blob: cb9645de56b6d78e00dc01060fa7e55e26b736fd [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This file contains mips-specific codegen factory support.
* It is included by
*
* Codegen-$(TARGET_ARCH_VARIANT).c
*
*/
#define SLOW_FIELD_PATH (cUnit->enableDebug & (1 << kDebugSlowFieldPath))
#define SLOW_INVOKE_PATH (cUnit->enableDebug & (1 << kDebugSlowInvokePath))
#define SLOW_STRING_PATH (cUnit->enableDebug & (1 << kDebugSlowStringPath))
#define SLOW_TYPE_PATH (cUnit->enableDebug & (1 << kDebugSlowTypePath))
#define EXERCISE_SLOWEST_FIELD_PATH (cUnit->enableDebug & \
(1 << kDebugSlowestFieldPath))
#define EXERCISE_SLOWEST_STRING_PATH (cUnit->enableDebug & \
(1 << kDebugSlowestStringPath))
#define EXERCISE_RESOLVE_METHOD (cUnit->enableDebug & \
(1 << kDebugExerciseResolveMethod))
// FIXME - this is the Mips version, change to MIPS
namespace art {
STATIC void genDebuggerUpdate(CompilationUnit* cUnit, int32_t offset);
/* Generate unconditional branch instructions */
STATIC MipsLIR* genUnconditionalBranch(CompilationUnit* cUnit, MipsLIR* target)
{
MipsLIR* branch = opNone(cUnit, kOpUncondBr);
branch->generic.target = (LIR*) target;
return branch;
}
STATIC MipsLIR* callRuntimeHelper(CompilationUnit* cUnit, int reg)
{
oatClobberCalleeSave(cUnit);
return opReg(cUnit, kOpBlx, reg);
}
/*
* Mark garbage collection card. Skip if the value we're storing is null.
*/
STATIC void markGCCard(CompilationUnit* cUnit, int valReg, int tgtAddrReg)
{
int regCardBase = oatAllocTemp(cUnit);
int regCardNo = oatAllocTemp(cUnit);
MipsLIR* branchOver = opCompareBranchCC(cUnit, kMipsCondEq, valReg, r_ZERO);
loadWordDisp(cUnit, rSELF, Thread::CardTableOffset().Int32Value(),
regCardBase);
opRegRegImm(cUnit, kOpLsr, regCardNo, tgtAddrReg, GC_CARD_SHIFT);
storeBaseIndexed(cUnit, regCardBase, regCardNo, regCardBase, 0,
kUnsignedByte);
MipsLIR* target = newLIR0(cUnit, kPseudoTargetLabel);
target->defMask = ENCODE_ALL;
branchOver->generic.target = (LIR*)target;
oatFreeTemp(cUnit, regCardBase);
oatFreeTemp(cUnit, regCardNo);
}
/*
* Utiltiy to load the current Method*. Broken out
* to allow easy change between placing the current Method* in a
* dedicated register or its home location in the frame.
*/
STATIC void loadCurrMethodDirect(CompilationUnit *cUnit, int rTgt)
{
#if defined(METHOD_IN_REG)
genRegCopy(cUnit, rTgt, rMETHOD);
#else
loadWordDisp(cUnit, rSP, 0, rTgt);
#endif
}
STATIC int loadCurrMethod(CompilationUnit *cUnit)
{
#if defined(METHOD_IN_REG)
return rMETHOD;
#else
int mReg = oatAllocTemp(cUnit);
loadCurrMethodDirect(cUnit, mReg);
return mReg;
#endif
}
STATIC MipsLIR* genImmedCheck(CompilationUnit* cUnit, MipsConditionCode cCode,
int reg, int immVal, MIR* mir, MipsThrowKind kind)
{
MipsLIR* tgt = (MipsLIR*)oatNew(cUnit, sizeof(MipsLIR), true, kAllocLIR);
tgt->opcode = kPseudoThrowTarget;
tgt->operands[0] = kind;
tgt->operands[1] = mir->offset;
MipsLIR* branch;
if (cCode == kMipsCondAl) {
branch = genUnconditionalBranch(cUnit, tgt);
} else {
int tReg;
if (immVal == 0) {
tReg = r_ZERO;
} else {
tReg = oatAllocTemp(cUnit);
loadConstant(cUnit, tReg, immVal);
}
branch = opCompareBranchCC(cUnit, cCode, reg, tReg);
branch->generic.target = (LIR*)tgt;
}
// Remember branch target - will process later
oatInsertGrowableList(cUnit, &cUnit->throwLaunchpads, (intptr_t)tgt);
return branch;
}
/* Perform null-check on a register. */
STATIC MipsLIR* genNullCheck(CompilationUnit* cUnit, int sReg, int mReg,
MIR* mir)
{
if (!(cUnit->disableOpt & (1 << kNullCheckElimination)) &&
mir->optimizationFlags & MIR_IGNORE_NULL_CHECK) {
return NULL;
}
return genImmedCheck(cUnit, kMipsCondEq, mReg, 0, mir, kMipsThrowNullPointer);
}
/* Perform check on two registers */
STATIC TGT_LIR* genRegRegCheck(CompilationUnit* cUnit, MipsConditionCode cCode,
int reg1, int reg2, MIR* mir, MipsThrowKind kind)
{
MipsLIR* tgt = (MipsLIR*)oatNew(cUnit, sizeof(MipsLIR), true, kAllocLIR);
tgt->opcode = kPseudoThrowTarget;
tgt->operands[0] = kind;
tgt->operands[1] = mir ? mir->offset : 0;
tgt->operands[2] = reg1;
tgt->operands[3] = reg2;
opRegReg(cUnit, kOpCmp, reg1, reg2);
MipsLIR* branch = genConditionalBranch(cUnit, cCode, tgt);
// Remember branch target - will process later
oatInsertGrowableList(cUnit, &cUnit->throwLaunchpads, (intptr_t)tgt);
return branch;
}
/*
* Let helper function take care of everything. Will call
* Array::AllocFromCode(type_idx, method, count);
* Note: AllocFromCode will handle checks for errNegativeArraySize.
