blob: 6272bffdc717beb22dddfbc14da0cda3566d9a5e [file] [log] [blame]
// Copyright 2011 Google Inc. All Rights Reserved.
#include "heap.h"
#include <limits>
#include <vector>
#include "card_table.h"
#include "debugger.h"
#include "image.h"
#include "mark_sweep.h"
#include "object.h"
#include "object_utils.h"
#include "space.h"
#include "stl_util.h"
#include "thread_list.h"
#include "timing_logger.h"
#include "UniquePtr.h"
namespace art {
std::vector<Space*> Heap::spaces_;
AllocSpace* Heap::alloc_space_ = NULL;
size_t Heap::num_bytes_allocated_ = 0;
size_t Heap::num_objects_allocated_ = 0;
bool Heap::is_gc_running_ = false;
HeapBitmap* Heap::mark_bitmap_ = NULL;
HeapBitmap* Heap::live_bitmap_ = NULL;
CardTable* Heap::card_table_ = NULL;
bool Heap::card_marking_disabled_ = false;
Class* Heap::java_lang_ref_FinalizerReference_ = NULL;
Class* Heap::java_lang_ref_ReferenceQueue_ = NULL;
MemberOffset Heap::reference_referent_offset_ = MemberOffset(0);
MemberOffset Heap::reference_queue_offset_ = MemberOffset(0);
MemberOffset Heap::reference_queueNext_offset_ = MemberOffset(0);
MemberOffset Heap::reference_pendingNext_offset_ = MemberOffset(0);
MemberOffset Heap::finalizer_reference_zombie_offset_ = MemberOffset(0);
float Heap::target_utilization_ = 0.5;
Mutex* Heap::lock_ = NULL;
bool Heap::verify_objects_ = false;
static void UpdateFirstAndLastSpace(Space** first_space, Space** last_space, Space* space) {
if (*first_space == NULL) {
*first_space = space;
*last_space = space;
} else {
if ((*first_space)->Begin() > space->Begin()) {
*first_space = space;
} else if (space->Begin() > (*last_space)->Begin()) {
*last_space = space;
}
}
}
void Heap::Init(size_t initial_size, size_t growth_limit, size_t capacity,
const std::vector<std::string>& image_file_names) {
if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
LOG(INFO) << "Heap::Init entering";
}
// Compute the bounds of all spaces for allocating live and mark bitmaps
// there will be at least one space (the alloc space)
Space* first_space = NULL;
Space* last_space = NULL;
// Requested begin for the alloc space, to follow the mapped image and oat files
byte* requested_begin = NULL;
std::vector<Space*> image_spaces;
for (size_t i = 0; i < image_file_names.size(); i++) {
ImageSpace* space = Space::CreateImageSpace(image_file_names[i]);
if (space == NULL) {
LOG(FATAL) << "Failed to create space from " << image_file_names[i];
}
image_spaces.push_back(space);
AddSpace(space);
UpdateFirstAndLastSpace(&first_space, &last_space, space);
// Oat files referenced by image files immediately follow them in memory, ensure alloc space
// isn't going to get in the middle
byte* oat_end_addr = space->GetImageHeader().GetOatEnd();
CHECK(oat_end_addr > space->End());
if (oat_end_addr > requested_begin) {
requested_begin = reinterpret_cast<byte*>(RoundUp(reinterpret_cast<uintptr_t>(oat_end_addr),
kPageSize));
}
}
alloc_space_ = Space::CreateAllocSpace("alloc space", initial_size, growth_limit, capacity,
requested_begin);
if (alloc_space_ == NULL) {
LOG(FATAL) << "Failed to create alloc space";
}
AddSpace(alloc_space_);
UpdateFirstAndLastSpace(&first_space, &last_space, alloc_space_);
byte* heap_begin = first_space->Begin();
size_t heap_capacity = (last_space->Begin() - first_space->Begin()) + last_space->NonGrowthLimitCapacity();
// Allocate the initial live bitmap.
UniquePtr<HeapBitmap> live_bitmap(HeapBitmap::Create("dalvik-bitmap-1", heap_begin, heap_capacity));
if (live_bitmap.get() == NULL) {
LOG(FATAL) << "Failed to create live bitmap";
}
// Mark image objects in the live bitmap
for (size_t i = 0; i < spaces_.size(); i++) {
Space* space = spaces_[i];
if (space->IsImageSpace()) {
space->AsImageSpace()->RecordImageAllocations(live_bitmap.get());
}
}
// Allocate the initial mark bitmap.
