| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* This file contains codegen for the X86 ISA */ |
| |
| #include "codegen_x86.h" |
| #include "dex/quick/mir_to_lir-inl.h" |
| #include "mirror/array.h" |
| #include "x86_lir.h" |
| |
| namespace art { |
| |
| /* |
| * Perform register memory operation. |
| */ |
| LIR* X86Mir2Lir::GenRegMemCheck(ConditionCode c_code, |
| int reg1, int base, int offset, ThrowKind kind) { |
| LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, |
| current_dalvik_offset_, reg1, base, offset); |
| OpRegMem(kOpCmp, reg1, base, offset); |
| LIR* branch = OpCondBranch(c_code, tgt); |
| // Remember branch target - will process later |
| throw_launchpads_.Insert(tgt); |
| return branch; |
| } |
| |
| /* |
| * Perform a compare of memory to immediate value |
| */ |
| LIR* X86Mir2Lir::GenMemImmedCheck(ConditionCode c_code, |
| int base, int offset, int check_value, ThrowKind kind) { |
| LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, |
| current_dalvik_offset_, base, check_value, 0); |
| NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base, offset, check_value); |
| LIR* branch = OpCondBranch(c_code, tgt); |
| // Remember branch target - will process later |
| throw_launchpads_.Insert(tgt); |
| return branch; |
| } |
| |
| /* |
| * Compare two 64-bit values |
| * x = y return 0 |
| * x < y return -1 |
| * x > y return 1 |
| */ |
| void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, |
| RegLocation rl_src2) { |
| FlushAllRegs(); |
| LockCallTemps(); // Prepare for explicit register usage |
| LoadValueDirectWideFixed(rl_src1, r0, r1); |
| LoadValueDirectWideFixed(rl_src2, r2, r3); |
| // Compute (r1:r0) = (r1:r0) - (r3:r2) |
| OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2 |
| OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF |
| NewLIR2(kX86Set8R, r2, kX86CondL); // r2 = (r1:r0) < (r3:r2) ? 1 : 0 |
| NewLIR2(kX86Movzx8RR, r2, r2); |
| OpReg(kOpNeg, r2); // r2 = -r2 |
| OpRegReg(kOpOr, r0, r1); // r0 = high | low - sets ZF |
| NewLIR2(kX86Set8R, r0, kX86CondNz); // r0 = (r1:r0) != (r3:r2) ? 1 : 0 |
| NewLIR2(kX86Movzx8RR, r0, r0); |
| OpRegReg(kOpOr, r0, r2); // r0 = r0 | r2 |
| RegLocation rl_result = LocCReturn(); |
| StoreValue(rl_dest, rl_result); |
| } |
| |
| X86ConditionCode X86ConditionEncoding(ConditionCode cond) { |
| switch (cond) { |
| case kCondEq: return kX86CondEq; |
| case kCondNe: return kX86CondNe; |
| case kCondCs: return kX86CondC; |
| case kCondCc: return kX86CondNc; |
| case kCondUlt: return kX86CondC; |
| case kCondUge: return kX86CondNc; |
| case kCondMi: return kX86CondS; |
| case kCondPl: return kX86CondNs; |
| case kCondVs: return kX86CondO; |
| case kCondVc: return kX86CondNo; |
| case kCondHi: return kX86CondA; |
| case kCondLs: return kX86CondBe; |
| case kCondGe: return kX86CondGe; |
| case kCondLt: return kX86CondL; |
| case kCondGt: return kX86CondG; |
| case kCondLe: return kX86CondLe; |
| case kCondAl: |
| case kCondNv: LOG(FATAL) << "Should not reach here"; |
| } |
| return kX86CondO; |
| } |
| |
| LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, int src1, int src2, |
| LIR* target) { |
| NewLIR2(kX86Cmp32RR, src1, src2); |
| X86ConditionCode cc = X86ConditionEncoding(cond); |
| LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , |
| cc); |
| branch->target = target; |
| return branch; |
| } |
| |
| LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, int reg, |
| int check_value, LIR* target) { |
| if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) { |
| // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode |
| NewLIR2(kX86Test32RR, reg, reg); |
| } else { |
| NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg, check_value); |
| } |
| X86ConditionCode cc = X86ConditionEncoding(cond); |
| LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc); |
| branch->target = target; |
| return branch; |
| } |
| |
| LIR* X86Mir2Lir::OpRegCopyNoInsert(int r_dest, int r_src) { |
| if (X86_FPREG(r_dest) || X86_FPREG(r_src)) |
| return OpFpRegCopy(r_dest, r_src); |
| LIR* res = RawLIR(current_dalvik_offset_, kX86Mov32RR, |
| r_dest, r_src); |
| if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) { |
| res->flags.is_nop = true; |
| } |
| return res; |
| } |
| |
| LIR* X86Mir2Lir::OpRegCopy(int r_dest, int r_src) { |
| LIR *res = OpRegCopyNoInsert(r_dest, r_src); |
| AppendLIR(res); |
| return res; |
| } |
| |
| void X86Mir2Lir::OpRegCopyWide(int dest_lo, int dest_hi, |
| int src_lo, int src_hi) { |
| bool dest_fp = X86_FPREG(dest_lo) && X86_FPREG(dest_hi); |
| bool src_fp = X86_FPREG(src_lo) && X86_FPREG(src_hi); |
| assert(X86_FPREG(src_lo) == X86_FPREG(src_hi)); |
| assert(X86_FPREG(dest_lo) == X86_FPREG(dest_hi)); |
| if (dest_fp) { |
| if (src_fp) { |
| OpRegCopy(S2d(dest_lo, dest_hi), S2d(src_lo, src_hi)); |
| } else { |
| // TODO: Prevent this from happening in the code. The result is often |
| // unused or could have been loaded more easily from memory. |
| NewLIR2(kX86MovdxrRR, dest_lo, src_lo); |
| dest_hi = AllocTempDouble(); |
| NewLIR2(kX86MovdxrRR, dest_hi, src_hi); |
| NewLIR2(kX86PunpckldqRR, dest_lo, dest_hi); |
| FreeTemp(dest_hi); |
| } |
| } else { |
| if (src_fp) { |
| NewLIR2(kX86MovdrxRR, dest_lo, src_lo); |
| NewLIR2(kX86PsrlqRI, src_lo, 32); |
| NewLIR2(kX86MovdrxRR, dest_hi, src_lo); |
| } else { |
| // Handle overlap |
| if (src_hi == dest_lo) { |
| OpRegCopy(dest_hi, src_hi); |
| OpRegCopy(dest_lo, src_lo); |
| } else { |
| OpRegCopy(dest_lo, src_lo); |
| OpRegCopy(dest_hi, src_hi); |
| } |
| } |
| } |
| } |
| |
| void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) { |
| RegLocation rl_result; |
| RegLocation rl_src = mir_graph_->GetSrc(mir, 0); |
| RegLocation rl_dest = mir_graph_->GetDest(mir); |
| rl_src = LoadValue(rl_src, kCoreReg); |
| |
| // The kMirOpSelect has two variants, one for constants and one for moves. |
| const bool is_constant_case = (mir->ssa_rep->num_uses == 1); |
| |
| if (is_constant_case) { |
| int true_val = mir->dalvikInsn.vB; |
| int false_val = mir->dalvikInsn.vC; |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| |
| /* |
| * 1) When the true case is zero and result_reg is not same as src_reg: |
| * xor result_reg, result_reg |
| * cmp $0, src_reg |
| * mov t1, $false_case |
| * cmovnz result_reg, t1 |
| * 2) When the false case is zero and result_reg is not same as src_reg: |
| * xor result_reg, result_reg |
| * cmp $0, src_reg |
| * mov t1, $true_case |
| * cmovz result_reg, t1 |
| * 3) All other cases (we do compare first to set eflags): |
| * cmp $0, src_reg |
| * mov result_reg, $true_case |
| * mov t1, $false_case |
| * cmovnz result_reg, t1 |
| */ |
| const bool result_reg_same_as_src = (rl_src.location == kLocPhysReg && rl_src.low_reg == rl_result.low_reg); |
| const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src); |
| const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src); |
| const bool catch_all_case = !(true_zero_case || false_zero_case); |
| |
| if (true_zero_case || false_zero_case) { |
| OpRegReg(kOpXor, rl_result.low_reg, rl_result.low_reg); |
| } |
| |
| if (true_zero_case || false_zero_case || catch_all_case) { |
| OpRegImm(kOpCmp, rl_src.low_reg, 0); |
| } |
| |
| if (catch_all_case) { |
| OpRegImm(kOpMov, rl_result.low_reg, true_val); |
| } |
| |
| if (true_zero_case || false_zero_case || catch_all_case) { |
| int immediateForTemp = false_zero_case ? true_val : false_val; |
| int temp1_reg = AllocTemp(); |
| OpRegImm(kOpMov, temp1_reg, immediateForTemp); |
| |
| ConditionCode cc = false_zero_case ? kCondEq : kCondNe; |
| OpCondRegReg(kOpCmov, cc, rl_result.low_reg, temp1_reg); |
| |
| FreeTemp(temp1_reg); |
| } |
| } else { |
| RegLocation rl_true = mir_graph_->GetSrc(mir, 1); |
| RegLocation rl_false = mir_graph_->GetSrc(mir, 2); |
| rl_true = LoadValue(rl_true, kCoreReg); |
| rl_false = LoadValue(rl_false, kCoreReg); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| |
| /* |
| * 1) When true case is already in place: |
| * cmp $0, src_reg |
| * cmovnz result_reg, false_reg |
