Mir2Lir::EncodingMap[opcode].flags; |
| } |
| |
| const char* X86Mir2Lir::GetTargetInstName(int opcode) { |
| DCHECK(!IsPseudoLirOp(opcode)); |
| return X86Mir2Lir::EncodingMap[opcode].name; |
| } |
| |
| const char* X86Mir2Lir::GetTargetInstFmt(int opcode) { |
| DCHECK(!IsPseudoLirOp(opcode)); |
| return X86Mir2Lir::EncodingMap[opcode].fmt; |
| } |
| |
| void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) { |
| // Can we do this directly to memory? |
| rl_dest = UpdateLocWide(rl_dest); |
| if ((rl_dest.location == kLocDalvikFrame) || |
| (rl_dest.location == kLocCompilerTemp)) { |
| int32_t val_lo = Low32Bits(value); |
| int32_t val_hi = High32Bits(value); |
| int r_base = rs_rX86_SP.GetReg(); |
| int displacement = SRegOffset(rl_dest.s_reg_low); |
| |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); |
| LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo); |
| AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2, |
| false /* is_load */, true /* is64bit */); |
| store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi); |
| AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2, |
| false /* is_load */, true /* is64bit */); |
| return; |
| } |
| |
| // Just use the standard code to do the generation. |
| Mir2Lir::GenConstWide(rl_dest, value); |
| } |
| |
| // TODO: Merge with existing RegLocation dumper in vreg_analysis.cc |
| void X86Mir2Lir::DumpRegLocation(RegLocation loc) { |
| LOG(INFO) << "location: " << loc.location << ',' |
| << (loc.wide ? " w" : " ") |
| << (loc.defined ? " D" : " ") |
| << (loc.is_const ? " c" : " ") |
| << (loc.fp ? " F" : " ") |
| << (loc.core ? " C" : " ") |
| << (loc.ref ? " r" : " ") |
| << (loc.high_word ? " h" : " ") |
| << (loc.home ? " H" : " ") |
| << ", low: " << static_cast<int>(loc.reg.GetLowReg()) |
| << ", high: " << static_cast<int>(loc.reg.GetHighReg()) |
| << ", s_reg: " << loc.s_reg_low |
| << ", orig: " << loc.orig_sreg; |
| } |
| |
| void X86Mir2Lir::Materialize() { |
| // A good place to put the analysis before starting. |
| AnalyzeMIR(); |
| |
| // Now continue with regular code generation. |
| Mir2Lir::Materialize(); |
| } |
| |
| void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type, |
| SpecialTargetRegister symbolic_reg) { |
| /* |
| * For x86, just generate a 32 bit move immediate instruction, that will be filled |
| * in at 'link time'. For now, put a unique value based on target to ensure that |
| * code deduplication works. |
| */ |
| int target_method_idx = target_method.dex_method_index; |
| const DexFile* target_dex_file = target_method.dex_file; |
| const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx); |
| uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id); |
| |
| // Generate the move instruction with the unique pointer and save index, dex_file, and type. |
| LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg, false).GetReg(), |
| static_cast<int>(target_method_id_ptr), target_method_idx, |
| WrapPointer(const_cast<DexFile*>(target_dex_file)), type); |
| AppendLIR(move); |
| method_address_insns_.Insert(move); |
| } |
| |
| void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) { |
| /* |
| * For x86, just generate a 32 bit move immediate instruction, that will be filled |
| * in at 'link time'. For now, put a unique value based on target to ensure that |
| * code deduplication works. |
| */ |
| const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx); |
| uintptr_t ptr = reinterpret_cast<uintptr_t>(&id); |
| |
| // Generate the move instruction with the unique pointer and save index and type. |
| LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg, false).GetReg(), |
| static_cast<int>(ptr), type_idx); |
| AppendLIR(move); |
| class_type_address_insns_.Insert(move); |
| } |
| |
| LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) { |
| /* |
| * For x86, just generate a 32 bit call relative instruction, that will be filled |
| * in at 'link time'. For now, put a unique value based on target to ensure that |
| * code deduplication works. |
| */ |
| int target_method_idx = target_method.dex_method_index; |
| const DexFile* target_dex_file = target_method.dex_file; |
| const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx); |
| uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id); |
| |
| // Generate the call instruction with the unique pointer and save index, dex_file, and type. |
| LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr), |
| target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type); |
| AppendLIR(call); |
| call_method_insns_.Insert(call); |
| return call; |
| } |
| |
| /* |
| * @brief Enter a 32 bit quantity into a buffer |
| * @param buf buffer. |
| * @param data Data value. |
| */ |
| |
| static void PushWord(std::vector<uint8_t>&buf, int32_t data) { |
| buf.push_back(data & 0xff); |
| buf.push_back((data >> 8) & 0xff); |
| buf.push_back((data >> 16) & 0xff); |
| buf.push_back((data >> 24) & 0xff); |
| } |
| |
| void X86Mir2Lir::InstallLiteralPools() { |
| // These are handled differently for x86. |
| DCHECK(code_literal_list_ == nullptr); |
| DCHECK(method_literal_list_ == nullptr); |
| DCHECK(class_literal_list_ == nullptr); |
| |
| // Align to 16 byte boundary. We have implicit knowledge that the start of the method is |
| // on a 4 byte boundary. How can I check this if it changes (other than aligned loads |
| // will fail at runtime)? |
| if (const_vectors_ != nullptr) { |
| int align_size = (16-4) - (code_buffer_.size() & 0xF); |
| if (align_size < 0) { |
| align_size += 16; |
| } |
| |
| while (align_size > 0) { |
| code_buffer_.push_back(0); |
| align_size--; |
| } |
| for (LIR *p = const_vectors_; p != nullptr; p = p->next) { |
| PushWord(code_buffer_, p->operands[0]); |
| PushWord(code_buffer_, p->operands[1]); |
| PushWord(code_buffer_, p->operands[2]); |
| PushWord(code_buffer_, p->operands[3]); |
| } |
| } |
| |
| // Handle the fixups for methods. |
| for (uint32_t i = 0; i < method_address_insns_.Size(); i++) { |
| LIR* p = method_address_insns_.Get(i); |
| DCHECK_EQ(p->opcode, kX86Mov32RI); |
| uint32_t target_method_idx = p->operands[2]; |
| const DexFile* target_dex_file = |
| reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3])); |
| |
| // The offset to patch is the last 4 bytes of the instruction. |
| int patch_offset = p->offset + p->flags.size - 4; |
| cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx, |
| cu_->method_idx, cu_->invoke_type, |
| target_method_idx, target_dex_file, |
| static_cast<InvokeType>(p->operands[4]), |
| patch_offset); |
| } |
| |
| // Handle the fixups for class types. |