*/
STATIC void genNewArray(CompilationUnit* cUnit, MIR* mir, RegLocation rlDest,
RegLocation rlSrc)
{
oatFlushAllRegs(cUnit); /* Everything to home location */
oatLockCallTemps(cUnit);
int addrReg = oatAllocTemp(cUnit);
uint32_t type_idx = mir->dalvikInsn.vC;
if (cUnit->compiler->CanAccessTypeWithoutChecks(cUnit->method_idx,
cUnit->dex_cache,
*cUnit->dex_file,
type_idx)) {
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pAllocArrayFromCode), addrReg);
} else {
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pAllocArrayFromCodeWithAccessCheck), addrReg);
}
loadCurrMethodDirect(cUnit, r_ARG1); // arg1 <- Method*
loadConstant(cUnit, r_ARG0, type_idx); // arg0 <- type_id
loadValueDirectFixed(cUnit, rlSrc, r_ARG2); // arg2 <- count
callRuntimeHelper(cUnit, addrReg);
RegLocation rlResult = oatGetReturn(cUnit);
storeValue(cUnit, rlDest, rlResult);
}
/*
* Similar to genNewArray, but with post-allocation initialization.
* Verifier guarantees we're dealing with an array class. Current
* code throws runtime exception "bad Filled array req" for 'D' and 'J'.
* Current code also throws internal unimp if not 'L', '[' or 'I'.
*/
STATIC void genFilledNewArray(CompilationUnit* cUnit, MIR* mir, bool isRange)
{
DecodedInstruction* dInsn = &mir->dalvikInsn;
int elems = dInsn->vA;
int typeId = dInsn->vB;
oatFlushAllRegs(cUnit); /* Everything to home location */
oatLockCallTemps(cUnit);
int addrReg = oatAllocTemp(cUnit);
if (cUnit->compiler->CanAccessTypeWithoutChecks(cUnit->method_idx,
cUnit->dex_cache,
*cUnit->dex_file,
typeId)) {
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pCheckAndAllocArrayFromCode),
addrReg);
} else {
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread,
pCheckAndAllocArrayFromCodeWithAccessCheck), addrReg);
}
loadCurrMethodDirect(cUnit, r_ARG1); // arg1 <- Method*
loadConstant(cUnit, r_ARG0, typeId); // arg0 <- type_id
loadConstant(cUnit, r_ARG2, elems); // arg2 <- count
callRuntimeHelper(cUnit, addrReg);
/*
* NOTE: the implicit target for OP_FILLED_NEW_ARRAY is the
* return region. Because AllocFromCode placed the new array
* in r_V0, we'll just lock it into place. When debugger support is
* added, it may be necessary to additionally copy all return
* values to a home location in thread-local storage
*/
oatLockTemp(cUnit, r_V0);
// Having a range of 0 is legal
if (isRange && (dInsn->vA > 0)) {
/*
* Bit of ugliness here. We're going generate a mem copy loop
* on the register range, but it is possible that some regs
* in the range have been promoted. This is unlikely, but
* before generating the copy, we'll just force a flush
* of any regs in the source range that have been promoted to
* home location.
*/
for (unsigned int i = 0; i < dInsn->vA; i++) {
RegLocation loc = oatUpdateLoc(cUnit,
oatGetSrc(cUnit, mir, i));
if (loc.location == kLocPhysReg) {
storeBaseDisp(cUnit, rSP, oatSRegOffset(cUnit, loc.sRegLow),
loc.lowReg, kWord);
}
}
/*
* TUNING note: generated code here could be much improved, but
* this is an uncommon operation and isn't especially performance
* critical.
*/
int rSrc = oatAllocTemp(cUnit);
int rDst = oatAllocTemp(cUnit);
int rIdx = oatAllocTemp(cUnit);
int rVal = oatAllocTemp(cUnit);
// Set up source pointer
RegLocation rlFirst = oatGetSrc(cUnit, mir, 0);
opRegRegImm(cUnit, kOpAdd, rSrc, rSP,
oatSRegOffset(cUnit, rlFirst.sRegLow));
// Set up the target pointer
opRegRegImm(cUnit, kOpAdd, rDst, r_V0,
Array::DataOffset().Int32Value());
// Set up the loop counter (known to be > 0)
loadConstant(cUnit, rIdx, dInsn->vA - 1);
// Generate the copy loop. Going backwards for convenience
MipsLIR* target = newLIR0(cUnit, kPseudoTargetLabel);
target->defMask = ENCODE_ALL;
// Copy next element
loadBaseIndexed(cUnit, rSrc, rIdx, rVal, 2, kWord);
storeBaseIndexed(cUnit, rDst, rIdx, rVal, 2, kWord);
opRegImm(cUnit, kOpSub, rIdx, 1);
MipsLIR* branch = opCompareBranchCC(cUnit, kMipsCondGe, rIdx, r_ZERO);
branch->generic.target = (LIR*)target;
} else if (!isRange) {
// TUNING: interleave
for (unsigned int i = 0; i < dInsn->vA; i++) {
RegLocation rlArg = loadValue(cUnit,
oatGetSrc(cUnit, mir, i), kCoreReg);
storeBaseDisp(cUnit, r_V0,
Array::DataOffset().Int32Value() +
i * 4, rlArg.lowReg, kWord);
// If the loadValue caused a temp to be allocated, free it
if (oatIsTemp(cUnit, rlArg.lowReg)) {
oatFreeTemp(cUnit, rlArg.lowReg);
}
}
}
}
STATIC void genSput(CompilationUnit* cUnit, MIR* mir, RegLocation rlSrc,
bool isLongOrDouble, bool isObject)
{
int fieldOffset;
int ssbIndex;
bool isVolatile;
bool isReferrersClass;
uint32_t fieldIdx = mir->dalvikInsn.vB;
bool fastPath =
cUnit->compiler->ComputeStaticFieldInfo(fieldIdx, cUnit,
fieldOffset, ssbIndex,
isReferrersClass, isVolatile, true);
if (fastPath && !SLOW_FIELD_PATH) {
DCHECK_GE(fieldOffset, 0);
int rBase;
int rMethod;
if (isReferrersClass) {
// Fast path, static storage base is this method's class
rMethod = loadCurrMethod(cUnit);
rBase = oatAllocTemp(cUnit);
loadWordDisp(cUnit, rMethod,
Method::DeclaringClassOffset().Int32Value(), rBase);
} else {
// Medium path, static storage base in a different class which
// requires checks that the other class is initialized.
