| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* This file contains codegen for the Thumb2 ISA. */ |
| |
| #include "codegen_arm.h" |
| |
| #include "arm_lir.h" |
| #include "art_method.h" |
| #include "base/bit_utils.h" |
| #include "base/logging.h" |
| #include "dex/mir_graph.h" |
| #include "dex/quick/dex_file_to_method_inliner_map.h" |
| #include "dex/quick/mir_to_lir-inl.h" |
| #include "driver/compiler_driver.h" |
| #include "driver/compiler_options.h" |
| #include "gc/accounting/card_table.h" |
| #include "mirror/object_array-inl.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "utils/dex_cache_arrays_layout-inl.h" |
| |
| namespace art { |
| |
| /* |
| * The sparse table in the literal pool is an array of <key,displacement> |
| * pairs. For each set, we'll load them as a pair using ldmia. |
| * This means that the register number of the temp we use for the key |
| * must be lower than the reg for the displacement. |
| * |
| * The test loop will look something like: |
| * |
| * adr r_base, <table> |
| * ldr r_val, [rARM_SP, v_reg_off] |
| * mov r_idx, #table_size |
| * lp: |
| * ldmia r_base!, {r_key, r_disp} |
| * sub r_idx, #1 |
| * cmp r_val, r_key |
| * ifeq |
| * add rARM_PC, r_disp ; This is the branch from which we compute displacement |
| * cbnz r_idx, lp |
| */ |
| void ArmMir2Lir::GenLargeSparseSwitch(MIR* mir, uint32_t table_offset, RegLocation rl_src) { |
| const uint16_t* table = mir_graph_->GetTable(mir, table_offset); |
| // Add the table to the list - we'll process it later |
| SwitchTable *tab_rec = |
| static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData)); |
| tab_rec->switch_mir = mir; |
| tab_rec->table = table; |
| tab_rec->vaddr = current_dalvik_offset_; |
| uint32_t size = table[1]; |
| switch_tables_.push_back(tab_rec); |
| |
| // Get the switch value |
| rl_src = LoadValue(rl_src, kCoreReg); |
| RegStorage r_base = AllocTemp(); |
| /* Allocate key and disp temps */ |
| RegStorage r_key = AllocTemp(); |
| RegStorage r_disp = AllocTemp(); |
| // Make sure r_key's register number is less than r_disp's number for ldmia |
| if (r_key.GetReg() > r_disp.GetReg()) { |
| RegStorage tmp = r_disp; |
| r_disp = r_key; |
| r_key = tmp; |
| } |
| // Materialize a pointer to the switch table |
| NewLIR3(kThumb2Adr, r_base.GetReg(), 0, WrapPointer(tab_rec)); |
| // Set up r_idx |
| RegStorage r_idx = AllocTemp(); |
| LoadConstant(r_idx, size); |
| // Establish loop branch target |
| LIR* target = NewLIR0(kPseudoTargetLabel); |
| // Load next key/disp |
| NewLIR2(kThumb2LdmiaWB, r_base.GetReg(), (1 << r_key.GetRegNum()) | (1 << r_disp.GetRegNum())); |
| OpRegReg(kOpCmp, r_key, rl_src.reg); |
| // Go if match. NOTE: No instruction set switch here - must stay Thumb2 |
| LIR* it = OpIT(kCondEq, ""); |
| LIR* switch_branch = NewLIR1(kThumb2AddPCR, r_disp.GetReg()); |
| OpEndIT(it); |
| tab_rec->anchor = switch_branch; |
| // Needs to use setflags encoding here |
| OpRegRegImm(kOpSub, r_idx, r_idx, 1); // For value == 1, this should set flags. |
| DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode)); |
| OpCondBranch(kCondNe, target); |
| } |
| |
| |
| void ArmMir2Lir::GenLargePackedSwitch(MIR* mir, uint32_t table_offset, RegLocation rl_src) { |
| const uint16_t* table = mir_graph_->GetTable(mir, table_offset); |
| // Add the table to the list - we'll process it later |
| SwitchTable *tab_rec = |
| static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData)); |