| for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) { |
| LIR* p = class_type_address_insns_.Get(i); |
| DCHECK_EQ(p->opcode, kX86Mov32RI); |
| uint32_t target_method_idx = p->operands[2]; |
| |
| // The offset to patch is the last 4 bytes of the instruction. |
| int patch_offset = p->offset + p->flags.size - 4; |
| cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx, |
| cu_->method_idx, target_method_idx, patch_offset); |
| } |
| |
| // And now the PC-relative calls to methods. |
| for (uint32_t i = 0; i < call_method_insns_.Size(); i++) { |
| LIR* p = call_method_insns_.Get(i); |
| DCHECK_EQ(p->opcode, kX86CallI); |
| uint32_t target_method_idx = p->operands[1]; |
| const DexFile* target_dex_file = |
| reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2])); |
| |
| // The offset to patch is the last 4 bytes of the instruction. |
| int patch_offset = p->offset + p->flags.size - 4; |
| cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx, |
| cu_->method_idx, cu_->invoke_type, |
| target_method_idx, target_dex_file, |
| static_cast<InvokeType>(p->operands[3]), |
| patch_offset, -4 /* offset */); |
| } |
| |
| // And do the normal processing. |
| Mir2Lir::InstallLiteralPools(); |
| } |
| |
| bool X86Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) { |
| if (cu_->target64) { |
| // TODO: Implement ArrayCOpy intrinsic for x86_64 |
| return false; |
| } |
| |
| RegLocation rl_src = info->args[0]; |
| RegLocation rl_srcPos = info->args[1]; |
| RegLocation rl_dst = info->args[2]; |
| RegLocation rl_dstPos = info->args[3]; |
| RegLocation rl_length = info->args[4]; |
| if (rl_srcPos.is_const && (mir_graph_->ConstantValue(rl_srcPos) < 0)) { |
| return false; |
| } |
| if (rl_dstPos.is_const && (mir_graph_->ConstantValue(rl_dstPos) < 0)) { |
| return false; |
| } |
| ClobberCallerSave(); |
| LockCallTemps(); // Using fixed registers |
| LoadValueDirectFixed(rl_src , rs_rAX); |
| LoadValueDirectFixed(rl_dst , rs_rCX); |
| LIR* src_dst_same = OpCmpBranch(kCondEq, rs_rAX , rs_rCX, nullptr); |
| LIR* src_null_branch = OpCmpImmBranch(kCondEq, rs_rAX , 0, nullptr); |
| LIR* dst_null_branch = OpCmpImmBranch(kCondEq, rs_rCX , 0, nullptr); |
| LoadValueDirectFixed(rl_length , rs_rDX); |
| LIR* len_negative = OpCmpImmBranch(kCondLt, rs_rDX , 0, nullptr); |
| LIR* len_too_big = OpCmpImmBranch(kCondGt, rs_rDX , 128, nullptr); |
| LoadValueDirectFixed(rl_src , rs_rAX); |
| LoadWordDisp(rs_rAX , mirror::Array::LengthOffset().Int32Value(), rs_rAX); |
| LIR* src_bad_len = nullptr; |
| LIR* srcPos_negative = nullptr; |
| if (!rl_srcPos.is_const) { |
| LoadValueDirectFixed(rl_srcPos , rs_rBX); |
| srcPos_negative = OpCmpImmBranch(kCondLt, rs_rBX , 0, nullptr); |
| OpRegReg(kOpAdd, rs_rBX, rs_rDX); |
| src_bad_len = OpCmpBranch(kCondLt, rs_rAX , rs_rBX, nullptr); |
| } else { |
| int pos_val = mir_graph_->ConstantValue(rl_srcPos.orig_sreg); |
| if (pos_val == 0) { |
| src_bad_len = OpCmpBranch(kCondLt, rs_rAX , rs_rDX, nullptr); |
| } else { |
| OpRegRegImm(kOpAdd, rs_rBX, rs_rDX, pos_val); |
| src_bad_len = OpCmpBranch(kCondLt, rs_rAX , rs_rBX, nullptr); |
| } |
| } |
| LIR* dstPos_negative = nullptr; |
| LIR* dst_bad_len = nullptr; |
| LoadValueDirectFixed(rl_dst, rs_rAX); |
| LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX); |
| if (!rl_dstPos.is_const) { |
| LoadValueDirectFixed(rl_dstPos , rs_rBX); |
| dstPos_negative = OpCmpImmBranch(kCondLt, rs_rBX , 0, nullptr); |
| OpRegRegReg(kOpAdd, rs_rBX, rs_rBX, rs_rDX); |
| dst_bad_len = OpCmpBranch(kCondLt, rs_rAX , rs_rBX, nullptr); |
| } else { |
| int pos_val = mir_graph_->ConstantValue(rl_dstPos.orig_sreg); |
| if (pos_val == 0) { |
| dst_bad_len = OpCmpBranch(kCondLt, rs_rAX , rs_rDX, nullptr); |
| } else { |
| OpRegRegImm(kOpAdd, rs_rBX, rs_rDX, pos_val); |
| dst_bad_len = OpCmpBranch(kCondLt, rs_rAX , rs_rBX, nullptr); |
| } |
| } |
| // everything is checked now |
| LoadValueDirectFixed(rl_src , rs_rAX); |
| LoadValueDirectFixed(rl_dst , rs_rBX); |
| LoadValueDirectFixed(rl_srcPos , rs_rCX); |
| NewLIR5(kX86Lea32RA, rs_rAX.GetReg(), rs_rAX.GetReg(), |
| rs_rCX.GetReg() , 1, mirror::Array::DataOffset(2).Int32Value()); |
| // RAX now holds the address of the first src element to be copied |
| |
| LoadValueDirectFixed(rl_dstPos , rs_rCX); |
| NewLIR5(kX86Lea32RA, rs_rBX.GetReg(), rs_rBX.GetReg(), |
| rs_rCX.GetReg() , 1, mirror::Array::DataOffset(2).Int32Value() ); |
| // RBX now holds the address of the first dst element to be copied |
| |
| // check if the number of elements to be copied is odd or even. If odd |
| // then copy the first element (so that the remaining number of elements |
| // is even). |
| LoadValueDirectFixed(rl_length , rs_rCX); |
| OpRegImm(kOpAnd, rs_rCX, 1); |
| LIR* jmp_to_begin_loop = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr); |
| OpRegImm(kOpSub, rs_rDX, 1); |
| LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSignedHalf); |
| StoreBaseIndexedDisp(rs_rBX, rs_rDX, 1, 0, rs_rCX, kSignedHalf); |
| |
| // since the remaining number of elements is even, we will copy by |
| // two elements at a time. |
| LIR *beginLoop = NewLIR0(kPseudoTargetLabel); |
| LIR* jmp_to_ret = OpCmpImmBranch(kCondEq, rs_rDX , 0, nullptr); |
| OpRegImm(kOpSub, rs_rDX, 2); |
| LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSingle); |
| StoreBaseIndexedDisp(rs_rBX, rs_rDX, 1, 0, rs_rCX, kSingle); |
| OpUnconditionalBranch(beginLoop); |
| LIR *check_failed = NewLIR0(kPseudoTargetLabel); |
| LIR* launchpad_branch = OpUnconditionalBranch(nullptr); |
| LIR *return_point = NewLIR0(kPseudoTargetLabel); |
| jmp_to_ret->target = return_point; |
| jmp_to_begin_loop->target = beginLoop; |
| src_dst_same->target = check_failed; |
| len_negative->target = check_failed; |
| len_too_big->target = check_failed; |
| src_null_branch->target = check_failed; |
| if (srcPos_negative != nullptr) |
| srcPos_negative ->target = check_failed; |
| if (src_bad_len != nullptr) |
| src_bad_len->target = check_failed; |
| dst_null_branch->target = check_failed; |
| if (dstPos_negative != nullptr) |
| dstPos_negative->target = check_failed; |
| if (dst_bad_len != nullptr) |
| dst_bad_len->target = check_failed; |
| AddIntrinsicSlowPath(info, launchpad_branch, return_point); |
| return true; |
| } |
| |
| |
| /* |
| * Fast string.index_of(I) & (II). Inline check for simple case of char <= 0xffff, |
| * otherwise bails to standard library code. |
| */ |
| bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) { |
| ClobberCallerSave(); |
| LockCallTemps(); // Using fixed registers |
| |
| // EAX: 16 bit character being searched. |
| // ECX: count: number of words to be searched. |