DCHECK_GE(ssbIndex, 0);
// May do runtime call so everything to home locations.
oatFlushAllRegs(cUnit);
// Using fixed register to sync with possible call to runtime
// support.
oatLockCallTemps(cUnit);
rMethod = r1;
oatLockTemp(cUnit, rMethod);
loadCurrMethodDirect(cUnit, rMethod);
rBase = r0;
oatLockTemp(cUnit, rBase);
loadWordDisp(cUnit, rMethod,
Method::DexCacheInitializedStaticStorageOffset().Int32Value(),
rBase);
loadWordDisp(cUnit, rBase,
Array::DataOffset().Int32Value() + sizeof(int32_t*) *
ssbIndex, rBase);
// rBase now points at appropriate static storage base (Class*)
// or NULL if not initialized. Check for NULL and call helper if NULL.
// TUNING: fast path should fall through
MipsLIR* branchOver = opCmpImmBranchCC(cUnit, kMipsCondNe,
rBase, 0);
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pInitializeStaticStorage), rLR);
loadConstant(cUnit, r0, ssbIndex);
callRuntimeHelper(cUnit, rLR);
MipsLIR* skipTarget = newLIR0(cUnit, kPseudoTargetLabel);
skipTarget->defMask = ENCODE_ALL;
branchOver->generic.target = (LIR*)skipTarget;
}
// rBase now holds static storage base
oatFreeTemp(cUnit, rMethod);
if (isLongOrDouble) {
rlSrc = oatGetSrcWide(cUnit, mir, 0, 1);
rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
} else {
rlSrc = oatGetSrc(cUnit, mir, 0);
rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
}
if (isVolatile) {
oatGenMemBarrier(cUnit, kST);
}
if (isLongOrDouble) {
storeBaseDispWide(cUnit, rBase, fieldOffset, rlSrc.lowReg,
rlSrc.highReg);
} else {
storeWordDisp(cUnit, rBase, fieldOffset, rlSrc.lowReg);
}
if (isVolatile) {
oatGenMemBarrier(cUnit, kSY);
}
if (isObject) {
markGCCard(cUnit, rlSrc.lowReg, rBase);
}
oatFreeTemp(cUnit, rBase);
} else {
oatFlushAllRegs(cUnit); // Everything to home locations
int setterOffset = isLongOrDouble ? OFFSETOF_MEMBER(Thread, pSet64Static) :
(isObject ? OFFSETOF_MEMBER(Thread, pSetObjStatic)
: OFFSETOF_MEMBER(Thread, pSet32Static));
loadWordDisp(cUnit, rSELF, setterOffset, rLR);
loadConstant(cUnit, r0, fieldIdx);
if (isLongOrDouble) {
loadValueDirectWideFixed(cUnit, rlSrc, r2, r3);
} else {
loadValueDirect(cUnit, rlSrc, r1);
}
callRuntimeHelper(cUnit, rLR);
}
}
STATIC void genSget(CompilationUnit* cUnit, MIR* mir, RegLocation rlDest,
bool isLongOrDouble, bool isObject)
{
UNIMPLEMENTED(FATAL) << "Needs mips version";
#if 0
int fieldOffset;
int ssbIndex;
bool isVolatile;
bool isReferrersClass;
uint32_t fieldIdx = mir->dalvikInsn.vB;
bool fastPath =
cUnit->compiler->ComputeStaticFieldInfo(fieldIdx, cUnit,
fieldOffset, ssbIndex,
isReferrersClass, isVolatile, false);
if (fastPath && !SLOW_FIELD_PATH) {
DCHECK_GE(fieldOffset, 0);
int rBase;
int rMethod;
if (isReferrersClass) {
// Fast path, static storage base is this method's class
rMethod = loadCurrMethod(cUnit);
rBase = oatAllocTemp(cUnit);
loadWordDisp(cUnit, rMethod,
Method::DeclaringClassOffset().Int32Value(), rBase);
} else {
// Medium path, static storage base in a different class which
// requires checks that the other class is initialized
DCHECK_GE(ssbIndex, 0);
// May do runtime call so everything to home locations.
oatFlushAllRegs(cUnit);
// Using fixed register to sync with possible call to runtime
// support
rMethod = r1;
oatLockTemp(cUnit, rMethod);
loadCurrMethodDirect(cUnit, rMethod);
rBase = r0;
oatLockTemp(cUnit, rBase);
loadWordDisp(cUnit, rMethod,
Method::DexCacheInitializedStaticStorageOffset().Int32Value(),
rBase);
loadWordDisp(cUnit, rBase,
Array::DataOffset().Int32Value() + sizeof(int32_t*) * ssbIndex,
rBase);
// rBase now points at appropriate static storage base (Class*)
// or NULL if not initialized. Check for NULL and call helper if NULL.
// TUNING: fast path should fall through
MipsLIR* branchOver = opCmpImmBranchCC(cUnit, kMipsCondNe, rBase, 0);
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pInitializeStaticStorage), rLR);
loadConstant(cUnit, r0, ssbIndex);
callRuntimeHelper(cUnit, rLR);
MipsLIR* skipTarget = newLIR0(cUnit, kPseudoTargetLabel);
skipTarget->defMask = ENCODE_ALL;
branchOver->generic.target = (LIR*)skipTarget;
}
// rBase now holds static storage base
oatFreeTemp(cUnit, rMethod);
rlDest = isLongOrDouble ? oatGetDestWide(cUnit, mir, 0, 1)
: oatGetDest(cUnit, mir, 0);
RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kAnyReg, true);
if (isVolatile) {
oatGenMemBarrier(cUnit, kSY);
}
if (isLongOrDouble) {
loadBaseDispWide(cUnit, NULL, rBase, fieldOffset, rlResult.lowReg,
rlResult.highReg, INVALID_SREG);
} else {
loadWordDisp(cUnit, rBase, fieldOffset, rlResult.lowReg);
}
oatFreeTemp(cUnit, rBase);
if (isLongOrDouble) {
storeValueWide(cUnit, rlDest, rlResult);
} else {
storeValue(cUnit, rlDest, rlResult);
}
} else {
oatFlushAllRegs(cUnit); // Everything to home locations
int getterOffset = isLongOrDouble ? OFFSETOF_MEMBER(Thread, pGet64Static) :
(isObject ? OFFSETOF_MEMBER(Thread, pGetObjStatic)
: OFFSETOF_MEMBER(Thread, pGet32Static));
loadWordDisp(cUnit, rSELF, getterOffset, rLR);
loadConstant(cUnit, r0, fieldIdx);
callRuntimeHelper(cUnit, rLR);
if (isLongOrDouble) {
RegLocation rlResult = oatGetReturnWide(cUnit);
storeValueWide(cUnit, rlDest, rlResult);
} else {
RegLocation rlResult = oatGetReturn(cUnit);
storeValue(cUnit, rlDest, rlResult);
}
}
#endif
}
typedef int (*NextCallInsn)(CompilationUnit*, MIR*, int, uint32_t dexIdx,
uint32_t methodIdx);
/*
* Bit of a hack here - in leiu of a real scheduling pass,
* emit the next instruction in static & direct invoke sequences.
