blob: 4eb34083d1913e840a1d16d40b062a72b9e7b6a2 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common_runtime_test.h"
#include <dirent.h>
#include <dlfcn.h>
#include <fcntl.h>
#include <stdlib.h>
#include <cstdio>
#include "nativehelper/scoped_local_ref.h"
#include "android-base/stringprintf.h"
#include "art_field-inl.h"
#include "base/file_utils.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/mem_map.h"
#include "base/mutex.h"
#include "base/os.h"
#include "base/runtime_debug.h"
#include "base/stl_util.h"
#include "base/unix_file/fd_file.h"
#include "class_linker.h"
#include "class_loader_utils.h"
#include "compiler_callbacks.h"
#include "dex/art_dex_file_loader.h"
#include "dex/dex_file-inl.h"
#include "dex/dex_file_loader.h"
#include "dex/method_reference.h"
#include "dex/primitive.h"
#include "dex/type_reference.h"
#include "gc/heap.h"
#include "gc/space/image_space.h"
#include "gc_root-inl.h"
#include "gtest/gtest.h"
#include "handle_scope-inl.h"
#include "interpreter/unstarted_runtime.h"
#include "jni/java_vm_ext.h"
#include "jni/jni_internal.h"
#include "mirror/class-alloc-inl.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader-inl.h"
#include "mirror/object_array-alloc-inl.h"
#include "native/dalvik_system_DexFile.h"
#include "noop_compiler_callbacks.h"
#include "profile/profile_compilation_info.h"
#include "runtime-inl.h"
#include "scoped_thread_state_change-inl.h"
#include "thread.h"
#include "well_known_classes.h"
namespace art {
using android::base::StringPrintf;
static bool unstarted_initialized_ = false;
CommonRuntimeTestImpl::CommonRuntimeTestImpl()
: class_linker_(nullptr), java_lang_dex_file_(nullptr) {
}
CommonRuntimeTestImpl::~CommonRuntimeTestImpl() {
// Ensure the dex files are cleaned up before the runtime.
loaded_dex_files_.clear();
runtime_.reset();
}
void CommonRuntimeTestImpl::SetUp() {
CommonArtTestImpl::SetUp();
std::string min_heap_string(StringPrintf("-Xms%zdm", gc::Heap::kDefaultInitialSize / MB));
std::string max_heap_string(StringPrintf("-Xmx%zdm", gc::Heap::kDefaultMaximumSize / MB));
RuntimeOptions options;
std::string boot_class_path_string =
GetClassPathOption("-Xbootclasspath:", GetLibCoreDexFileNames());
std::string boot_class_path_locations_string =
GetClassPathOption("-Xbootclasspath-locations:", GetLibCoreDexLocations());
options.push_back(std::make_pair(boot_class_path_string, nullptr));
options.push_back(std::make_pair(boot_class_path_locations_string, nullptr));
options.push_back(std::make_pair("-Xcheck:jni", nullptr));
options.push_back(std::make_pair(min_heap_string, nullptr));
options.push_back(std::make_pair(max_heap_string, nullptr));
// Technically this is redundant w/ common_art_test, but still check.
options.push_back(std::make_pair("-XX:SlowDebug=true", nullptr));
static bool gSlowDebugTestFlag = false;
RegisterRuntimeDebugFlag(&gSlowDebugTestFlag);
callbacks_.reset(new NoopCompilerCallbacks());
SetUpRuntimeOptions(&options);
// Install compiler-callbacks if SetupRuntimeOptions hasn't deleted them.
if (callbacks_.get() != nullptr) {
options.push_back(std::make_pair("compilercallbacks", callbacks_.get()));
}
PreRuntimeCreate();
if (!Runtime::Create(options, false)) {
LOG(FATAL) << "Failed to create runtime";
UNREACHABLE();
}
PostRuntimeCreate();
runtime_.reset(Runtime::Current());
class_linker_ = runtime_->GetClassLinker();
// Runtime::Create acquired the mutator_lock_ that is normally given away when we
// Runtime::Start, give it away now and then switch to a more managable ScopedObjectAccess.
