blob: 1807d5c13e766bf24208e4d57e62bce31e86ebc2 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
#define ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
#include "dex/compiler_internals.h"
#include "x86_lir.h"
namespace art {
class X86Mir2Lir : public Mir2Lir {
public:
X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena, bool gen64bit);
// Required for target - codegen helpers.
bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, RegLocation rl_src,
RegLocation rl_dest, int lit);
bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) OVERRIDE;
LIR* CheckSuspendUsingLoad() OVERRIDE;
RegStorage LoadHelper(ThreadOffset<4> offset) OVERRIDE;
RegStorage LoadHelper(ThreadOffset<8> offset) OVERRIDE;
LIR* LoadBaseDispVolatile(RegStorage r_base, int displacement, RegStorage r_dest,
OpSize size) OVERRIDE;
LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
OpSize size) OVERRIDE;
LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, int scale,
OpSize size) OVERRIDE;
LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
RegStorage r_dest, OpSize size) OVERRIDE;
LIR* LoadConstantNoClobber(RegStorage r_dest, int value);
LIR* LoadConstantWide(RegStorage r_dest, int64_t value);
LIR* StoreBaseDispVolatile(RegStorage r_base, int displacement, RegStorage r_src,
OpSize size) OVERRIDE;
LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
OpSize size) OVERRIDE;
LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, int scale,
OpSize size) OVERRIDE;
LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
RegStorage r_src, OpSize size) OVERRIDE;
void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg);
// Required for target - register utilities.
RegStorage TargetReg(SpecialTargetRegister reg);
RegStorage GetArgMappingToPhysicalReg(int arg_num);
RegLocation GetReturnAlt();
RegLocation GetReturnWideAlt();
RegLocation LocCReturn();
RegLocation LocCReturnDouble();
RegLocation LocCReturnFloat();
RegLocation LocCReturnWide();
uint64_t GetRegMaskCommon(RegStorage reg);
void AdjustSpillMask();
void ClobberCallerSave();
void FreeCallTemps();
void LockCallTemps();
void MarkPreservedSingle(int v_reg, RegStorage reg);
void MarkPreservedDouble(int v_reg, RegStorage reg);
void CompilerInitializeRegAlloc();
// Required for target - miscellaneous.
void AssembleLIR();
int AssignInsnOffsets();
void AssignOffsets();
AssemblerStatus AssembleInstructions(CodeOffset start_addr);
void DumpResourceMask(LIR* lir, uint64_t mask, const char* prefix);
void SetupTargetResourceMasks(LIR* lir, uint64_t flags);
const char* GetTargetInstFmt(int opcode);
const char* GetTargetInstName(int opcode);
std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr);
uint64_t GetPCUseDefEncoding();
uint64_t GetTargetInstFlags(int opcode);
int GetInsnSize(LIR* lir);
bool IsUnconditionalBranch(LIR* lir);
// Check support for volatile load/store of a given size.
bool SupportsVolatileLoadStore(OpSize size) OVERRIDE;
// Get the register class for load/store of a field.
RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) OVERRIDE;
// Required for target - Dalvik-level generators.
void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2);
void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, RegLocation rl_index,
RegLocation rl_dest, int scale);
void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark);
void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_shift);
void GenMulLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2);
void GenAddLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2);
void GenAndLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2);
void GenArithOpDouble(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2);
void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2);
void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2);
void GenConversion(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src);
bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object);
bool GenInlinedMinMaxInt(CallInfo* info, bool is_min);
bool GenInlinedSqrt(CallInfo* info);
bool GenInlinedPeek(CallInfo* info, OpSize size);
bool GenInlinedPoke(CallInfo* info, OpSize size);
void GenNotLong(RegLocation rl_dest, RegLocation rl_src);
void GenNegLong(RegLocation rl_dest, RegLocation rl_src);
void GenOrLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2);
void GenSubLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2);
void GenXorLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2);
void GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2, bool is_div);
// TODO: collapse reg_lo, reg_hi
RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi, bool is_div);
RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div);
void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2);
void GenDivZeroCheckWide(RegStorage reg);
void GenArrayBoundsCheck(RegStorage index, RegStorage array_base, int32_t len_offset);
void GenArrayBoundsCheck(int32_t index, RegStorage array_base, int32_t len_offset);
void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method);
void GenExitSequence();
void GenSpecialExitSequence();
void GenFillArrayData(DexOffset table_offset, RegLocation rl_src);
void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double);
void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir);
void GenSelect(BasicBlock* bb, MIR* mir);
bool GenMemBarrier(MemBarrierKind barrier_kind);
void GenMoveException(RegLocation rl_dest);
void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
int first_bit, int second_bit);
void GenNegDouble(RegLocation rl_dest, RegLocation rl_src);
void GenNegFloat(RegLocation rl_dest, RegLocation rl_src);
void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
/*
* @brief Generate a two address long operation with a constant value
* @param rl_dest location of result
* @param rl_src constant source operand
* @param op Opcode to be generated
*/
void GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
/*
* @brief Generate a three address long operation with a constant value
* @param rl_dest location of result
* @param rl_src1 source operand
* @param rl_src2 constant source operand
* @param op Opcode to be generated
*/
void GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
Instruction::Code op);
/**
* @brief Generate a long arithmetic operation.