| tab_rec->switch_mir = mir; |
| tab_rec->table = table; |
| tab_rec->vaddr = current_dalvik_offset_; |
| uint32_t size = table[1]; |
| switch_tables_.push_back(tab_rec); |
| |
| // Get the switch value |
| rl_src = LoadValue(rl_src, kCoreReg); |
| RegStorage table_base = AllocTemp(); |
| // Materialize a pointer to the switch table |
| NewLIR3(kThumb2Adr, table_base.GetReg(), 0, WrapPointer(tab_rec)); |
| int low_key = s4FromSwitchData(&table[2]); |
| RegStorage keyReg; |
| // Remove the bias, if necessary |
| if (low_key == 0) { |
| keyReg = rl_src.reg; |
| } else { |
| keyReg = AllocTemp(); |
| OpRegRegImm(kOpSub, keyReg, rl_src.reg, low_key); |
| } |
| // Bounds check - if < 0 or >= size continue following switch |
| OpRegImm(kOpCmp, keyReg, size-1); |
| LIR* branch_over = OpCondBranch(kCondHi, nullptr); |
| |
| // Load the displacement from the switch table |
| RegStorage disp_reg = AllocTemp(); |
| LoadBaseIndexed(table_base, keyReg, disp_reg, 2, k32); |
| |
| // ..and go! NOTE: No instruction set switch here - must stay Thumb2 |
| LIR* switch_branch = NewLIR1(kThumb2AddPCR, disp_reg.GetReg()); |
| tab_rec->anchor = switch_branch; |
| |
| /* branch_over target here */ |
| LIR* target = NewLIR0(kPseudoTargetLabel); |
| branch_over->target = target; |
| } |
| |
| /* |
| * Handle unlocked -> thin locked transition inline or else call out to quick entrypoint. For more |
| * details see monitor.cc. |
| */ |
| void ArmMir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) { |
| FlushAllRegs(); |
| // FIXME: need separate LoadValues for object references. |
| LoadValueDirectFixed(rl_src, rs_r0); // Get obj |
| LockCallTemps(); // Prepare for explicit register usage |
| constexpr bool kArchVariantHasGoodBranchPredictor = false; // TODO: true if cortex-A15. |
| if (kArchVariantHasGoodBranchPredictor) { |
| LIR* null_check_branch = nullptr; |
| if ((opt_flags & MIR_IGNORE_NULL_CHECK) && !(cu_->disable_opt & (1 << kNullCheckElimination))) { |
| null_check_branch = nullptr; // No null check. |
| } else { |
| // If the null-check fails its handled by the slow-path to reduce exception related meta-data. |
| if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) { |
| null_check_branch = OpCmpImmBranch(kCondEq, rs_r0, 0, nullptr); |
| } |
| } |
| Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2); |
| NewLIR3(kThumb2Ldrex, rs_r1.GetReg(), rs_r0.GetReg(), |
| mirror::Object::MonitorOffset().Int32Value() >> 2); |
| MarkPossibleNullPointerException(opt_flags); |
| // Zero out the read barrier bits. |
| OpRegRegImm(kOpAnd, rs_r3, rs_r1, LockWord::kReadBarrierStateMaskShiftedToggled); |
| LIR* not_unlocked_branch = OpCmpImmBranch(kCondNe, rs_r3, 0, nullptr); |
| // r1 is zero except for the rb bits here. Copy the read barrier bits into r2. |
| OpRegRegReg(kOpOr, rs_r2, rs_r2, rs_r1); |
| NewLIR4(kThumb2Strex, rs_r1.GetReg(), rs_r2.GetReg(), rs_r0.GetReg(), |
| mirror::Object::MonitorOffset().Int32Value() >> 2); |
| LIR* lock_success_branch = OpCmpImmBranch(kCondEq, rs_r1, 0, nullptr); |
| |
| |
| LIR* slow_path_target = NewLIR0(kPseudoTargetLabel); |
| not_unlocked_branch->target = slow_path_target; |
| if (null_check_branch != nullptr) { |
| null_check_branch->target = slow_path_target; |
| } |
| // TODO: move to a slow path. |
| // Go expensive route - artLockObjectFromCode(obj); |
| LoadWordDisp(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pLockObject).Int32Value(), rs_rARM_LR); |
| ClobberCallerSave(); |
