blob: 33f2fec7909901d6aea667e0f39cf279d9cb2e31 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_UTILS_ARM_ASSEMBLER_ARM_H_
#define ART_COMPILER_UTILS_ARM_ASSEMBLER_ARM_H_
#include <type_traits>
#include <vector>
#include "base/arena_allocator.h"
#include "base/arena_containers.h"
#include "base/bit_utils.h"
#include "base/enums.h"
#include "base/logging.h"
#include "base/stl_util.h"
#include "base/value_object.h"
#include "constants_arm.h"
#include "utils/arm/assembler_arm_shared.h"
#include "utils/arm/managed_register_arm.h"
#include "utils/assembler.h"
#include "utils/jni_macro_assembler.h"
#include "offsets.h"
namespace art {
namespace arm {
class Thumb2Assembler;
// Assembler literal is a value embedded in code, retrieved using a PC-relative load.
class Literal {
public:
static constexpr size_t kMaxSize = 8;
Literal(uint32_t size, const uint8_t* data)
: label_(), size_(size) {
DCHECK_LE(size, Literal::kMaxSize);
memcpy(data_, data, size);
}
template <typename T>
T GetValue() const {
DCHECK_EQ(size_, sizeof(T));
T value;
memcpy(&value, data_, sizeof(T));
return value;
}
uint32_t GetSize() const {
return size_;
}
const uint8_t* GetData() const {
return data_;
}
Label* GetLabel() {
return &label_;
}
const Label* GetLabel() const {
return &label_;
}
private:
Label label_;
const uint32_t size_;
uint8_t data_[kMaxSize];
DISALLOW_COPY_AND_ASSIGN(Literal);
};
// Jump table: table of labels emitted after the literals. Similar to literals.
class JumpTable {
public:
explicit JumpTable(std::vector<Label*>&& labels)
: label_(), anchor_label_(), labels_(std::move(labels)) {
}
uint32_t GetSize() const {
return static_cast<uint32_t>(labels_.size()) * sizeof(uint32_t);
}
const std::vector<Label*>& GetData() const {
return labels_;
}
Label* GetLabel() {
return &label_;
}
const Label* GetLabel() const {
return &label_;
}
Label* GetAnchorLabel() {
return &anchor_label_;
}
const Label* GetAnchorLabel() const {
return &anchor_label_;
}
private:
Label label_;
Label anchor_label_;
std::vector<Label*> labels_;
DISALLOW_COPY_AND_ASSIGN(JumpTable);
};
class ShifterOperand {
public:
ShifterOperand() : type_(kUnknown), rm_(kNoRegister), rs_(kNoRegister),
is_rotate_(false), is_shift_(false), shift_(kNoShift), rotate_(0), immed_(0) {
}
explicit ShifterOperand(uint32_t immed);
// Data-processing operands - Register
explicit ShifterOperand(Register rm) : type_(kRegister), rm_(rm), rs_(kNoRegister),
is_rotate_(false), is_shift_(false), shift_(kNoShift), rotate_(0), immed_(0) {
}
ShifterOperand(uint32_t rotate, uint32_t immed8) : type_(kImmediate), rm_(kNoRegister),
rs_(kNoRegister),
is_rotate_(true), is_shift_(false), shift_(kNoShift), rotate_(rotate), immed_(immed8) {
}
ShifterOperand(Register rm, Shift shift, uint32_t shift_imm = 0) : type_(kRegister), rm_(rm),
rs_(kNoRegister),
is_rotate_(false), is_shift_(true), shift_(shift), rotate_(0), immed_(shift_imm) {
}
// Data-processing operands - Logical shift/rotate by register
ShifterOperand(Register rm, Shift shift, Register rs) : type_(kRegister), rm_(rm),
rs_(rs),
is_rotate_(false), is_shift_(true), shift_(shift), rotate_(0), immed_(0) {
}
bool is_valid() const { return (type_ == kImmediate) || (type_ == kRegister); }
uint32_t type() const {
CHECK(is_valid());
return type_;
}
uint32_t encodingArm() const;
uint32_t encodingThumb() const;
bool IsEmpty() const {
return type_ == kUnknown;
}
bool IsImmediate() const {
return type_ == kImmediate;
}
bool IsRegister() const {
return type_ == kRegister;
}
bool IsShift() const {
return is_shift_;
}
uint32_t GetImmediate() const {
return immed_;
}
Shift GetShift() const {
return shift_;
}
Register GetRegister() const {
return rm_;
}
Register GetSecondRegister() const {
return rs_;
}
enum Type {
kUnknown = -1,
kRegister,
kImmediate
};
private:
Type type_;
Register rm_;
Register rs_;
bool is_rotate_;
bool is_shift_;
Shift shift_;
uint32_t rotate_;
uint32_t immed_;
friend class Thumb2Assembler;
#ifdef SOURCE_ASSEMBLER_SUPPORT
friend class BinaryAssembler;
#endif
};
// Load/store multiple addressing mode.
