| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "reference_processor.h" |
| |
| #include "art_field-inl.h" |
| #include "base/mutex.h" |
| #include "base/time_utils.h" |
| #include "base/utils.h" |
| #include "base/systrace.h" |
| #include "class_root-inl.h" |
| #include "collector/garbage_collector.h" |
| #include "jni/java_vm_ext.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/reference-inl.h" |
| #include "nativehelper/scoped_local_ref.h" |
| #include "object_callbacks.h" |
| #include "reflection.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "task_processor.h" |
| #include "thread-inl.h" |
| #include "thread_pool.h" |
| #include "well_known_classes.h" |
| |
| namespace art { |
| namespace gc { |
| |
| static constexpr bool kAsyncReferenceQueueAdd = false; |
| |
| ReferenceProcessor::ReferenceProcessor() |
| : collector_(nullptr), |
| condition_("reference processor condition", *Locks::reference_processor_lock_) , |
| soft_reference_queue_(Locks::reference_queue_soft_references_lock_), |
| weak_reference_queue_(Locks::reference_queue_weak_references_lock_), |
| finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_), |
| phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_), |
| cleared_references_(Locks::reference_queue_cleared_references_lock_) { |
| } |
| |
| static inline MemberOffset GetSlowPathFlagOffset(ObjPtr<mirror::Class> reference_class) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(reference_class == GetClassRoot<mirror::Reference>()); |
| // Second static field |
| ArtField* field = reference_class->GetStaticField(1); |
| DCHECK_STREQ(field->GetName(), "slowPathEnabled"); |
| return field->GetOffset(); |
| } |
| |
| static inline void SetSlowPathFlag(bool enabled) REQUIRES_SHARED(Locks::mutator_lock_) { |
| ObjPtr<mirror::Class> reference_class = GetClassRoot<mirror::Reference>(); |
| MemberOffset slow_path_offset = GetSlowPathFlagOffset(reference_class); |
| reference_class->SetFieldBoolean</* kTransactionActive= */ false, /* kCheckTransaction= */ false>( |
| slow_path_offset, enabled ? 1 : 0); |
| } |
| |
| void ReferenceProcessor::EnableSlowPath() { |
| SetSlowPathFlag(/* enabled= */ true); |
| } |
| |
| void ReferenceProcessor::DisableSlowPath(Thread* self) { |
| SetSlowPathFlag(/* enabled= */ false); |
| condition_.Broadcast(self); |
| } |
| |
| bool ReferenceProcessor::SlowPathEnabled() { |
| ObjPtr<mirror::Class> reference_class = GetClassRoot<mirror::Reference>(); |
| MemberOffset slow_path_offset = GetSlowPathFlagOffset(reference_class); |
| return reference_class->GetFieldBoolean(slow_path_offset); |
| } |
| |
| void ReferenceProcessor::BroadcastForSlowPath(Thread* self) { |
| MutexLock mu(self, *Locks::reference_processor_lock_); |
| condition_.Broadcast(self); |
| } |
| |
| ObjPtr<mirror::Object> ReferenceProcessor::GetReferent(Thread* self, |
| ObjPtr<mirror::Reference> reference) { |
| auto slow_path_required = [this, self]() { |
| return kUseReadBarrier ? !self->GetWeakRefAccessEnabled() : SlowPathEnabled(); |
| }; |
| if (!slow_path_required()) { |
| return reference->GetReferent(); |
| } |
| // If the referent is null then it is already cleared, we can just return null since there is no |
| // scenario where it becomes non-null during the reference processing phase. |
| // A read barrier may be unsafe here, and we use the result only when it's null or marked. |
| ObjPtr<mirror::Object> referent = reference->template GetReferent<kWithoutReadBarrier>(); |
| if (referent.IsNull()) { |
| return referent; |
| } |
| |
| bool started_trace = false; |
| uint64_t start_millis; |
| auto finish_trace = [](uint64_t start_millis) { |
| ATraceEnd(); |
| uint64_t millis = MilliTime() - start_millis; |
| static constexpr uint64_t kReportMillis = 10; // Long enough to risk dropped frames. |
| if (millis > kReportMillis) { |
| LOG(WARNING) << "Weak pointer dereference blocked for " << millis << " milliseconds."; |
| } |
| }; |
| |
| MutexLock mu(self, *Locks::reference_processor_lock_); |