*/
STATIC int nextSDCallInsn(CompilationUnit* cUnit, MIR* mir,
int state, uint32_t dexIdx, uint32_t unused)
{
UNIMPLEMENTED(FATAL) << "Needs mips version";
#if 0
switch(state) {
case 0: // Get the current Method* [sets r0]
loadCurrMethodDirect(cUnit, r0);
break;
case 1: // Get method->code_and_direct_methods_
loadWordDisp(cUnit, r0,
Method::GetDexCacheCodeAndDirectMethodsOffset().Int32Value(),
r0);
break;
case 2: // Grab target method* and target code_
loadWordDisp(cUnit, r0,
CodeAndDirectMethods::CodeOffsetInBytes(dexIdx), rLR);
loadWordDisp(cUnit, r0,
CodeAndDirectMethods::MethodOffsetInBytes(dexIdx), r0);
break;
default:
return -1;
}
#endif
return state + 1;
}
/*
* Bit of a hack here - in leiu of a real scheduling pass,
* emit the next instruction in a virtual invoke sequence.
* We can use rLR as a temp prior to target address loading
* Note also that we'll load the first argument ("this") into
* r1 here rather than the standard loadArgRegs.
*/
STATIC int nextVCallInsn(CompilationUnit* cUnit, MIR* mir,
int state, uint32_t dexIdx, uint32_t methodIdx)
{
UNIMPLEMENTED(FATAL) << "Needs mips version";
#if 0
RegLocation rlArg;
/*
* This is the fast path in which the target virtual method is
* fully resolved at compile time.
*/
switch(state) {
case 0: // Get "this" [set r1]
rlArg = oatGetSrc(cUnit, mir, 0);
loadValueDirectFixed(cUnit, rlArg, r1);
break;
case 1: // Is "this" null? [use r1]
genNullCheck(cUnit, oatSSASrc(mir,0), r1, mir);
// get this->klass_ [use r1, set rLR]
loadWordDisp(cUnit, r1, Object::ClassOffset().Int32Value(), rLR);
break;
case 2: // Get this->klass_->vtable [usr rLR, set rLR]
loadWordDisp(cUnit, rLR, Class::VTableOffset().Int32Value(), rLR);
break;
case 3: // Get target method [use rLR, set r0]
loadWordDisp(cUnit, rLR, (methodIdx * 4) +
Array::DataOffset().Int32Value(), r0);
break;
case 4: // Get the target compiled code address [uses r0, sets rLR]
loadWordDisp(cUnit, r0, Method::GetCodeOffset().Int32Value(), rLR);
break;
default:
return -1;
}
#endif
return state + 1;
}
/*
* Interleave launch code for INVOKE_SUPER. See comments
* for nextVCallIns.
*/
STATIC int nextSuperCallInsn(CompilationUnit* cUnit, MIR* mir,
int state, uint32_t dexIdx, uint32_t methodIdx)
{
UNIMPLEMENTED(FATAL) << "Needs mips version";
#if 0
/*
* This is the fast path in which the target virtual method is
* fully resolved at compile time. Note also that this path assumes
* that the check to verify that the target method index falls
* within the size of the super's vtable has been done at compile-time.
*/
RegLocation rlArg;
switch(state) {
case 0: // Get current Method* [set r0]
loadCurrMethodDirect(cUnit, r0);
// Load "this" [set r1]
rlArg = oatGetSrc(cUnit, mir, 0);
loadValueDirectFixed(cUnit, rlArg, r1);
// Get method->declaring_class_ [use r0, set rLR]
loadWordDisp(cUnit, r0, Method::DeclaringClassOffset().Int32Value(),
rLR);
// Is "this" null? [use r1]
genNullCheck(cUnit, oatSSASrc(mir,0), r1, mir);
break;
case 1: // Get method->declaring_class_->super_class [usr rLR, set rLR]
loadWordDisp(cUnit, rLR, Class::SuperClassOffset().Int32Value(),
rLR);
break;
case 2: // Get ...->super_class_->vtable [u/s rLR]
loadWordDisp(cUnit, rLR, Class::VTableOffset().Int32Value(), rLR);
break;
case 3: // Get target method [use rLR, set r0]
loadWordDisp(cUnit, rLR, (methodIdx * 4) +
Array::DataOffset().Int32Value(), r0);
break;
case 4: // Get the target compiled code address [uses r0, sets rLR]
loadWordDisp(cUnit, r0, Method::GetCodeOffset().Int32Value(), rLR);
break;
default:
return -1;
}
#endif
return state + 1;
}
STATIC int nextInvokeInsnSP(CompilationUnit* cUnit, MIR* mir, int trampoline,
int state, uint32_t dexIdx, uint32_t methodIdx)
{
UNIMPLEMENTED(FATAL) << "Needs mips version";
#if 0
/*
* This handles the case in which the base method is not fully
* resolved at compile time, we bail to a runtime helper.
*/
if (state == 0) {
// Load trampoline target
loadWordDisp(cUnit, rSELF, trampoline, rLR);
// Load r0 with method index
loadConstant(cUnit, r0, dexIdx);
return 1;
}
#endif
return -1;
}
STATIC int nextStaticCallInsnSP(CompilationUnit* cUnit, MIR* mir,
int state, uint32_t dexIdx, uint32_t methodIdx)
{
int trampoline = OFFSETOF_MEMBER(Thread, pInvokeStaticTrampolineWithAccessCheck);
return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0);
}
STATIC int nextDirectCallInsnSP(CompilationUnit* cUnit, MIR* mir,
int state, uint32_t dexIdx, uint32_t methodIdx)
{
int trampoline = OFFSETOF_MEMBER(Thread, pInvokeDirectTrampolineWithAccessCheck);
return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0);
}
STATIC int nextSuperCallInsnSP(CompilationUnit* cUnit, MIR* mir,
int state, uint32_t dexIdx, uint32_t methodIdx)
{
int trampoline = OFFSETOF_MEMBER(Thread, pInvokeSuperTrampolineWithAccessCheck);
return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0);
}
STATIC int nextVCallInsnSP(CompilationUnit* cUnit, MIR* mir,
int state, uint32_t dexIdx, uint32_t methodIdx)
{
int trampoline = OFFSETOF_MEMBER(Thread, pInvokeVirtualTrampolineWithAccessCheck);
return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0);
}
/*
* All invoke-interface calls bounce off of art_invoke_interface_trampoline,
* which will locate the target and continue on via a tail call.