UniquePtr<HeapBitmap> mark_bitmap(HeapBitmap::Create("dalvik-bitmap-2", heap_begin, heap_capacity));
if (mark_bitmap.get() == NULL) {
LOG(FATAL) << "Failed to create mark bitmap";
}
// Allocate the card table.
UniquePtr<CardTable> card_table(CardTable::Create(heap_begin, heap_capacity));
if (card_table.get() == NULL) {
LOG(FATAL) << "Failed to create card table";
}
live_bitmap_ = live_bitmap.release();
mark_bitmap_ = mark_bitmap.release();
card_table_ = card_table.release();
num_bytes_allocated_ = 0;
num_objects_allocated_ = 0;
// It's still to early to take a lock because there are no threads yet,
// but we can create the heap lock now. We don't create it earlier to
// make it clear that you can't use locks during heap initialization.
lock_ = new Mutex("Heap lock");
Heap::EnableObjectValidation();
if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
LOG(INFO) << "Heap::Init exiting";
}
}
void Heap::Destroy() {
// We can't take the heap lock here because there might be a daemon thread suspended with the
// heap lock held. We know though that no non-daemon threads are executing, and we know that
// all daemon threads are suspended, and we also know that the threads list have been deleted, so
// those threads can't resume. We're the only running thread, and we can do whatever we like...
STLDeleteElements(&spaces_);
delete mark_bitmap_;
delete live_bitmap_;
delete card_table_;
delete lock_;
}
Object* Heap::AllocObject(Class* klass, size_t byte_count) {
{
ScopedHeapLock lock;
DCHECK(klass == NULL || (klass->IsClassClass() && byte_count >= sizeof(Class)) ||
(klass->IsVariableSize() || klass->GetObjectSize() == byte_count) ||
strlen(ClassHelper(klass).GetDescriptor()) == 0);
DCHECK_GE(byte_count, sizeof(Object));
Object* obj = AllocateLocked(byte_count);
if (obj != NULL) {
obj->SetClass(klass);
if (Dbg::IsAllocTrackingEnabled()) {
Dbg::RecordAllocation(klass, byte_count);
}
return obj;
}
}
Thread::Current()->ThrowOutOfMemoryError(klass, byte_count);
return NULL;
}
bool Heap::IsHeapAddress(const Object* obj) {
// Note: we deliberately don't take the lock here, and mustn't test anything that would
// require taking the lock.
if (obj == NULL || !IsAligned<kObjectAlignment>(obj)) {
return false;
}
for (size_t i = 0; i < spaces_.size(); i++) {
if (spaces_[i]->Contains(obj)) {
return true;
}
}
return false;
}
bool Heap::IsLiveObjectLocked(const Object* obj) {
lock_->AssertHeld();
return IsHeapAddress(obj) && live_bitmap_->Test(obj);
}
#if VERIFY_OBJECT_ENABLED
void Heap::VerifyObject(const Object* obj) {
if (!verify_objects_) {
return;
}
ScopedHeapLock lock;
Heap::VerifyObjectLocked(obj);
}
#endif
void Heap::VerifyObjectLocked(const Object* obj) {
lock_->AssertHeld();
if (obj != NULL) {
if (!IsAligned<kObjectAlignment>(obj)) {
LOG(FATAL) << "Object isn't aligned: " << obj;
} else if (!live_bitmap_->Test(obj)) {
LOG(FATAL) << "Object is dead: " << obj;
}
// Ignore early dawn of the universe verifications
if (num_objects_allocated_ > 10) {
const byte* raw_addr = reinterpret_cast<const byte*>(obj) +
Object::ClassOffset().Int32Value();
const Class* c = *reinterpret_cast<Class* const *>(raw_addr);
if (c == NULL) {
LOG(FATAL) << "Null class in object: " << obj;
} else if (!IsAligned<kObjectAlignment>(c)) {
LOG(FATAL) << "Class isn't aligned: " << c << " in object: " << obj;
} else if (!live_bitmap_->Test(c)) {
LOG(FATAL) << "Class of object is dead: " << c << " in object: " << obj;
}
// Check obj.getClass().getClass() == obj.getClass().getClass().getClass()