| * 2) When false case is already in place: |
| * cmp $0, src_reg |
| * cmovz result_reg, true_reg |
| * 3) When neither cases are in place: |
| * cmp $0, src_reg |
| * mov result_reg, true_reg |
| * cmovnz result_reg, false_reg |
| */ |
| |
| // kMirOpSelect is generated just for conditional cases when comparison is done with zero. |
| OpRegImm(kOpCmp, rl_src.low_reg, 0); |
| |
| if (rl_result.low_reg == rl_true.low_reg) { |
| OpCondRegReg(kOpCmov, kCondNe, rl_result.low_reg, rl_false.low_reg); |
| } else if (rl_result.low_reg == rl_false.low_reg) { |
| OpCondRegReg(kOpCmov, kCondEq, rl_result.low_reg, rl_true.low_reg); |
| } else { |
| OpRegCopy(rl_result.low_reg, rl_true.low_reg); |
| OpCondRegReg(kOpCmov, kCondNe, rl_result.low_reg, rl_false.low_reg); |
| } |
| } |
| |
| StoreValue(rl_dest, rl_result); |
| } |
| |
| void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) { |
| LIR* taken = &block_label_list_[bb->taken]; |
| RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0); |
| RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2); |
| ConditionCode ccode = mir->meta.ccode; |
| |
| if (rl_src1.is_const) { |
| std::swap(rl_src1, rl_src2); |
| ccode = FlipComparisonOrder(ccode); |
| } |
| if (rl_src2.is_const) { |
| // Do special compare/branch against simple const operand |
| int64_t val = mir_graph_->ConstantValueWide(rl_src2); |
| GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode); |
| return; |
| } |
| |
| FlushAllRegs(); |
| LockCallTemps(); // Prepare for explicit register usage |
| LoadValueDirectWideFixed(rl_src1, r0, r1); |
| LoadValueDirectWideFixed(rl_src2, r2, r3); |
| // Swap operands and condition code to prevent use of zero flag. |
| if (ccode == kCondLe || ccode == kCondGt) { |
| // Compute (r3:r2) = (r3:r2) - (r1:r0) |
| OpRegReg(kOpSub, r2, r0); // r2 = r2 - r0 |
| OpRegReg(kOpSbc, r3, r1); // r3 = r3 - r1 - CF |
| } else { |
| // Compute (r1:r0) = (r1:r0) - (r3:r2) |
| OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2 |
| OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF |
| } |
| switch (ccode) { |
| case kCondEq: |
| case kCondNe: |
| OpRegReg(kOpOr, r0, r1); // r0 = r0 | r1 |
| break; |
| case kCondLe: |
| ccode = kCondGe; |
| break; |
| case kCondGt: |
| ccode = kCondLt; |
| break; |
| case kCondLt: |
| case kCondGe: |
| break; |
| default: |
| LOG(FATAL) << "Unexpected ccode: " << ccode; |
| } |
| OpCondBranch(ccode, taken); |
| } |
| |
| void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1, |
| int64_t val, ConditionCode ccode) { |
| int32_t val_lo = Low32Bits(val); |
| int32_t val_hi = High32Bits(val); |
| LIR* taken = &block_label_list_[bb->taken]; |
| LIR* not_taken = &block_label_list_[bb->fall_through]; |
| rl_src1 = LoadValueWide(rl_src1, kCoreReg); |
| int32_t low_reg = rl_src1.low_reg; |
| int32_t high_reg = rl_src1.high_reg; |
| |
| if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) { |
| int t_reg = AllocTemp(); |
| OpRegRegReg(kOpOr, t_reg, low_reg, high_reg); |
| FreeTemp(t_reg); |
| OpCondBranch(ccode, taken); |
| return; |
| } |
| |
| OpRegImm(kOpCmp, high_reg, val_hi); |
| switch (ccode) { |
| case kCondEq: |
| case kCondNe: |
| OpCondBranch(kCondNe, (ccode == kCondEq) ? not_taken : taken); |
| break; |
| case kCondLt: |
| OpCondBranch(kCondLt, taken); |
| OpCondBranch(kCondGt, not_taken); |
| ccode = kCondUlt; |
| break; |
| case kCondLe: |
| OpCondBranch(kCondLt, taken); |
| OpCondBranch(kCondGt, not_taken); |
| ccode = kCondLs; |
| break; |
| case kCondGt: |
| OpCondBranch(kCondGt, taken); |
| OpCondBranch(kCondLt, not_taken); |
| ccode = kCondHi; |
| break; |
| case kCondGe: |
| OpCondBranch(kCondGt, taken); |
| OpCondBranch(kCondLt, not_taken); |
| ccode = kCondUge; |
| break; |
| default: |
| LOG(FATAL) << "Unexpected ccode: " << ccode; |
| } |
| OpCmpImmBranch(ccode, low_reg, val_lo, taken); |
| } |
| |
| void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) { |
| // It does not make sense to calculate magic and shift for zero divisor. |
| DCHECK_NE(divisor, 0); |
| |
| /* According to H.S.Warren's Hacker's Delight Chapter 10 and |
| * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication. |
| * The magic number M and shift S can be calculated in the following way: |
| * Let nc be the most positive value of numerator(n) such that nc = kd - 1, |
| * where divisor(d) >=2. |
| * Let nc be the most negative value of numerator(n) such that nc = kd + 1, |
| * where divisor(d) <= -2. |
| * Thus nc can be calculated like: |
| * nc = 2^31 + 2^31 % d - 1, where d >= 2 |
| * nc = -2^31 + (2^31 + 1) % d, where d >= 2. |
| * |
| * So the shift p is the smallest p satisfying |
| * 2^p > nc * (d - 2^p % d), where d >= 2 |
| * 2^p > nc * (d + 2^p % d), where d <= -2. |
| * |
| * the magic number M is calcuated by |
| * M = (2^p + d - 2^p % d) / d, where d >= 2 |
| * M = (2^p - d - 2^p % d) / d, where d <= -2. |
| * |
| * Notice that p is always bigger than or equal to 32, so we just return 32-p as |
| * the shift number S. |
| */ |
| |
| int32_t p = 31; |
| const uint32_t two31 = 0x80000000U; |
| |
| // Initialize the computations. |
| uint32_t abs_d = (divisor >= 0) ? divisor : -divisor; |
| uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31); |
| uint32_t abs_nc = tmp - 1 - tmp % abs_d; |
| uint32_t quotient1 = two31 / abs_nc; |
| uint32_t remainder1 = two31 % abs_nc; |
| uint32_t quotient2 = two31 / abs_d; |
| uint32_t remainder2 = two31 % abs_d; |
| |
| /* |
| * To avoid handling both positive and negative divisor, Hacker's Delight |
| * introduces a method to handle these 2 cases together to avoid duplication. |
| */ |
| uint32_t delta; |
| do { |
| p++; |
| quotient1 = 2 * quotient1; |
| remainder1 = 2 * remainder1; |
| if (remainder1 >= abs_nc) { |
| quotient1++; |
| remainder1 = remainder1 - abs_nc; |
| } |
| quotient2 = 2 * quotient2; |
| remainder2 = 2 * remainder2; |
| if (remainder2 >= abs_d) { |
| quotient2++; |
| remainder2 = remainder2 - abs_d; |
| } |
| delta = abs_d - remainder2; |
| } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0)); |
| |
| magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1); |
| shift = p - 32; |
| } |
| |
| RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, int reg_lo, |
| int lit, bool is_div) { |
| LOG(FATAL) << "Unexpected use of GenDivRemLit for x86"; |
| return rl_dest; |
| } |
| |
| RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src, |
| int imm, bool is_div) { |
| // Use a multiply (and fixup) to perform an int div/rem by a constant. |
| |
| // We have to use fixed registers, so flush all the temps. |
| FlushAllRegs(); |
| LockCallTemps(); // Prepare for explicit register usage. |
| |
| // Assume that the result will be in EDX. |
| RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, |
| r2, INVALID_REG, INVALID_SREG, INVALID_SREG}; |
| |
| // handle 0x80000000 / -1 special case. |
| LIR *minint_branch = 0; |
| if (imm == -1) { |
| if (is_div) { |
| LoadValueDirectFixed(rl_src, r0); |
| OpRegImm(kOpCmp, r0, 0x80000000); |
| minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq); |
| |
| // for x != MIN_INT, x / -1 == -x. |
| NewLIR1(kX86Neg32R, r0); |
| |
| LIR* branch_around = NewLIR1(kX86Jmp8, 0); |
| // The target for cmp/jmp above. |
| minint_branch->target = NewLIR0(kPseudoTargetLabel); |
| // EAX already contains the right value (0x80000000), |
| branch_around->target = NewLIR0(kPseudoTargetLabel); |
| } else { |
| // x % -1 == 0. |
| LoadConstantNoClobber(r0, 0); |
| } |
| // For this case, return the result in EAX. |
| rl_result.low_reg = r0; |
| } else { |
| DCHECK(imm <= -2 || imm >= 2); |
| // Use H.S.Warren's Hacker's Delight Chapter 10 and |
| // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication. |
| int magic, shift; |
| CalculateMagicAndShift(imm, magic, shift); |
| |
| /* |
| * For imm >= 2, |
| * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0 |
| * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0. |
| * For imm <= -2, |
| * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0 |
| * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0. |