Thread::Current()->TransitionFromRunnableToSuspended(kNative);
// Get the boot class path from the runtime so it can be used in tests.
boot_class_path_ = class_linker_->GetBootClassPath();
ASSERT_FALSE(boot_class_path_.empty());
java_lang_dex_file_ = boot_class_path_[0];
FinalizeSetup();
if (kIsDebugBuild) {
// Ensure that we're really running with debug checks enabled.
CHECK(gSlowDebugTestFlag);
}
}
void CommonRuntimeTestImpl::FinalizeSetup() {
// Initialize maps for unstarted runtime. This needs to be here, as running clinits needs this
// set up.
if (!unstarted_initialized_) {
interpreter::UnstartedRuntime::Initialize();
unstarted_initialized_ = true;
} else {
interpreter::UnstartedRuntime::Reinitialize();
}
{
ScopedObjectAccess soa(Thread::Current());
runtime_->RunRootClinits(soa.Self());
}
// We're back in native, take the opportunity to initialize well known classes.
WellKnownClasses::Init(Thread::Current()->GetJniEnv());
// Create the heap thread pool so that the GC runs in parallel for tests. Normally, the thread
// pool is created by the runtime.
runtime_->GetHeap()->CreateThreadPool();
runtime_->GetHeap()->VerifyHeap(); // Check for heap corruption before the test
// Reduce timinig-dependent flakiness in OOME behavior (eg StubTest.AllocObject).
runtime_->GetHeap()->SetMinIntervalHomogeneousSpaceCompactionByOom(0U);
}
void CommonRuntimeTestImpl::TearDown() {
CommonArtTestImpl::TearDown();
if (runtime_ != nullptr) {
runtime_->GetHeap()->VerifyHeap(); // Check for heap corruption after the test
}
}
// Check that for target builds we have ART_TARGET_NATIVETEST_DIR set.
#ifdef ART_TARGET
#ifndef ART_TARGET_NATIVETEST_DIR
#error "ART_TARGET_NATIVETEST_DIR not set."
#endif
// Wrap it as a string literal.
#define ART_TARGET_NATIVETEST_DIR_STRING STRINGIFY(ART_TARGET_NATIVETEST_DIR) "/"
#else
#define ART_TARGET_NATIVETEST_DIR_STRING ""
#endif
std::vector<const DexFile*> CommonRuntimeTestImpl::GetDexFiles(jobject jclass_loader) {
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<1> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader = hs.NewHandle(
soa.Decode<mirror::ClassLoader>(jclass_loader));
return GetDexFiles(soa, class_loader);
}
std::vector<const DexFile*> CommonRuntimeTestImpl::GetDexFiles(
ScopedObjectAccess& soa,
Handle<mirror::ClassLoader> class_loader) {
DCHECK(
(class_loader->GetClass() ==
soa.Decode<mirror::Class>(WellKnownClasses::dalvik_system_PathClassLoader)) ||
(class_loader->GetClass() ==
soa.Decode<mirror::Class>(WellKnownClasses::dalvik_system_DelegateLastClassLoader)));
std::vector<const DexFile*> ret;
VisitClassLoaderDexFiles(soa,
class_loader,
[&](const DexFile* cp_dex_file) {
if (cp_dex_file == nullptr) {
LOG(WARNING) << "Null DexFile";
} else {
ret.push_back(cp_dex_file);
}
return true;
});
return ret;
}
const DexFile* CommonRuntimeTestImpl::GetFirstDexFile(jobject jclass_loader) {
std::vector<const DexFile*> tmp(GetDexFiles(jclass_loader));
DCHECK(!tmp.empty());
const DexFile* ret = tmp[0];
DCHECK(ret != nullptr);
return ret;
}
jobject CommonRuntimeTestImpl::LoadMultiDex(const char* first_dex_name,
const char* second_dex_name) {
std::vector<std::unique_ptr<const DexFile>> first_dex_files = OpenTestDexFiles(first_dex_name);
std::vector<std::unique_ptr<const DexFile>> second_dex_files = OpenTestDexFiles(second_dex_name);
std::vector<const DexFile*> class_path;
CHECK_NE(0U, first_dex_files.size());
CHECK_NE(0U, second_dex_files.size());
for (auto& dex_file : first_dex_files) {
class_path.push_back(dex_file.get());
loaded_dex_files_.push_back(std::move(dex_file));