enum BlockAddressMode {
// bit encoding P U W
DA = (0|0|0) << 21, // decrement after
IA = (0|4|0) << 21, // increment after
DB = (8|0|0) << 21, // decrement before
IB = (8|4|0) << 21, // increment before
DA_W = (0|0|1) << 21, // decrement after with writeback to base
IA_W = (0|4|1) << 21, // increment after with writeback to base
DB_W = (8|0|1) << 21, // decrement before with writeback to base
IB_W = (8|4|1) << 21 // increment before with writeback to base
};
inline std::ostream& operator<<(std::ostream& os, const BlockAddressMode& rhs) {
os << static_cast<int>(rhs);
return os;
}
class Address : public ValueObject {
public:
// Memory operand addressing mode (in ARM encoding form. For others we need
// to adjust)
enum Mode {
// bit encoding P U W
Offset = (8|4|0) << 21, // offset (w/o writeback to base)
PreIndex = (8|4|1) << 21, // pre-indexed addressing with writeback
PostIndex = (0|4|0) << 21, // post-indexed addressing with writeback
NegOffset = (8|0|0) << 21, // negative offset (w/o writeback to base)
NegPreIndex = (8|0|1) << 21, // negative pre-indexed with writeback
NegPostIndex = (0|0|0) << 21 // negative post-indexed with writeback
};
Address(Register rn, int32_t offset = 0, Mode am = Offset) : rn_(rn), rm_(R0),
offset_(offset),
am_(am), is_immed_offset_(true), shift_(LSL) {
}
Address(Register rn, Register rm, Mode am = Offset) : rn_(rn), rm_(rm), offset_(0),
am_(am), is_immed_offset_(false), shift_(LSL) {
CHECK_NE(rm, PC);
}
Address(Register rn, Register rm, Shift shift, uint32_t count, Mode am = Offset) :
rn_(rn), rm_(rm), offset_(count),
am_(am), is_immed_offset_(false), shift_(shift) {
CHECK_NE(rm, PC);
}
// LDR(literal) - pc relative load.
explicit Address(int32_t offset) :
rn_(PC), rm_(R0), offset_(offset),
am_(Offset), is_immed_offset_(false), shift_(LSL) {
}
static bool CanHoldLoadOffsetArm(LoadOperandType type, int offset);
static bool CanHoldStoreOffsetArm(StoreOperandType type, int offset);
static bool CanHoldLoadOffsetThumb(LoadOperandType type, int offset);
static bool CanHoldStoreOffsetThumb(StoreOperandType type, int offset);
uint32_t encodingArm() const;
uint32_t encodingThumb(bool is_32bit) const;
uint32_t encoding3() const;
uint32_t vencoding() const;
uint32_t encodingThumbLdrdStrd() const;
Register GetRegister() const {
return rn_;
}
Register GetRegisterOffset() const {
return rm_;
}
int32_t GetOffset() const {
return offset_;
}
Mode GetMode() const {
return am_;
}
bool IsImmediate() const {
return is_immed_offset_;
}
Shift GetShift() const {
return shift_;
}
int32_t GetShiftCount() const {
CHECK(!is_immed_offset_);
return offset_;
}
private:
const Register rn_;
const Register rm_;
const int32_t offset_; // Used as shift amount for register offset.
const Mode am_;
const bool is_immed_offset_;
const Shift shift_;
};
inline std::ostream& operator<<(std::ostream& os, const Address::Mode& rhs) {
os << static_cast<int>(rhs);
return os;
}
// Instruction encoding bits.