| LIR* call_inst = OpReg(kOpBlx, rs_rARM_LR); |
| MarkSafepointPC(call_inst); |
| |
| LIR* success_target = NewLIR0(kPseudoTargetLabel); |
| lock_success_branch->target = success_target; |
| GenMemBarrier(kLoadAny); |
| } else { |
| // Explicit null-check as slow-path is entered using an IT. |
| GenNullCheck(rs_r0, opt_flags); |
| Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2); |
| NewLIR3(kThumb2Ldrex, rs_r1.GetReg(), rs_r0.GetReg(), |
| mirror::Object::MonitorOffset().Int32Value() >> 2); |
| MarkPossibleNullPointerException(opt_flags); |
| // Zero out the read barrier bits. |
| OpRegRegImm(kOpAnd, rs_r3, rs_r1, LockWord::kReadBarrierStateMaskShiftedToggled); |
| // r1 will be zero except for the rb bits if the following |
| // cmp-and-branch branches to eq where r2 will be used. Copy the |
| // read barrier bits into r2. |
| OpRegRegReg(kOpOr, rs_r2, rs_r2, rs_r1); |
| OpRegImm(kOpCmp, rs_r3, 0); |
| |
| LIR* it = OpIT(kCondEq, ""); |
| NewLIR4(kThumb2Strex/*eq*/, rs_r1.GetReg(), rs_r2.GetReg(), rs_r0.GetReg(), |
| mirror::Object::MonitorOffset().Int32Value() >> 2); |
| OpEndIT(it); |
| OpRegImm(kOpCmp, rs_r1, 0); |
| it = OpIT(kCondNe, "T"); |
| // Go expensive route - artLockObjectFromCode(self, obj); |
| LoadWordDisp/*ne*/(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pLockObject).Int32Value(), |
| rs_rARM_LR); |
| ClobberCallerSave(); |
| LIR* call_inst = OpReg(kOpBlx/*ne*/, rs_rARM_LR); |
| OpEndIT(it); |
| MarkSafepointPC(call_inst); |
| GenMemBarrier(kLoadAny); |
| } |
| } |
| |
| /* |
| * Handle thin locked -> unlocked transition inline or else call out to quick entrypoint. For more |
| * details see monitor.cc. Note the code below doesn't use ldrex/strex as the code holds the lock |
| * and can only give away ownership if its suspended. |
| */ |
| void ArmMir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) { |
| FlushAllRegs(); |
| LoadValueDirectFixed(rl_src, rs_r0); // Get obj |
| LockCallTemps(); // Prepare for explicit register usage |
| LIR* null_check_branch = nullptr; |
| Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2); |
| constexpr bool kArchVariantHasGoodBranchPredictor = false; // TODO: true if cortex-A15. |
| if (kArchVariantHasGoodBranchPredictor) { |
| if ((opt_flags & MIR_IGNORE_NULL_CHECK) && !(cu_->disable_opt & (1 << kNullCheckElimination))) { |
| null_check_branch = nullptr; // No null check. |
| } else { |
| // If the null-check fails its handled by the slow-path to reduce exception related meta-data. |
| if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) { |
| null_check_branch = OpCmpImmBranch(kCondEq, rs_r0, 0, nullptr); |
| } |
| } |
| if (!kUseReadBarrier) { |
| Load32Disp(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r1); // Get lock |
| } else { |
| NewLIR3(kThumb2Ldrex, rs_r1.GetReg(), rs_r0.GetReg(), |
| mirror::Object::MonitorOffset().Int32Value() >> 2); |
| } |
| MarkPossibleNullPointerException(opt_flags); |
| // Zero out the read barrier bits. |
| OpRegRegImm(kOpAnd, rs_r3, rs_r1, LockWord::kReadBarrierStateMaskShiftedToggled); |
| // Zero out except the read barrier bits. |
| OpRegRegImm(kOpAnd, rs_r1, rs_r1, LockWord::kReadBarrierStateMaskShifted); |
| LIR* slow_unlock_branch = OpCmpBranch(kCondNe, rs_r3, rs_r2, nullptr); |
| GenMemBarrier(kAnyStore); |
| LIR* unlock_success_branch; |
| if (!kUseReadBarrier) { |
| Store32Disp(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r1); |
| unlock_success_branch = OpUnconditionalBranch(nullptr); |