// Note: we don't use the accessors here as they have internal sanity checks
// that we don't want to run
raw_addr = reinterpret_cast<const byte*>(c) + Object::ClassOffset().Int32Value();
const Class* c_c = *reinterpret_cast<Class* const *>(raw_addr);
raw_addr = reinterpret_cast<const byte*>(c_c) + Object::ClassOffset().Int32Value();
const Class* c_c_c = *reinterpret_cast<Class* const *>(raw_addr);
CHECK_EQ(c_c, c_c_c);
}
}
}
void Heap::VerificationCallback(Object* obj, void* arg) {
DCHECK(obj != NULL);
Heap::VerifyObjectLocked(obj);
}
void Heap::VerifyHeap() {
ScopedHeapLock lock;
live_bitmap_->Walk(Heap::VerificationCallback, NULL);
}
void Heap::RecordAllocationLocked(AllocSpace* space, const Object* obj) {
#ifndef NDEBUG
if (Runtime::Current()->IsStarted()) {
lock_->AssertHeld();
}
#endif
size_t size = space->AllocationSize(obj);
DCHECK_GT(size, 0u);
num_bytes_allocated_ += size;
num_objects_allocated_ += 1;
if (Runtime::Current()->HasStatsEnabled()) {
RuntimeStats* global_stats = Runtime::Current()->GetStats();
RuntimeStats* thread_stats = Thread::Current()->GetStats();
++global_stats->allocated_objects;
++thread_stats->allocated_objects;
global_stats->allocated_bytes += size;
thread_stats->allocated_bytes += size;
}
live_bitmap_->Set(obj);
}
void Heap::RecordFreeLocked(size_t freed_objects, size_t freed_bytes) {
lock_->AssertHeld();
if (freed_objects < num_objects_allocated_) {
num_objects_allocated_ -= freed_objects;
} else {
num_objects_allocated_ = 0;
}
if (freed_bytes < num_bytes_allocated_) {
num_bytes_allocated_ -= freed_bytes;
} else {
num_bytes_allocated_ = 0;
}
if (Runtime::Current()->HasStatsEnabled()) {
RuntimeStats* global_stats = Runtime::Current()->GetStats();
RuntimeStats* thread_stats = Thread::Current()->GetStats();
++global_stats->freed_objects;
++thread_stats->freed_objects;
global_stats->freed_bytes += freed_bytes;
thread_stats->freed_bytes += freed_bytes;
}
}
Object* Heap::AllocateLocked(size_t size) {
lock_->AssertHeld();
DCHECK(alloc_space_ != NULL);
AllocSpace* space = alloc_space_;
Object* obj = AllocateLocked(space, size);
if (obj != NULL) {
RecordAllocationLocked(space, obj);
}
return obj;
}
Object* Heap::AllocateLocked(AllocSpace* space, size_t alloc_size) {
lock_->AssertHeld();
// Since allocation can cause a GC which will need to SuspendAll,
// make sure all allocators are in the kRunnable state.
DCHECK_EQ(Thread::Current()->GetState(), Thread::kRunnable);
// Fail impossible allocations
if (alloc_size > space->Capacity()) {
// On failure collect soft references
CollectGarbageInternal(true);
return NULL;
}
Object* ptr = space->AllocWithoutGrowth(alloc_size);
if (ptr != NULL) {
return ptr;
}
// The allocation failed. If the GC is running, block until it completes and retry.
if (is_gc_running_) {
// The GC is concurrently tracing the heap. Release the heap lock, wait for the GC to
// complete, and retrying allocating.
WaitForConcurrentGcToComplete();
ptr = space->AllocWithoutGrowth(alloc_size);
if (ptr != NULL) {
return ptr;
}
}
// Another failure. Our thread was starved or there may be too many
// live objects. Try a foreground GC. This will have no effect if
// the concurrent GC is already running.
if (Runtime::Current()->HasStatsEnabled()) {
++Runtime::Current()->GetStats()->gc_for_alloc_count;
++Thread::Current()->GetStats()->gc_for_alloc_count;
}
CollectGarbageInternal(false);
ptr = space->AllocWithoutGrowth(alloc_size);
if (ptr != NULL) {
return ptr;
}
// Even that didn't work; this is an exceptional state.