enum {
H = 1 << 5, // halfword (or byte)
L = 1 << 20, // load (or store)
S = 1 << 20, // set condition code (or leave unchanged)
W = 1 << 21, // writeback base register (or leave unchanged)
A = 1 << 21, // accumulate in multiply instruction (or not)
B = 1 << 22, // unsigned byte (or word)
N = 1 << 22, // long (or short)
U = 1 << 23, // positive (or negative) offset/index
P = 1 << 24, // offset/pre-indexed addressing (or post-indexed addressing)
I = 1 << 25, // immediate shifter operand (or not)
B0 = 1,
B1 = 1 << 1,
B2 = 1 << 2,
B3 = 1 << 3,
B4 = 1 << 4,
B5 = 1 << 5,
B6 = 1 << 6,
B7 = 1 << 7,
B8 = 1 << 8,
B9 = 1 << 9,
B10 = 1 << 10,
B11 = 1 << 11,
B12 = 1 << 12,
B13 = 1 << 13,
B14 = 1 << 14,
B15 = 1 << 15,
B16 = 1 << 16,
B17 = 1 << 17,
B18 = 1 << 18,
B19 = 1 << 19,
B20 = 1 << 20,
B21 = 1 << 21,
B22 = 1 << 22,
B23 = 1 << 23,
B24 = 1 << 24,
B25 = 1 << 25,
B26 = 1 << 26,
B27 = 1 << 27,
B28 = 1 << 28,
B29 = 1 << 29,
B30 = 1 << 30,
B31 = 1 << 31,
// Instruction bit masks.
RdMask = 15 << 12, // in str instruction
CondMask = 15 << 28,
CoprocessorMask = 15 << 8,
OpCodeMask = 15 << 21, // in data-processing instructions
Imm24Mask = (1 << 24) - 1,
Off12Mask = (1 << 12) - 1,
// ldrex/strex register field encodings.
kLdExRnShift = 16,
kLdExRtShift = 12,
kStrExRnShift = 16,
kStrExRdShift = 12,
kStrExRtShift = 0,
};
// IfThen state for IT instructions.
enum ItState {
kItOmitted,
kItThen,
kItT = kItThen,
kItElse,
kItE = kItElse
};
constexpr uint32_t kNoItCondition = 3;
constexpr uint32_t kInvalidModifiedImmediate = -1;
extern const char* kRegisterNames[];
extern const char* kConditionNames[];
// This is an abstract ARM assembler. Subclasses provide assemblers for the individual
// instruction sets (ARM32, Thumb2, etc.)
//
class ArmAssembler : public Assembler {
public:
virtual ~ArmAssembler() {}
// Is this assembler for the thumb instruction set?
virtual bool IsThumb() const = 0;
// Data-processing instructions.
virtual void and_(Register rd, Register rn, const ShifterOperand& so,
Condition cond = AL, SetCc set_cc = kCcDontCare) = 0;
virtual void ands(Register rd, Register rn, const ShifterOperand& so, Condition cond = AL) {
and_(rd, rn, so, cond, kCcSet);
}
virtual void eor(Register rd, Register rn, const ShifterOperand& so,
Condition cond = AL, SetCc set_cc = kCcDontCare) = 0;
virtual void eors(Register rd, Register rn, const ShifterOperand& so, Condition cond = AL) {
eor(rd, rn, so, cond, kCcSet);
}
virtual void sub(Register rd, Register rn, const ShifterOperand& so,
Condition cond = AL, SetCc set_cc = kCcDontCare) = 0;
virtual void subs(Register rd, Register rn, const ShifterOperand& so, Condition cond = AL) {
sub(rd, rn, so, cond, kCcSet);
}
virtual void rsb(Register rd, Register rn, const ShifterOperand& so,
Condition cond = AL, SetCc set_cc = kCcDontCare) = 0;
virtual void rsbs(Register rd, Register rn, const ShifterOperand& so, Condition cond = AL) {
rsb(rd, rn, so, cond, kCcSet);
}
virtual void add(Register rd, Register rn, const ShifterOperand& so,
Condition cond = AL, SetCc set_cc = kCcDontCare) = 0;
virtual void adds(Register rd, Register rn, const ShifterOperand& so, Condition cond = AL) {
add(rd, rn, so, cond, kCcSet);
}
virtual void adc(Register rd, Register rn, const ShifterOperand& so,
Condition cond = AL, SetCc set_cc = kCcDontCare) = 0;
virtual void adcs(Register rd, Register rn, const ShifterOperand& so, Condition cond = AL) {
adc(rd, rn, so, cond, kCcSet);
}
virtual void sbc(Register rd, Register rn, const ShifterOperand& so,
Condition cond = AL, SetCc set_cc = kCcDontCare) = 0;
virtual void sbcs(Register rd, Register rn, const ShifterOperand& so, Condition cond = AL) {
sbc(rd, rn, so, cond, kCcSet);
}
virtual void rsc(Register rd, Register rn, const ShifterOperand& so,
Condition cond = AL, SetCc set_cc = kCcDontCare) = 0;
virtual void rscs(Register rd, Register rn, const ShifterOperand& so, Condition cond = AL) {
rsc(rd, rn, so, cond, kCcSet);
}
virtual void tst(Register rn, const ShifterOperand& so, Condition cond = AL) = 0;
virtual void teq(Register rn, const ShifterOperand& so, Condition cond = AL) = 0;
virtual void cmp(Register rn, const ShifterOperand& so, Condition cond = AL) = 0;
// Note: CMN updates flags based on addition of its operands. Do not confuse
// the "N" suffix with bitwise inversion performed by MVN.