*/
STATIC int nextInterfaceCallInsn(CompilationUnit* cUnit, MIR* mir,
int state, uint32_t dexIdx, uint32_t unused)
{
int trampoline = OFFSETOF_MEMBER(Thread, pInvokeInterfaceTrampoline);
return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0);
}
STATIC int nextInterfaceCallInsnWithAccessCheck(CompilationUnit* cUnit,
MIR* mir, int state,
uint32_t dexIdx,
uint32_t unused)
{
int trampoline = OFFSETOF_MEMBER(Thread, pInvokeInterfaceTrampolineWithAccessCheck);
return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0);
}
STATIC int loadArgRegs(CompilationUnit* cUnit, MIR* mir,
DecodedInstruction* dInsn, int callState,
NextCallInsn nextCallInsn, uint32_t dexIdx,
uint32_t methodIdx, bool skipThis)
{
UNIMPLEMENTED(FATAL) << "Needs mips version";
#if 0
int nextReg = r1;
int nextArg = 0;
if (skipThis) {
nextReg++;
nextArg++;
}
for (; (nextReg <= r3) && (nextArg < mir->ssaRep->numUses); nextReg++) {
RegLocation rlArg = oatGetRawSrc(cUnit, mir, nextArg++);
rlArg = oatUpdateRawLoc(cUnit, rlArg);
if (rlArg.wide && (nextReg <= r2)) {
loadValueDirectWideFixed(cUnit, rlArg, nextReg, nextReg + 1);
nextReg++;
nextArg++;
} else {
rlArg.wide = false;
loadValueDirectFixed(cUnit, rlArg, nextReg);
}
callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
}
#endif
return callState;
}
/*
* Load up to 5 arguments, the first three of which will be in
* r1 .. r3. On entry r0 contains the current method pointer,
* and as part of the load sequence, it must be replaced with
* the target method pointer. Note, this may also be called
* for "range" variants if the number of arguments is 5 or fewer.
*/
STATIC int genDalvikArgsNoRange(CompilationUnit* cUnit, MIR* mir,
DecodedInstruction* dInsn, int callState,
MipsLIR** pcrLabel, NextCallInsn nextCallInsn,
uint32_t dexIdx, uint32_t methodIdx,
bool skipThis)
{
UNIMPLEMENTED(FATAL) << "Needs mips version";
#if 0
RegLocation rlArg;
/* If no arguments, just return */
if (dInsn->vA == 0)
return callState;
callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
DCHECK_LE(dInsn->vA, 5U);
if (dInsn->vA > 3) {
uint32_t nextUse = 3;
//Detect special case of wide arg spanning arg3/arg4
RegLocation rlUse0 = oatGetRawSrc(cUnit, mir, 0);
RegLocation rlUse1 = oatGetRawSrc(cUnit, mir, 1);
RegLocation rlUse2 = oatGetRawSrc(cUnit, mir, 2);
if (((!rlUse0.wide && !rlUse1.wide) || rlUse0.wide) &&
rlUse2.wide) {
int reg;
// Wide spans, we need the 2nd half of uses[2].
rlArg = oatUpdateLocWide(cUnit, rlUse2);
if (rlArg.location == kLocPhysReg) {
reg = rlArg.highReg;
} else {
// r2 & r3 can safely be used here
reg = r3;
loadWordDisp(cUnit, rSP,
oatSRegOffset(cUnit, rlArg.sRegLow) + 4, reg);
callState = nextCallInsn(cUnit, mir, callState, dexIdx,
methodIdx);
}
storeBaseDisp(cUnit, rSP, (nextUse + 1) * 4, reg, kWord);
storeBaseDisp(cUnit, rSP, 16 /* (3+1)*4 */, reg, kWord);
callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
nextUse++;
}
// Loop through the rest
while (nextUse < dInsn->vA) {
int lowReg;
int highReg;
rlArg = oatGetRawSrc(cUnit, mir, nextUse);
rlArg = oatUpdateRawLoc(cUnit, rlArg);
if (rlArg.location == kLocPhysReg) {
lowReg = rlArg.lowReg;
highReg = rlArg.highReg;
} else {
lowReg = r2;
highReg = r3;
if (rlArg.wide) {
loadValueDirectWideFixed(cUnit, rlArg, lowReg, highReg);
} else {
loadValueDirectFixed(cUnit, rlArg, lowReg);
}
callState = nextCallInsn(cUnit, mir, callState, dexIdx,
methodIdx);
}
int outsOffset = (nextUse + 1) * 4;
if (rlArg.wide) {
storeBaseDispWide(cUnit, rSP, outsOffset, lowReg, highReg);
nextUse += 2;
} else {
storeWordDisp(cUnit, rSP, outsOffset, lowReg);
nextUse++;
}
callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
}
}
callState = loadArgRegs(cUnit, mir, dInsn, callState, nextCallInsn,
dexIdx, methodIdx, skipThis);
if (pcrLabel) {
*pcrLabel = genNullCheck(cUnit, oatSSASrc(mir,0), r1, mir);
}
#endif
return callState;
}
/*
* May have 0+ arguments (also used for jumbo). Note that
* source virtual registers may be in physical registers, so may
* need to be flushed to home location before copying. This
* applies to arg3 and above (see below).
*
* Two general strategies:
* If < 20 arguments
* Pass args 3-18 using vldm/vstm block copy
* Pass arg0, arg1 & arg2 in r1-r3
* If 20+ arguments
* Pass args arg19+ using memcpy block copy
* Pass arg0, arg1 & arg2 in r1-r3
*
*/
STATIC int genDalvikArgsRange(CompilationUnit* cUnit, MIR* mir,
DecodedInstruction* dInsn, int callState,
MipsLIR** pcrLabel, NextCallInsn nextCallInsn,
uint32_t dexIdx, uint32_t methodIdx,
bool skipThis)
{
UNIMPLEMENTED(FATAL) << "Needs mips version";
#if 0
int firstArg = dInsn->vC;
int numArgs = dInsn->vA;
// If we can treat it as non-range (Jumbo ops will use range form)
if (numArgs <= 5)
return genDalvikArgsNoRange(cUnit, mir, dInsn, callState, pcrLabel,
nextCallInsn, dexIdx, methodIdx,
skipThis);
/*
* Make sure range list doesn't span the break between in normal
* Dalvik vRegs and the ins.
