blob: 50620f0e7bd38365d0eb88689aef0661a7805f53 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "base/arena_allocator.h"
#include "nodes.h"
#include "parallel_move_resolver.h"
#include "gtest/gtest-typed-test.h"
#include "gtest/gtest.h"
namespace art {
constexpr int kScratchRegisterStartIndexForTest = 100;
static void DumpRegisterForTest(std::ostream& os, int reg) {
if (reg >= kScratchRegisterStartIndexForTest) {
os << "T" << reg - kScratchRegisterStartIndexForTest;
} else {
os << reg;
}
}
static void DumpLocationForTest(std::ostream& os, Location location) {
if (location.IsConstant()) {
os << "C";
} else if (location.IsPair()) {
DumpRegisterForTest(os, location.low());
os << ",";
DumpRegisterForTest(os, location.high());
} else if (location.IsRegister()) {
DumpRegisterForTest(os, location.reg());
} else if (location.IsStackSlot()) {
os << location.GetStackIndex() << "(sp)";
} else {
DCHECK(location.IsDoubleStackSlot())<< location;
os << "2x" << location.GetStackIndex() << "(sp)";
}
}
class TestParallelMoveResolverWithSwap : public ParallelMoveResolverWithSwap {
public:
explicit TestParallelMoveResolverWithSwap(ArenaAllocator* allocator)
: ParallelMoveResolverWithSwap(allocator) {}
void EmitMove(size_t index) OVERRIDE {
MoveOperands* move = moves_[index];
if (!message_.str().empty()) {
message_ << " ";
}
message_ << "(";
DumpLocationForTest(message_, move->GetSource());
message_ << " -> ";
DumpLocationForTest(message_, move->GetDestination());
message_ << ")";
}
void EmitSwap(size_t index) OVERRIDE {
MoveOperands* move = moves_[index];
if (!message_.str().empty()) {
message_ << " ";
}
message_ << "(";
DumpLocationForTest(message_, move->GetSource());
message_ << " <-> ";
DumpLocationForTest(message_, move->GetDestination());
message_ << ")";
}
void SpillScratch(int reg ATTRIBUTE_UNUSED) OVERRIDE {}
void RestoreScratch(int reg ATTRIBUTE_UNUSED) OVERRIDE {}
std::string GetMessage() const {
return message_.str();
}
private:
std::ostringstream message_;
DISALLOW_COPY_AND_ASSIGN(TestParallelMoveResolverWithSwap);
};
class TestParallelMoveResolverNoSwap : public ParallelMoveResolverNoSwap {
public:
explicit TestParallelMoveResolverNoSwap(ArenaAllocator* allocator)
: ParallelMoveResolverNoSwap(allocator), scratch_index_(kScratchRegisterStartIndexForTest) {}
void PrepareForEmitNativeCode() OVERRIDE {
scratch_index_ = kScratchRegisterStartIndexForTest;
}
void FinishEmitNativeCode() OVERRIDE {}
Location AllocateScratchLocationFor(Location::Kind kind) OVERRIDE {
if (kind == Location::kStackSlot || kind == Location::kFpuRegister ||
kind == Location::kRegister) {
kind = Location::kRegister;
} else {
// Allocate register pair for double stack slot which simulates 32-bit backend's behavior.