virtual void cmn(Register rn, const ShifterOperand& so, Condition cond = AL) = 0;
virtual void orr(Register rd, Register rn, const ShifterOperand& so,
Condition cond = AL, SetCc set_cc = kCcDontCare) = 0;
virtual void orrs(Register rd, Register rn, const ShifterOperand& so, Condition cond = AL) {
orr(rd, rn, so, cond, kCcSet);
}
virtual void orn(Register rd, Register rn, const ShifterOperand& so,
Condition cond = AL, SetCc set_cc = kCcDontCare) = 0;
virtual void orns(Register rd, Register rn, const ShifterOperand& so, Condition cond = AL) {
orn(rd, rn, so, cond, kCcSet);
}
virtual void mov(Register rd, const ShifterOperand& so,
Condition cond = AL, SetCc set_cc = kCcDontCare) = 0;
virtual void movs(Register rd, const ShifterOperand& so, Condition cond = AL) {
mov(rd, so, cond, kCcSet);
}
virtual void bic(Register rd, Register rn, const ShifterOperand& so,
Condition cond = AL, SetCc set_cc = kCcDontCare) = 0;
virtual void bics(Register rd, Register rn, const ShifterOperand& so, Condition cond = AL) {
bic(rd, rn, so, cond, kCcSet);
}
virtual void mvn(Register rd, const ShifterOperand& so,
Condition cond = AL, SetCc set_cc = kCcDontCare) = 0;
virtual void mvns(Register rd, const ShifterOperand& so, Condition cond = AL) {
mvn(rd, so, cond, kCcSet);
}
// Miscellaneous data-processing instructions.
virtual void clz(Register rd, Register rm, Condition cond = AL) = 0;
virtual void movw(Register rd, uint16_t imm16, Condition cond = AL) = 0;
virtual void movt(Register rd, uint16_t imm16, Condition cond = AL) = 0;
virtual void rbit(Register rd, Register rm, Condition cond = AL) = 0;
virtual void rev(Register rd, Register rm, Condition cond = AL) = 0;
virtual void rev16(Register rd, Register rm, Condition cond = AL) = 0;
virtual void revsh(Register rd, Register rm, Condition cond = AL) = 0;
// Multiply instructions.
virtual void mul(Register rd, Register rn, Register rm, Condition cond = AL) = 0;
virtual void mla(Register rd, Register rn, Register rm, Register ra,
Condition cond = AL) = 0;
virtual void mls(Register rd, Register rn, Register rm, Register ra,
Condition cond = AL) = 0;
virtual void smull(Register rd_lo, Register rd_hi, Register rn, Register rm,
Condition cond = AL) = 0;
virtual void umull(Register rd_lo, Register rd_hi, Register rn, Register rm,
Condition cond = AL) = 0;
virtual void sdiv(Register rd, Register rn, Register rm, Condition cond = AL) = 0;
virtual void udiv(Register rd, Register rn, Register rm, Condition cond = AL) = 0;
// Bit field extract instructions.
virtual void sbfx(Register rd, Register rn, uint32_t lsb, uint32_t width,
Condition cond = AL) = 0;
virtual void ubfx(Register rd, Register rn, uint32_t lsb, uint32_t width,
Condition cond = AL) = 0;
// Load/store instructions.