* @param rl_dest The destination.
* @param rl_src1 First operand.
* @param rl_src2 Second operand.
* @param op The DEX opcode for the operation.
* @param is_commutative The sources can be swapped if needed.
*/
virtual void GenLongArith(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
Instruction::Code op, bool is_commutative);
/**
* @brief Generate a two operand long arithmetic operation.
* @param rl_dest The destination.
* @param rl_src Second operand.
* @param op The DEX opcode for the operation.
*/
void GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
/**
* @brief Generate a long operation.
* @param rl_dest The destination. Must be in a register
* @param rl_src The other operand. May be in a register or in memory.
* @param op The DEX opcode for the operation.
*/
virtual void GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
/**
* @brief Implement instanceof a final class with x86 specific code.
* @param use_declaring_class 'true' if we can use the class itself.
* @param type_idx Type index to use if use_declaring_class is 'false'.
* @param rl_dest Result to be set to 0 or 1.
* @param rl_src Object to be tested.
*/
void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
RegLocation rl_src);
/*
*
* @brief Implement Set up instanceof a class with x86 specific code.
* @param needs_access_check 'true' if we must check the access.
* @param type_known_final 'true' if the type is known to be a final class.
* @param type_known_abstract 'true' if the type is known to be an abstract class.
* @param use_declaring_class 'true' if the type can be loaded off the current Method*.
* @param can_assume_type_is_in_dex_cache 'true' if the type is known to be in the cache.
* @param type_idx Type index to use if use_declaring_class is 'false'.
* @param rl_dest Result to be set to 0 or 1.
* @param rl_src Object to be tested.
*/
void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
bool type_known_abstract, bool use_declaring_class,
bool can_assume_type_is_in_dex_cache,
uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
// Single operation generators.
LIR* OpUnconditionalBranch(LIR* target);
LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target);
LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target);
LIR* OpCondBranch(ConditionCode cc, LIR* target);
LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target);
LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src);
LIR* OpIT(ConditionCode cond, const char* guide);
void OpEndIT(LIR* it);
LIR* OpMem(OpKind op, RegStorage r_base, int disp);
LIR* OpPcRelLoad(RegStorage reg, LIR* target);
LIR* OpReg(OpKind op, RegStorage r_dest_src);
void OpRegCopy(RegStorage r_dest, RegStorage r_src);
LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src);
LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value);
LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset);
LIR* OpRegMem(OpKind op, RegStorage r_dest, RegLocation value);
LIR* OpMemReg(OpKind op, RegLocation rl_dest, int value);
LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2);
LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type);
LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type);
LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src);
LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value);
LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, RegStorage r_src2);
LIR* OpTestSuspend(LIR* target);
LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) OVERRIDE;
LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) OVERRIDE;
LIR* OpVldm(RegStorage r_base, int count);
LIR* OpVstm(RegStorage r_base, int count);
void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset);
void OpRegCopyWide(RegStorage dest, RegStorage src);
void OpTlsCmp(ThreadOffset<4> offset, int val) OVERRIDE;
void OpTlsCmp(ThreadOffset<8> offset, int val) OVERRIDE;
void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<4> thread_offset);
void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<8> thread_offset);
void SpillCoreRegs();
void UnSpillCoreRegs();
static const X86EncodingMap EncodingMap[kX86Last];
bool InexpensiveConstantInt(int32_t value);
bool InexpensiveConstantFloat(int32_t value);
bool InexpensiveConstantLong(int64_t value);
bool InexpensiveConstantDouble(int64_t value);
/*
* @brief Should try to optimize for two address instructions?
* @return true if we try to avoid generating three operand instructions.