| * We implement this algorithm in the following way: |
| * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX |
| * 2. if imm > 0 and magic < 0, add numerator to EDX |
| * if imm < 0 and magic > 0, sub numerator from EDX |
| * 3. if S !=0, SAR S bits for EDX |
| * 4. add 1 to EDX if EDX < 0 |
| * 5. Thus, EDX is the quotient |
| */ |
| |
| // Numerator into EAX. |
| int numerator_reg = -1; |
| if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) { |
| // We will need the value later. |
| if (rl_src.location == kLocPhysReg) { |
| // We can use it directly. |
| DCHECK(rl_src.low_reg != r0 && rl_src.low_reg != r2); |
| numerator_reg = rl_src.low_reg; |
| } else { |
| LoadValueDirectFixed(rl_src, r1); |
| numerator_reg = r1; |
| } |
| OpRegCopy(r0, numerator_reg); |
| } else { |
| // Only need this once. Just put it into EAX. |
| LoadValueDirectFixed(rl_src, r0); |
| } |
| |
| // EDX = magic. |
| LoadConstantNoClobber(r2, magic); |
| |
| // EDX:EAX = magic & dividend. |
| NewLIR1(kX86Imul32DaR, r2); |
| |
| if (imm > 0 && magic < 0) { |
| // Add numerator to EDX. |
| DCHECK_NE(numerator_reg, -1); |
| NewLIR2(kX86Add32RR, r2, numerator_reg); |
| } else if (imm < 0 && magic > 0) { |
| DCHECK_NE(numerator_reg, -1); |
| NewLIR2(kX86Sub32RR, r2, numerator_reg); |
| } |
| |
| // Do we need the shift? |
| if (shift != 0) { |
| // Shift EDX by 'shift' bits. |
| NewLIR2(kX86Sar32RI, r2, shift); |
| } |
| |
| // Add 1 to EDX if EDX < 0. |
| |
| // Move EDX to EAX. |
| OpRegCopy(r0, r2); |
| |
| // Move sign bit to bit 0, zeroing the rest. |
| NewLIR2(kX86Shr32RI, r2, 31); |
| |
| // EDX = EDX + EAX. |
| NewLIR2(kX86Add32RR, r2, r0); |
| |
| // Quotient is in EDX. |
| if (!is_div) { |
| // We need to compute the remainder. |
| // Remainder is divisor - (quotient * imm). |
| DCHECK_NE(numerator_reg, -1); |
| OpRegCopy(r0, numerator_reg); |
| |
| // EAX = numerator * imm. |
| OpRegRegImm(kOpMul, r2, r2, imm); |
| |
| // EDX -= EAX. |
| NewLIR2(kX86Sub32RR, r0, r2); |
| |
| // For this case, return the result in EAX. |
| rl_result.low_reg = r0; |
| } |
| } |
| |
| return rl_result; |
| } |
| |
| RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, int reg_lo, |
| int reg_hi, bool is_div) { |
| LOG(FATAL) << "Unexpected use of GenDivRem for x86"; |
| return rl_dest; |
| } |
| |
| RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1, |
| RegLocation rl_src2, bool is_div, bool check_zero) { |
| // We have to use fixed registers, so flush all the temps. |
| FlushAllRegs(); |
| LockCallTemps(); // Prepare for explicit register usage. |
| |
| // Load LHS into EAX. |
| LoadValueDirectFixed(rl_src1, r0); |
| |
| // Load RHS into EBX. |
| LoadValueDirectFixed(rl_src2, r1); |
| |
| // Copy LHS sign bit into EDX. |
| NewLIR0(kx86Cdq32Da); |
| |
| if (check_zero) { |
| // Handle division by zero case. |
| GenImmedCheck(kCondEq, r1, 0, kThrowDivZero); |
| } |
| |
| // Have to catch 0x80000000/-1 case, or we will get an exception! |
| OpRegImm(kOpCmp, r1, -1); |
| LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe); |
| |
| // RHS is -1. |
| OpRegImm(kOpCmp, r0, 0x80000000); |
| LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe); |
| |
| // In 0x80000000/-1 case. |
| if (!is_div) { |
| // For DIV, EAX is already right. For REM, we need EDX 0. |
| LoadConstantNoClobber(r2, 0); |
| } |
| LIR* done = NewLIR1(kX86Jmp8, 0); |
| |
| // Expected case. |
| minus_one_branch->target = NewLIR0(kPseudoTargetLabel); |
| minint_branch->target = minus_one_branch->target; |
| NewLIR1(kX86Idivmod32DaR, r1); |
| done->target = NewLIR0(kPseudoTargetLabel); |
| |
| // Result is in EAX for div and EDX for rem. |
| RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, |
| r0, INVALID_REG, INVALID_SREG, INVALID_SREG}; |
| if (!is_div) { |
| rl_result.low_reg = r2; |
| } |
| return rl_result; |
| } |
| |
| bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) { |
| DCHECK_EQ(cu_->instruction_set, kX86); |
| |
| // Get the two arguments to the invoke and place them in GP registers. |
| RegLocation rl_src1 = info->args[0]; |
| RegLocation rl_src2 = info->args[1]; |
| rl_src1 = LoadValue(rl_src1, kCoreReg); |
| rl_src2 = LoadValue(rl_src2, kCoreReg); |
| |
| RegLocation rl_dest = InlineTarget(info); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| |
| /* |
| * If the result register is the same as the second element, then we need to be careful. |
| * The reason is that the first copy will inadvertently clobber the second element with |
| * the first one thus yielding the wrong result. Thus we do a swap in that case. |
| */ |
| if (rl_result.low_reg == rl_src2.low_reg) { |
| std::swap(rl_src1, rl_src2); |
| } |
| |
| // Pick the first integer as min/max. |
| OpRegCopy(rl_result.low_reg, rl_src1.low_reg); |
| |
| // If the integers are both in the same register, then there is nothing else to do |
| // because they are equal and we have already moved one into the result. |
| if (rl_src1.low_reg != rl_src2.low_reg) { |
| // It is possible we didn't pick correctly so do the actual comparison now. |
| OpRegReg(kOpCmp, rl_src1.low_reg, rl_src2.low_reg); |
| |
| // Conditionally move the other integer into the destination register. |
| ConditionCode condition_code = is_min ? kCondGt : kCondLt; |
| OpCondRegReg(kOpCmov, condition_code, rl_result.low_reg, rl_src2.low_reg); |
| } |
| |
| StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| |
| bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) { |
| RegLocation rl_src_address = info->args[0]; // long address |
| rl_src_address.wide = 0; // ignore high half in info->args[1] |
| RegLocation rl_dest = InlineTarget(info); |
| RegLocation rl_address = LoadValue(rl_src_address, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| if (size == kLong) { |
| // Unaligned access is allowed on x86. |
| LoadBaseDispWide(rl_address.low_reg, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG); |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord); |
| // Unaligned access is allowed on x86. |
| LoadBaseDisp(rl_address.low_reg, 0, rl_result.low_reg, size, INVALID_SREG); |
| StoreValue(rl_dest, rl_result); |
| } |
| return true; |
| } |
| |
| bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) { |
| RegLocation rl_src_address = info->args[0]; // long address |
| rl_src_address.wide = 0; // ignore high half in info->args[1] |
| RegLocation rl_src_value = info->args[2]; // [size] value |
| RegLocation rl_address = LoadValue(rl_src_address, kCoreReg); |
| if (size == kLong) { |
| // Unaligned access is allowed on x86. |
| RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg); |
| StoreBaseDispWide(rl_address.low_reg, 0, rl_value.low_reg, rl_value.high_reg); |
| } else { |
| DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord); |
| // Unaligned access is allowed on x86. |
| RegLocation rl_value = LoadValue(rl_src_value, kCoreReg); |
| StoreBaseDisp(rl_address.low_reg, 0, rl_value.low_reg, size); |
| } |
| return true; |
| } |
| |
| void X86Mir2Lir::OpLea(int rBase, int reg1, int reg2, int scale, int offset) { |
| NewLIR5(kX86Lea32RA, rBase, reg1, reg2, scale, offset); |
| } |
| |
| void X86Mir2Lir::OpTlsCmp(ThreadOffset offset, int val) { |
| NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val); |
| } |
| |
| bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) { |
| DCHECK_EQ(cu_->instruction_set, kX86); |
| // Unused - RegLocation rl_src_unsafe = info->args[0]; |
| RegLocation rl_src_obj = info->args[1]; // Object - known non-null |
| RegLocation rl_src_offset = info->args[2]; // long low |
| rl_src_offset.wide = 0; // ignore high half in info->args[3] |
| RegLocation rl_src_expected = info->args[4]; // int, long or Object |
| // If is_long, high half is in info->args[5] |
| RegLocation rl_src_new_value = info->args[is_long ? 6 : 5]; // int, long or Object |
| // If is_long, high half is in info->args[7] |
| |
| if (is_long) { |
| FlushAllRegs(); |
| LockCallTemps(); |
| LoadValueDirectWideFixed(rl_src_expected, rAX, rDX); |
| LoadValueDirectWideFixed(rl_src_new_value, rBX, rCX); |