virtual void ldr(Register rd, const Address& ad, Condition cond = AL) = 0;
virtual void str(Register rd, const Address& ad, Condition cond = AL) = 0;
virtual void ldrb(Register rd, const Address& ad, Condition cond = AL) = 0;
virtual void strb(Register rd, const Address& ad, Condition cond = AL) = 0;
virtual void ldrh(Register rd, const Address& ad, Condition cond = AL) = 0;
virtual void strh(Register rd, const Address& ad, Condition cond = AL) = 0;
virtual void ldrsb(Register rd, const Address& ad, Condition cond = AL) = 0;
virtual void ldrsh(Register rd, const Address& ad, Condition cond = AL) = 0;
virtual void ldrd(Register rd, const Address& ad, Condition cond = AL) = 0;
virtual void strd(Register rd, const Address& ad, Condition cond = AL) = 0;
virtual void ldm(BlockAddressMode am, Register base,
RegList regs, Condition cond = AL) = 0;
virtual void stm(BlockAddressMode am, Register base,
RegList regs, Condition cond = AL) = 0;
virtual void ldrex(Register rd, Register rn, Condition cond = AL) = 0;
virtual void strex(Register rd, Register rt, Register rn, Condition cond = AL) = 0;
virtual void ldrexd(Register rt, Register rt2, Register rn, Condition cond = AL) = 0;
virtual void strexd(Register rd, Register rt, Register rt2, Register rn, Condition cond = AL) = 0;
// Miscellaneous instructions.
virtual void clrex(Condition cond = AL) = 0;
virtual void nop(Condition cond = AL) = 0;
// Note that gdb sets breakpoints using the undefined instruction 0xe7f001f0.
virtual void bkpt(uint16_t imm16) = 0;
virtual void svc(uint32_t imm24) = 0;
virtual void it(Condition firstcond ATTRIBUTE_UNUSED,
ItState i1 ATTRIBUTE_UNUSED = kItOmitted,
ItState i2 ATTRIBUTE_UNUSED = kItOmitted,
ItState i3 ATTRIBUTE_UNUSED = kItOmitted) {
// Ignored if not supported.
}
virtual void cbz(Register rn, Label* target) = 0;
virtual void cbnz(Register rn, Label* target) = 0;
// Floating point instructions (VFPv3-D16 and VFPv3-D32 profiles).
virtual void vmovsr(SRegister sn, Register rt, Condition cond = AL) = 0;
virtual void vmovrs(Register rt, SRegister sn, Condition cond = AL) = 0;
virtual void vmovsrr(SRegister sm, Register rt, Register rt2, Condition cond = AL) = 0;
virtual void vmovrrs(Register rt, Register rt2, SRegister sm, Condition cond = AL) = 0;
virtual void vmovdrr(DRegister dm, Register rt, Register rt2, Condition cond = AL) = 0;
virtual void vmovrrd(Register rt, Register rt2, DRegister dm, Condition cond = AL) = 0;
virtual void vmovs(SRegister sd, SRegister sm, Condition cond = AL) = 0;
virtual void vmovd(DRegister dd, DRegister dm, Condition cond = AL) = 0;
// Returns false if the immediate cannot be encoded.
virtual bool vmovs(SRegister sd, float s_imm, Condition cond = AL) = 0;
virtual bool vmovd(DRegister dd, double d_imm, Condition cond = AL) = 0;
virtual void vldrs(SRegister sd, const Address& ad, Condition cond = AL) = 0;
virtual void vstrs(SRegister sd, const Address& ad, Condition cond = AL) = 0;
virtual void vldrd(DRegister dd, const Address& ad, Condition cond = AL) = 0;
virtual void vstrd(DRegister dd, const Address& ad, Condition cond = AL) = 0;
virtual void vadds(SRegister sd, SRegister sn, SRegister sm, Condition cond = AL) = 0;
virtual void vaddd(DRegister dd, DRegister dn, DRegister dm, Condition cond = AL) = 0;
virtual void vsubs(SRegister sd, SRegister sn, SRegister sm, Condition cond = AL) = 0;
virtual void vsubd(DRegister dd, DRegister dn, DRegister dm, Condition cond = AL) = 0;
virtual void vmuls(SRegister sd, SRegister sn, SRegister sm, Condition cond = AL) = 0;
virtual void vmuld(DRegister dd, DRegister dn, DRegister dm, Condition cond = AL) = 0;
virtual void vmlas(SRegister sd, SRegister sn, SRegister sm, Condition cond = AL) = 0;
virtual void vmlad(DRegister dd, DRegister dn, DRegister dm, Condition cond = AL) = 0;
virtual void vmlss(SRegister sd, SRegister sn, SRegister sm, Condition cond = AL) = 0;
virtual void vmlsd(DRegister dd, DRegister dn, DRegister dm, Condition cond = AL) = 0;