| // EDI: String being searched. |
| // EDX: temporary during execution. |
| // EBX or R11: temporary during execution (depending on mode). |
| |
| RegLocation rl_obj = info->args[0]; |
| RegLocation rl_char = info->args[1]; |
| RegLocation rl_start; // Note: only present in III flavor or IndexOf. |
| RegStorage tmpReg = cu_->target64 ? rs_r11 : rs_rBX; |
| |
| uint32_t char_value = |
| rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0; |
| |
| if (char_value > 0xFFFF) { |
| // We have to punt to the real String.indexOf. |
| return false; |
| } |
| |
| // Okay, we are commited to inlining this. |
| RegLocation rl_return = GetReturn(kCoreReg); |
| RegLocation rl_dest = InlineTarget(info); |
| |
| // Is the string non-NULL? |
| LoadValueDirectFixed(rl_obj, rs_rDX); |
| GenNullCheck(rs_rDX, info->opt_flags); |
| info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked. |
| |
| // Does the character fit in 16 bits? |
| LIR* slowpath_branch = nullptr; |
| if (rl_char.is_const) { |
| // We need the value in EAX. |
| LoadConstantNoClobber(rs_rAX, char_value); |
| } else { |
| // Character is not a constant; compare at runtime. |
| LoadValueDirectFixed(rl_char, rs_rAX); |
| slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr); |
| } |
| |
| // From here down, we know that we are looking for a char that fits in 16 bits. |
| // Location of reference to data array within the String object. |
| int value_offset = mirror::String::ValueOffset().Int32Value(); |
| // Location of count within the String object. |
| int count_offset = mirror::String::CountOffset().Int32Value(); |
| // Starting offset within data array. |
| int offset_offset = mirror::String::OffsetOffset().Int32Value(); |
| // Start of char data with array_. |
| int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value(); |
| |
| // Character is in EAX. |
| // Object pointer is in EDX. |
| |
| // We need to preserve EDI, but have no spare registers, so push it on the stack. |
| // We have to remember that all stack addresses after this are offset by sizeof(EDI). |
| NewLIR1(kX86Push32R, rs_rDI.GetReg()); |
| |
| // Compute the number of words to search in to rCX. |
| Load32Disp(rs_rDX, count_offset, rs_rCX); |
| LIR *length_compare = nullptr; |
| int start_value = 0; |
| bool is_index_on_stack = false; |
| if (zero_based) { |
| // We have to handle an empty string. Use special instruction JECXZ. |
| length_compare = NewLIR0(kX86Jecxz8); |
| } else { |
| rl_start = info->args[2]; |
| // We have to offset by the start index. |
| if (rl_start.is_const) { |
| start_value = mir_graph_->ConstantValue(rl_start.orig_sreg); |
| start_value = std::max(start_value, 0); |
| |
| // Is the start > count? |
| length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr); |
| |
| if (start_value != 0) { |
| OpRegImm(kOpSub, rs_rCX, start_value); |
| } |
| } else { |
| // Runtime start index. |
| rl_start = UpdateLocTyped(rl_start, kCoreReg); |
| if (rl_start.location == kLocPhysReg) { |
| // Handle "start index < 0" case. |
| OpRegReg(kOpXor, tmpReg, tmpReg); |
| OpRegReg(kOpCmp, rl_start.reg, tmpReg); |
| OpCondRegReg(kOpCmov, kCondLt, rl_start.reg, tmpReg); |
| |
| // The length of the string should be greater than the start index. |
| length_compare = OpCmpBranch(kCondLe, rs_rCX, rl_start.reg, nullptr); |
| OpRegReg(kOpSub, rs_rCX, rl_start.reg); |
| if (rl_start.reg == rs_rDI) { |
| // The special case. We will use EDI further, so lets put start index to stack. |
| NewLIR1(kX86Push32R, rs_rDI.GetReg()); |
| is_index_on_stack = true; |
| } |
| } else { |
| // Load the start index from stack, remembering that we pushed EDI. |
| int displacement = SRegOffset(rl_start.s_reg_low) + (cu_->target64 ? 2 : 1) * sizeof(uint32_t); |
| { |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); |
| Load32Disp(rs_rX86_SP, displacement, tmpReg); |
| } |
| OpRegReg(kOpXor, rs_rDI, rs_rDI); |
| OpRegReg(kOpCmp, tmpReg, rs_rDI); |
| OpCondRegReg(kOpCmov, kCondLt, tmpReg, rs_rDI); |
| |
| length_compare = OpCmpBranch(kCondLe, rs_rCX, tmpReg, nullptr); |
| OpRegReg(kOpSub, rs_rCX, tmpReg); |
| // Put the start index to stack. |
| NewLIR1(kX86Push32R, tmpReg.GetReg()); |
| is_index_on_stack = true; |
| } |
| } |
| } |
| DCHECK(length_compare != nullptr); |
| |
| // ECX now contains the count in words to be searched. |
| |
| // Load the address of the string into R11 or EBX (depending on mode). |
| // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET. |
| Load32Disp(rs_rDX, value_offset, rs_rDI); |
| Load32Disp(rs_rDX, offset_offset, tmpReg); |
| OpLea(tmpReg, rs_rDI, tmpReg, 1, data_offset); |
| |
| // Now compute into EDI where the search will start. |
| if (zero_based || rl_start.is_const) { |
| if (start_value == 0) { |
| OpRegCopy(rs_rDI, tmpReg); |
| } else { |
| NewLIR3(kX86Lea32RM, rs_rDI.GetReg(), tmpReg.GetReg(), 2 * start_value); |
| } |
| } else { |
| if (is_index_on_stack == true) { |
| // Load the start index from stack. |
| NewLIR1(kX86Pop32R, rs_rDX.GetReg()); |
| OpLea(rs_rDI, tmpReg, rs_rDX, 1, 0); |
| } else { |
| OpLea(rs_rDI, tmpReg, rl_start.reg, 1, 0); |
| } |
| } |
| |
| // EDI now contains the start of the string to be searched. |
| // We are all prepared to do the search for the character. |
| NewLIR0(kX86RepneScasw); |
| |
| // Did we find a match? |
| LIR* failed_branch = OpCondBranch(kCondNe, nullptr); |
| |
| // yes, we matched. Compute the index of the result. |
| // index = ((curr_ptr - orig_ptr) / 2) - 1. |
| OpRegReg(kOpSub, rs_rDI, tmpReg); |
| OpRegImm(kOpAsr, rs_rDI, 1); |
| NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_rDI.GetReg(), -1); |
| LIR *all_done = NewLIR1(kX86Jmp8, 0); |
| |
| // Failed to match; return -1. |
| LIR *not_found = NewLIR0(kPseudoTargetLabel); |
| length_compare->target = not_found; |
| failed_branch->target = not_found; |
| LoadConstantNoClobber(rl_return.reg, -1); |
| |
| // And join up at the end. |
| all_done->target = NewLIR0(kPseudoTargetLabel); |
| // Restore EDI from the stack. |
| NewLIR1(kX86Pop32R, rs_rDI.GetReg()); |
| |
| // Out of line code returns here. |
| if (slowpath_branch != nullptr) { |
| LIR *return_point = NewLIR0(kPseudoTargetLabel); |
| AddIntrinsicSlowPath(info, slowpath_branch, return_point); |
| } |
| |
| StoreValue(rl_dest, rl_return); |
| return true; |
| } |
| |
| /* |
| * @brief Enter an 'advance LOC' into the FDE buffer |
| * @param buf FDE buffer. |
| * @param increment Amount by which to increase the current location. |
| */ |
| static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) { |
| if (increment < 64) { |
| // Encoding in opcode. |
| buf.push_back(0x1 << 6 | increment); |