| NewLIR1(kX86Push32R, rDI); |
| MarkTemp(rDI); |
| LockTemp(rDI); |
| NewLIR1(kX86Push32R, rSI); |
| MarkTemp(rSI); |
| LockTemp(rSI); |
| const int push_offset = 4 /* push edi */ + 4 /* push esi */; |
| LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_obj.s_reg_low) + push_offset, rDI); |
| LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_offset.s_reg_low) + push_offset, rSI); |
| NewLIR4(kX86LockCmpxchg8bA, rDI, rSI, 0, 0); |
| FreeTemp(rSI); |
| UnmarkTemp(rSI); |
| NewLIR1(kX86Pop32R, rSI); |
| FreeTemp(rDI); |
| UnmarkTemp(rDI); |
| NewLIR1(kX86Pop32R, rDI); |
| FreeCallTemps(); |
| } else { |
| // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX. |
| FlushReg(r0); |
| LockTemp(r0); |
| |
| // Release store semantics, get the barrier out of the way. TODO: revisit |
| GenMemBarrier(kStoreLoad); |
| |
| RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg); |
| RegLocation rl_new_value = LoadValue(rl_src_new_value, kCoreReg); |
| |
| if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) { |
| // Mark card for object assuming new value is stored. |
| FreeTemp(r0); // Temporarily release EAX for MarkGCCard(). |
| MarkGCCard(rl_new_value.low_reg, rl_object.low_reg); |
| LockTemp(r0); |
| } |
| |
| RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg); |
| LoadValueDirect(rl_src_expected, r0); |
| NewLIR5(kX86LockCmpxchgAR, rl_object.low_reg, rl_offset.low_reg, 0, 0, rl_new_value.low_reg); |
| |
| FreeTemp(r0); |
| } |
| |
| // Convert ZF to boolean |
| RegLocation rl_dest = InlineTarget(info); // boolean place for result |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| NewLIR2(kX86Set8R, rl_result.low_reg, kX86CondZ); |
| NewLIR2(kX86Movzx8RR, rl_result.low_reg, rl_result.low_reg); |
| StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| |
| LIR* X86Mir2Lir::OpPcRelLoad(int reg, LIR* target) { |
| LOG(FATAL) << "Unexpected use of OpPcRelLoad for x86"; |
| return NULL; |
| } |
| |
| LIR* X86Mir2Lir::OpVldm(int rBase, int count) { |
| LOG(FATAL) << "Unexpected use of OpVldm for x86"; |
| return NULL; |
| } |
| |
| LIR* X86Mir2Lir::OpVstm(int rBase, int count) { |
| LOG(FATAL) << "Unexpected use of OpVstm for x86"; |
| return NULL; |
| } |
| |
| void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src, |
| RegLocation rl_result, int lit, |
| int first_bit, int second_bit) { |
| int t_reg = AllocTemp(); |
| OpRegRegImm(kOpLsl, t_reg, rl_src.low_reg, second_bit - first_bit); |
| OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, t_reg); |
| FreeTemp(t_reg); |
| if (first_bit != 0) { |
| OpRegRegImm(kOpLsl, rl_result.low_reg, rl_result.low_reg, first_bit); |
| } |
| } |
| |
| void X86Mir2Lir::GenDivZeroCheck(int reg_lo, int reg_hi) { |
| // We are not supposed to clobber either of the provided registers, so allocate |
| // a temporary to use for the check. |
| int t_reg = AllocTemp(); |
| |
| // Doing an OR is a quick way to check if both registers are zero. This will set the flags. |
| OpRegRegReg(kOpOr, t_reg, reg_lo, reg_hi); |
| |
| // In case of zero, throw ArithmeticException. |
| GenCheck(kCondEq, kThrowDivZero); |
| |
| // The temp is no longer needed so free it at this time. |
| FreeTemp(t_reg); |
| } |
| |
| // Test suspend flag, return target of taken suspend branch |
| LIR* X86Mir2Lir::OpTestSuspend(LIR* target) { |
| OpTlsCmp(Thread::ThreadFlagsOffset(), 0); |
| return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target); |
| } |
| |
| // Decrement register and branch on condition |
| LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, int reg, LIR* target) { |
| OpRegImm(kOpSub, reg, 1); |
| return OpCondBranch(c_code, target); |
| } |
| |
| bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, |
| RegLocation rl_src, RegLocation rl_dest, int lit) { |
| LOG(FATAL) << "Unexpected use of smallLiteralDive in x86"; |
| return false; |
| } |
| |
| LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) { |
| LOG(FATAL) << "Unexpected use of OpIT in x86"; |
| return NULL; |
| } |
| |
| void X86Mir2Lir::GenImulRegImm(int dest, int src, int val) { |
| switch (val) { |
| case 0: |
| NewLIR2(kX86Xor32RR, dest, dest); |
| break; |
| case 1: |
| OpRegCopy(dest, src); |
| break; |
| default: |
| OpRegRegImm(kOpMul, dest, src, val); |
| break; |
| } |
| } |
| |
| void X86Mir2Lir::GenImulMemImm(int dest, int sreg, int displacement, int val) { |
| LIR *m; |
| switch (val) { |
| case 0: |
| NewLIR2(kX86Xor32RR, dest, dest); |
| break; |
| case 1: |
| LoadBaseDisp(rX86_SP, displacement, dest, kWord, sreg); |
| break; |
| default: |
| m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest, rX86_SP, |
| displacement, val); |
| AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */); |
| break; |
| } |
| } |
| |
| void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1, |
| RegLocation rl_src2) { |
| if (rl_src1.is_const) { |
| std::swap(rl_src1, rl_src2); |
| } |
| // Are we multiplying by a constant? |
| if (rl_src2.is_const) { |
| // Do special compare/branch against simple const operand |
| int64_t val = mir_graph_->ConstantValueWide(rl_src2); |
| if (val == 0) { |
| RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true); |
| OpRegReg(kOpXor, rl_result.low_reg, rl_result.low_reg); |
| OpRegReg(kOpXor, rl_result.high_reg, rl_result.high_reg); |
| StoreValueWide(rl_dest, rl_result); |
| return; |
| } else if (val == 1) { |
| rl_src1 = EvalLocWide(rl_src1, kCoreReg, true); |
| StoreValueWide(rl_dest, rl_src1); |
| return; |
| } else if (val == 2) { |
| GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1); |
| return; |
| } else if (IsPowerOfTwo(val)) { |
| int shift_amount = LowestSetBit(val); |
| if (!BadOverlap(rl_src1, rl_dest)) { |
| rl_src1 = LoadValueWide(rl_src1, kCoreReg); |
| RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest, |
| rl_src1, shift_amount); |
| StoreValueWide(rl_dest, rl_result); |
| return; |
| } |
| } |
| |
| // Okay, just bite the bullet and do it. |
| int32_t val_lo = Low32Bits(val); |
| int32_t val_hi = High32Bits(val); |
| FlushAllRegs(); |
| LockCallTemps(); // Prepare for explicit register usage. |
| rl_src1 = UpdateLocWide(rl_src1); |
| bool src1_in_reg = rl_src1.location == kLocPhysReg; |
| int displacement = SRegOffset(rl_src1.s_reg_low); |
| |
| // ECX <- 1H * 2L |
| // EAX <- 1L * 2H |
| if (src1_in_reg) { |
| GenImulRegImm(r1, rl_src1.high_reg, val_lo); |
| GenImulRegImm(r0, rl_src1.low_reg, val_hi); |
| } else { |
| GenImulMemImm(r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo); |
| GenImulMemImm(r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi); |
| } |
| |
| // ECX <- ECX + EAX (2H * 1L) + (1H * 2L) |
| NewLIR2(kX86Add32RR, r1, r0); |
| |
| // EAX <- 2L |
| LoadConstantNoClobber(r0, val_lo); |
| |
| // EDX:EAX <- 2L * 1L (double precision) |
| if (src1_in_reg) { |
| NewLIR1(kX86Mul32DaR, rl_src1.low_reg); |
| } else { |
| LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET); |
| AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2, |
| true /* is_load */, true /* is_64bit */); |
| } |
| |
| // EDX <- EDX + ECX (add high words) |
| NewLIR2(kX86Add32RR, r2, r1); |
| |
| // Result is EDX:EAX |
| RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, r0, r2, |
| INVALID_SREG, INVALID_SREG}; |
| StoreValueWide(rl_dest, rl_result); |
| return; |
| } |
| |
| // Nope. Do it the hard way |
| FlushAllRegs(); |
| LockCallTemps(); // Prepare for explicit register usage. |
| rl_src1 = UpdateLocWide(rl_src1); |
| rl_src2 = UpdateLocWide(rl_src2); |
| |
| // At this point, the VRs are in their home locations. |
| bool src1_in_reg = rl_src1.location == kLocPhysReg; |
| bool src2_in_reg = rl_src2.location == kLocPhysReg; |
| |
| // ECX <- 1H |
| if (src1_in_reg) { |
| NewLIR2(kX86Mov32RR, r1, rl_src1.high_reg); |
| } else { |
| LoadBaseDisp(rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, r1, |
| kWord, GetSRegHi(rl_src1.s_reg_low)); |
| } |
| |
| // EAX <- 2H |
| if (src2_in_reg) { |
| NewLIR2(kX86Mov32RR, r0, rl_src2.high_reg); |
| } else { |
| LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, r0, |