virtual void vdivs(SRegister sd, SRegister sn, SRegister sm, Condition cond = AL) = 0;
virtual void vdivd(DRegister dd, DRegister dn, DRegister dm, Condition cond = AL) = 0;
virtual void vabss(SRegister sd, SRegister sm, Condition cond = AL) = 0;
virtual void vabsd(DRegister dd, DRegister dm, Condition cond = AL) = 0;
virtual void vnegs(SRegister sd, SRegister sm, Condition cond = AL) = 0;
virtual void vnegd(DRegister dd, DRegister dm, Condition cond = AL) = 0;
virtual void vsqrts(SRegister sd, SRegister sm, Condition cond = AL) = 0;
virtual void vsqrtd(DRegister dd, DRegister dm, Condition cond = AL) = 0;
virtual void vcvtsd(SRegister sd, DRegister dm, Condition cond = AL) = 0;
virtual void vcvtds(DRegister dd, SRegister sm, Condition cond = AL) = 0;
virtual void vcvtis(SRegister sd, SRegister sm, Condition cond = AL) = 0;
virtual void vcvtid(SRegister sd, DRegister dm, Condition cond = AL) = 0;
virtual void vcvtsi(SRegister sd, SRegister sm, Condition cond = AL) = 0;
virtual void vcvtdi(DRegister dd, SRegister sm, Condition cond = AL) = 0;
virtual void vcvtus(SRegister sd, SRegister sm, Condition cond = AL) = 0;
virtual void vcvtud(SRegister sd, DRegister dm, Condition cond = AL) = 0;
virtual void vcvtsu(SRegister sd, SRegister sm, Condition cond = AL) = 0;
virtual void vcvtdu(DRegister dd, SRegister sm, Condition cond = AL) = 0;
virtual void vcmps(SRegister sd, SRegister sm, Condition cond = AL) = 0;
virtual void vcmpd(DRegister dd, DRegister dm, Condition cond = AL) = 0;
virtual void vcmpsz(SRegister sd, Condition cond = AL) = 0;
virtual void vcmpdz(DRegister dd, Condition cond = AL) = 0;
virtual void vmstat(Condition cond = AL) = 0; // VMRS APSR_nzcv, FPSCR
virtual void vcntd(DRegister dd, DRegister dm) = 0;
virtual void vpaddld(DRegister dd, DRegister dm, int32_t size, bool is_unsigned) = 0;
virtual void vpushs(SRegister reg, int nregs, Condition cond = AL) = 0;
virtual void vpushd(DRegister reg, int nregs, Condition cond = AL) = 0;
virtual void vpops(SRegister reg, int nregs, Condition cond = AL) = 0;
virtual void vpopd(DRegister reg, int nregs, Condition cond = AL) = 0;
virtual void vldmiad(Register base_reg, DRegister reg, int nregs, Condition cond = AL) = 0;
virtual void vstmiad(Register base_reg, DRegister reg, int nregs, Condition cond = AL) = 0;
// Branch instructions.
virtual void b(Label* label, Condition cond = AL) = 0;
virtual void bl(Label* label, Condition cond = AL) = 0;
virtual void blx(Register rm, Condition cond = AL) = 0;
virtual void bx(Register rm, Condition cond = AL) = 0;
// Memory barriers.
virtual void dmb(DmbOptions flavor) = 0;
void Pad(uint32_t bytes);
// Adjust label position.
void AdjustLabelPosition(Label* label) {
DCHECK(label->IsBound());
uint32_t old_position = static_cast<uint32_t>(label->Position());
uint32_t new_position = GetAdjustedPosition(old_position);
label->Reinitialize();
DCHECK_GE(static_cast<int>(new_position), 0);
label->BindTo(static_cast<int>(new_position));
}
// Get the final position of a label after local fixup based on the old position
// recorded before FinalizeCode().
virtual uint32_t GetAdjustedPosition(uint32_t old_position) = 0;
// Macros.
// Most of these are pure virtual as they need to be implemented per instruction set.
// Create a new literal with a given value.
// NOTE: Force the template parameter to be explicitly specified.
template <typename T>
Literal* NewLiteral(typename Identity<T>::type value) {
static_assert(std::is_integral<T>::value, "T must be an integral type.");
return NewLiteral(sizeof(value), reinterpret_cast<const uint8_t*>(&value));
}
// Create a new literal with the given data.
virtual Literal* NewLiteral(size_t size, const uint8_t* data) = 0;
// Load literal.
virtual void LoadLiteral(Register rt, Literal* literal) = 0;
virtual void LoadLiteral(Register rt, Register rt2, Literal* literal) = 0;
virtual void LoadLiteral(SRegister sd, Literal* literal) = 0;
virtual void LoadLiteral(DRegister dd, Literal* literal) = 0;
// Add signed constant value to rd. May clobber IP.