kind = Location::kRegisterPair;
}
Location scratch = GetScratchLocation(kind);
if (scratch.Equals(Location::NoLocation())) {
AddScratchLocation(Location::RegisterLocation(scratch_index_));
AddScratchLocation(Location::RegisterLocation(scratch_index_ + 1));
AddScratchLocation(Location::RegisterPairLocation(scratch_index_, scratch_index_ + 1));
scratch = (kind == Location::kRegister) ? Location::RegisterLocation(scratch_index_)
: Location::RegisterPairLocation(scratch_index_, scratch_index_ + 1);
scratch_index_ += 2;
}
return scratch;
}
void FreeScratchLocation(Location loc ATTRIBUTE_UNUSED) OVERRIDE {}
void EmitMove(size_t index) OVERRIDE {
MoveOperands* move = moves_[index];
if (!message_.str().empty()) {
message_ << " ";
}
message_ << "(";
DumpLocationForTest(message_, move->GetSource());
message_ << " -> ";
DumpLocationForTest(message_, move->GetDestination());
message_ << ")";
}
std::string GetMessage() const {
return message_.str();
}
private:
std::ostringstream message_;
int scratch_index_;
DISALLOW_COPY_AND_ASSIGN(TestParallelMoveResolverNoSwap);
};
static HParallelMove* BuildParallelMove(ArenaAllocator* allocator,
const size_t operands[][2],
size_t number_of_moves) {
HParallelMove* moves = new (allocator) HParallelMove(allocator);
for (size_t i = 0; i < number_of_moves; ++i) {
moves->AddMove(
Location::RegisterLocation(operands[i][0]),
Location::RegisterLocation(operands[i][1]),
Primitive::kPrimInt,
nullptr);
}
return moves;
}
template <typename T>
class ParallelMoveTest : public ::testing::Test {
public:
static const bool has_swap;
};
template<> const bool ParallelMoveTest<TestParallelMoveResolverWithSwap>::has_swap = true;
template<> const bool ParallelMoveTest<TestParallelMoveResolverNoSwap>::has_swap = false;
typedef ::testing::Types<TestParallelMoveResolverWithSwap, TestParallelMoveResolverNoSwap>
ParallelMoveResolverTestTypes;
TYPED_TEST_CASE(ParallelMoveTest, ParallelMoveResolverTestTypes);
TYPED_TEST(ParallelMoveTest, Dependency) {
ArenaPool pool;
ArenaAllocator allocator(&pool);
{
TypeParam resolver(&allocator);
static constexpr size_t moves[][2] = {{0, 1}, {1, 2}};
resolver.EmitNativeCode(BuildParallelMove(&allocator, moves, arraysize(moves)));
if (TestFixture::has_swap) {
ASSERT_STREQ("(1 -> 2) (0 -> 1)", resolver.GetMessage().c_str());
} else {
ASSERT_STREQ("(1 -> 2) (0 -> 1)", resolver.GetMessage().c_str());
}
}
{
TypeParam resolver(&allocator);
static constexpr size_t moves[][2] = {{0, 1}, {1, 2}, {2, 3}, {1, 4}};
resolver.EmitNativeCode(BuildParallelMove(&allocator, moves, arraysize(moves)));
if (TestFixture::has_swap) {
ASSERT_STREQ("(2 -> 3) (1 -> 2) (1 -> 4) (0 -> 1)", resolver.GetMessage().c_str());
} else {
ASSERT_STREQ("(2 -> 3) (1 -> 2) (0 -> 1) (2 -> 4)", resolver.GetMessage().c_str());
}
}
}
TYPED_TEST(ParallelMoveTest, Cycle) {
ArenaPool pool;
ArenaAllocator allocator(&pool);
{
TypeParam resolver(&allocator);