*/
int highestArg = oatGetSrc(cUnit, mir, numArgs-1).sRegLow;
int boundaryReg = cUnit->numDalvikRegisters - cUnit->numIns;
if ((firstArg < boundaryReg) && (highestArg >= boundaryReg)) {
LOG(FATAL) << "Argument list spanned locals & args";
}
/*
* First load the non-register arguments. Both forms expect all
* of the source arguments to be in their home frame location, so
* scan the sReg names and flush any that have been promoted to
* frame backing storage.
*/
// Scan the rest of the args - if in physReg flush to memory
for (int nextArg = 0; nextArg < numArgs;) {
RegLocation loc = oatGetRawSrc(cUnit, mir, nextArg);
if (loc.wide) {
loc = oatUpdateLocWide(cUnit, loc);
if ((nextArg >= 2) && (loc.location == kLocPhysReg)) {
storeBaseDispWide(cUnit, rSP,
oatSRegOffset(cUnit, loc.sRegLow),
loc.lowReg, loc.highReg);
}
nextArg += 2;
} else {
loc = oatUpdateLoc(cUnit, loc);
if ((nextArg >= 3) && (loc.location == kLocPhysReg)) {
storeBaseDisp(cUnit, rSP, oatSRegOffset(cUnit, loc.sRegLow),
loc.lowReg, kWord);
}
nextArg++;
}
}
int startOffset = oatSRegOffset(cUnit,
cUnit->regLocation[mir->ssaRep->uses[3]].sRegLow);
int outsOffset = 4 /* Method* */ + (3 * 4);
if (numArgs >= 20) {
// Generate memcpy
opRegRegImm(cUnit, kOpAdd, r0, rSP, outsOffset);
opRegRegImm(cUnit, kOpAdd, r1, rSP, startOffset);
loadWordDisp(cUnit, rSELF, OFFSETOF_MEMBER(Thread, pMemcpy), rLR);
loadConstant(cUnit, r2, (numArgs - 3) * 4);
callRuntimeHelper(cUnit, rLR);
// Restore Method*
loadCurrMethodDirect(cUnit, r0);
} else {
// Use vldm/vstm pair using r3 as a temp
int regsLeft = std::min(numArgs - 3, 16);
callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
opRegRegImm(cUnit, kOpAdd, r3, rSP, startOffset);
MipsLIR* ld = newLIR3(cUnit, kThumb2Vldms, r3, fr0, regsLeft);
//TUNING: loosen barrier
ld->defMask = ENCODE_ALL;
setMemRefType(ld, true /* isLoad */, kDalvikReg);
callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
opRegRegImm(cUnit, kOpAdd, r3, rSP, 4 /* Method* */ + (3 * 4));
callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
MipsLIR* st = newLIR3(cUnit, kThumb2Vstms, r3, fr0, regsLeft);
setMemRefType(st, false /* isLoad */, kDalvikReg);
st->defMask = ENCODE_ALL;
callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
}
callState = loadArgRegs(cUnit, mir, dInsn, callState, nextCallInsn,
dexIdx, methodIdx, skipThis);
callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
if (pcrLabel) {
*pcrLabel = genNullCheck(cUnit, oatSSASrc(mir,0), r1, mir);
}
#endif
return callState;
}
// Debugging routine - if null target, branch to DebugMe
STATIC void genShowTarget(CompilationUnit* cUnit)
{
UNIMPLEMENTED(FATAL) << "Needs mips version";
#if 0
MipsLIR* branchOver = opCmpImmBranch(cUnit, kMipsCondNe, rLR, 0);
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pDebugMe), rLR);
MipsLIR* target = newLIR0(cUnit, kPseudoTargetLabel);
target->defMask = -1;
branchOver->generic.target = (LIR*)target;
#endif
}
STATIC void genThrowVerificationError(CompilationUnit* cUnit, MIR* mir)
{
UNIMPLEMENTED(FATAL) << "Needs mips version";
#if 0
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pThrowVerificationErrorFromCode), rLR);
loadConstant(cUnit, r0, mir->dalvikInsn.vA);
loadConstant(cUnit, r1, mir->dalvikInsn.vB);
callRuntimeHelper(cUnit, rLR);
#endif
}
STATIC void genCompareAndBranch(CompilationUnit* cUnit, BasicBlock* bb,
MIR* mir, RegLocation rlSrc1,
RegLocation rlSrc2, MipsLIR* labelList)
{
UNIMPLEMENTED(FATAL) << "Needs mips version";
#if 0
MipsConditionCode cond;
rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg);
Opcode opcode = mir->dalvikInsn.opcode;
switch(opcode) {
case OP_IF_EQ:
cond = kMipsCondEq;
break;
case OP_IF_NE:
cond = kMipsCondNe;
break;
case OP_IF_LT:
cond = kMipsCondLt;
break;
case OP_IF_GE:
cond = kMipsCondGe;
break;
case OP_IF_GT:
cond = kMipsCondGt;
break;
case OP_IF_LE:
cond = kMipsCondLe;
break;
default:
cond = (MipsConditionCode)0;
LOG(FATAL) << "Unexpected opcode " << (int)opcode;
}
genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
#endif
}
STATIC void genCompareZeroAndBranch(CompilationUnit* cUnit, BasicBlock* bb,
MIR* mir, RegLocation rlSrc,
MipsLIR* labelList)
{
UNIMPLEMENTED(FATAL) << "Needs mips version";
#if 0
MipsConditionCode cond;
rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
opRegImm(cUnit, kOpCmp, rlSrc.lowReg, 0);
Opcode opcode = mir->dalvikInsn.opcode;
switch(opcode) {
case OP_IF_EQZ:
cond = kMipsCondEq;
break;
case OP_IF_NEZ:
cond = kMipsCondNe;
break;
case OP_IF_LTZ:
cond = kMipsCondLt;
break;
case OP_IF_GEZ:
cond = kMipsCondGe;
break;
case OP_IF_GTZ:
cond = kMipsCondGt;
break;
case OP_IF_LEZ:
cond = kMipsCondLe;
break;
default:
cond = (MipsConditionCode)0;
LOG(FATAL) << "Unexpected opcode " << (int)opcode;
}
genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
#endif
}
STATIC void genIntToLong(CompilationUnit* cUnit, MIR* mir, RegLocation rlDest,
RegLocation rlSrc)
{
UNIMPLEMENTED(FATAL) << "Needs mips version";
#if 0
RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
if (rlSrc.location == kLocPhysReg) {
genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
} else {
loadValueDirect(cUnit, rlSrc, rlResult.lowReg);
}
opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
rlResult.lowReg, 31);
storeValueWide(cUnit, rlDest, rlResult);
#endif
}
STATIC void genIntNarrowing(CompilationUnit* cUnit, MIR* mir,
RegLocation rlDest, RegLocation rlSrc)
{
UNIMPLEMENTED(FATAL) << "Needs mips version";
#if 0
rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
OpKind op = kOpInvalid;
switch(mir->dalvikInsn.opcode) {
case OP_INT_TO_BYTE:
op = kOp2Byte;
break;
case OP_INT_TO_SHORT:
op = kOp2Short;
break;
case OP_INT_TO_CHAR:
op = kOp2Char;
break;
default:
LOG(ERROR) << "Bad int conversion type";
}
opRegReg(cUnit, op, rlResult.lowReg, rlSrc.lowReg);
storeValue(cUnit, rlDest, rlResult);
#endif
}
/*
* If there are any ins passed in registers that have not been promoted
* to a callee-save register, flush them to the frame. Perform intial
* assignment of promoted arguments.