virtual void AddConstant(Register rd, Register rn, int32_t value,
Condition cond = AL, SetCc set_cc = kCcDontCare) = 0;
void AddConstantSetFlags(Register rd, Register rn, int32_t value, Condition cond = AL) {
AddConstant(rd, rn, value, cond, kCcSet);
}
void AddConstant(Register rd, int32_t value, Condition cond = AL, SetCc set_cc = kCcDontCare) {
AddConstant(rd, rd, value, cond, set_cc);
}
virtual void CmpConstant(Register rn, int32_t value, Condition cond = AL) = 0;
// Load and Store. May clobber IP.
virtual void LoadImmediate(Register rd, int32_t value, Condition cond = AL) = 0;
void LoadSImmediate(SRegister sd, float value, Condition cond = AL) {
if (!vmovs(sd, value, cond)) {
int32_t int_value = bit_cast<int32_t, float>(value);
if (int_value == bit_cast<int32_t, float>(0.0f)) {
// 0.0 is quite common, so we special case it by loading
// 2.0 in `sd` and then substracting it.
bool success = vmovs(sd, 2.0, cond);
CHECK(success);
vsubs(sd, sd, sd, cond);
} else {
LoadImmediate(IP, int_value, cond);
vmovsr(sd, IP, cond);
}
}
}
virtual void LoadDImmediate(DRegister dd, double value, Condition cond = AL) = 0;
virtual void MarkExceptionHandler(Label* label) = 0;
virtual void LoadFromOffset(LoadOperandType type,
Register reg,
Register base,
int32_t offset,
Condition cond = AL) = 0;
virtual void StoreToOffset(StoreOperandType type,
Register reg,
Register base,
int32_t offset,
Condition cond = AL) = 0;
virtual void LoadSFromOffset(SRegister reg,
Register base,
int32_t offset,
Condition cond = AL) = 0;
virtual void StoreSToOffset(SRegister reg,
Register base,
int32_t offset,
Condition cond = AL) = 0;
virtual void LoadDFromOffset(DRegister reg,
Register base,
int32_t offset,
Condition cond = AL) = 0;
virtual void StoreDToOffset(DRegister reg,
Register base,
int32_t offset,
Condition cond = AL) = 0;
virtual void Push(Register rd, Condition cond = AL) = 0;
virtual void Pop(Register rd, Condition cond = AL) = 0;
virtual void PushList(RegList regs, Condition cond = AL) = 0;
virtual void PopList(RegList regs, Condition cond = AL) = 0;
virtual void Mov(Register rd, Register rm, Condition cond = AL) = 0;
// Convenience shift instructions. Use mov instruction with shifter operand
// for variants setting the status flags or using a register shift count.
virtual void Lsl(Register rd, Register rm, uint32_t shift_imm,
Condition cond = AL, SetCc set_cc = kCcDontCare) = 0;
void Lsls(Register rd, Register rm, uint32_t shift_imm, Condition cond = AL) {
Lsl(rd, rm, shift_imm, cond, kCcSet);
}
virtual void Lsr(Register rd, Register rm, uint32_t shift_imm,
Condition cond = AL, SetCc set_cc = kCcDontCare) = 0;
void Lsrs(Register rd, Register rm, uint32_t shift_imm, Condition cond = AL) {
Lsr(rd, rm, shift_imm, cond, kCcSet);
}
virtual void Asr(Register rd, Register rm, uint32_t shift_imm,
Condition cond = AL, SetCc set_cc = kCcDontCare) = 0;
void Asrs(Register rd, Register rm, uint32_t shift_imm, Condition cond = AL) {
Asr(rd, rm, shift_imm, cond, kCcSet);
}
virtual void Ror(Register rd, Register rm, uint32_t shift_imm,
Condition cond = AL, SetCc set_cc = kCcDontCare) = 0;
void Rors(Register rd, Register rm, uint32_t shift_imm, Condition cond = AL) {
Ror(rd, rm, shift_imm, cond, kCcSet);
}
virtual void Rrx(Register rd, Register rm,
Condition cond = AL, SetCc set_cc = kCcDontCare) = 0;
void Rrxs(Register rd, Register rm, Condition cond = AL) {
Rrx(rd, rm, cond, kCcSet);
}
virtual void Lsl(Register rd, Register rm, Register rn,
Condition cond = AL, SetCc set_cc = kCcDontCare) = 0;
void Lsls(Register rd, Register rm, Register rn, Condition cond = AL) {
Lsl(rd, rm, rn, cond, kCcSet);
}
virtual void Lsr(Register rd, Register rm, Register rn,
Condition cond = AL, SetCc set_cc = kCcDontCare) = 0;
void Lsrs(Register rd, Register rm, Register rn, Condition cond = AL) {
Lsr(rd, rm, rn, cond, kCcSet);
}
virtual void Asr(Register rd, Register rm, Register rn,
Condition cond = AL, SetCc set_cc = kCcDontCare) = 0;
void Asrs(Register rd, Register rm, Register rn, Condition cond = AL) {
Asr(rd, rm, rn, cond, kCcSet);
}
virtual void Ror(Register rd, Register rm, Register rn,
Condition cond = AL, SetCc set_cc = kCcDontCare) = 0;
void Rors(Register rd, Register rm, Register rn, Condition cond = AL) {
Ror(rd, rm, rn, cond, kCcSet);
}
// Returns whether the `immediate` can fit in a `ShifterOperand`. If yes,
// `shifter_op` contains the operand.