| kWord, GetSRegHi(rl_src2.s_reg_low)); |
| } |
| |
| // EAX <- EAX * 1L (2H * 1L) |
| if (src1_in_reg) { |
| NewLIR2(kX86Imul32RR, r0, rl_src1.low_reg); |
| } else { |
| int displacement = SRegOffset(rl_src1.s_reg_low); |
| LIR *m = NewLIR3(kX86Imul32RM, r0, rX86_SP, displacement + LOWORD_OFFSET); |
| AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2, |
| true /* is_load */, true /* is_64bit */); |
| } |
| |
| // ECX <- ECX * 2L (1H * 2L) |
| if (src2_in_reg) { |
| NewLIR2(kX86Imul32RR, r1, rl_src2.low_reg); |
| } else { |
| int displacement = SRegOffset(rl_src2.s_reg_low); |
| LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET); |
| AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2, |
| true /* is_load */, true /* is_64bit */); |
| } |
| |
| // ECX <- ECX + EAX (2H * 1L) + (1H * 2L) |
| NewLIR2(kX86Add32RR, r1, r0); |
| |
| // EAX <- 2L |
| if (src2_in_reg) { |
| NewLIR2(kX86Mov32RR, r0, rl_src2.low_reg); |
| } else { |
| LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, r0, |
| kWord, rl_src2.s_reg_low); |
| } |
| |
| // EDX:EAX <- 2L * 1L (double precision) |
| if (src1_in_reg) { |
| NewLIR1(kX86Mul32DaR, rl_src1.low_reg); |
| } else { |
| int displacement = SRegOffset(rl_src1.s_reg_low); |
| LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET); |
| AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2, |
| true /* is_load */, true /* is_64bit */); |
| } |
| |
| // EDX <- EDX + ECX (add high words) |
| NewLIR2(kX86Add32RR, r2, r1); |
| |
| // Result is EDX:EAX |
| RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, r0, r2, |
| INVALID_SREG, INVALID_SREG}; |
| StoreValueWide(rl_dest, rl_result); |
| } |
| |
| void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src, |
| Instruction::Code op) { |
| DCHECK_EQ(rl_dest.location, kLocPhysReg); |
| X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false); |
| if (rl_src.location == kLocPhysReg) { |
| // Both operands are in registers. |
| if (rl_dest.low_reg == rl_src.high_reg) { |
| // The registers are the same, so we would clobber it before the use. |
| int temp_reg = AllocTemp(); |
| OpRegCopy(temp_reg, rl_dest.low_reg); |
| rl_src.high_reg = temp_reg; |
| } |
| NewLIR2(x86op, rl_dest.low_reg, rl_src.low_reg); |
| |
| x86op = GetOpcode(op, rl_dest, rl_src, true); |
| NewLIR2(x86op, rl_dest.high_reg, rl_src.high_reg); |
| FreeTemp(rl_src.low_reg); |
| FreeTemp(rl_src.high_reg); |
| return; |
| } |
| |
| // RHS is in memory. |
| DCHECK((rl_src.location == kLocDalvikFrame) || |
| (rl_src.location == kLocCompilerTemp)); |
| int rBase = TargetReg(kSp); |
| int displacement = SRegOffset(rl_src.s_reg_low); |
| |
| LIR *lir = NewLIR3(x86op, rl_dest.low_reg, rBase, displacement + LOWORD_OFFSET); |
| AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2, |
| true /* is_load */, true /* is64bit */); |
| x86op = GetOpcode(op, rl_dest, rl_src, true); |
| lir = NewLIR3(x86op, rl_dest.high_reg, rBase, displacement + HIWORD_OFFSET); |
| AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2, |
| true /* is_load */, true /* is64bit */); |
| } |
| |
| void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) { |
| rl_dest = UpdateLocWide(rl_dest); |
| if (rl_dest.location == kLocPhysReg) { |
| // Ensure we are in a register pair |
| RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true); |
| |
| rl_src = UpdateLocWide(rl_src); |
| GenLongRegOrMemOp(rl_result, rl_src, op); |
| StoreFinalValueWide(rl_dest, rl_result); |
| return; |
| } |
| |
| // It wasn't in registers, so it better be in memory. |
| DCHECK((rl_dest.location == kLocDalvikFrame) || |
| (rl_dest.location == kLocCompilerTemp)); |
| rl_src = LoadValueWide(rl_src, kCoreReg); |
| |
| // Operate directly into memory. |
| X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false); |
| int rBase = TargetReg(kSp); |
| int displacement = SRegOffset(rl_dest.s_reg_low); |
| |
| LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, rl_src.low_reg); |
| AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2, |
| false /* is_load */, true /* is64bit */); |
| x86op = GetOpcode(op, rl_dest, rl_src, true); |
| lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, rl_src.high_reg); |
| AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2, |
| false /* is_load */, true /* is64bit */); |
| FreeTemp(rl_src.low_reg); |
| FreeTemp(rl_src.high_reg); |
| } |
| |
| void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1, |
| RegLocation rl_src2, Instruction::Code op, |
| bool is_commutative) { |
| // Is this really a 2 operand operation? |
| switch (op) { |
| case Instruction::ADD_LONG_2ADDR: |
| case Instruction::SUB_LONG_2ADDR: |
| case Instruction::AND_LONG_2ADDR: |
| case Instruction::OR_LONG_2ADDR: |
| case Instruction::XOR_LONG_2ADDR: |
| GenLongArith(rl_dest, rl_src2, op); |
| return; |
| default: |
| break; |
| } |
| |
| if (rl_dest.location == kLocPhysReg) { |
| RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg); |
| |
| // We are about to clobber the LHS, so it needs to be a temp. |
| rl_result = ForceTempWide(rl_result); |
| |
| // Perform the operation using the RHS. |
| rl_src2 = UpdateLocWide(rl_src2); |
| GenLongRegOrMemOp(rl_result, rl_src2, op); |
| |
| // And now record that the result is in the temp. |
| StoreFinalValueWide(rl_dest, rl_result); |
| return; |
| } |
| |
| // It wasn't in registers, so it better be in memory. |
| DCHECK((rl_dest.location == kLocDalvikFrame) || |
| (rl_dest.location == kLocCompilerTemp)); |
| rl_src1 = UpdateLocWide(rl_src1); |
| rl_src2 = UpdateLocWide(rl_src2); |
| |
| // Get one of the source operands into temporary register. |
| rl_src1 = LoadValueWide(rl_src1, kCoreReg); |
| if (IsTemp(rl_src1.low_reg) && IsTemp(rl_src1.high_reg)) { |
| GenLongRegOrMemOp(rl_src1, rl_src2, op); |
| } else if (is_commutative) { |
| rl_src2 = LoadValueWide(rl_src2, kCoreReg); |
| // We need at least one of them to be a temporary. |
| if (!(IsTemp(rl_src2.low_reg) && IsTemp(rl_src2.high_reg))) { |
| rl_src1 = ForceTempWide(rl_src1); |
| } |
| GenLongRegOrMemOp(rl_src1, rl_src2, op); |
| } else { |
| // Need LHS to be the temp. |
| rl_src1 = ForceTempWide(rl_src1); |
| GenLongRegOrMemOp(rl_src1, rl_src2, op); |
| } |
| |
| StoreFinalValueWide(rl_dest, rl_src1); |
| } |
| |
| void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_src2) { |
| GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true); |
| } |
| |
| void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_src2) { |
| GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false); |
| } |
| |
| void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_src2) { |
| GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true); |
| } |
| |
| void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_src2) { |
| GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true); |
| } |
| |
| void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_src2) { |
| GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true); |
| } |
| |
| void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) { |
| rl_src = LoadValueWide(rl_src, kCoreReg); |
| RegLocation rl_result = ForceTempWide(rl_src); |
| if (rl_dest.low_reg == rl_src.high_reg) { |
| // The registers are the same, so we would clobber it before the use. |
| int temp_reg = AllocTemp(); |
| OpRegCopy(temp_reg, rl_result.low_reg); |
| rl_result.high_reg = temp_reg; |
| } |
| OpRegReg(kOpNeg, rl_result.low_reg, rl_result.low_reg); // rLow = -rLow |
| OpRegImm(kOpAdc, rl_result.high_reg, 0); // rHigh = rHigh + CF |
| OpRegReg(kOpNeg, rl_result.high_reg, rl_result.high_reg); // rHigh = -rHigh |
| StoreValueWide(rl_dest, rl_result); |
| } |
| |
| void X86Mir2Lir::OpRegThreadMem(OpKind op, int r_dest, ThreadOffset thread_offset) { |
| X86OpCode opcode = kX86Bkpt; |
| switch (op) { |
| case kOpCmp: opcode = kX86Cmp32RT; break; |
| case kOpMov: opcode = kX86Mov32RT; break; |
| default: |
| LOG(FATAL) << "Bad opcode: " << op; |
| break; |
| } |
| NewLIR2(opcode, r_dest, thread_offset.Int32Value()); |
| } |
| |
| /* |
| * Generate array load |