| // Keeping reference_processor_lock_ blocks the broadcast when we try to reenable the fast path. |
| while (slow_path_required()) { |
| DCHECK(collector_ != nullptr); |
| constexpr bool kOtherReadBarrier = kUseReadBarrier && !kUseBakerReadBarrier; |
| if (UNLIKELY(reference->IsFinalizerReferenceInstance() |
| || rp_state_ == RpState::kStarting /* too early to determine mark state */ |
| || (kOtherReadBarrier && reference->IsPhantomReferenceInstance()))) { |
| // Odd cases in which it doesn't hurt to just wait, or the wait is likely to be very brief. |
| |
| // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the |
| // presence of threads blocking for weak ref access. |
| self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_); |
| if (!started_trace) { |
| ATraceBegin("GetReferent blocked"); |
| started_trace = true; |
| start_millis = MilliTime(); |
| } |
| condition_.WaitHoldingLocks(self); |
| continue; |
| } |
| DCHECK(!reference->IsPhantomReferenceInstance()); |
| |
| if (rp_state_ == RpState::kInitClearingDone) { |
| // Reachable references have their final referent values. |
| break; |
| } |
| // Although reference processing is not done, we can always predict the correct return value |
| // based on the current mark state. No additional marking from finalizers has been done, since |
| // we hold reference_processor_lock_, which is required to advance to kInitClearingDone. |
| DCHECK(rp_state_ == RpState::kInitMarkingDone); |
| // Re-load and re-check referent, since the current one may have been read before we acquired |
| // reference_lock. In particular a Reference.clear() call may have intervened. (b/33569625) |
| referent = reference->GetReferent<kWithoutReadBarrier>(); |
| ObjPtr<mirror::Object> forwarded_ref = |
| referent.IsNull() ? nullptr : collector_->IsMarked(referent.Ptr()); |
| // Either the referent was marked, and forwarded_ref is the correct return value, or it |
| // was not, and forwarded_ref == null, which is again the correct return value. |
| if (started_trace) { |
| finish_trace(start_millis); |
| } |
| return forwarded_ref; |
| } |
| if (started_trace) { |
| finish_trace(start_millis); |
| } |
| return reference->GetReferent(); |
| } |
| |
| // Forward SoftReferences. Can be done before we disable Reference access. Only |
| // invoked if we are not clearing SoftReferences. |
| uint32_t ReferenceProcessor::ForwardSoftReferences(TimingLogger* timings) { |
| TimingLogger::ScopedTiming split( |
| concurrent_ ? "ForwardSoftReferences" : "(Paused)ForwardSoftReferences", timings); |
| // We used to argue that we should be smarter about doing this conditionally, but it's unclear |
| // that's actually better than the more predictable strategy of basically only clearing |
| // SoftReferences just before we would otherwise run out of memory. |
| uint32_t non_null_refs = soft_reference_queue_.ForwardSoftReferences(collector_); |
| if (ATraceEnabled()) { |
| static constexpr size_t kBufSize = 80; |
| char buf[kBufSize]; |
| snprintf(buf, kBufSize, "Marking for %" PRIu32 " SoftReferences", non_null_refs); |
| ATraceBegin(buf); |
| collector_->ProcessMarkStack(); |
| ATraceEnd(); |
| } else { |
| collector_->ProcessMarkStack(); |
| } |
| return non_null_refs; |
| } |
| |
| void ReferenceProcessor::Setup(Thread* self, |
| collector::GarbageCollector* collector, |
| bool concurrent, |
| bool clear_soft_references) { |
| DCHECK(collector != nullptr); |
| MutexLock mu(self, *Locks::reference_processor_lock_); |
| collector_ = collector; |
| rp_state_ = RpState::kStarting; |
| concurrent_ = concurrent; |
| clear_soft_references_ = clear_soft_references; |
| } |
| |
| // Process reference class instances and schedule finalizations. |
| // We advance rp_state_ to signal partial completion for the benefit of GetReferent. |
| void ReferenceProcessor::ProcessReferences(Thread* self, TimingLogger* timings) { |
| TimingLogger::ScopedTiming t(concurrent_ ? __FUNCTION__ : "(Paused)ProcessReferences", timings); |