}
for (auto& dex_file : second_dex_files) {
class_path.push_back(dex_file.get());
loaded_dex_files_.push_back(std::move(dex_file));
}
Thread* self = Thread::Current();
jobject class_loader = Runtime::Current()->GetClassLinker()->CreatePathClassLoader(self,
class_path);
self->SetClassLoaderOverride(class_loader);
return class_loader;
}
jobject CommonRuntimeTestImpl::LoadDex(const char* dex_name) {
jobject class_loader = LoadDexInPathClassLoader(dex_name, nullptr);
Thread::Current()->SetClassLoaderOverride(class_loader);
return class_loader;
}
jobject
CommonRuntimeTestImpl::LoadDexInWellKnownClassLoader(const std::vector<std::string>& dex_names,
jclass loader_class,
jobject parent_loader,
jobject shared_libraries,
jobject shared_libraries_after) {
std::vector<const DexFile*> class_path;
for (const std::string& dex_name : dex_names) {
std::vector<std::unique_ptr<const DexFile>> dex_files = OpenTestDexFiles(dex_name.c_str());
CHECK_NE(0U, dex_files.size());
for (auto& dex_file : dex_files) {
class_path.push_back(dex_file.get());
loaded_dex_files_.push_back(std::move(dex_file));
}
}
Thread* self = Thread::Current();
ScopedObjectAccess soa(self);
jobject result = Runtime::Current()->GetClassLinker()->CreateWellKnownClassLoader(
self,
class_path,
loader_class,
parent_loader,
shared_libraries,
shared_libraries_after);
{
// Verify we build the correct chain.
ObjPtr<mirror::ClassLoader> actual_class_loader = soa.Decode<mirror::ClassLoader>(result);
// Verify that the result has the correct class.
CHECK_EQ(soa.Decode<mirror::Class>(loader_class), actual_class_loader->GetClass());
// Verify that the parent is not null. The boot class loader will be set up as a
// proper object.
ObjPtr<mirror::ClassLoader> actual_parent(actual_class_loader->GetParent());
CHECK(actual_parent != nullptr);
if (parent_loader != nullptr) {
// We were given a parent. Verify that it's what we expect.
ObjPtr<mirror::ClassLoader> expected_parent = soa.Decode<mirror::ClassLoader>(parent_loader);
CHECK_EQ(expected_parent, actual_parent);
} else {
// No parent given. The parent must be the BootClassLoader.
CHECK(Runtime::Current()->GetClassLinker()->IsBootClassLoader(soa, actual_parent));
}
}
return result;
}
jobject CommonRuntimeTestImpl::LoadDexInPathClassLoader(const std::string& dex_name,
jobject parent_loader,
jobject shared_libraries,
jobject shared_libraries_after) {
return LoadDexInPathClassLoader(std::vector<std::string>{ dex_name },
parent_loader,
shared_libraries,
shared_libraries_after);
}
jobject CommonRuntimeTestImpl::LoadDexInPathClassLoader(const std::vector<std::string>& names,
jobject parent_loader,
jobject shared_libraries,
jobject shared_libraries_after) {
return LoadDexInWellKnownClassLoader(names,
WellKnownClasses::dalvik_system_PathClassLoader,
parent_loader,
shared_libraries,
shared_libraries_after);
}
jobject CommonRuntimeTestImpl::LoadDexInDelegateLastClassLoader(const std::string& dex_name,
jobject parent_loader) {
return LoadDexInWellKnownClassLoader({ dex_name },
WellKnownClasses::dalvik_system_DelegateLastClassLoader,
parent_loader);
}
jobject CommonRuntimeTestImpl::LoadDexInInMemoryDexClassLoader(const std::string& dex_name,
jobject parent_loader) {
return LoadDexInWellKnownClassLoader({ dex_name },
WellKnownClasses::dalvik_system_InMemoryDexClassLoader,
parent_loader);
}
void CommonRuntimeTestImpl::FillHeap(Thread* self,
ClassLinker* class_linker,
VariableSizedHandleScope* handle_scope) {
DCHECK(handle_scope != nullptr);
Runtime::Current()->GetHeap()->SetIdealFootprint(1 * GB);
// Class java.lang.Object.