virtual bool ShifterOperandCanHold(Register rd,
Register rn,
Opcode opcode,
uint32_t immediate,
SetCc set_cc,
ShifterOperand* shifter_op) = 0;
bool ShifterOperandCanHold(Register rd,
Register rn,
Opcode opcode,
uint32_t immediate,
ShifterOperand* shifter_op) {
return ShifterOperandCanHold(rd, rn, opcode, immediate, kCcDontCare, shifter_op);
}
virtual bool ShifterOperandCanAlwaysHold(uint32_t immediate) = 0;
static bool IsInstructionForExceptionHandling(uintptr_t pc);
virtual void CompareAndBranchIfZero(Register r, Label* label) = 0;
virtual void CompareAndBranchIfNonZero(Register r, Label* label) = 0;
static uint32_t ModifiedImmediate(uint32_t value);
static bool IsLowRegister(Register r) {
return r < R8;
}
static bool IsHighRegister(Register r) {
return r >= R8;
}
//
// Heap poisoning.
//
// Poison a heap reference contained in `reg`.
void PoisonHeapReference(Register reg) {
// reg = -reg.
rsb(reg, reg, ShifterOperand(0));
}
// Unpoison a heap reference contained in `reg`.
void UnpoisonHeapReference(Register reg) {
// reg = -reg.
rsb(reg, reg, ShifterOperand(0));
}
// Unpoison a heap reference contained in `reg` if heap poisoning is enabled.
void MaybeUnpoisonHeapReference(Register reg) {
if (kPoisonHeapReferences) {
UnpoisonHeapReference(reg);
}
}
void Jump(Label* label) OVERRIDE {
b(label);
}
// Jump table support. This is split into three functions:
//
// * CreateJumpTable creates the internal metadata to track the jump targets, and emits code to
// load the base address of the jump table.
//
// * EmitJumpTableDispatch emits the code to actually jump, assuming that the right table value
// has been loaded into a register already.
//
// * FinalizeTables emits the jump table into the literal pool. This can only be called after the
// labels for the jump targets have been finalized.
// Create a jump table for the given labels that will be emitted when finalizing. Create a load
// sequence (or placeholder) that stores the base address into the given register. When the table
// is emitted, offsets will be relative to the location EmitJumpTableDispatch was called on (the
// anchor).
virtual JumpTable* CreateJumpTable(std::vector<Label*>&& labels, Register base_reg) = 0;
// Emit the jump-table jump, assuming that the right value was loaded into displacement_reg.
virtual void EmitJumpTableDispatch(JumpTable* jump_table, Register displacement_reg) = 0;
// Bind a Label that needs to be updated by the assembler in FinalizeCode() if its position
// changes due to branch/literal fixup.
void BindTrackedLabel(Label* label) {
Bind(label);
tracked_labels_.push_back(label);
}
protected:
explicit ArmAssembler(ArenaAllocator* arena)
: Assembler(arena), tracked_labels_(arena->Adapter(kArenaAllocAssembler)) {}
// Returns whether or not the given register is used for passing parameters.
static int RegisterCompare(const Register* reg1, const Register* reg2) {
return *reg1 - *reg2;
}
void FinalizeTrackedLabels();
// Tracked labels. Use a vector, as we need to sort before adjusting.
ArenaVector<Label*> tracked_labels_;
};
} // namespace arm
} // namespace art
#endif // ART_COMPILER_UTILS_ARM_ASSEMBLER_ARM_H_