| if (!clear_soft_references_) { |
| // Forward any additional SoftReferences we discovered late, now that reference access has been |
| // inhibited. |
| while (!soft_reference_queue_.IsEmpty()) { |
| ForwardSoftReferences(timings); |
| } |
| } |
| { |
| MutexLock mu(self, *Locks::reference_processor_lock_); |
| if (!kUseReadBarrier) { |
| CHECK_EQ(SlowPathEnabled(), concurrent_) << "Slow path must be enabled iff concurrent"; |
| } else { |
| // Weak ref access is enabled at Zygote compaction by SemiSpace (concurrent_ == false). |
| CHECK_EQ(!self->GetWeakRefAccessEnabled(), concurrent_); |
| } |
| DCHECK(rp_state_ == RpState::kStarting); |
| rp_state_ = RpState::kInitMarkingDone; |
| condition_.Broadcast(self); |
| } |
| if (kIsDebugBuild && collector_->IsTransactionActive()) { |
| // In transaction mode, we shouldn't enqueue any Reference to the queues. |
| // See DelayReferenceReferent(). |
| DCHECK(soft_reference_queue_.IsEmpty()); |
| DCHECK(weak_reference_queue_.IsEmpty()); |
| DCHECK(finalizer_reference_queue_.IsEmpty()); |
| DCHECK(phantom_reference_queue_.IsEmpty()); |
| } |
| // Clear all remaining soft and weak references with white referents. |
| // This misses references only reachable through finalizers. |
| soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_); |
| weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_); |
| // Defer PhantomReference processing until we've finished marking through finalizers. |
| { |
| // TODO: Capture mark state of some system weaks here. If the referent was marked here, |
| // then it is now safe to return, since it can only refer to marked objects. If it becomes |
| // marked below, that is no longer guaranteed. |
| MutexLock mu(self, *Locks::reference_processor_lock_); |
| rp_state_ = RpState::kInitClearingDone; |
| // At this point, all mutator-accessible data is marked (black). Objects enqueued for |
| // finalization will only be made available to the mutator via CollectClearedReferences after |
| // we're fully done marking. Soft and WeakReferences accessible to the mutator have been |
| // processed and refer only to black objects. Thus there is no danger of the mutator getting |
| // access to non-black objects. Weak reference processing is still nominally suspended, |
| // But many kinds of references, including all java.lang.ref ones, are handled normally from |
| // here on. See GetReferent(). |
| } |
| { |
| TimingLogger::ScopedTiming t2( |
| concurrent_ ? "EnqueueFinalizerReferences" : "(Paused)EnqueueFinalizerReferences", timings); |
| // Preserve all white objects with finalize methods and schedule them for finalization. |
| FinalizerStats finalizer_stats = |
| finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, collector_); |
| if (ATraceEnabled()) { |
| static constexpr size_t kBufSize = 80; |
| char buf[kBufSize]; |
| snprintf(buf, kBufSize, "Marking from %" PRIu32 " / %" PRIu32 " finalizers", |
| finalizer_stats.num_enqueued_, finalizer_stats.num_refs_); |
| ATraceBegin(buf); |
| collector_->ProcessMarkStack(); |
| ATraceEnd(); |
| } else { |
| collector_->ProcessMarkStack(); |
| } |
| } |
| |
| // Process all soft and weak references with white referents, where the references are reachable |
| // only from finalizers. It is unclear that there is any way to do this without slightly |
| // violating some language spec. We choose to apply normal Reference processing rules for these. |
| // This exposes the following issues: |
| // 1) In the case of an unmarked referent, we may end up enqueuing an "unreachable" reference. |
| // This appears unavoidable, since we need to clear the reference for safety, unless we |
| // mark the referent and undo finalization decisions for objects we encounter during marking. |
| // (Some versions of the RI seem to do something along these lines.) |
| // Or we could clear the reference without enqueuing it, which also seems strange and |
| // unhelpful. |
| // 2) In the case of a marked referent, we will preserve a reference to objects that may have |