Handle<mirror::Class> c(handle_scope->NewHandle(
class_linker->FindSystemClass(self, "Ljava/lang/Object;")));
// Array helps to fill memory faster.
Handle<mirror::Class> ca(handle_scope->NewHandle(
class_linker->FindSystemClass(self, "[Ljava/lang/Object;")));
// Start allocating with ~128K
size_t length = 128 * KB;
while (length > 40) {
const int32_t array_length = length / 4; // Object[] has elements of size 4.
MutableHandle<mirror::Object> h(handle_scope->NewHandle<mirror::Object>(
mirror::ObjectArray<mirror::Object>::Alloc(self, ca.Get(), array_length)));
if (self->IsExceptionPending() || h == nullptr) {
self->ClearException();
// Try a smaller length
length = length / 2;
// Use at most a quarter the reported free space.
size_t mem = Runtime::Current()->GetHeap()->GetFreeMemory();
if (length * 4 > mem) {
length = mem / 4;
}
}
}
// Allocate simple objects till it fails.
while (!self->IsExceptionPending()) {
handle_scope->NewHandle<mirror::Object>(c->AllocObject(self));
}
self->ClearException();
}
void CommonRuntimeTestImpl::SetUpRuntimeOptionsForFillHeap(RuntimeOptions *options) {
// Use a smaller heap
bool found = false;
for (std::pair<std::string, const void*>& pair : *options) {
if (pair.first.find("-Xmx") == 0) {
pair.first = "-Xmx4M"; // Smallest we can go.
found = true;
}
}
if (!found) {
options->emplace_back("-Xmx4M", nullptr);
}
}
void CommonRuntimeTestImpl::MakeInterpreted(ObjPtr<mirror::Class> klass) {
PointerSize pointer_size = class_linker_->GetImagePointerSize();
for (ArtMethod& method : klass->GetMethods(pointer_size)) {
class_linker_->SetEntryPointsToInterpreter(&method);
}
}
bool CommonRuntimeTestImpl::StartDex2OatCommandLine(/*out*/std::vector<std::string>* argv,
/*out*/std::string* error_msg,
bool use_runtime_bcp_and_image) {
DCHECK(argv != nullptr);
DCHECK(argv->empty());
Runtime* runtime = Runtime::Current();
if (use_runtime_bcp_and_image && runtime->GetHeap()->GetBootImageSpaces().empty()) {
*error_msg = "No image location found for Dex2Oat.";
return false;
}
argv->push_back(runtime->GetCompilerExecutable());
if (runtime->IsJavaDebuggable()) {
argv->push_back("--debuggable");
}
runtime->AddCurrentRuntimeFeaturesAsDex2OatArguments(argv);
if (use_runtime_bcp_and_image) {
argv->push_back("--runtime-arg");
argv->push_back(GetClassPathOption("-Xbootclasspath:", GetLibCoreDexFileNames()));
argv->push_back("--runtime-arg");
argv->push_back(GetClassPathOption("-Xbootclasspath-locations:", GetLibCoreDexLocations()));
const std::vector<gc::space::ImageSpace*>& image_spaces =
runtime->GetHeap()->GetBootImageSpaces();
DCHECK(!image_spaces.empty());
argv->push_back("--boot-image=" + image_spaces[0]->GetImageLocation());
}