// Try harder, growing the heap if necessary.
ptr = space->AllocWithGrowth(alloc_size);
if (ptr != NULL) {
//size_t new_footprint = dvmHeapSourceGetIdealFootprint();
size_t new_footprint = space->GetFootprintLimit();
// OLD-TODO: may want to grow a little bit more so that the amount of
// free space is equal to the old free space + the
// utilization slop for the new allocation.
VLOG(gc) << "Grow heap (frag case) to " << PrettySize(new_footprint)
<< "for a " << PrettySize(alloc_size) << " allocation";
return ptr;
}
// Most allocations should have succeeded by now, so the heap is
// really full, really fragmented, or the requested size is really
// big. Do another GC, collecting SoftReferences this time. The VM
// spec requires that all SoftReferences have been collected and
// cleared before throwing an OOME.
// OLD-TODO: wait for the finalizers from the previous GC to finish
VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size) << " allocation";
CollectGarbageInternal(true);
ptr = space->AllocWithGrowth(alloc_size);
if (ptr != NULL) {
return ptr;
}
LOG(ERROR) << "Out of memory on a " << PrettySize(alloc_size) << " allocation";
// TODO: tell the HeapSource to dump its state
// TODO: dump stack traces for all threads
return NULL;
}
int64_t Heap::GetMaxMemory() {
return alloc_space_->Capacity();
}
int64_t Heap::GetTotalMemory() {
return alloc_space_->Capacity();
}
int64_t Heap::GetFreeMemory() {
return alloc_space_->Capacity() - num_bytes_allocated_;
}
class InstanceCounter {
public:
InstanceCounter(Class* c, bool count_assignable)
: class_(c), count_assignable_(count_assignable), count_(0) {
}
size_t GetCount() {
return count_;
}
static void Callback(Object* o, void* arg) {
reinterpret_cast<InstanceCounter*>(arg)->VisitInstance(o);
}
private:
void VisitInstance(Object* o) {
Class* instance_class = o->GetClass();
if (count_assignable_) {
if (instance_class == class_) {
++count_;
}
} else {
if (instance_class != NULL && class_->IsAssignableFrom(instance_class)) {
++count_;
}
}
}
Class* class_;
bool count_assignable_;
size_t count_;
};
int64_t Heap::CountInstances(Class* c, bool count_assignable) {
ScopedHeapLock lock;
InstanceCounter counter(c, count_assignable);
live_bitmap_->Walk(InstanceCounter::Callback, &counter);
return counter.GetCount();
}
void Heap::CollectGarbage(bool clear_soft_references) {
ScopedHeapLock lock;
CollectGarbageInternal(clear_soft_references);
}
void Heap::CollectGarbageInternal(bool clear_soft_references) {
lock_->AssertHeld();
ThreadList* thread_list = Runtime::Current()->GetThreadList();
thread_list->SuspendAll();
size_t initial_size = num_bytes_allocated_;
TimingLogger timings("CollectGarbageInternal");
uint64_t t0 = NanoTime();
Object* cleared_references = NULL;
{
MarkSweep mark_sweep;
timings.AddSplit("ctor");
mark_sweep.Init();
timings.AddSplit("Init");
mark_sweep.MarkRoots();
timings.AddSplit("MarkRoots");
mark_sweep.ScanDirtyImageRoots();
timings.AddSplit("DirtyImageRoots");
// Roots are marked on the bitmap and the mark_stack is empty
DCHECK(mark_sweep.IsMarkStackEmpty());
// TODO: if concurrent
// unlock heap
// thread_list->ResumeAll();
// Recursively mark all bits set in the non-image mark bitmap
mark_sweep.RecursiveMark();
timings.AddSplit("RecursiveMark");
// TODO: if concurrent
// lock heap
// thread_list->SuspendAll();
// re-mark root set
// scan dirty objects
mark_sweep.ProcessReferences(clear_soft_references);
timings.AddSplit("ProcessReferences");
// TODO: if concurrent
// swap bitmaps
mark_sweep.Sweep();
timings.AddSplit("Sweep");
cleared_references = mark_sweep.GetClearedReferences();
}
GrowForUtilization();
timings.AddSplit("GrowForUtilization");
uint64_t t1 = NanoTime();
thread_list->ResumeAll();
EnqueueClearedReferences(&cleared_references);
uint64_t duration_ns = t1 - t0;
bool gc_was_particularly_slow = duration_ns > MsToNs(100); // TODO: crank this down for concurrent.