| // been enqueued for finalization. Again fixing this would seem to involve at least undoing |
| // previous finalization / reference clearing decisions. (This would also mean than an object |
| // containing both a strong and a WeakReference to the same referent could see the |
| // WeakReference cleared.) |
| // The treatment in (2) is potentially quite dangerous, since Reference.get() can e.g. return a |
| // finalized object containing pointers to native objects that have already been deallocated. |
| // But it can be argued that this is just an instance of the broader rule that it is not safe |
| // for finalizers to access otherwise inaccessible finalizable objects. |
| soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_, |
| /*report_cleared=*/ true); |
| weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_, |
| /*report_cleared=*/ true); |
| |
| // Clear all phantom references with white referents. It's fine to do this just once here. |
| phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_); |
| |
| // At this point all reference queues other than the cleared references should be empty. |
| DCHECK(soft_reference_queue_.IsEmpty()); |
| DCHECK(weak_reference_queue_.IsEmpty()); |
| DCHECK(finalizer_reference_queue_.IsEmpty()); |
| DCHECK(phantom_reference_queue_.IsEmpty()); |
| |
| { |
| MutexLock mu(self, *Locks::reference_processor_lock_); |
| // Need to always do this since the next GC may be concurrent. Doing this for only concurrent |
| // could result in a stale is_marked_callback_ being called before the reference processing |
| // starts since there is a small window of time where slow_path_enabled_ is enabled but the |
| // callback isn't yet set. |
| if (!kUseReadBarrier && concurrent_) { |
| // Done processing, disable the slow path and broadcast to the waiters. |
| DisableSlowPath(self); |
| } |
| } |
| } |
| |
| // Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been |
| // marked, put it on the appropriate list in the heap for later processing. |
| void ReferenceProcessor::DelayReferenceReferent(ObjPtr<mirror::Class> klass, |
| ObjPtr<mirror::Reference> ref, |
| collector::GarbageCollector* collector) { |
| // klass can be the class of the old object if the visitor already updated the class of ref. |
| DCHECK(klass != nullptr); |
| DCHECK(klass->IsTypeOfReferenceClass()); |
| mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr(); |
| // do_atomic_update needs to be true because this happens outside of the reference processing |
| // phase. |
| if (!collector->IsNullOrMarkedHeapReference(referent, /*do_atomic_update=*/true)) { |
| if (UNLIKELY(collector->IsTransactionActive())) { |
| // In transaction mode, keep the referent alive and avoid any reference processing to avoid the |
| // issue of rolling back reference processing. do_atomic_update needs to be true because this |
| // happens outside of the reference processing phase. |
| if (!referent->IsNull()) { |
| collector->MarkHeapReference(referent, /*do_atomic_update=*/ true); |
| } |
| return; |
| } |
| Thread* self = Thread::Current(); |
| // TODO: Remove these locks, and use atomic stacks for storing references? |
| // We need to check that the references haven't already been enqueued since we can end up |
| // scanning the same reference multiple times due to dirty cards. |
| if (klass->IsSoftReferenceClass()) { |
| soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); |
| } else if (klass->IsWeakReferenceClass()) { |
| weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); |
| } else if (klass->IsFinalizerReferenceClass()) { |
| finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); |
| } else if (klass->IsPhantomReferenceClass()) { |
| phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); |
| } else { |
| LOG(FATAL) << "Invalid reference type " << klass->PrettyClass() << " " << std::hex |
| << klass->GetAccessFlags(); |
| } |
| } |
| } |
| |
| void ReferenceProcessor::UpdateRoots(IsMarkedVisitor* visitor) { |