| } else if (increment < 256) { |
| // Single byte delta. |
| buf.push_back(0x02); |
| buf.push_back(increment); |
| } else if (increment < 256 * 256) { |
| // Two byte delta. |
| buf.push_back(0x03); |
| buf.push_back(increment & 0xff); |
| buf.push_back((increment >> 8) & 0xff); |
| } else { |
| // Four byte delta. |
| buf.push_back(0x04); |
| PushWord(buf, increment); |
| } |
| } |
| |
| |
| std::vector<uint8_t>* X86CFIInitialization() { |
| return X86Mir2Lir::ReturnCommonCallFrameInformation(); |
| } |
| |
| std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation() { |
| std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>; |
| |
| // Length of the CIE (except for this field). |
| PushWord(*cfi_info, 16); |
| |
| // CIE id. |
| PushWord(*cfi_info, 0xFFFFFFFFU); |
| |
| // Version: 3. |
| cfi_info->push_back(0x03); |
| |
| // Augmentation: empty string. |
| cfi_info->push_back(0x0); |
| |
| // Code alignment: 1. |
| cfi_info->push_back(0x01); |
| |
| // Data alignment: -4. |
| cfi_info->push_back(0x7C); |
| |
| // Return address register (R8). |
| cfi_info->push_back(0x08); |
| |
| // Initial return PC is 4(ESP): DW_CFA_def_cfa R4 4. |
| cfi_info->push_back(0x0C); |
| cfi_info->push_back(0x04); |
| cfi_info->push_back(0x04); |
| |
| // Return address location: 0(SP): DW_CFA_offset R8 1 (* -4);. |
| cfi_info->push_back(0x2 << 6 | 0x08); |
| cfi_info->push_back(0x01); |
| |
| // And 2 Noops to align to 4 byte boundary. |
| cfi_info->push_back(0x0); |
| cfi_info->push_back(0x0); |
| |
| DCHECK_EQ(cfi_info->size() & 3, 0U); |
| return cfi_info; |
| } |
| |
| static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) { |
| uint8_t buffer[12]; |
| uint8_t *ptr = EncodeUnsignedLeb128(buffer, value); |
| for (uint8_t *p = buffer; p < ptr; p++) { |
| buf.push_back(*p); |
| } |
| } |
| |
| std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() { |
| std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>; |
| |
| // Generate the FDE for the method. |
| DCHECK_NE(data_offset_, 0U); |
| |
| // Length (will be filled in later in this routine). |
| PushWord(*cfi_info, 0); |
| |
| // CIE_pointer (can be filled in by linker); might be left at 0 if there is only |
| // one CIE for the whole debug_frame section. |
| PushWord(*cfi_info, 0); |
| |
| // 'initial_location' (filled in by linker). |
| PushWord(*cfi_info, 0); |
| |
| // 'address_range' (number of bytes in the method). |
| PushWord(*cfi_info, data_offset_); |
| |
| // The instructions in the FDE. |
| if (stack_decrement_ != nullptr) { |
| // Advance LOC to just past the stack decrement. |
| uint32_t pc = NEXT_LIR(stack_decrement_)->offset; |
| AdvanceLoc(*cfi_info, pc); |
| |
| // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size. |
| cfi_info->push_back(0x0e); |
| EncodeUnsignedLeb128(*cfi_info, frame_size_); |
| |
| // We continue with that stack until the epilogue. |
| if (stack_increment_ != nullptr) { |
| uint32_t new_pc = NEXT_LIR(stack_increment_)->offset; |
| AdvanceLoc(*cfi_info, new_pc - pc); |
| |
| // We probably have code snippets after the epilogue, so save the |
| // current state: DW_CFA_remember_state. |
| cfi_info->push_back(0x0a); |
| |
| // We have now popped the stack: DW_CFA_def_cfa_offset 4. There is only the return |
| // PC on the stack now. |
| cfi_info->push_back(0x0e); |
| EncodeUnsignedLeb128(*cfi_info, 4); |
| |
| // Everything after that is the same as before the epilogue. |
| // Stack bump was followed by RET instruction. |
| LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_)); |
| if (post_ret_insn != nullptr) { |
| pc = new_pc; |
| new_pc = post_ret_insn->offset; |
| AdvanceLoc(*cfi_info, new_pc - pc); |
| // Restore the state: DW_CFA_restore_state. |
| cfi_info->push_back(0x0b); |
| } |
| } |
| } |
| |
| // Padding to a multiple of 4 |
| while ((cfi_info->size() & 3) != 0) { |
| // DW_CFA_nop is encoded as 0. |
| cfi_info->push_back(0); |
| } |
| |
| // Set the length of the FDE inside the generated bytes. |
| uint32_t length = cfi_info->size() - 4; |
| (*cfi_info)[0] = length; |
| (*cfi_info)[1] = length >> 8; |
| (*cfi_info)[2] = length >> 16; |
| (*cfi_info)[3] = length >> 24; |
| return cfi_info; |
| } |
| |
| void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) { |
| switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) { |
| case kMirOpConstVector: |
| GenConst128(bb, mir); |
| break; |
| case kMirOpMoveVector: |
| GenMoveVector(bb, mir); |
| break; |
| case kMirOpPackedMultiply: |
| GenMultiplyVector(bb, mir); |
| break; |
| case kMirOpPackedAddition: |
| GenAddVector(bb, mir); |
| break; |
| case kMirOpPackedSubtract: |
| GenSubtractVector(bb, mir); |
| break; |
| case kMirOpPackedShiftLeft: |
| GenShiftLeftVector(bb, mir); |
| break; |
| case kMirOpPackedSignedShiftRight: |
| GenSignedShiftRightVector(bb, mir); |
| break; |
| case kMirOpPackedUnsignedShiftRight: |
| GenUnsignedShiftRightVector(bb, mir); |
| break; |
| case kMirOpPackedAnd: |
| GenAndVector(bb, mir); |
| break; |
| case kMirOpPackedOr: |
| GenOrVector(bb, mir); |
| break; |
| case kMirOpPackedXor: |
| GenXorVector(bb, mir); |
| break; |
| case kMirOpPackedAddReduce: |
| GenAddReduceVector(bb, mir); |
| break; |
| case kMirOpPackedReduce: |
| GenReduceVector(bb, mir); |
| break; |
| case kMirOpPackedSet: |
| GenSetVector(bb, mir); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) { |
| int type_size = mir->dalvikInsn.vA; |
| // We support 128 bit vectors. |
| DCHECK_EQ(type_size & 0xFFFF, 128); |
| RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB); |
| uint32_t *args = mir->dalvikInsn.arg; |
| int reg = rs_dest.GetReg(); |
| // Check for all 0 case. |
| if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) { |
| NewLIR2(kX86XorpsRR, reg, reg); |
| return; |
| } |
| // Okay, load it from the constant vector area. |
| LIR *data_target = ScanVectorLiteral(mir); |
| if (data_target == nullptr) { |
| data_target = AddVectorLiteral(mir); |
| } |
| |
| // Address the start of the method. |
| RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low); |
| if (rl_method.wide) { |
| rl_method = LoadValueWide(rl_method, kCoreReg); |
| } else { |
| rl_method = LoadValue(rl_method, kCoreReg); |
| } |
| |
| // Load the proper value from the literal area. |
| // We don't know the proper offset for the value, so pick one that will force |
| // 4 byte offset. We will fix this up in the assembler later to have the right |
| // value. |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral); |
| LIR *load = NewLIR3(kX86Mova128RM, reg, rl_method.reg.GetReg(), 256 /* bogus */); |
| load->flags.fixup = kFixupLoad; |