*/
virtual bool GenerateTwoOperandInstructions() const { return true; }
/*
* @brief x86 specific codegen for int operations.
* @param opcode Operation to perform.
* @param rl_dest Destination for the result.
* @param rl_lhs Left hand operand.
* @param rl_rhs Right hand operand.
*/
void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_lhs,
RegLocation rl_rhs);
/*
* @brief Dump a RegLocation using printf
* @param loc Register location to dump
*/
static void DumpRegLocation(RegLocation loc);
/*
* @brief Load the Method* of a dex method into the register.
* @param target_method The MethodReference of the method to be invoked.
* @param type How the method will be invoked.
* @param register that will contain the code address.
* @note register will be passed to TargetReg to get physical register.
*/
void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
SpecialTargetRegister symbolic_reg);
/*
* @brief Load the Class* of a Dex Class type into the register.
* @param type How the method will be invoked.
* @param register that will contain the code address.
* @note register will be passed to TargetReg to get physical register.
*/
void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
/*
* @brief Generate a relative call to the method that will be patched at link time.
* @param target_method The MethodReference of the method to be invoked.
* @param type How the method will be invoked.
* @returns Call instruction
*/
virtual LIR * CallWithLinkerFixup(const MethodReference& target_method, InvokeType type);
/*
* @brief Handle x86 specific literals
*/
void InstallLiteralPools();
/*
* @brief Generate the debug_frame CFI information.
* @returns pointer to vector containing CFE information
*/
static std::vector<uint8_t>* ReturnCommonCallFrameInformation();
/*
* @brief Generate the debug_frame FDE information.
* @returns pointer to vector containing CFE information
*/
std::vector<uint8_t>* ReturnCallFrameInformation();
protected:
size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement, bool has_sib);
void EmitPrefix(const X86EncodingMap* entry);
void EmitOpcode(const X86EncodingMap* entry);
void EmitPrefixAndOpcode(const X86EncodingMap* entry);
void EmitDisp(uint8_t base, int disp);
void EmitModrmThread(uint8_t reg_or_opcode);
void EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int disp);
void EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index, int scale, int disp);
void EmitImm(const X86EncodingMap* entry, int imm);
void EmitOpRegOpcode(const X86EncodingMap* entry, uint8_t reg);
void EmitOpReg(const X86EncodingMap* entry, uint8_t reg);
void EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp);
void EmitOpArray(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp);
void EmitMemReg(const X86EncodingMap* entry, uint8_t base, int disp, uint8_t reg);
void EmitMemImm(const X86EncodingMap* entry, uint8_t base, int disp, int32_t imm);
void EmitRegMem(const X86EncodingMap* entry, uint8_t reg, uint8_t base, int disp);
void EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index,
int scale, int disp);
void EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
uint8_t reg);
void EmitArrayImm(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
int32_t imm);
void EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp);
void EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2);
void EmitRegRegImm(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2, int32_t imm);
void EmitRegRegImmRev(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2, int32_t imm);
void EmitRegMemImm(const X86EncodingMap* entry, uint8_t reg1, uint8_t base, int disp,
int32_t imm);
void EmitMemRegImm(const X86EncodingMap* entry, uint8_t base, int disp, uint8_t reg1, int32_t imm);
void EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm);
void EmitThreadImm(const X86EncodingMap* entry, int disp, int imm);
void EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int imm);
void EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm);
void EmitShiftMemImm(const X86EncodingMap* entry, uint8_t base, int disp, int imm);
void EmitShiftMemCl(const X86EncodingMap* entry, uint8_t base, int displacement, uint8_t cl);
void EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl);
void EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition);
void EmitMemCond(const X86EncodingMap* entry, uint8_t base, int displacement, uint8_t condition);
/**
* @brief Used for encoding conditional register to register operation.
* @param entry The entry in the encoding map for the opcode.
* @param reg1 The first physical register.
* @param reg2 The second physical register.
* @param condition The condition code for operation.
*/
void EmitRegRegCond(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2, uint8_t condition);
/**
* @brief Used for encoding conditional register to memory operation.
* @param entry The entry in the encoding map for the opcode.
* @param reg1 The first physical register.
* @param base The memory base register.
* @param displacement The memory displacement.
* @param condition The condition code for operation.