std::vector<std::string> compiler_options = runtime->GetCompilerOptions();
argv->insert(argv->end(), compiler_options.begin(), compiler_options.end());
return true;
}
bool CommonRuntimeTestImpl::CompileBootImage(const std::vector<std::string>& extra_args,
const std::string& image_file_name_prefix,
ArrayRef<const std::string> dex_files,
ArrayRef<const std::string> dex_locations,
std::string* error_msg,
const std::string& use_fd_prefix) {
Runtime* const runtime = Runtime::Current();
std::vector<std::string> argv {
runtime->GetCompilerExecutable(),
"--runtime-arg",
"-Xms64m",
"--runtime-arg",
"-Xmx64m",
"--runtime-arg",
"-Xverify:softfail",
};
CHECK_EQ(dex_files.size(), dex_locations.size());
for (const std::string& dex_file : dex_files) {
argv.push_back("--dex-file=" + dex_file);
}
for (const std::string& dex_location : dex_locations) {
argv.push_back("--dex-location=" + dex_location);
}
if (runtime->IsJavaDebuggable()) {
argv.push_back("--debuggable");
}
runtime->AddCurrentRuntimeFeaturesAsDex2OatArguments(&argv);
if (!kIsTargetBuild) {
argv.push_back("--host");
}
std::unique_ptr<File> art_file;
std::unique_ptr<File> vdex_file;
std::unique_ptr<File> oat_file;
if (!use_fd_prefix.empty()) {
art_file.reset(OS::CreateEmptyFile((use_fd_prefix + ".art").c_str()));
vdex_file.reset(OS::CreateEmptyFile((use_fd_prefix + ".vdex").c_str()));
oat_file.reset(OS::CreateEmptyFile((use_fd_prefix + ".oat").c_str()));
argv.push_back("--image-fd=" + std::to_string(art_file->Fd()));
argv.push_back("--output-vdex-fd=" + std::to_string(vdex_file->Fd()));
argv.push_back("--oat-fd=" + std::to_string(oat_file->Fd()));
argv.push_back("--oat-location=" + image_file_name_prefix + ".oat");
} else {
argv.push_back("--image=" + image_file_name_prefix + ".art");
argv.push_back("--oat-file=" + image_file_name_prefix + ".oat");
argv.push_back("--oat-location=" + image_file_name_prefix + ".oat");
}
std::vector<std::string> compiler_options = runtime->GetCompilerOptions();
argv.insert(argv.end(), compiler_options.begin(), compiler_options.end());
// We must set --android-root.
const char* android_root = getenv("ANDROID_ROOT");
CHECK(android_root != nullptr);
argv.push_back("--android-root=" + std::string(android_root));
argv.insert(argv.end(), extra_args.begin(), extra_args.end());
bool result = RunDex2Oat(argv, error_msg);
if (art_file != nullptr) {
CHECK_EQ(0, art_file->FlushClose());
}
if (vdex_file != nullptr) {
CHECK_EQ(0, vdex_file->FlushClose());
}
if (oat_file != nullptr) {
CHECK_EQ(0, oat_file->FlushClose());
}
return result;
}
bool CommonRuntimeTestImpl::RunDex2Oat(const std::vector<std::string>& args,
std::string* error_msg) {
// We only want fatal logging for the error message.