static constexpr size_t moves[][2] = {{0, 1}, {1, 0}};
resolver.EmitNativeCode(BuildParallelMove(&allocator, moves, arraysize(moves)));
if (TestFixture::has_swap) {
ASSERT_STREQ("(1 <-> 0)", resolver.GetMessage().c_str());
} else {
ASSERT_STREQ("(1 -> T0) (0 -> 1) (T0 -> 0)", resolver.GetMessage().c_str());
}
}
{
TypeParam resolver(&allocator);
static constexpr size_t moves[][2] = {{0, 1}, {1, 2}, {1, 0}};
resolver.EmitNativeCode(BuildParallelMove(&allocator, moves, arraysize(moves)));
if (TestFixture::has_swap) {
ASSERT_STREQ("(1 -> 2) (1 <-> 0)", resolver.GetMessage().c_str());
} else {
ASSERT_STREQ("(1 -> 2) (0 -> 1) (2 -> 0)", resolver.GetMessage().c_str());
}
}
{
TypeParam resolver(&allocator);
static constexpr size_t moves[][2] = {{0, 1}, {1, 0}, {0, 2}};
resolver.EmitNativeCode(BuildParallelMove(&allocator, moves, arraysize(moves)));
if (TestFixture::has_swap) {
ASSERT_STREQ("(0 -> 2) (1 <-> 0)", resolver.GetMessage().c_str());
} else {
ASSERT_STREQ("(0 -> 2) (1 -> 0) (2 -> 1)", resolver.GetMessage().c_str());
}
}
{
TypeParam resolver(&allocator);
static constexpr size_t moves[][2] = {{0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 0}};
resolver.EmitNativeCode(BuildParallelMove(&allocator, moves, arraysize(moves)));
if (TestFixture::has_swap) {
ASSERT_STREQ("(4 <-> 0) (3 <-> 4) (2 <-> 3) (1 <-> 2)", resolver.GetMessage().c_str());
} else {
ASSERT_STREQ("(4 -> T0) (3 -> 4) (2 -> 3) (1 -> 2) (0 -> 1) (T0 -> 0)",
resolver.GetMessage().c_str());
}
}
}
TYPED_TEST(ParallelMoveTest, ConstantLast) {
ArenaPool pool;
ArenaAllocator allocator(&pool);
TypeParam resolver(&allocator);
HParallelMove* moves = new (&allocator) HParallelMove(&allocator);
moves->AddMove(
Location::ConstantLocation(new (&allocator) HIntConstant(0)),
Location::RegisterLocation(0),
Primitive::kPrimInt,
nullptr);
moves->AddMove(
Location::RegisterLocation(1),
Location::RegisterLocation(2),
Primitive::kPrimInt,
nullptr);
resolver.EmitNativeCode(moves);
ASSERT_STREQ("(1 -> 2) (C -> 0)", resolver.GetMessage().c_str());
}
TYPED_TEST(ParallelMoveTest, Pairs) {
ArenaPool pool;
ArenaAllocator allocator(&pool);
{
TypeParam resolver(&allocator);
HParallelMove* moves = new (&allocator) HParallelMove(&allocator);
moves->AddMove(
Location::RegisterLocation(2),
Location::RegisterLocation(4),
Primitive::kPrimInt,
nullptr);
moves->AddMove(
Location::RegisterPairLocation(0, 1),
Location::RegisterPairLocation(2, 3),
Primitive::kPrimLong,
nullptr);
resolver.EmitNativeCode(moves);
ASSERT_STREQ("(2 -> 4) (0,1 -> 2,3)", resolver.GetMessage().c_str());
}
{
TypeParam resolver(&allocator);
HParallelMove* moves = new (&allocator) HParallelMove(&allocator);
moves->AddMove(
Location::RegisterPairLocation(0, 1),
Location::RegisterPairLocation(2, 3),
Primitive::kPrimLong,
nullptr);
moves->AddMove(
Location::RegisterLocation(2),
Location::RegisterLocation(4),
Primitive::kPrimInt,
nullptr);
resolver.EmitNativeCode(moves);