*/
void EmitRegMemCond(const X86EncodingMap* entry, uint8_t reg1, uint8_t base, int displacement, uint8_t condition);
void EmitJmp(const X86EncodingMap* entry, int rel);
void EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc);
void EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp);
void EmitCallImmediate(const X86EncodingMap* entry, int disp);
void EmitCallThread(const X86EncodingMap* entry, int disp);
void EmitPcRel(const X86EncodingMap* entry, uint8_t reg, int base_or_table, uint8_t index,
int scale, int table_or_disp);
void EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset);
void EmitUnimplemented(const X86EncodingMap* entry, LIR* lir);
void GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
int64_t val, ConditionCode ccode);
void GenConstWide(RegLocation rl_dest, int64_t value);
static bool ProvidesFullMemoryBarrier(X86OpCode opcode);
/*
* @brief Ensure that a temporary register is byte addressable.
* @returns a temporary guarenteed to be byte addressable.
*/
virtual RegStorage AllocateByteRegister();
/*
* @brief generate inline code for fast case of Strng.indexOf.
* @param info Call parameters
* @param zero_based 'true' if the index into the string is 0.
* @returns 'true' if the call was inlined, 'false' if a regular call needs to be
* generated.
*/
bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
/*
* @brief Load 128 bit constant into vector register.
* @param bb The basic block in which the MIR is from.
* @param mir The MIR whose opcode is kMirConstVector
* @note vA is the TypeSize for the register.
* @note vB is the destination XMM register. arg[0..3] are 32 bit constant values.
*/
void GenConst128(BasicBlock* bb, MIR* mir);
/*
* @brief MIR to move a vectorized register to another.
* @param bb The basic block in which the MIR is from.
* @param mir The MIR whose opcode is kMirConstVector.
* @note vA: TypeSize
* @note vB: destination
* @note vC: source
*/
void GenMoveVector(BasicBlock *bb, MIR *mir);
/*
* @brief Packed multiply of units in two vector registers: vB = vB .* @note vC using vA to know the type of the vector.
* @param bb The basic block in which the MIR is from.
* @param mir The MIR whose opcode is kMirConstVector.
* @note vA: TypeSize
* @note vB: destination and source
* @note vC: source
*/
void GenMultiplyVector(BasicBlock *bb, MIR *mir);
/*
* @brief Packed addition of units in two vector registers: vB = vB .+ vC using vA to know the type of the vector.
* @param bb The basic block in which the MIR is from.
* @param mir The MIR whose opcode is kMirConstVector.
* @note vA: TypeSize
* @note vB: destination and source
* @note vC: source
*/
void GenAddVector(BasicBlock *bb, MIR *mir);
/*
* @brief Packed subtraction of units in two vector registers: vB = vB .- vC using vA to know the type of the vector.
* @param bb The basic block in which the MIR is from.
* @param mir The MIR whose opcode is kMirConstVector.
* @note vA: TypeSize
* @note vB: destination and source
* @note vC: source
*/
void GenSubtractVector(BasicBlock *bb, MIR *mir);
/*
* @brief Packed shift left of units in two vector registers: vB = vB .<< vC using vA to know the type of the vector.
* @param bb The basic block in which the MIR is from.
* @param mir The MIR whose opcode is kMirConstVector.
* @note vA: TypeSize
* @note vB: destination and source
* @note vC: immediate
*/
void GenShiftLeftVector(BasicBlock *bb, MIR *mir);
/*
* @brief Packed signed shift right of units in two vector registers: vB = vB .>> vC using vA to know the type of the vector.
* @param bb The basic block in which the MIR is from.
* @param mir The MIR whose opcode is kMirConstVector.
* @note vA: TypeSize
* @note vB: destination and source
* @note vC: immediate
*/
void GenSignedShiftRightVector(BasicBlock *bb, MIR *mir);
/*
* @brief Packed unsigned shift right of units in two vector registers: vB = vB .>>> vC using vA to know the type of the vector.
* @param bb The basic block in which the MIR is from..
* @param mir The MIR whose opcode is kMirConstVector.
* @note vA: TypeSize
* @note vB: destination and source
* @note vC: immediate
*/
void GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir);
/*
* @brief Packed bitwise and of units in two vector registers: vB = vB .& vC using vA to know the type of the vector.
* @note vA: TypeSize
* @note vB: destination and source
* @note vC: source
*/
void GenAndVector(BasicBlock *bb, MIR *mir);
/*
* @brief Packed bitwise or of units in two vector registers: vB = vB .| vC using vA to know the type of the vector.
* @param bb The basic block in which the MIR is from.
* @param mir The MIR whose opcode is kMirConstVector.