| load->target = data_target; |
| } |
| |
| void X86Mir2Lir::GenMoveVector(BasicBlock *bb, MIR *mir) { |
| // We only support 128 bit registers. |
| DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U); |
| RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB); |
| RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vC); |
| NewLIR2(kX86Mova128RR, rs_dest.GetReg(), rs_src.GetReg()); |
| } |
| |
| void X86Mir2Lir::GenMultiplyVector(BasicBlock *bb, MIR *mir) { |
| DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U); |
| OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16); |
| RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB); |
| RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC); |
| int opcode = 0; |
| switch (opsize) { |
| case k32: |
| opcode = kX86PmulldRR; |
| break; |
| case kSignedHalf: |
| opcode = kX86PmullwRR; |
| break; |
| case kSingle: |
| opcode = kX86MulpsRR; |
| break; |
| case kDouble: |
| opcode = kX86MulpdRR; |
| break; |
| default: |
| LOG(FATAL) << "Unsupported vector multiply " << opsize; |
| break; |
| } |
| NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg()); |
| } |
| |
| void X86Mir2Lir::GenAddVector(BasicBlock *bb, MIR *mir) { |
| DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U); |
| OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16); |
| RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB); |
| RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC); |
| int opcode = 0; |
| switch (opsize) { |
| case k32: |
| opcode = kX86PadddRR; |
| break; |
| case kSignedHalf: |
| case kUnsignedHalf: |
| opcode = kX86PaddwRR; |
| break; |
| case kUnsignedByte: |
| case kSignedByte: |
| opcode = kX86PaddbRR; |
| break; |
| case kSingle: |
| opcode = kX86AddpsRR; |
| break; |
| case kDouble: |
| opcode = kX86AddpdRR; |
| break; |
| default: |
| LOG(FATAL) << "Unsupported vector addition " << opsize; |
| break; |
| } |
| NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg()); |
| } |
| |
| void X86Mir2Lir::GenSubtractVector(BasicBlock *bb, MIR *mir) { |
| DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U); |
| OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16); |
| RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB); |
| RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC); |
| int opcode = 0; |
| switch (opsize) { |
| case k32: |
| opcode = kX86PsubdRR; |
| break; |
| case kSignedHalf: |
| case kUnsignedHalf: |
| opcode = kX86PsubwRR; |
| break; |
| case kUnsignedByte: |
| case kSignedByte: |
| opcode = kX86PsubbRR; |
| break; |
| case kSingle: |
| opcode = kX86SubpsRR; |
| break; |
| case kDouble: |
| opcode = kX86SubpdRR; |
| break; |
| default: |
| LOG(FATAL) << "Unsupported vector subtraction " << opsize; |
| break; |
| } |
| NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg()); |
| } |
| |
| void X86Mir2Lir::GenShiftLeftVector(BasicBlock *bb, MIR *mir) { |
| DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U); |
| OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16); |
| RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB); |
| int imm = mir->dalvikInsn.vC; |
| int opcode = 0; |
| switch (opsize) { |
| case k32: |
| opcode = kX86PslldRI; |
| break; |
| case k64: |
| opcode = kX86PsllqRI; |
| break; |
| case kSignedHalf: |
| case kUnsignedHalf: |
| opcode = kX86PsllwRI; |
| break; |
| default: |
| LOG(FATAL) << "Unsupported vector shift left " << opsize; |
| break; |
| } |
| NewLIR2(opcode, rs_dest_src1.GetReg(), imm); |
| } |
| |
| void X86Mir2Lir::GenSignedShiftRightVector(BasicBlock *bb, MIR *mir) { |
| DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U); |
| OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16); |
| RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB); |
| int imm = mir->dalvikInsn.vC; |
| int opcode = 0; |
| switch (opsize) { |
| case k32: |
| opcode = kX86PsradRI; |
| break; |
| case kSignedHalf: |
| case kUnsignedHalf: |
| opcode = kX86PsrawRI; |
| break; |
| default: |
| LOG(FATAL) << "Unsupported vector signed shift right " << opsize; |
| break; |
| } |
| NewLIR2(opcode, rs_dest_src1.GetReg(), imm); |
| } |
| |
| void X86Mir2Lir::GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir) { |
| DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U); |
| OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16); |
| RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB); |
| int imm = mir->dalvikInsn.vC; |
| int opcode = 0; |
| switch (opsize) { |
| case k32: |
| opcode = kX86PsrldRI; |
| break; |
| case k64: |
| opcode = kX86PsrlqRI; |
| break; |
| case kSignedHalf: |
| case kUnsignedHalf: |
| opcode = kX86PsrlwRI; |
| break; |
| default: |
| LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize; |
| break; |
| } |
| NewLIR2(opcode, rs_dest_src1.GetReg(), imm); |
| } |
| |
| void X86Mir2Lir::GenAndVector(BasicBlock *bb, MIR *mir) { |
| // We only support 128 bit registers. |
| DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U); |
| RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB); |
| RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC); |
| NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg()); |
| } |
| |
| void X86Mir2Lir::GenOrVector(BasicBlock *bb, MIR *mir) { |
| // We only support 128 bit registers. |
| DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U); |
| RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB); |
| RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC); |
| NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg()); |
| } |
| |
| void X86Mir2Lir::GenXorVector(BasicBlock *bb, MIR *mir) { |
| // We only support 128 bit registers. |
| DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U); |
| RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB); |
| RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC); |
| NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg()); |
| } |
| |
| void X86Mir2Lir::GenAddReduceVector(BasicBlock *bb, MIR *mir) { |
| DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U); |
| OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16); |
| RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB); |
| int imm = mir->dalvikInsn.vC; |
| int opcode = 0; |
| switch (opsize) { |
| case k32: |
| opcode = kX86PhadddRR; |
| break; |
| case kSignedHalf: |
| case kUnsignedHalf: |
| opcode = kX86PhaddwRR; |
| break; |
| default: |
| LOG(FATAL) << "Unsupported vector add reduce " << opsize; |
| break; |
| } |
| NewLIR2(opcode, rs_dest_src1.GetReg(), imm); |
| } |
| |
| void X86Mir2Lir::GenReduceVector(BasicBlock *bb, MIR *mir) { |
| DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U); |
| OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16); |
| RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB); |
| int index = mir->dalvikInsn.arg[0]; |
| int opcode = 0; |
| switch (opsize) { |
| case k32: |
| opcode = kX86PextrdRRI; |
| break; |
| case kSignedHalf: |
| case kUnsignedHalf: |
| opcode = kX86PextrwRRI; |
| break; |
| case kUnsignedByte: |
| case kSignedByte: |
| opcode = kX86PextrbRRI; |
| break; |
| default: |
| LOG(FATAL) << "Unsupported vector reduce " << opsize; |
| break; |
| } |
| // We need to extract to a GPR. |
| RegStorage temp = AllocTemp(); |
| NewLIR3(opcode, temp.GetReg(), rs_src.GetReg(), index); |
| |
| // Assume that the destination VR is in the def for the mir. |
| RegLocation rl_dest = mir_graph_->GetDest(mir); |
| RegLocation rl_temp = |
| {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, temp, INVALID_SREG, INVALID_SREG}; |
| StoreValue(rl_dest, rl_temp); |
| } |
| |
| void X86Mir2Lir::GenSetVector(BasicBlock *bb, MIR *mir) { |
| DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U); |
| OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16); |
| RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB); |
| int op_low = 0, op_high = 0; |
| switch (opsize) { |
| case k32: |
| op_low = kX86PshufdRRI; |
| break; |
| case kSignedHalf: |
| case kUnsignedHalf: |
| // Handles low quadword. |
| op_low = kX86PshuflwRRI; |
| // Handles upper quadword. |
| op_high = kX86PshufdRRI; |
| break; |
| default: |
| LOG(FATAL) << "Unsupported vector set " << opsize; |
| break; |
| } |
| |
| // Load the value from the VR into a GPR. |
| RegLocation rl_src = mir_graph_->GetSrc(mir, 0); |
| rl_src = LoadValue(rl_src, kCoreReg); |
| |
| // Load the value into the XMM register. |
| NewLIR2(kX86MovdxrRR, rs_dest.GetReg(), rl_src.reg.GetReg()); |
| |
| // Now shuffle the value across the destination. |
| NewLIR3(op_low, rs_dest.GetReg(), rs_dest.GetReg(), 0); |
| |
| // And then repeat as needed. |
| if (op_high != 0) { |
| NewLIR3(op_high, rs_dest.GetReg(), rs_dest.GetReg(), 0); |
| } |
| } |
| |
| |
| LIR *X86Mir2Lir::ScanVectorLiteral(MIR *mir) { |
| int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg); |
| for (LIR *p = const_vectors_; p != nullptr; p = p->next) { |
| if (args[0] == p->operands[0] && args[1] == p->operands[1] && |
| args[2] == p->operands[2] && args[3] == p->operands[3]) { |
| return p; |
| } |
| } |
| return nullptr; |
| } |
| |
| LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) { |
| LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData)); |
| int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg); |
| new_value->operands[0] = args[0]; |
| new_value->operands[1] = args[1]; |
| new_value->operands[2] = args[2]; |
| new_value->operands[3] = args[3]; |
| new_value->next = const_vectors_; |
| if (const_vectors_ == nullptr) { |
| estimated_native_code_size_ += 12; // Amount needed to align to 16 byte boundary. |
| } |
| estimated_native_code_size_ += 16; // Space for one vector. |
| const_vectors_ = new_value; |
| return new_value; |
| } |
| |
| // ------------ ABI support: mapping of args to physical registers ------------- |
| RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(bool is_double_or_float, bool is_wide, bool is_ref) { |
| const SpecialTargetRegister coreArgMappingToPhysicalReg[] = {kArg1, kArg2, kArg3, kArg4, kArg5}; |
| const int coreArgMappingToPhysicalRegSize = sizeof(coreArgMappingToPhysicalReg) / sizeof(SpecialTargetRegister); |
| const SpecialTargetRegister fpArgMappingToPhysicalReg[] = {kFArg0, kFArg1, kFArg2, kFArg3, |
| kFArg4, kFArg5, kFArg6, kFArg7}; |
| const int fpArgMappingToPhysicalRegSize = sizeof(fpArgMappingToPhysicalReg) / sizeof(SpecialTargetRegister); |
| |
| if (is_double_or_float) { |
| if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) { |
| return ml_->TargetReg(fpArgMappingToPhysicalReg[cur_fp_reg_++], is_wide); |
| } |
| } else { |
| if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) { |
| return is_ref ? ml_->TargetRefReg(coreArgMappingToPhysicalReg[cur_core_reg_++]) : |
| ml_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++], is_wide); |
| } |
| } |
| return RegStorage::InvalidReg(); |
| } |
| |
| RegStorage X86Mir2Lir::InToRegStorageMapping::Get(int in_position) { |
| DCHECK(IsInitialized()); |
| auto res = mapping_.find(in_position); |
| return res != mapping_.end() ? res->second : RegStorage::InvalidReg(); |
| } |
| |
| void X86Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper) { |
| DCHECK(mapper != nullptr); |
| max_mapped_in_ = -1; |
| is_there_stack_mapped_ = false; |
| for (int in_position = 0; in_position < count; in_position++) { |
| RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp, |
| arg_locs[in_position].wide, arg_locs[in_position].ref); |
| if (reg.Valid()) { |
| mapping_[in_position] = reg; |
| max_mapped_in_ = std::max(max_mapped_in_, in_position); |
| if (arg_locs[in_position].wide) { |
| // We covered 2 args, so skip the next one |
| in_position++; |
| } |
| } else { |
| is_there_stack_mapped_ = true; |
| } |
| } |
| initialized_ = true; |
| } |
| |
| RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) { |
| if (!cu_->target64) { |
| return GetCoreArgMappingToPhysicalReg(arg_num); |
| } |
| |
| if (!in_to_reg_storage_mapping_.IsInitialized()) { |
| int start_vreg = cu_->num_dalvik_registers - cu_->num_ins; |
| RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg]; |
| |
| InToRegStorageX86_64Mapper mapper(this); |
| in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper); |
| } |
| return in_to_reg_storage_mapping_.Get(arg_num); |
| } |
| |
| RegStorage X86Mir2Lir::GetCoreArgMappingToPhysicalReg(int core_arg_num) { |
| // For the 32-bit internal ABI, the first 3 arguments are passed in registers. |
| // Not used for 64-bit, TODO: Move X86_32 to the same framework |
| switch (core_arg_num) { |
| case 0: |
| return rs_rX86_ARG1; |
| case 1: |
| return rs_rX86_ARG2; |
| case 2: |
| return rs_rX86_ARG3; |
| default: |
| return RegStorage::InvalidReg(); |
| } |
| } |
| |
| // ---------End of ABI support: mapping of args to physical registers ------------- |
| |
| /* |
| * If there are any ins passed in registers that have not been promoted |
| * to a callee-save register, flush them to the frame. Perform initial |
| * assignment of promoted arguments. |
| * |
| * ArgLocs is an array of location records describing the incoming arguments |
| * with one location record per word of argument. |
| */ |
| void X86Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) { |
| if (!cu_->target64) return Mir2Lir::FlushIns(ArgLocs, rl_method); |