ASSERT_STREQ("(2 -> 4) (0,1 -> 2,3)", resolver.GetMessage().c_str());
}
{
TypeParam resolver(&allocator);
HParallelMove* moves = new (&allocator) HParallelMove(&allocator);
moves->AddMove(
Location::RegisterPairLocation(0, 1),
Location::RegisterPairLocation(2, 3),
Primitive::kPrimLong,
nullptr);
moves->AddMove(
Location::RegisterLocation(2),
Location::RegisterLocation(0),
Primitive::kPrimInt,
nullptr);
resolver.EmitNativeCode(moves);
if (TestFixture::has_swap) {
ASSERT_STREQ("(0,1 <-> 2,3)", resolver.GetMessage().c_str());
} else {
ASSERT_STREQ("(2 -> T0) (0,1 -> 2,3) (T0 -> 0)", resolver.GetMessage().c_str());
}
}
{
TypeParam resolver(&allocator);
HParallelMove* moves = new (&allocator) HParallelMove(&allocator);
moves->AddMove(
Location::RegisterLocation(2),
Location::RegisterLocation(7),
Primitive::kPrimInt,
nullptr);
moves->AddMove(
Location::RegisterLocation(7),
Location::RegisterLocation(1),
Primitive::kPrimInt,
nullptr);
moves->AddMove(
Location::RegisterPairLocation(0, 1),
Location::RegisterPairLocation(2, 3),
Primitive::kPrimLong,
nullptr);
resolver.EmitNativeCode(moves);
if (TestFixture::has_swap) {
ASSERT_STREQ("(0,1 <-> 2,3) (7 -> 1) (0 -> 7)", resolver.GetMessage().c_str());
} else {
ASSERT_STREQ("(0,1 -> T0,T1) (7 -> 1) (2 -> 7) (T0,T1 -> 2,3)",
resolver.GetMessage().c_str());
}
}
{
TypeParam resolver(&allocator);
HParallelMove* moves = new (&allocator) HParallelMove(&allocator);
moves->AddMove(
Location::RegisterLocation(2),
Location::RegisterLocation(7),
Primitive::kPrimInt,
nullptr);
moves->AddMove(
Location::RegisterPairLocation(0, 1),
Location::RegisterPairLocation(2, 3),
Primitive::kPrimLong,
nullptr);
moves->AddMove(
Location::RegisterLocation(7),
Location::RegisterLocation(1),
Primitive::kPrimInt,
nullptr);
resolver.EmitNativeCode(moves);
if (TestFixture::has_swap) {
ASSERT_STREQ("(0,1 <-> 2,3) (7 -> 1) (0 -> 7)", resolver.GetMessage().c_str());
} else {
ASSERT_STREQ("(0,1 -> T0,T1) (7 -> 1) (2 -> 7) (T0,T1 -> 2,3)",
resolver.GetMessage().c_str());
}
}
{
TypeParam resolver(&allocator);
HParallelMove* moves = new (&allocator) HParallelMove(&allocator);
moves->AddMove(
Location::RegisterPairLocation(0, 1),
Location::RegisterPairLocation(2, 3),
Primitive::kPrimLong,
nullptr);
moves->AddMove(
Location::RegisterLocation(2),
Location::RegisterLocation(7),
Primitive::kPrimInt,
nullptr);
moves->AddMove(
Location::RegisterLocation(7),
Location::RegisterLocation(1),
Primitive::kPrimInt,
nullptr);
resolver.EmitNativeCode(moves);
if (TestFixture::has_swap) {
ASSERT_STREQ("(0,1 <-> 2,3) (7 -> 1) (0 -> 7)", resolver.GetMessage().c_str());
} else {
ASSERT_STREQ("(7 -> T0) (2 -> 7) (0,1 -> 2,3) (T0 -> 1)", resolver.GetMessage().c_str());
}
}
{
TypeParam resolver(&allocator);
HParallelMove* moves = new (&allocator) HParallelMove(&allocator);
moves->AddMove(
Location::RegisterPairLocation(0, 1),
Location::RegisterPairLocation(2, 3),