* @note vA: TypeSize
* @note vB: destination and source
* @note vC: source
*/
void GenOrVector(BasicBlock *bb, MIR *mir);
/*
* @brief Packed bitwise xor of units in two vector registers: vB = vB .^ vC using vA to know the type of the vector.
* @param bb The basic block in which the MIR is from.
* @param mir The MIR whose opcode is kMirConstVector.
* @note vA: TypeSize
* @note vB: destination and source
* @note vC: source
*/
void GenXorVector(BasicBlock *bb, MIR *mir);
/*
* @brief Reduce a 128-bit packed element into a single VR by taking lower bits
* @param bb The basic block in which the MIR is from.
* @param mir The MIR whose opcode is kMirConstVector.
* @details Instruction does a horizontal addition of the packed elements and then adds it to VR.
* @note vA: TypeSize
* @note vB: destination and source VR (not vector register)
* @note vC: source (vector register)
*/
void GenAddReduceVector(BasicBlock *bb, MIR *mir);
/*
* @brief Extract a packed element into a single VR.
* @param bb The basic block in which the MIR is from.
* @param mir The MIR whose opcode is kMirConstVector.
* @note vA: TypeSize
* @note vB: destination VR (not vector register)
* @note vC: source (vector register)
* @note arg[0]: The index to use for extraction from vector register (which packed element).
*/
void GenReduceVector(BasicBlock *bb, MIR *mir);
/*
* @brief Create a vector value, with all TypeSize values equal to vC
* @param bb The basic block in which the MIR is from.
* @param mir The MIR whose opcode is kMirConstVector.
* @note vA: TypeSize.
* @note vB: destination vector register.
* @note vC: source VR (not vector register).
*/
void GenSetVector(BasicBlock *bb, MIR *mir);
/*
* @brief Generate code for a vector opcode.
* @param bb The basic block in which the MIR is from.
* @param mir The MIR whose opcode is a non-standard opcode.
*/
void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
/*
* @brief Return the correct x86 opcode for the Dex operation
* @param op Dex opcode for the operation
* @param loc Register location of the operand
* @param is_high_op 'true' if this is an operation on the high word
* @param value Immediate value for the operation. Used for byte variants
* @returns the correct x86 opcode to perform the operation
*/
X86OpCode GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op, int32_t value);
/*
* @brief Return the correct x86 opcode for the Dex operation
* @param op Dex opcode for the operation
* @param dest location of the destination. May be register or memory.
* @param rhs Location for the rhs of the operation. May be in register or memory.
* @param is_high_op 'true' if this is an operation on the high word
* @returns the correct x86 opcode to perform the operation
* @note at most one location may refer to memory
*/
X86OpCode GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
bool is_high_op);
/*
* @brief Is this operation a no-op for this opcode and value
* @param op Dex opcode for the operation
* @param value Immediate value for the operation.
* @returns 'true' if the operation will have no effect
*/
bool IsNoOp(Instruction::Code op, int32_t value);
/**
* @brief Calculate magic number and shift for a given divisor
* @param divisor divisor number for calculation
* @param magic hold calculated magic number
* @param shift hold calculated shift
*/
void CalculateMagicAndShift(int divisor, int& magic, int& shift);
/*
* @brief Generate an integer div or rem operation.
* @param rl_dest Destination Location.
* @param rl_src1 Numerator Location.
* @param rl_src2 Divisor Location.
* @param is_div 'true' if this is a division, 'false' for a remainder.
* @param check_zero 'true' if an exception should be generated if the divisor is 0.
*/
RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
bool is_div, bool check_zero);
/*
* @brief Generate an integer div or rem operation by a literal.
* @param rl_dest Destination Location.
* @param rl_src Numerator Location.
* @param lit Divisor.
* @param is_div 'true' if this is a division, 'false' for a remainder.
*/
RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src, int lit, bool is_div);
/*
* Generate code to implement long shift operations.
* @param opcode The DEX opcode to specify the shift type.
* @param rl_dest The destination.
* @param rl_src The value to be shifted.
* @param shift_amount How much to shift.
* @returns the RegLocation of the result.
*/
RegLocation GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src, int shift_amount);
/*
* Generate an imul of a register by a constant or a better sequence.
* @param dest Destination Register.
* @param src Source Register.
* @param val Constant multiplier.
*/
void GenImulRegImm(RegStorage dest, RegStorage src, int val);
/*
* Generate an imul of a memory location by a constant or a better sequence.
* @param dest Destination Register.