| */ |
| void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, |
| RegLocation rl_index, RegLocation rl_dest, int scale) { |
| RegisterClass reg_class = oat_reg_class_by_size(size); |
| int len_offset = mirror::Array::LengthOffset().Int32Value(); |
| RegLocation rl_result; |
| rl_array = LoadValue(rl_array, kCoreReg); |
| |
| int data_offset; |
| if (size == kLong || size == kDouble) { |
| data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value(); |
| } else { |
| data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value(); |
| } |
| |
| bool constant_index = rl_index.is_const; |
| int32_t constant_index_value = 0; |
| if (!constant_index) { |
| rl_index = LoadValue(rl_index, kCoreReg); |
| } else { |
| constant_index_value = mir_graph_->ConstantValue(rl_index); |
| // If index is constant, just fold it into the data offset |
| data_offset += constant_index_value << scale; |
| // treat as non array below |
| rl_index.low_reg = INVALID_REG; |
| } |
| |
| /* null object? */ |
| GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags); |
| |
| if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) { |
| if (constant_index) { |
| GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset, |
| constant_index_value, kThrowConstantArrayBounds); |
| } else { |
| GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg, |
| len_offset, kThrowArrayBounds); |
| } |
| } |
| rl_result = EvalLoc(rl_dest, reg_class, true); |
| if ((size == kLong) || (size == kDouble)) { |
| LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_result.low_reg, |
| rl_result.high_reg, size, INVALID_SREG); |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, |
| data_offset, rl_result.low_reg, INVALID_REG, size, |
| INVALID_SREG); |
| StoreValue(rl_dest, rl_result); |
| } |
| } |
| |
| /* |
| * Generate array store |
| * |
| */ |
| void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array, |
| RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) { |
| RegisterClass reg_class = oat_reg_class_by_size(size); |
| int len_offset = mirror::Array::LengthOffset().Int32Value(); |
| int data_offset; |
| |
| if (size == kLong || size == kDouble) { |
| data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value(); |
| } else { |
| data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value(); |
| } |
| |
| rl_array = LoadValue(rl_array, kCoreReg); |
| bool constant_index = rl_index.is_const; |
| int32_t constant_index_value = 0; |
| if (!constant_index) { |
| rl_index = LoadValue(rl_index, kCoreReg); |
| } else { |
| // If index is constant, just fold it into the data offset |
| constant_index_value = mir_graph_->ConstantValue(rl_index); |
| data_offset += constant_index_value << scale; |
| // treat as non array below |
| rl_index.low_reg = INVALID_REG; |
| } |
| |
| /* null object? */ |
| GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags); |
| |
| if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) { |
| if (constant_index) { |
| GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset, |
| constant_index_value, kThrowConstantArrayBounds); |
| } else { |
| GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg, |
| len_offset, kThrowArrayBounds); |
| } |
| } |
| if ((size == kLong) || (size == kDouble)) { |
| rl_src = LoadValueWide(rl_src, reg_class); |
| } else { |
| rl_src = LoadValue(rl_src, reg_class); |
| } |
| // If the src reg can't be byte accessed, move it to a temp first. |
| if ((size == kSignedByte || size == kUnsignedByte) && rl_src.low_reg >= 4) { |
| int temp = AllocTemp(); |
| OpRegCopy(temp, rl_src.low_reg); |
| StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, temp, |
| INVALID_REG, size, INVALID_SREG); |
| } else { |
| StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_src.low_reg, |
| rl_src.high_reg, size, INVALID_SREG); |
| } |
| if (card_mark) { |
| // Free rl_index if its a temp. Ensures there are 2 free regs for card mark. |
| if (!constant_index) { |
| FreeTemp(rl_index.low_reg); |
| } |
| MarkGCCard(rl_src.low_reg, rl_array.low_reg); |
| } |
| } |
| |
| RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src, int shift_amount) { |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| switch (opcode) { |
| case Instruction::SHL_LONG: |
| case Instruction::SHL_LONG_2ADDR: |
| DCHECK_NE(shift_amount, 1); // Prevent a double store from happening. |
| if (shift_amount == 32) { |
| OpRegCopy(rl_result.high_reg, rl_src.low_reg); |
| LoadConstant(rl_result.low_reg, 0); |
| } else if (shift_amount > 31) { |
| OpRegCopy(rl_result.high_reg, rl_src.low_reg); |
| FreeTemp(rl_src.high_reg); |
| NewLIR2(kX86Sal32RI, rl_result.high_reg, shift_amount - 32); |
| LoadConstant(rl_result.low_reg, 0); |
| } else { |
| OpRegCopy(rl_result.low_reg, rl_src.low_reg); |
| OpRegCopy(rl_result.high_reg, rl_src.high_reg); |
| NewLIR3(kX86Shld32RRI, rl_result.high_reg, rl_result.low_reg, shift_amount); |
| NewLIR2(kX86Sal32RI, rl_result.low_reg, shift_amount); |
| } |
| break; |
| case Instruction::SHR_LONG: |
| case Instruction::SHR_LONG_2ADDR: |
| if (shift_amount == 32) { |
| OpRegCopy(rl_result.low_reg, rl_src.high_reg); |
| OpRegCopy(rl_result.high_reg, rl_src.high_reg); |
| NewLIR2(kX86Sar32RI, rl_result.high_reg, 31); |
| } else if (shift_amount > 31) { |
| OpRegCopy(rl_result.low_reg, rl_src.high_reg); |
| OpRegCopy(rl_result.high_reg, rl_src.high_reg); |
| NewLIR2(kX86Sar32RI, rl_result.low_reg, shift_amount - 32); |
| NewLIR2(kX86Sar32RI, rl_result.high_reg, 31); |
| } else { |
| OpRegCopy(rl_result.low_reg, rl_src.low_reg); |
| OpRegCopy(rl_result.high_reg, rl_src.high_reg); |
| NewLIR3(kX86Shrd32RRI, rl_result.low_reg, rl_result.high_reg, shift_amount); |
| NewLIR2(kX86Sar32RI, rl_result.high_reg, shift_amount); |
| } |
| break; |
| case Instruction::USHR_LONG: |
| case Instruction::USHR_LONG_2ADDR: |
| if (shift_amount == 32) { |
| OpRegCopy(rl_result.low_reg, rl_src.high_reg); |
| LoadConstant(rl_result.high_reg, 0); |
| } else if (shift_amount > 31) { |
| OpRegCopy(rl_result.low_reg, rl_src.high_reg); |
| NewLIR2(kX86Shr32RI, rl_result.low_reg, shift_amount - 32); |
| LoadConstant(rl_result.high_reg, 0); |
| } else { |
| OpRegCopy(rl_result.low_reg, rl_src.low_reg); |
| OpRegCopy(rl_result.high_reg, rl_src.high_reg); |
| NewLIR3(kX86Shrd32RRI, rl_result.low_reg, rl_result.high_reg, shift_amount); |
| NewLIR2(kX86Shr32RI, rl_result.high_reg, shift_amount); |
| } |
| break; |
| default: |
| LOG(FATAL) << "Unexpected case"; |
| } |
| return rl_result; |
| } |
| |
| void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src, RegLocation rl_shift) { |
| // Per spec, we only care about low 6 bits of shift amount. |
| int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f; |
| if (shift_amount == 0) { |
| rl_src = LoadValueWide(rl_src, kCoreReg); |
| StoreValueWide(rl_dest, rl_src); |
| return; |
| } else if (shift_amount == 1 && |
| (opcode == Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) { |
| // Need to handle this here to avoid calling StoreValueWide twice. |
| GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src); |
| return; |
| } |
| if (BadOverlap(rl_src, rl_dest)) { |
| GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift); |
| return; |
| } |
| rl_src = LoadValueWide(rl_src, kCoreReg); |
| RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount); |
| StoreValueWide(rl_dest, rl_result); |
| } |
| |
| void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode, |
| RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { |
| switch (opcode) { |
| case Instruction::ADD_LONG: |
| case Instruction::AND_LONG: |
| case Instruction::OR_LONG: |
| case Instruction::XOR_LONG: |
| if (rl_src2.is_const) { |
| GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode); |
| } else { |
| DCHECK(rl_src1.is_const); |
| GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode); |
| } |
| break; |
| case Instruction::SUB_LONG: |
| case Instruction::SUB_LONG_2ADDR: |
| if (rl_src2.is_const) { |
| GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode); |
| } else { |