Primitive::kPrimLong,
nullptr);
moves->AddMove(
Location::RegisterPairLocation(2, 3),
Location::RegisterPairLocation(0, 1),
Primitive::kPrimLong,
nullptr);
resolver.EmitNativeCode(moves);
if (TestFixture::has_swap) {
ASSERT_STREQ("(2,3 <-> 0,1)", resolver.GetMessage().c_str());
} else {
ASSERT_STREQ("(2,3 -> T0,T1) (0,1 -> 2,3) (T0,T1 -> 0,1)", resolver.GetMessage().c_str());
}
}
{
TypeParam resolver(&allocator);
HParallelMove* moves = new (&allocator) HParallelMove(&allocator);
moves->AddMove(
Location::RegisterPairLocation(2, 3),
Location::RegisterPairLocation(0, 1),
Primitive::kPrimLong,
nullptr);
moves->AddMove(
Location::RegisterPairLocation(0, 1),
Location::RegisterPairLocation(2, 3),
Primitive::kPrimLong,
nullptr);
resolver.EmitNativeCode(moves);
if (TestFixture::has_swap) {
ASSERT_STREQ("(0,1 <-> 2,3)", resolver.GetMessage().c_str());
} else {
ASSERT_STREQ("(0,1 -> T0,T1) (2,3 -> 0,1) (T0,T1 -> 2,3)", resolver.GetMessage().c_str());
}
}
}
TYPED_TEST(ParallelMoveTest, MultiCycles) {
ArenaPool pool;
ArenaAllocator allocator(&pool);
{
TypeParam resolver(&allocator);
static constexpr size_t moves[][2] = {{0, 1}, {1, 0}, {2, 3}, {3, 2}};
resolver.EmitNativeCode(BuildParallelMove(&allocator, moves, arraysize(moves)));
if (TestFixture::has_swap) {
ASSERT_STREQ("(1 <-> 0) (3 <-> 2)", resolver.GetMessage().c_str());
} else {
ASSERT_STREQ("(1 -> T0) (0 -> 1) (T0 -> 0) (3 -> T0) (2 -> 3) (T0 -> 2)",
resolver.GetMessage().c_str());
}
}
{
TypeParam resolver(&allocator);
HParallelMove* moves = new (&allocator) HParallelMove(&allocator);
moves->AddMove(
Location::RegisterPairLocation(0, 1),
Location::RegisterPairLocation(2, 3),
Primitive::kPrimLong,
nullptr);
moves->AddMove(
Location::RegisterLocation(2),
Location::RegisterLocation(0),
Primitive::kPrimInt,
nullptr);
moves->AddMove(
Location::RegisterLocation(3),
Location::RegisterLocation(1),
Primitive::kPrimInt,
nullptr);
resolver.EmitNativeCode(moves);
if (TestFixture::has_swap) {
ASSERT_STREQ("(0,1 <-> 2,3)", resolver.GetMessage().c_str());
} else {
ASSERT_STREQ("(2 -> T0) (3 -> T1) (0,1 -> 2,3) (T0 -> 0) (T1 -> 1)",
resolver.GetMessage().c_str());
}
}
{
TypeParam resolver(&allocator);
HParallelMove* moves = new (&allocator) HParallelMove(&allocator);
moves->AddMove(
Location::RegisterLocation(2),
Location::RegisterLocation(0),
Primitive::kPrimInt,
nullptr);
moves->AddMove(
Location::RegisterLocation(3),
Location::RegisterLocation(1),
Primitive::kPrimInt,
nullptr);
moves->AddMove(
Location::RegisterPairLocation(0, 1),
Location::RegisterPairLocation(2, 3),
Primitive::kPrimLong,
nullptr);
resolver.EmitNativeCode(moves);
if (TestFixture::has_swap) {
ASSERT_STREQ("(0,1 <-> 2,3)", resolver.GetMessage().c_str());
} else {
ASSERT_STREQ("(3 -> T0) (0,1 -> T2,T3) (T0 -> 1) (2 -> 0) (T2,T3 -> 2,3)",
resolver.GetMessage().c_str());
}
}
{
// Test involving registers used in single context and pair context.