| /* |
| * Dummy up a RegLocation for the incoming Method* |
| * It will attempt to keep kArg0 live (or copy it to home location |
| * if promoted). |
| */ |
| |
| RegLocation rl_src = rl_method; |
| rl_src.location = kLocPhysReg; |
| rl_src.reg = TargetRefReg(kArg0); |
| rl_src.home = false; |
| MarkLive(rl_src); |
| StoreValue(rl_method, rl_src); |
| // If Method* has been promoted, explicitly flush |
| if (rl_method.location == kLocPhysReg) { |
| StoreRefDisp(rs_rX86_SP, 0, As32BitReg(TargetRefReg(kArg0)), kNotVolatile); |
| } |
| |
| if (cu_->num_ins == 0) { |
| return; |
| } |
| |
| int start_vreg = cu_->num_dalvik_registers - cu_->num_ins; |
| /* |
| * Copy incoming arguments to their proper home locations. |
| * NOTE: an older version of dx had an issue in which |
| * it would reuse static method argument registers. |
| * This could result in the same Dalvik virtual register |
| * being promoted to both core and fp regs. To account for this, |
| * we only copy to the corresponding promoted physical register |
| * if it matches the type of the SSA name for the incoming |
| * argument. It is also possible that long and double arguments |
| * end up half-promoted. In those cases, we must flush the promoted |
| * half to memory as well. |
| */ |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); |
| for (int i = 0; i < cu_->num_ins; i++) { |
| // get reg corresponding to input |
| RegStorage reg = GetArgMappingToPhysicalReg(i); |
| |
| RegLocation* t_loc = &ArgLocs[i]; |
| if (reg.Valid()) { |
| // If arriving in register. |
| |
| // We have already updated the arg location with promoted info |
| // so we can be based on it. |
| if (t_loc->location == kLocPhysReg) { |
| // Just copy it. |
| OpRegCopy(t_loc->reg, reg); |
| } else { |
| // Needs flush. |
| if (t_loc->ref) { |
| StoreRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, kNotVolatile); |
| } else { |
| StoreBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, t_loc->wide ? k64 : k32, |
| kNotVolatile); |
| } |
| } |
| } else { |
| // If arriving in frame & promoted. |
| if (t_loc->location == kLocPhysReg) { |
| if (t_loc->ref) { |
| LoadRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg, kNotVolatile); |
| } else { |
| LoadBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg, |
| t_loc->wide ? k64 : k32, kNotVolatile); |
| } |
| } |
| } |
| if (t_loc->wide) { |
| // Increment i to skip the next one. |
| i++; |
| } |
| } |
| } |
| |
| /* |
| * Load up to 5 arguments, the first three of which will be in |
| * kArg1 .. kArg3. On entry kArg0 contains the current method pointer, |
| * and as part of the load sequence, it must be replaced with |
| * the target method pointer. Note, this may also be called |
| * for "range" variants if the number of arguments is 5 or fewer. |
| */ |
| int X86Mir2Lir::GenDalvikArgsNoRange(CallInfo* info, |
| int call_state, LIR** pcrLabel, NextCallInsn next_call_insn, |
| const MethodReference& target_method, |
| uint32_t vtable_idx, uintptr_t direct_code, |
| uintptr_t direct_method, InvokeType type, bool skip_this) { |
| if (!cu_->target64) { |
| return Mir2Lir::GenDalvikArgsNoRange(info, |
| call_state, pcrLabel, next_call_insn, |
| target_method, |
| vtable_idx, direct_code, |
| direct_method, type, skip_this); |
| } |
| return GenDalvikArgsRange(info, |
| call_state, pcrLabel, next_call_insn, |
| target_method, |
| vtable_idx, direct_code, |
| direct_method, type, skip_this); |
| } |
| |
| /* |
| * May have 0+ arguments (also used for jumbo). Note that |
| * source virtual registers may be in physical registers, so may |
| * need to be flushed to home location before copying. This |
| * applies to arg3 and above (see below). |
| * |
| * Two general strategies: |
| * If < 20 arguments |
| * Pass args 3-18 using vldm/vstm block copy |
| * Pass arg0, arg1 & arg2 in kArg1-kArg3 |
| * If 20+ arguments |
| * Pass args arg19+ using memcpy block copy |
| * Pass arg0, arg1 & arg2 in kArg1-kArg3 |
| * |
| */ |
| int X86Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state, |
| LIR** pcrLabel, NextCallInsn next_call_insn, |
| const MethodReference& target_method, |
| uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method, |
| InvokeType type, bool skip_this) { |
| if (!cu_->target64) { |
| return Mir2Lir::GenDalvikArgsRange(info, call_state, |
| pcrLabel, next_call_insn, |
| target_method, |
| vtable_idx, direct_code, direct_method, |
| type, skip_this); |
| } |
| |
| /* If no arguments, just return */ |
| if (info->num_arg_words == 0) |
| return call_state; |
| |
| const int start_index = skip_this ? 1 : 0; |
| |
| InToRegStorageX86_64Mapper mapper(this); |
| InToRegStorageMapping in_to_reg_storage_mapping; |
| in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper); |
| const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn(); |
| const int size_of_the_last_mapped = last_mapped_in == -1 ? 1 : |
| in_to_reg_storage_mapping.Get(last_mapped_in).Is64BitSolo() ? 2 : 1; |
| int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + size_of_the_last_mapped); |
| |
| // Fisrt of all, check whether it make sense to use bulk copying |
| // Optimization is aplicable only for range case |
| // TODO: make a constant instead of 2 |
| if (info->is_range && regs_left_to_pass_via_stack >= 2) { |
| // Scan the rest of the args - if in phys_reg flush to memory |
| for (int next_arg = last_mapped_in + size_of_the_last_mapped; next_arg < info->num_arg_words;) { |
| RegLocation loc = info->args[next_arg]; |
| if (loc.wide) { |
| loc = UpdateLocWide(loc); |
| if (loc.location == kLocPhysReg) { |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); |
| StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile); |
| } |
| next_arg += 2; |
| } else { |
| loc = UpdateLoc(loc); |
| if (loc.location == kLocPhysReg) { |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); |
| StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k32, kNotVolatile); |
| } |
| next_arg++; |
| } |
| } |
| |
| // Logic below assumes that Method pointer is at offset zero from SP. |
| DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0); |
| |
| // The rest can be copied together |
| int start_offset = SRegOffset(info->args[last_mapped_in + size_of_the_last_mapped].s_reg_low); |
| int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + size_of_the_last_mapped, cu_->instruction_set); |
| |
| int current_src_offset = start_offset; |
| int current_dest_offset = outs_offset; |
| |
| // Only davik regs are accessed in this loop; no next_call_insn() calls. |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); |