| GenSubLong(opcode, rl_dest, rl_src1, rl_src2); |
| } |
| break; |
| case Instruction::ADD_LONG_2ADDR: |
| case Instruction::OR_LONG_2ADDR: |
| case Instruction::XOR_LONG_2ADDR: |
| case Instruction::AND_LONG_2ADDR: |
| if (rl_src2.is_const) { |
| GenLongImm(rl_dest, rl_src2, opcode); |
| } else { |
| DCHECK(rl_src1.is_const); |
| GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode); |
| } |
| break; |
| default: |
| // Default - bail to non-const handler. |
| GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2); |
| break; |
| } |
| } |
| |
| bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) { |
| switch (op) { |
| case Instruction::AND_LONG_2ADDR: |
| case Instruction::AND_LONG: |
| return value == -1; |
| case Instruction::OR_LONG: |
| case Instruction::OR_LONG_2ADDR: |
| case Instruction::XOR_LONG: |
| case Instruction::XOR_LONG_2ADDR: |
| return value == 0; |
| default: |
| return false; |
| } |
| } |
| |
| X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs, |
| bool is_high_op) { |
| bool rhs_in_mem = rhs.location != kLocPhysReg; |
| bool dest_in_mem = dest.location != kLocPhysReg; |
| DCHECK(!rhs_in_mem || !dest_in_mem); |
| switch (op) { |
| case Instruction::ADD_LONG: |
| case Instruction::ADD_LONG_2ADDR: |
| if (dest_in_mem) { |
| return is_high_op ? kX86Adc32MR : kX86Add32MR; |
| } else if (rhs_in_mem) { |
| return is_high_op ? kX86Adc32RM : kX86Add32RM; |
| } |
| return is_high_op ? kX86Adc32RR : kX86Add32RR; |
| case Instruction::SUB_LONG: |
| case Instruction::SUB_LONG_2ADDR: |
| if (dest_in_mem) { |
| return is_high_op ? kX86Sbb32MR : kX86Sub32MR; |
| } else if (rhs_in_mem) { |
| return is_high_op ? kX86Sbb32RM : kX86Sub32RM; |
| } |
| return is_high_op ? kX86Sbb32RR : kX86Sub32RR; |
| case Instruction::AND_LONG_2ADDR: |
| case Instruction::AND_LONG: |
| if (dest_in_mem) { |
| return kX86And32MR; |
| } |
| return rhs_in_mem ? kX86And32RM : kX86And32RR; |
| case Instruction::OR_LONG: |
| case Instruction::OR_LONG_2ADDR: |
| if (dest_in_mem) { |
| return kX86Or32MR; |
| } |
| return rhs_in_mem ? kX86Or32RM : kX86Or32RR; |
| case Instruction::XOR_LONG: |
| case Instruction::XOR_LONG_2ADDR: |
| if (dest_in_mem) { |
| return kX86Xor32MR; |
| } |
| return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR; |
| default: |
| LOG(FATAL) << "Unexpected opcode: " << op; |
| return kX86Add32RR; |
| } |
| } |
| |
| X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op, |
| int32_t value) { |
| bool in_mem = loc.location != kLocPhysReg; |
| bool byte_imm = IS_SIMM8(value); |
| DCHECK(in_mem || !IsFpReg(loc.low_reg)); |
| switch (op) { |
| case Instruction::ADD_LONG: |
| case Instruction::ADD_LONG_2ADDR: |
| if (byte_imm) { |
| if (in_mem) { |
| return is_high_op ? kX86Adc32MI8 : kX86Add32MI8; |
| } |
| return is_high_op ? kX86Adc32RI8 : kX86Add32RI8; |
| } |
| if (in_mem) { |
| return is_high_op ? kX86Adc32MI : kX86Add32MI; |
| } |
| return is_high_op ? kX86Adc32RI : kX86Add32RI; |
| case Instruction::SUB_LONG: |
| case Instruction::SUB_LONG_2ADDR: |
| if (byte_imm) { |
| if (in_mem) { |
| return is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8; |
| } |
| return is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8; |
| } |
| if (in_mem) { |
| return is_high_op ? kX86Sbb32MI : kX86Sub32MI; |
| } |
| return is_high_op ? kX86Sbb32RI : kX86Sub32RI; |
| case Instruction::AND_LONG_2ADDR: |
| case Instruction::AND_LONG: |
| if (byte_imm) { |
| return in_mem ? kX86And32MI8 : kX86And32RI8; |
| } |
| return in_mem ? kX86And32MI : kX86And32RI; |
| case Instruction::OR_LONG: |
| case Instruction::OR_LONG_2ADDR: |
| if (byte_imm) { |
| return in_mem ? kX86Or32MI8 : kX86Or32RI8; |
| } |
| return in_mem ? kX86Or32MI : kX86Or32RI; |
| case Instruction::XOR_LONG: |
| case Instruction::XOR_LONG_2ADDR: |
| if (byte_imm) { |
| return in_mem ? kX86Xor32MI8 : kX86Xor32RI8; |
| } |
| return in_mem ? kX86Xor32MI : kX86Xor32RI; |
| default: |
| LOG(FATAL) << "Unexpected opcode: " << op; |
| return kX86Add32MI; |
| } |
| } |
| |
| void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) { |
| DCHECK(rl_src.is_const); |
| int64_t val = mir_graph_->ConstantValueWide(rl_src); |
| int32_t val_lo = Low32Bits(val); |
| int32_t val_hi = High32Bits(val); |
| rl_dest = UpdateLocWide(rl_dest); |
| |
| // Can we just do this into memory? |
| if ((rl_dest.location == kLocDalvikFrame) || |
| (rl_dest.location == kLocCompilerTemp)) { |
| int rBase = TargetReg(kSp); |
| int displacement = SRegOffset(rl_dest.s_reg_low); |
| |
| if (!IsNoOp(op, val_lo)) { |
| X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo); |
| LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, val_lo); |
| AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2, |
| false /* is_load */, true /* is64bit */); |
| } |
| if (!IsNoOp(op, val_hi)) { |
| X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi); |
| LIR *lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, val_hi); |
| AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2, |
| false /* is_load */, true /* is64bit */); |
| } |
| return; |
| } |
| |
| RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true); |
| DCHECK_EQ(rl_result.location, kLocPhysReg); |
| DCHECK(!IsFpReg(rl_result.low_reg)); |
| |
| if (!IsNoOp(op, val_lo)) { |
| X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo); |
| NewLIR2(x86op, rl_result.low_reg, val_lo); |
| } |
| if (!IsNoOp(op, val_hi)) { |
| X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi); |
| NewLIR2(x86op, rl_result.high_reg, val_hi); |
| } |
| StoreValueWide(rl_dest, rl_result); |
| } |
| |
| void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1, |
| RegLocation rl_src2, Instruction::Code op) { |
| DCHECK(rl_src2.is_const); |
| int64_t val = mir_graph_->ConstantValueWide(rl_src2); |
| int32_t val_lo = Low32Bits(val); |
| int32_t val_hi = High32Bits(val); |
| rl_dest = UpdateLocWide(rl_dest); |
| rl_src1 = UpdateLocWide(rl_src1); |
| |
| // Can we do this directly into the destination registers? |
| if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg && |
| rl_dest.low_reg == rl_src1.low_reg && rl_dest.high_reg == rl_src1.high_reg && |
| !IsFpReg(rl_dest.low_reg)) { |
| if (!IsNoOp(op, val_lo)) { |
| X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo); |
| NewLIR2(x86op, rl_dest.low_reg, val_lo); |
| } |
| if (!IsNoOp(op, val_hi)) { |
| X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi); |
| NewLIR2(x86op, rl_dest.high_reg, val_hi); |
| } |
| return; |
| } |
| |
| rl_src1 = LoadValueWide(rl_src1, kCoreReg); |
| DCHECK_EQ(rl_src1.location, kLocPhysReg); |
| |
| // We need the values to be in a temporary |
| RegLocation rl_result = ForceTempWide(rl_src1); |
| if (!IsNoOp(op, val_lo)) { |
| X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo); |
| NewLIR2(x86op, rl_result.low_reg, val_lo); |
| } |
| if (!IsNoOp(op, val_hi)) { |
| X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi); |
| NewLIR2(x86op, rl_result.high_reg, val_hi); |
| } |
| |
| StoreFinalValueWide(rl_dest, rl_result); |
| } |
| |
| // For final classes there are no sub-classes to check and so we can answer the instance-of |
| // question with simple comparisons. Use compares to memory and SETEQ to optimize for x86. |
| void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, |
| RegLocation rl_dest, RegLocation rl_src) { |
| RegLocation object = LoadValue(rl_src, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| int result_reg = rl_result.low_reg; |
| |
| // SETcc only works with EAX..EDX. |
| if (result_reg == object.low_reg || result_reg >= 4) { |
| result_reg = AllocTypedTemp(false, kCoreReg); |
| DCHECK_LT(result_reg, 4); |
| } |
| |
| // Assume that there is no match. |
| LoadConstant(result_reg, 0); |
| LIR* null_branchover = OpCmpImmBranch(kCondEq, object.low_reg, 0, NULL); |
| |
| int check_class = AllocTypedTemp(false, kCoreReg); |
| |
| // If Method* is already in a register, we can save a copy. |
| RegLocation rl_method = mir_graph_->GetMethodLoc(); |
| int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + |
| (sizeof(mirror::Class*) * type_idx); |
| |
| if (rl_method.location == kLocPhysReg) { |
| if (use_declaring_class) { |
| LoadWordDisp(rl_method.low_reg, |
| mirror::ArtMethod::DeclaringClassOffset().Int32Value(), |
| check_class); |
| } else { |
| LoadWordDisp(rl_method.low_reg, |
| mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), |
| check_class); |
| LoadWordDisp(check_class, offset_of_type, check_class); |
| } |
| } else { |
| LoadCurrMethodDirect(check_class); |
| if (use_declaring_class) { |
| LoadWordDisp(check_class, |
| mirror::ArtMethod::DeclaringClassOffset().Int32Value(), |
| check_class); |
| } else { |
| LoadWordDisp(check_class, |
| mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), |
| check_class); |
| LoadWordDisp(check_class, offset_of_type, check_class); |
| } |
| } |
| |
| // Compare the computed class to the class in the object. |
| DCHECK_EQ(object.location, kLocPhysReg); |
| OpRegMem(kOpCmp, check_class, object.low_reg, |
| mirror::Object::ClassOffset().Int32Value()); |
| |
| // Set the low byte of the result to 0 or 1 from the compare condition code. |
| NewLIR2(kX86Set8R, result_reg, kX86CondEq); |
| |
| LIR* target = NewLIR0(kPseudoTargetLabel); |
| null_branchover->target = target; |
| FreeTemp(check_class); |
| if (IsTemp(result_reg)) { |
| OpRegCopy(rl_result.low_reg, result_reg); |
| FreeTemp(result_reg); |
| } |
| StoreValue(rl_dest, rl_result); |
| } |
| |
| void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_lhs, RegLocation rl_rhs) { |
| OpKind op = kOpBkpt; |
| bool is_div_rem = false; |
| bool unary = false; |
| bool shift_op = false; |
| bool is_two_addr = false; |
| RegLocation rl_result; |
| switch (opcode) { |
| case Instruction::NEG_INT: |
| op = kOpNeg; |
| unary = true; |
| break; |
| case Instruction::NOT_INT: |
| op = kOpMvn; |
| unary = true; |
| break; |
| case Instruction::ADD_INT_2ADDR: |
| is_two_addr = true; |
| // Fallthrough |
| case Instruction::ADD_INT: |
| op = kOpAdd; |
| break; |
| case Instruction::SUB_INT_2ADDR: |
| is_two_addr = true; |
| // Fallthrough |
| case Instruction::SUB_INT: |
| op = kOpSub; |
| break; |
| case Instruction::MUL_INT_2ADDR: |
| is_two_addr = true; |
| // Fallthrough |
| case Instruction::MUL_INT: |
| op = kOpMul; |
| break; |
| case Instruction::DIV_INT_2ADDR: |
| is_two_addr = true; |
| // Fallthrough |
| case Instruction::DIV_INT: |
| op = kOpDiv; |
| is_div_rem = true; |
| break; |
| /* NOTE: returns in kArg1 */ |
| case Instruction::REM_INT_2ADDR: |
| is_two_addr = true; |
| // Fallthrough |
| case Instruction::REM_INT: |
| op = kOpRem; |
| is_div_rem = true; |
| break; |
| case Instruction::AND_INT_2ADDR: |
| is_two_addr = true; |
| // Fallthrough |
| case Instruction::AND_INT: |
| op = kOpAnd; |
| break; |
| case Instruction::OR_INT_2ADDR: |
| is_two_addr = true; |
| // Fallthrough |
| case Instruction::OR_INT: |
| op = kOpOr; |
| break; |
| case Instruction::XOR_INT_2ADDR: |
| is_two_addr = true; |
| // Fallthrough |
| case Instruction::XOR_INT: |
| op = kOpXor; |
| break; |
| case Instruction::SHL_INT_2ADDR: |
| is_two_addr = true; |
| // Fallthrough |
| case Instruction::SHL_INT: |
| shift_op = true; |
| op = kOpLsl; |
| break; |
| case Instruction::SHR_INT_2ADDR: |
| is_two_addr = true; |
| // Fallthrough |
| case Instruction::SHR_INT: |
| shift_op = true; |
| op = kOpAsr; |
| break; |
| case Instruction::USHR_INT_2ADDR: |
| is_two_addr = true; |
| // Fallthrough |
| case Instruction::USHR_INT: |
| shift_op = true; |
| op = kOpLsr; |
| break; |
| default: |
| LOG(FATAL) << "Invalid word arith op: " << opcode; |
| } |
| |
| // Can we convert to a two address instruction? |
| if (!is_two_addr && |
| (mir_graph_->SRegToVReg(rl_dest.s_reg_low) == |
| mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) { |
| is_two_addr = true; |
| } |
| |
| // Get the div/rem stuff out of the way. |
| if (is_div_rem) { |
| rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true); |
| StoreValue(rl_dest, rl_result); |
| return; |
| } |
| |
| if (unary) { |
| rl_lhs = LoadValue(rl_lhs, kCoreReg); |
| rl_result = UpdateLoc(rl_dest); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegReg(op, rl_result.low_reg, rl_lhs.low_reg); |
| } else { |
| if (shift_op) { |
| // X86 doesn't require masking and must use ECX. |
| int t_reg = TargetReg(kCount); // rCX |
| LoadValueDirectFixed(rl_rhs, t_reg); |
| if (is_two_addr) { |
| // Can we do this directly into memory? |
| rl_result = UpdateLoc(rl_dest); |
| rl_rhs = LoadValue(rl_rhs, kCoreReg); |
| if (rl_result.location != kLocPhysReg) { |
| // Okay, we can do this into memory |
| OpMemReg(op, rl_result, t_reg); |
| FreeTemp(t_reg); |
| return; |
| } else if (!IsFpReg(rl_result.low_reg)) { |
| // Can do this directly into the result register |
| OpRegReg(op, rl_result.low_reg, t_reg); |
| FreeTemp(t_reg); |
| StoreFinalValue(rl_dest, rl_result); |
| return; |
| } |
| } |
| // Three address form, or we can't do directly. |
| rl_lhs = LoadValue(rl_lhs, kCoreReg); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, t_reg); |
| FreeTemp(t_reg); |
| } else { |
| // Multiply is 3 operand only (sort of). |
| if (is_two_addr && op != kOpMul) { |
| // Can we do this directly into memory? |
| rl_result = UpdateLoc(rl_dest); |
| if (rl_result.location == kLocPhysReg) { |
| // Can we do this from memory directly? |
| rl_rhs = UpdateLoc(rl_rhs); |
| if (rl_rhs.location != kLocPhysReg) { |
| OpRegMem(op, rl_result.low_reg, rl_rhs); |
| StoreFinalValue(rl_dest, rl_result); |
| return; |
| } else if (!IsFpReg(rl_rhs.low_reg)) { |
| OpRegReg(op, rl_result.low_reg, rl_rhs.low_reg); |
| StoreFinalValue(rl_dest, rl_result); |
| return; |
| } |
| } |
| rl_rhs = LoadValue(rl_rhs, kCoreReg); |
| if (rl_result.location != kLocPhysReg) { |
| // Okay, we can do this into memory. |
| OpMemReg(op, rl_result, rl_rhs.low_reg); |
| return; |
| } else if (!IsFpReg(rl_result.low_reg)) { |
| // Can do this directly into the result register. |
| OpRegReg(op, rl_result.low_reg, rl_rhs.low_reg); |
| StoreFinalValue(rl_dest, rl_result); |
| return; |
| } else { |
| rl_lhs = LoadValue(rl_lhs, kCoreReg); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg); |
| } |
| } else { |
| // Try to use reg/memory instructions. |
| rl_lhs = UpdateLoc(rl_lhs); |
| rl_rhs = UpdateLoc(rl_rhs); |
| // We can't optimize with FP registers. |
| if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) { |
| // Something is difficult, so fall back to the standard case. |
| rl_lhs = LoadValue(rl_lhs, kCoreReg); |
| rl_rhs = LoadValue(rl_rhs, kCoreReg); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg); |
| } else { |
| // We can optimize by moving to result and using memory operands. |
| if (rl_rhs.location != kLocPhysReg) { |
| // Force LHS into result. |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| LoadValueDirect(rl_lhs, rl_result.low_reg); |
| OpRegMem(op, rl_result.low_reg, rl_rhs); |
| } else if (rl_lhs.location != kLocPhysReg) { |
| // RHS is in a register; LHS is in memory. |
| if (op != kOpSub) { |
| // Force RHS into result and operate on memory. |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegCopy(rl_result.low_reg, rl_rhs.low_reg); |
| OpRegMem(op, rl_result.low_reg, rl_lhs); |
| } else { |
| // Subtraction isn't commutative. |
| rl_lhs = LoadValue(rl_lhs, kCoreReg); |
| rl_rhs = LoadValue(rl_rhs, kCoreReg); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg); |
| } |
| } else { |
| // Both are in registers. |
| rl_lhs = LoadValue(rl_lhs, kCoreReg); |
| rl_rhs = LoadValue(rl_rhs, kCoreReg); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg); |
| } |
| } |
| } |
| } |
| } |
| StoreValue(rl_dest, rl_result); |
| } |
| |
| bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) { |
| // If we have non-core registers, then we can't do good things. |
| if (rl_lhs.location == kLocPhysReg && IsFpReg(rl_lhs.low_reg)) { |
| return false; |
| } |
| if (rl_rhs.location == kLocPhysReg && IsFpReg(rl_rhs.low_reg)) { |
| return false; |
| } |
| |
| // Everything will be fine :-). |
| return true; |
| } |
| } // namespace art |