TypeParam resolver(&allocator);
HParallelMove* moves = new (&allocator) HParallelMove(&allocator);
moves->AddMove(
Location::RegisterLocation(10),
Location::RegisterLocation(5),
Primitive::kPrimInt,
nullptr);
moves->AddMove(
Location::RegisterPairLocation(4, 5),
Location::DoubleStackSlot(32),
Primitive::kPrimLong,
nullptr);
moves->AddMove(
Location::DoubleStackSlot(32),
Location::RegisterPairLocation(10, 11),
Primitive::kPrimLong,
nullptr);
resolver.EmitNativeCode(moves);
if (TestFixture::has_swap) {
ASSERT_STREQ("(2x32(sp) <-> 10,11) (4,5 <-> 2x32(sp)) (4 -> 5)", resolver.GetMessage().c_str());
} else {
ASSERT_STREQ("(2x32(sp) -> T0,T1) (4,5 -> 2x32(sp)) (10 -> 5) (T0,T1 -> 10,11)",
resolver.GetMessage().c_str());
}
}
}
// Test that we do 64bits moves before 32bits moves.
TYPED_TEST(ParallelMoveTest, CyclesWith64BitsMoves) {
ArenaPool pool;
ArenaAllocator allocator(&pool);
{
TypeParam resolver(&allocator);
HParallelMove* moves = new (&allocator) HParallelMove(&allocator);
moves->AddMove(
Location::RegisterLocation(0),
Location::RegisterLocation(1),
Primitive::kPrimLong,
nullptr);
moves->AddMove(
Location::RegisterLocation(1),
Location::StackSlot(48),
Primitive::kPrimInt,
nullptr);
moves->AddMove(
Location::StackSlot(48),
Location::RegisterLocation(0),
Primitive::kPrimInt,
nullptr);
resolver.EmitNativeCode(moves);
if (TestFixture::has_swap) {
ASSERT_STREQ("(0 <-> 1) (48(sp) <-> 0)", resolver.GetMessage().c_str());
} else {
ASSERT_STREQ("(48(sp) -> T0) (1 -> 48(sp)) (0 -> 1) (T0 -> 0)",
resolver.GetMessage().c_str());
}
}
{
TypeParam resolver(&allocator);
HParallelMove* moves = new (&allocator) HParallelMove(&allocator);
moves->AddMove(
Location::RegisterPairLocation(0, 1),
Location::RegisterPairLocation(2, 3),
Primitive::kPrimLong,
nullptr);
moves->AddMove(
Location::RegisterPairLocation(2, 3),
Location::DoubleStackSlot(32),
Primitive::kPrimLong,
nullptr);
moves->AddMove(
Location::DoubleStackSlot(32),
Location::RegisterPairLocation(0, 1),
Primitive::kPrimLong,
nullptr);
resolver.EmitNativeCode(moves);
if (TestFixture::has_swap) {
ASSERT_STREQ("(2x32(sp) <-> 0,1) (2,3 <-> 2x32(sp))", resolver.GetMessage().c_str());
} else {
ASSERT_STREQ("(2x32(sp) -> T0,T1) (2,3 -> 2x32(sp)) (0,1 -> 2,3) (T0,T1 -> 0,1)",
resolver.GetMessage().c_str());
}
}
}
TYPED_TEST(ParallelMoveTest, CyclesWith64BitsMoves2) {
ArenaPool pool;
ArenaAllocator allocator(&pool);
{
TypeParam resolver(&allocator);
HParallelMove* moves = new (&allocator) HParallelMove(&allocator);
moves->AddMove(
Location::RegisterLocation(0),
Location::RegisterLocation(3),
Primitive::kPrimInt,
nullptr);
moves->AddMove(
Location::RegisterPairLocation(2, 3),
Location::RegisterPairLocation(0, 1),
Primitive::kPrimLong,
nullptr);
moves->AddMove(
Location::RegisterLocation(7),
Location::RegisterLocation(2),
Primitive::kPrimInt,
nullptr);
resolver.EmitNativeCode(moves);
if (TestFixture::has_swap) {
ASSERT_STREQ("(2,3 <-> 0,1) (2 -> 3) (7 -> 2)", resolver.GetMessage().c_str());
} else {
ASSERT_STREQ("(2,3 -> T0,T1) (0 -> 3) (T0,T1 -> 0,1) (7 -> 2)",
resolver.GetMessage().c_str());
}
}
}
} // namespace art