auto post_fork_fn = []() { return setenv("ANDROID_LOG_TAGS", "*:f", 1) == 0; };
ForkAndExecResult res = ForkAndExec(args, post_fork_fn, error_msg);
if (res.stage != ForkAndExecResult::kFinished) {
*error_msg = strerror(errno);
return false;
}
return res.StandardSuccess();
}
std::string CommonRuntimeTestImpl::GetImageLocation() {
return GetImageDirectory() + "/boot.art";
}
std::string CommonRuntimeTestImpl::GetSystemImageFile() {
std::string isa = GetInstructionSetString(kRuntimeISA);
return GetImageDirectory() + "/" + isa + "/boot.art";
}
void CommonRuntimeTestImpl::EnterTransactionMode() {
CHECK(!Runtime::Current()->IsActiveTransaction());
Runtime::Current()->EnterTransactionMode(/*strict=*/ false, /*root=*/ nullptr);
}
void CommonRuntimeTestImpl::ExitTransactionMode() {
Runtime::Current()->ExitTransactionMode();
CHECK(!Runtime::Current()->IsActiveTransaction());
}
void CommonRuntimeTestImpl::RollbackAndExitTransactionMode() {
Runtime::Current()->RollbackAndExitTransactionMode();
CHECK(!Runtime::Current()->IsActiveTransaction());
}
bool CommonRuntimeTestImpl::IsTransactionAborted() {
return Runtime::Current()->IsTransactionAborted();
}
void CommonRuntimeTestImpl::VisitDexes(ArrayRef<const std::string> dexes,
const std::function<void(MethodReference)>& method_visitor,
const std::function<void(TypeReference)>& class_visitor,
size_t method_frequency,
size_t class_frequency) {
size_t method_counter = 0;
size_t class_counter = 0;
for (const std::string& dex : dexes) {
std::vector<std::unique_ptr<const DexFile>> dex_files;
std::string error_msg;
const ArtDexFileLoader dex_file_loader;
CHECK(dex_file_loader.Open(dex.c_str(),
dex,
/*verify*/ true,
/*verify_checksum*/ false,
&error_msg,
&dex_files))
<< error_msg;
for (const std::unique_ptr<const DexFile>& dex_file : dex_files) {
for (size_t i = 0; i < dex_file->NumMethodIds(); ++i) {
if (++method_counter % method_frequency == 0) {
method_visitor(MethodReference(dex_file.get(), i));
}
}
for (size_t i = 0; i < dex_file->NumTypeIds(); ++i) {
if (++class_counter % class_frequency == 0) {
class_visitor(TypeReference(dex_file.get(), dex::TypeIndex(i)));
}
}
}
}
}
void CommonRuntimeTestImpl::GenerateProfile(ArrayRef<const std::string> dexes,
File* out_file,
size_t method_frequency,
size_t type_frequency,
bool for_boot_image) {
ProfileCompilationInfo profile(for_boot_image);
VisitDexes(
dexes,
[&profile](MethodReference ref) {
uint32_t flags = ProfileCompilationInfo::MethodHotness::kFlagHot |
ProfileCompilationInfo::MethodHotness::kFlagStartup;
EXPECT_TRUE(profile.AddMethod(
ProfileMethodInfo(ref),
static_cast<ProfileCompilationInfo::MethodHotness::Flag>(flags)));
},
[&profile](TypeReference ref) {
std::set<dex::TypeIndex> classes;
classes.insert(ref.TypeIndex());
EXPECT_TRUE(profile.AddClassesForDex(ref.dex_file, classes.begin(), classes.end()));
},
method_frequency,
type_frequency);
profile.Save(out_file->Fd());
EXPECT_EQ(out_file->Flush(), 0);
}
CheckJniAbortCatcher::CheckJniAbortCatcher() : vm_(Runtime::Current()->GetJavaVM()) {
vm_->SetCheckJniAbortHook(Hook, &actual_);
}
CheckJniAbortCatcher::~CheckJniAbortCatcher() {
vm_->SetCheckJniAbortHook(nullptr, nullptr);
EXPECT_TRUE(actual_.empty()) << actual_;
}
void CheckJniAbortCatcher::Check(const std::string& expected_text) {
Check(expected_text.c_str());
}
void CheckJniAbortCatcher::Check(const char* expected_text) {
EXPECT_TRUE(actual_.find(expected_text) != std::string::npos) << "\n"
<< "Expected to find: " << expected_text << "\n"
<< "In the output : " << actual_;
actual_.clear();
}
void CheckJniAbortCatcher::Hook(void* data, const std::string& reason) {
// We use += because when we're hooking the aborts like this, multiple problems can be found.
*reinterpret_cast<std::string*>(data) += reason;
}
} // namespace art