| cleared_references_.UpdateRoots(visitor); |
| } |
| |
| class ClearedReferenceTask : public HeapTask { |
| public: |
| explicit ClearedReferenceTask(jobject cleared_references) |
| : HeapTask(NanoTime()), cleared_references_(cleared_references) { |
| } |
| void Run(Thread* thread) override { |
| ScopedObjectAccess soa(thread); |
| jvalue args[1]; |
| args[0].l = cleared_references_; |
| InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args); |
| soa.Env()->DeleteGlobalRef(cleared_references_); |
| } |
| |
| private: |
| const jobject cleared_references_; |
| }; |
| |
| SelfDeletingTask* ReferenceProcessor::CollectClearedReferences(Thread* self) { |
| Locks::mutator_lock_->AssertNotHeld(self); |
| // By default we don't actually need to do anything. Just return this no-op task to avoid having |
| // to put in ifs. |
| std::unique_ptr<SelfDeletingTask> result(new FunctionTask([](Thread*) {})); |
| // When a runtime isn't started there are no reference queues to care about so ignore. |
| if (!cleared_references_.IsEmpty()) { |
| if (LIKELY(Runtime::Current()->IsStarted())) { |
| jobject cleared_references; |
| { |
| ReaderMutexLock mu(self, *Locks::mutator_lock_); |
| cleared_references = self->GetJniEnv()->GetVm()->AddGlobalRef( |
| self, cleared_references_.GetList()); |
| } |
| if (kAsyncReferenceQueueAdd) { |
| // TODO: This can cause RunFinalization to terminate before newly freed objects are |
| // finalized since they may not be enqueued by the time RunFinalization starts. |
| Runtime::Current()->GetHeap()->GetTaskProcessor()->AddTask( |
| self, new ClearedReferenceTask(cleared_references)); |
| } else { |
| result.reset(new ClearedReferenceTask(cleared_references)); |
| } |
| } |
| cleared_references_.Clear(); |
| } |
| return result.release(); |
| } |
| |
| void ReferenceProcessor::ClearReferent(ObjPtr<mirror::Reference> ref) { |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, *Locks::reference_processor_lock_); |
| // Need to wait until reference processing is done since IsMarkedHeapReference does not have a |
| // CAS. If we do not wait, it can result in the GC un-clearing references due to race conditions. |
| // This also handles the race where the referent gets cleared after a null check but before |
| // IsMarkedHeapReference is called. |
| WaitUntilDoneProcessingReferences(self); |
| if (Runtime::Current()->IsActiveTransaction()) { |
| ref->ClearReferent<true>(); |
| } else { |
| ref->ClearReferent<false>(); |
| } |
| } |
| |
| void ReferenceProcessor::WaitUntilDoneProcessingReferences(Thread* self) { |
| // Wait until we are done processing reference. |
| while ((!kUseReadBarrier && SlowPathEnabled()) || |
| (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) { |
| // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the |
| // presence of threads blocking for weak ref access. |
| self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_); |
| condition_.WaitHoldingLocks(self); |
| } |
| } |
| |
| bool ReferenceProcessor::MakeCircularListIfUnenqueued( |
| ObjPtr<mirror::FinalizerReference> reference) { |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, *Locks::reference_processor_lock_); |
| WaitUntilDoneProcessingReferences(self); |
| // At this point, since the sentinel of the reference is live, it is guaranteed to not be |
| // enqueued if we just finished processing references. Otherwise, we may be doing the main GC |
| // phase. Since we are holding the reference processor lock, it guarantees that reference |
| // processing can't begin. The GC could have just enqueued the reference one one of the internal |
| // GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this |
| // race. |
| MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_); |
| if (reference->IsUnprocessed()) { |
| CHECK(reference->IsFinalizerReferenceInstance()); |
| reference->SetPendingNext(reference); |
| return true; |
| } |
| return false; |
| } |
| |
| } // namespace gc |
| } // namespace art |