* @param sreg Symbolic register.
* @param displacement Displacement on stack of Symbolic Register.
* @param val Constant multiplier.
*/
void GenImulMemImm(RegStorage dest, int sreg, int displacement, int val);
/*
* @brief Compare memory to immediate, and branch if condition true.
* @param cond The condition code that when true will branch to the target.
* @param temp_reg A temporary register that can be used if compare memory is not
* supported by the architecture.
* @param base_reg The register holding the base address.
* @param offset The offset from the base.
* @param check_value The immediate to compare to.
*/
LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
int offset, int check_value, LIR* target);
/*
* Can this operation be using core registers without temporaries?
* @param rl_lhs Left hand operand.
* @param rl_rhs Right hand operand.
* @returns 'true' if the operation can proceed without needing temporary regs.
*/
bool IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs);
/**
* @brief Generates inline code for conversion of long to FP by using x87/
* @param rl_dest The destination of the FP.
* @param rl_src The source of the long.
* @param is_double 'true' if dealing with double, 'false' for float.
*/
virtual void GenLongToFP(RegLocation rl_dest, RegLocation rl_src, bool is_double);
/*
* @brief Perform MIR analysis before compiling method.
* @note Invokes Mir2LiR::Materialize after analysis.
*/
void Materialize();
/*
* Mir2Lir's UpdateLoc() looks to see if the Dalvik value is currently live in any temp register
* without regard to data type. In practice, this can result in UpdateLoc returning a
* location record for a Dalvik float value in a core register, and vis-versa. For targets
* which can inexpensively move data between core and float registers, this can often be a win.
* However, for x86 this is generally not a win. These variants of UpdateLoc()
* take a register class argument - and will return an in-register location record only if
* the value is live in a temp register of the correct class. Additionally, if the value is in
* a temp register of the wrong register class, it will be clobbered.
*/
RegLocation UpdateLocTyped(RegLocation loc, int reg_class);
RegLocation UpdateLocWideTyped(RegLocation loc, int reg_class);
/*
* @brief Analyze MIR before generating code, to prepare for the code generation.
*/
void AnalyzeMIR();
/*
* @brief Analyze one basic block.
* @param bb Basic block to analyze.
*/
void AnalyzeBB(BasicBlock * bb);
/*
* @brief Analyze one extended MIR instruction
* @param opcode MIR instruction opcode.
* @param bb Basic block containing instruction.
* @param mir Extended instruction to analyze.
*/
void AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir);
/*
* @brief Analyze one MIR instruction
* @param opcode MIR instruction opcode.
* @param bb Basic block containing instruction.
* @param mir Instruction to analyze.
*/
virtual void AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir);
/*
* @brief Analyze one MIR float/double instruction
* @param opcode MIR instruction opcode.
* @param bb Basic block containing instruction.
* @param mir Instruction to analyze.
*/
void AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir);
/*
* @brief Analyze one use of a double operand.
* @param rl_use Double RegLocation for the operand.
*/
void AnalyzeDoubleUse(RegLocation rl_use);
bool Gen64Bit() const { return gen64bit_; }
// Information derived from analysis of MIR
// The compiler temporary for the code address of the method.
CompilerTemp *base_of_code_;
// Have we decided to compute a ptr to code and store in temporary VR?
bool store_method_addr_;
// Have we used the stored method address?
bool store_method_addr_used_;
// Instructions to remove if we didn't use the stored method address.
LIR* setup_method_address_[2];
// Instructions needing patching with Method* values.
GrowableArray<LIR*> method_address_insns_;
// Instructions needing patching with Class Type* values.
GrowableArray<LIR*> class_type_address_insns_;
// Instructions needing patching with PC relative code addresses.
GrowableArray<LIR*> call_method_insns_;
// Prologue decrement of stack pointer.
LIR* stack_decrement_;
// Epilogue increment of stack pointer.
LIR* stack_increment_;
// 64-bit mode
bool gen64bit_;
// The list of const vector literals.
LIR *const_vectors_;
/*
* @brief Search for a matching vector literal
* @param mir A kMirOpConst128b MIR instruction to match.
* @returns pointer to matching LIR constant, or nullptr if not found.
*/
LIR *ScanVectorLiteral(MIR *mir);
/*
* @brief Add a constant vector literal
* @param mir A kMirOpConst128b MIR instruction to match.
*/
LIR *AddVectorLiteral(MIR *mir);
};
} // namespace art
#endif // ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_