if (VLOG_IS_ON(gc) || gc_was_particularly_slow) {
// TODO: somehow make the specific GC implementation (here MarkSweep) responsible for logging.
size_t bytes_freed = initial_size - num_bytes_allocated_;
if (bytes_freed > KB) { // ignore freed bytes in output if > 1KB
bytes_freed = RoundDown(bytes_freed, KB);
}
size_t bytes_allocated = RoundUp(num_bytes_allocated_, KB);
// lose low nanoseconds in duration. TODO: make this part of PrettyDuration
duration_ns = (duration_ns / 1000) * 1000;
size_t total = GetTotalMemory();
size_t percentFree = 100 - static_cast<size_t>(100.0f * static_cast<float>(num_bytes_allocated_) / total);
LOG(INFO) << "GC freed " << PrettySize(bytes_freed) << ", " << percentFree << "% free, "
<< PrettySize(bytes_allocated) << "/" << PrettySize(total) << ", "
<< "paused " << PrettyDuration(duration_ns);
}
Dbg::GcDidFinish();
if (VLOG_IS_ON(heap)) {
timings.Dump();
}
}
void Heap::WaitForConcurrentGcToComplete() {
lock_->AssertHeld();
}
void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
size_t alloc_space_capacity = alloc_space_->Capacity();
if (max_allowed_footprint > alloc_space_capacity) {
VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint)
<< " to " << PrettySize(alloc_space_capacity);
max_allowed_footprint = alloc_space_capacity;
}
alloc_space_->SetFootprintLimit(max_allowed_footprint);
}
// kHeapIdealFree is the ideal maximum free size, when we grow the heap for utilization.
static const size_t kHeapIdealFree = 2 * MB;
// kHeapMinFree guarantees that you always have at least 512 KB free, when you grow for utilization,
// regardless of target utilization ratio.
static const size_t kHeapMinFree = kHeapIdealFree / 4;
void Heap::GrowForUtilization() {
lock_->AssertHeld();
// We know what our utilization is at this moment.
// This doesn't actually resize any memory. It just lets the heap grow more
// when necessary.
size_t target_size(num_bytes_allocated_ / Heap::GetTargetHeapUtilization());
if (target_size > num_bytes_allocated_ + kHeapIdealFree) {
target_size = num_bytes_allocated_ + kHeapIdealFree;
} else if (target_size < num_bytes_allocated_ + kHeapMinFree) {
target_size = num_bytes_allocated_ + kHeapMinFree;
}
SetIdealFootprint(target_size);
}
void Heap::ClearGrowthLimit() {
ScopedHeapLock lock;
WaitForConcurrentGcToComplete();
alloc_space_->ClearGrowthLimit();
}
pid_t Heap::GetLockOwner() {
return lock_->GetOwner();
}
void Heap::Lock() {
// Grab the lock, but put ourselves into Thread::kVmWait if it looks
// like we're going to have to wait on the mutex. This prevents
// deadlock if another thread is calling CollectGarbageInternal,
// since they will have the heap lock and be waiting for mutators to
// suspend.