*/
STATIC void flushIns(CompilationUnit* cUnit)
{
UNIMPLEMENTED(FATAL) << "Needs mips version";
#if 0
if (cUnit->numIns == 0)
return;
int firstArgReg = r1;
int lastArgReg = r3;
int startVReg = cUnit->numDalvikRegisters - cUnit->numIns;
/*
* Arguments passed in registers should be flushed
* to their backing locations in the frame for now.
* Also, we need to do initial assignment for promoted
* arguments. NOTE: an older version of dx had an issue
* in which it would reuse static method argument registers.
* This could result in the same Dalvik virtual register
* being promoted to both core and fp regs. In those
* cases, copy argument to both. This will be uncommon
* enough that it isn't worth attempting to optimize.
*/
for (int i = 0; i < cUnit->numIns; i++) {
PromotionMap vMap = cUnit->promotionMap[startVReg + i];
if (i <= (lastArgReg - firstArgReg)) {
// If arriving in register
if (vMap.coreLocation == kLocPhysReg) {
genRegCopy(cUnit, vMap.coreReg, firstArgReg + i);
}
if (vMap.fpLocation == kLocPhysReg) {
genRegCopy(cUnit, vMap.fpReg, firstArgReg + i);
}
// Also put a copy in memory in case we're partially promoted
storeBaseDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i),
firstArgReg + i, kWord);
} else {
// If arriving in frame & promoted
if (vMap.coreLocation == kLocPhysReg) {
loadWordDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i),
vMap.coreReg);
}
if (vMap.fpLocation == kLocPhysReg) {
loadWordDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i),
vMap.fpReg);
}
}
}
#endif
}
STATIC void genEntrySequence(CompilationUnit* cUnit, BasicBlock* bb)
{
UNIMPLEMENTED(FATAL) << "Needs mips version";
#if 0
int spillCount = cUnit->numCoreSpills + cUnit->numFPSpills;
/*
* On entry, r0, r1, r2 & r3 are live. Let the register allocation
* mechanism know so it doesn't try to use any of them when
* expanding the frame or flushing. This leaves the utility
* code with a single temp: r12. This should be enough.
*/
oatLockTemp(cUnit, r0);
oatLockTemp(cUnit, r1);
oatLockTemp(cUnit, r2);
oatLockTemp(cUnit, r3);
/*
* We can safely skip the stack overflow check if we're
* a leaf *and* our frame size < fudge factor.
*/
bool skipOverflowCheck = ((cUnit->attrs & METHOD_IS_LEAF) &&
((size_t)cUnit->frameSize <
Thread::kStackOverflowReservedBytes));
newLIR0(cUnit, kPseudoMethodEntry);
if (!skipOverflowCheck) {
/* Load stack limit */
loadWordDisp(cUnit, rSELF,
Thread::StackEndOffset().Int32Value(), r12);
}
/* Spill core callee saves */
newLIR1(cUnit, kThumb2Push, cUnit->coreSpillMask);
/* Need to spill any FP regs? */
if (cUnit->numFPSpills) {
/*
* NOTE: fp spills are a little different from core spills in that
* they are pushed as a contiguous block. When promoting from
* the fp set, we must allocate all singles from s16..highest-promoted
*/
newLIR1(cUnit, kThumb2VPushCS, cUnit->numFPSpills);
}
if (!skipOverflowCheck) {
opRegRegImm(cUnit, kOpSub, rLR, rSP,
cUnit->frameSize - (spillCount * 4));
genRegRegCheck(cUnit, kMipsCondCc, rLR, r12, NULL,
kMipsThrowStackOverflow);
genRegCopy(cUnit, rSP, rLR); // Establish stack
} else {
opRegImm(cUnit, kOpSub, rSP,
cUnit->frameSize - (spillCount * 4));
}
storeBaseDisp(cUnit, rSP, 0, r0, kWord);
flushIns(cUnit);
if (cUnit->genDebugger) {
// Refresh update debugger callout
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pUpdateDebuggerFromCode), rSUSPEND);
genDebuggerUpdate(cUnit, DEBUGGER_METHOD_ENTRY);
}
oatFreeTemp(cUnit, r0);
oatFreeTemp(cUnit, r1);
oatFreeTemp(cUnit, r2);
oatFreeTemp(cUnit, r3);
#endif
}
STATIC void genExitSequence(CompilationUnit* cUnit, BasicBlock* bb)
{
UNIMPLEMENTED(FATAL) << "Needs mips version";
#if 0
int spillCount = cUnit->numCoreSpills + cUnit->numFPSpills;
/*
* In the exit path, r0/r1 are live - make sure they aren't
* allocated by the register utilities as temps.