| while (regs_left_to_pass_via_stack > 0) { |
| // This is based on the knowledge that the stack itself is 16-byte aligned. |
| bool src_is_16b_aligned = (current_src_offset & 0xF) == 0; |
| bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0; |
| size_t bytes_to_move; |
| |
| /* |
| * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a |
| * a 128-bit move because we won't get the chance to try to aligned. If there are more than |
| * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned. |
| * We do this because we could potentially do a smaller move to align. |
| */ |
| if (regs_left_to_pass_via_stack == 4 || |
| (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) { |
| // Moving 128-bits via xmm register. |
| bytes_to_move = sizeof(uint32_t) * 4; |
| |
| // Allocate a free xmm temp. Since we are working through the calling sequence, |
| // we expect to have an xmm temporary available. AllocTempDouble will abort if |
| // there are no free registers. |
| RegStorage temp = AllocTempDouble(); |
| |
| LIR* ld1 = nullptr; |
| LIR* ld2 = nullptr; |
| LIR* st1 = nullptr; |
| LIR* st2 = nullptr; |
| |
| /* |
| * The logic is similar for both loads and stores. If we have 16-byte alignment, |
| * do an aligned move. If we have 8-byte alignment, then do the move in two |
| * parts. This approach prevents possible cache line splits. Finally, fall back |
| * to doing an unaligned move. In most cases we likely won't split the cache |
| * line but we cannot prove it and thus take a conservative approach. |
| */ |
| bool src_is_8b_aligned = (current_src_offset & 0x7) == 0; |
| bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0; |
| |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); |
| if (src_is_16b_aligned) { |
| ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovA128FP); |
| } else if (src_is_8b_aligned) { |
| ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovLo128FP); |
| ld2 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset + (bytes_to_move >> 1), |
| kMovHi128FP); |
| } else { |
| ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovU128FP); |
| } |
| |
| if (dest_is_16b_aligned) { |
| st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovA128FP); |
| } else if (dest_is_8b_aligned) { |
| st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovLo128FP); |
| st2 = OpMovMemReg(rs_rX86_SP, current_dest_offset + (bytes_to_move >> 1), |
| temp, kMovHi128FP); |
| } else { |
| st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovU128FP); |
| } |
| |
| // TODO If we could keep track of aliasing information for memory accesses that are wider |
| // than 64-bit, we wouldn't need to set up a barrier. |
| if (ld1 != nullptr) { |
| if (ld2 != nullptr) { |
| // For 64-bit load we can actually set up the aliasing information. |
| AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true); |
| AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true); |
| } else { |
| // Set barrier for 128-bit load. |
| ld1->u.m.def_mask = &kEncodeAll; |
| } |
| } |
| if (st1 != nullptr) { |
| if (st2 != nullptr) { |
| // For 64-bit store we can actually set up the aliasing information. |
| AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true); |
| AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true); |
| } else { |
| // Set barrier for 128-bit store. |
| st1->u.m.def_mask = &kEncodeAll; |
| } |
| } |
| |
| // Free the temporary used for the data movement. |
| FreeTemp(temp); |
| } else { |
| // Moving 32-bits via general purpose register. |
| bytes_to_move = sizeof(uint32_t); |
| |
| // Instead of allocating a new temp, simply reuse one of the registers being used |
| // for argument passing. |
| RegStorage temp = TargetReg(kArg3, false); |
| |
| // Now load the argument VR and store to the outs. |
| Load32Disp(rs_rX86_SP, current_src_offset, temp); |
| Store32Disp(rs_rX86_SP, current_dest_offset, temp); |
| } |
| |
| current_src_offset += bytes_to_move; |
| current_dest_offset += bytes_to_move; |
| regs_left_to_pass_via_stack -= (bytes_to_move >> 2); |
| } |
| DCHECK_EQ(regs_left_to_pass_via_stack, 0); |
| } |
| |
| // Now handle rest not registers if they are |
| if (in_to_reg_storage_mapping.IsThereStackMapped()) { |
| RegStorage regSingle = TargetReg(kArg2, false); |
| RegStorage regWide = TargetReg(kArg3, true); |
| for (int i = start_index; |
| i < last_mapped_in + size_of_the_last_mapped + regs_left_to_pass_via_stack; i++) { |
| RegLocation rl_arg = info->args[i]; |
| rl_arg = UpdateRawLoc(rl_arg); |
| RegStorage reg = in_to_reg_storage_mapping.Get(i); |
| if (!reg.Valid()) { |
| int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set); |
| |
| { |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); |
| if (rl_arg.wide) { |
| if (rl_arg.location == kLocPhysReg) { |
| StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k64, kNotVolatile); |
| } else { |
| LoadValueDirectWideFixed(rl_arg, regWide); |
| StoreBaseDisp(rs_rX86_SP, out_offset, regWide, k64, kNotVolatile); |
| } |
| } else { |
| if (rl_arg.location == kLocPhysReg) { |
| StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k32, kNotVolatile); |
| } else { |
| LoadValueDirectFixed(rl_arg, regSingle); |
| StoreBaseDisp(rs_rX86_SP, out_offset, regSingle, k32, kNotVolatile); |
| } |
| } |
| } |
| call_state = next_call_insn(cu_, info, call_state, target_method, |
| vtable_idx, direct_code, direct_method, type); |
| } |
| if (rl_arg.wide) { |
| i++; |
| } |
| } |
| } |
| |
| // Finish with mapped registers |
| for (int i = start_index; i <= last_mapped_in; i++) { |
| RegLocation rl_arg = info->args[i]; |
| rl_arg = UpdateRawLoc(rl_arg); |
| RegStorage reg = in_to_reg_storage_mapping.Get(i); |
| if (reg.Valid()) { |
| if (rl_arg.wide) { |
| LoadValueDirectWideFixed(rl_arg, reg); |
| } else { |
| LoadValueDirectFixed(rl_arg, reg); |
| } |
| call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, |
| direct_code, direct_method, type); |
| } |
| if (rl_arg.wide) { |
| i++; |
| } |
| } |
| |
| call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, |
| direct_code, direct_method, type); |
| if (pcrLabel) { |
| if (cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) { |
| *pcrLabel = GenExplicitNullCheck(TargetRefReg(kArg1), info->opt_flags); |
| } else { |
| *pcrLabel = nullptr; |
| // In lieu of generating a check for kArg1 being null, we need to |
| // perform a load when doing implicit checks. |
| RegStorage tmp = AllocTemp(); |
| Load32Disp(TargetRefReg(kArg1), 0, tmp); |
| MarkPossibleNullPointerException(info->opt_flags); |
| FreeTemp(tmp); |
| } |
| } |
| return call_state; |
| } |
| |
| } // namespace art |