if (!lock_->TryLock()) {
ScopedThreadStateChange tsc(Thread::Current(), Thread::kVmWait);
lock_->Lock();
}
}
void Heap::Unlock() {
lock_->Unlock();
}
void Heap::SetWellKnownClasses(Class* java_lang_ref_FinalizerReference,
Class* java_lang_ref_ReferenceQueue) {
java_lang_ref_FinalizerReference_ = java_lang_ref_FinalizerReference;
java_lang_ref_ReferenceQueue_ = java_lang_ref_ReferenceQueue;
CHECK(java_lang_ref_FinalizerReference_ != NULL);
CHECK(java_lang_ref_ReferenceQueue_ != NULL);
}
void Heap::SetReferenceOffsets(MemberOffset reference_referent_offset,
MemberOffset reference_queue_offset,
MemberOffset reference_queueNext_offset,
MemberOffset reference_pendingNext_offset,
MemberOffset finalizer_reference_zombie_offset) {
reference_referent_offset_ = reference_referent_offset;
reference_queue_offset_ = reference_queue_offset;
reference_queueNext_offset_ = reference_queueNext_offset;
reference_pendingNext_offset_ = reference_pendingNext_offset;
finalizer_reference_zombie_offset_ = finalizer_reference_zombie_offset;
CHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
CHECK_NE(reference_queue_offset_.Uint32Value(), 0U);
CHECK_NE(reference_queueNext_offset_.Uint32Value(), 0U);
CHECK_NE(reference_pendingNext_offset_.Uint32Value(), 0U);
CHECK_NE(finalizer_reference_zombie_offset_.Uint32Value(), 0U);
}
Object* Heap::GetReferenceReferent(Object* reference) {
DCHECK(reference != NULL);
DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
return reference->GetFieldObject<Object*>(reference_referent_offset_, true);
}
void Heap::ClearReferenceReferent(Object* reference) {
DCHECK(reference != NULL);
DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
reference->SetFieldObject(reference_referent_offset_, NULL, true);
}
// Returns true if the reference object has not yet been enqueued.
bool Heap::IsEnqueuable(const Object* ref) {
DCHECK(ref != NULL);
const Object* queue = ref->GetFieldObject<Object*>(reference_queue_offset_, false);
const Object* queue_next = ref->GetFieldObject<Object*>(reference_queueNext_offset_, false);
return (queue != NULL) && (queue_next == NULL);
}
void Heap::EnqueueReference(Object* ref, Object** cleared_reference_list) {
DCHECK(ref != NULL);
CHECK(ref->GetFieldObject<Object*>(reference_queue_offset_, false) != NULL);
CHECK(ref->GetFieldObject<Object*>(reference_queueNext_offset_, false) == NULL);
EnqueuePendingReference(ref, cleared_reference_list);
}
void Heap::EnqueuePendingReference(Object* ref, Object** list) {
DCHECK(ref != NULL);
DCHECK(list != NULL);
if (*list == NULL) {
ref->SetFieldObject(reference_pendingNext_offset_, ref, false);
*list = ref;
} else {
Object* head = (*list)->GetFieldObject<Object*>(reference_pendingNext_offset_, false);
ref->SetFieldObject(reference_pendingNext_offset_, head, false);
(*list)->SetFieldObject(reference_pendingNext_offset_, ref, false);
}
}
Object* Heap::DequeuePendingReference(Object** list) {
DCHECK(list != NULL);
DCHECK(*list != NULL);
Object* head = (*list)->GetFieldObject<Object*>(reference_pendingNext_offset_, false);
Object* ref;
if (*list == head) {
ref = *list;
*list = NULL;
} else {
Object* next = head->GetFieldObject<Object*>(reference_pendingNext_offset_, false);
(*list)->SetFieldObject(reference_pendingNext_offset_, next, false);
ref = head;
}
ref->SetFieldObject(reference_pendingNext_offset_, NULL, false);
return ref;
}
void Heap::AddFinalizerReference(Thread* self, Object* object) {
ScopedThreadStateChange tsc(self, Thread::kRunnable);
static Method* FinalizerReference_add =
java_lang_ref_FinalizerReference_->FindDirectMethod("add", "(Ljava/lang/Object;)V");
DCHECK(FinalizerReference_add != NULL);
Object* args[] = { object };
FinalizerReference_add->Invoke(self, NULL, reinterpret_cast<byte*>(&args), NULL);
}
void Heap::EnqueueClearedReferences(Object** cleared) {
DCHECK(cleared != NULL);
if (*cleared != NULL) {
static Method* ReferenceQueue_add =
java_lang_ref_ReferenceQueue_->FindDirectMethod("add", "(Ljava/lang/ref/Reference;)V");
DCHECK(ReferenceQueue_add != NULL);
Thread* self = Thread::Current();
ScopedThreadStateChange tsc(self, Thread::kRunnable);
Object* args[] = { *cleared };
ReferenceQueue_add->Invoke(self, NULL, reinterpret_cast<byte*>(&args), NULL);
*cleared = NULL;
}
}
} // namespace art