*/
oatLockTemp(cUnit, r0);
oatLockTemp(cUnit, r1);
newLIR0(cUnit, kPseudoMethodExit);
/* If we're compiling for the debugger, generate an update callout */
if (cUnit->genDebugger) {
genDebuggerUpdate(cUnit, DEBUGGER_METHOD_EXIT);
}
opRegImm(cUnit, kOpAdd, rSP, cUnit->frameSize - (spillCount * 4));
/* Need to restore any FP callee saves? */
if (cUnit->numFPSpills) {
newLIR1(cUnit, kThumb2VPopCS, cUnit->numFPSpills);
}
if (cUnit->coreSpillMask & (1 << rLR)) {
/* Unspill rLR to rPC */
cUnit->coreSpillMask &= ~(1 << rLR);
cUnit->coreSpillMask |= (1 << rPC);
}
newLIR1(cUnit, kThumb2Pop, cUnit->coreSpillMask);
if (!(cUnit->coreSpillMask & (1 << rPC))) {
/* We didn't pop to rPC, so must do a bv rLR */
newLIR1(cUnit, kThumbBx, rLR);
}
#endif
}
/*
* Nop any unconditional branches that go to the next instruction.
* Note: new redundant branches may be inserted later, and we'll
* use a check in final instruction assembly to nop those out.
*/
void removeRedundantBranches(CompilationUnit* cUnit)
{
UNIMPLEMENTED(FATAL) << "Needs mips version";
#if 0
MipsLIR* thisLIR;
for (thisLIR = (MipsLIR*) cUnit->firstLIRInsn;
thisLIR != (MipsLIR*) cUnit->lastLIRInsn;
thisLIR = NEXT_LIR(thisLIR)) {
/* Branch to the next instruction */
if ((thisLIR->opcode == kThumbBUncond) ||
(thisLIR->opcode == kThumb2BUncond)) {
MipsLIR* nextLIR = thisLIR;
while (true) {
nextLIR = NEXT_LIR(nextLIR);
/*
* Is the branch target the next instruction?
*/
if (nextLIR == (MipsLIR*) thisLIR->generic.target) {
thisLIR->flags.isNop = true;
break;
}
/*
* Found real useful stuff between the branch and the target.
* Need to explicitly check the lastLIRInsn here because it
* might be the last real instruction.
*/
if (!isPseudoOpcode(nextLIR->opcode) ||
(nextLIR = (MipsLIR*) cUnit->lastLIRInsn))
break;
}
}
}
#endif
}
STATIC void handleSuspendLaunchpads(CompilationUnit *cUnit)
{
UNIMPLEMENTED(FATAL) << "Needs mips version";
#if 0
MipsLIR** suspendLabel =
(MipsLIR **) cUnit->suspendLaunchpads.elemList;
int numElems = cUnit->suspendLaunchpads.numUsed;
for (int i = 0; i < numElems; i++) {
/* TUNING: move suspend count load into helper */
MipsLIR* lab = suspendLabel[i];
MipsLIR* resumeLab = (MipsLIR*)lab->operands[0];
cUnit->currentDalvikOffset = lab->operands[1];
oatAppendLIR(cUnit, (LIR *)lab);
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pTestSuspendFromCode), rLR);
if (!cUnit->genDebugger) {
// use rSUSPEND for suspend count
loadWordDisp(cUnit, rSELF,
Thread::SuspendCountOffset().Int32Value(), rSUSPEND);
}
opReg(cUnit, kOpBlx, rLR);
if ( cUnit->genDebugger) {
// use rSUSPEND for update debugger
loadWordDisp(cUnit, rSELF,
OFFSETOF_MEMBER(Thread, pUpdateDebuggerFromCode), rSUSPEND);
}
genUnconditionalBranch(cUnit, resumeLab);
}
#endif
}
STATIC void handleThrowLaunchpads(CompilationUnit *cUnit)
{
UNIMPLEMENTED(FATAL) << "Needs mips version";
#if 0
MipsLIR** throwLabel =
(MipsLIR **) cUnit->throwLaunchpads.elemList;
int numElems = cUnit->throwLaunchpads.numUsed;
int i;
for (i = 0; i < numElems; i++) {
MipsLIR* lab = throwLabel[i];
cUnit->currentDalvikOffset = lab->operands[1];
oatAppendLIR(cUnit, (LIR *)lab);
int funcOffset = 0;
int v1 = lab->operands[2];
int v2 = lab->operands[3];
switch(lab->operands[0]) {
case kMipsThrowNullPointer:
funcOffset = OFFSETOF_MEMBER(Thread, pThrowNullPointerFromCode);
break;
case kMipsThrowArrayBounds:
if (v2 != r0) {
genRegCopy(cUnit, r0, v1);
genRegCopy(cUnit, r1, v2);
} else {
if (v1 == r1) {
genRegCopy(cUnit, r12, v1);
genRegCopy(cUnit, r1, v2);
genRegCopy(cUnit, r0, r12);
} else {
genRegCopy(cUnit, r1, v2);
genRegCopy(cUnit, r0, v1);
}
}
funcOffset = OFFSETOF_MEMBER(Thread, pThrowArrayBoundsFromCode);
break;
case kMipsThrowDivZero:
funcOffset = OFFSETOF_MEMBER(Thread, pThrowDivZeroFromCode);
break;
case kMipsThrowVerificationError:
loadConstant(cUnit, r0, v1);
loadConstant(cUnit, r1, v2);
funcOffset =
OFFSETOF_MEMBER(Thread, pThrowVerificationErrorFromCode);
break;
case kMipsThrowNegArraySize:
genRegCopy(cUnit, r0, v1);
funcOffset =
OFFSETOF_MEMBER(Thread, pThrowNegArraySizeFromCode);
break;
case kMipsThrowNoSuchMethod:
genRegCopy(cUnit, r0, v1);
funcOffset =
OFFSETOF_MEMBER(Thread, pThrowNoSuchMethodFromCode);
break;
case kMipsThrowStackOverflow:
funcOffset =
OFFSETOF_MEMBER(Thread, pThrowStackOverflowFromCode);
// Restore stack alignment
opRegImm(cUnit, kOpAdd, rSP,
(cUnit->numCoreSpills + cUnit->numFPSpills) * 4);
break;
default:
LOG(FATAL) << "Unexpected throw kind: " << lab->operands[0];
}
loadWordDisp(cUnit, rSELF, funcOffset, rLR);
callRuntimeHelper(cUnit, rLR);
}
#endif
}
/* Common initialization routine for an architecture family */
bool oatArchInit()
{
int i;
for (i = 0; i < kMipsLast; i++) {
if (EncodingMap[i].opcode != i) {
LOG(FATAL) << "Encoding order for " << EncodingMap[i].name <<
" is wrong: expecting " << i << ", seeing " <<
(int)EncodingMap[i].opcode;
}
}
return oatArchVariantInit();
}
/* Needed by the Assembler */
void oatSetupResourceMasks(MipsLIR* lir)
{
setupResourceMasks(lir);
}
} // namespace art