| } else { |
| NewLIR4(kThumb2Strex, rs_r2.GetReg(), rs_r1.GetReg(), rs_r0.GetReg(), |
| mirror::Object::MonitorOffset().Int32Value() >> 2); |
| unlock_success_branch = OpCmpImmBranch(kCondEq, rs_r2, 0, nullptr); |
| } |
| LIR* slow_path_target = NewLIR0(kPseudoTargetLabel); |
| slow_unlock_branch->target = slow_path_target; |
| if (null_check_branch != nullptr) { |
| null_check_branch->target = slow_path_target; |
| } |
| // TODO: move to a slow path. |
| // Go expensive route - artUnlockObjectFromCode(obj); |
| LoadWordDisp(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject).Int32Value(), rs_rARM_LR); |
| ClobberCallerSave(); |
| LIR* call_inst = OpReg(kOpBlx, rs_rARM_LR); |
| MarkSafepointPC(call_inst); |
| |
| LIR* success_target = NewLIR0(kPseudoTargetLabel); |
| unlock_success_branch->target = success_target; |
| } else { |
| // Explicit null-check as slow-path is entered using an IT. |
| GenNullCheck(rs_r0, opt_flags); |
| if (!kUseReadBarrier) { |
| Load32Disp(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r1); // Get lock |
| } else { |
| // If we use read barriers, we need to use atomic instructions. |
| NewLIR3(kThumb2Ldrex, rs_r1.GetReg(), rs_r0.GetReg(), |
| mirror::Object::MonitorOffset().Int32Value() >> 2); |
| } |
| MarkPossibleNullPointerException(opt_flags); |
| Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2); |
| // Zero out the read barrier bits. |
| OpRegRegImm(kOpAnd, rs_r3, rs_r1, LockWord::kReadBarrierStateMaskShiftedToggled); |
| // Zero out except the read barrier bits. |
| OpRegRegImm(kOpAnd, rs_r1, rs_r1, LockWord::kReadBarrierStateMaskShifted); |
| // Is lock unheld on lock or held by us (==thread_id) on unlock? |
| OpRegReg(kOpCmp, rs_r3, rs_r2); |
| if (!kUseReadBarrier) { |
| LIR* it = OpIT(kCondEq, "EE"); |
| if (GenMemBarrier(kAnyStore)) { |
| UpdateIT(it, "TEE"); |
| } |
| Store32Disp/*eq*/(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r1); |
| // Go expensive route - UnlockObjectFromCode(obj); |
| LoadWordDisp/*ne*/(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject).Int32Value(), |
| rs_rARM_LR); |
| ClobberCallerSave(); |
| LIR* call_inst = OpReg(kOpBlx/*ne*/, rs_rARM_LR); |
| OpEndIT(it); |
| MarkSafepointPC(call_inst); |
| } else { |
| // If we use read barriers, we need to use atomic instructions. |
| LIR* it = OpIT(kCondEq, ""); |
| if (GenMemBarrier(kAnyStore)) { |
| UpdateIT(it, "T"); |
| } |
| NewLIR4/*eq*/(kThumb2Strex, rs_r2.GetReg(), rs_r1.GetReg(), rs_r0.GetReg(), |
| mirror::Object::MonitorOffset().Int32Value() >> 2); |
| OpEndIT(it); |
| // Since we know r2 wasn't zero before the above it instruction, |
| // if r2 is zero here, we know r3 was equal to r2 and the strex |
| // suceeded (we're done). Otherwise (either r3 wasn't equal to r2 |
| // or the strex failed), call the entrypoint. |
| OpRegImm(kOpCmp, rs_r2, 0); |
| LIR* it2 = OpIT(kCondNe, "T"); |
| // Go expensive route - UnlockObjectFromCode(obj); |
| LoadWordDisp/*ne*/(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject).Int32Value(), |
| rs_rARM_LR); |
| ClobberCallerSave(); |
| LIR* call_inst = OpReg(kOpBlx/*ne*/, rs_rARM_LR); |
| OpEndIT(it2); |
| MarkSafepointPC(call_inst); |
| } |
| } |
| } |
| |
| void ArmMir2Lir::GenMoveException(RegLocation rl_dest) { |
| int ex_offset = Thread::ExceptionOffset<4>().Int32Value(); |
| RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true); |
| RegStorage reset_reg = AllocTempRef(); |
| LoadRefDisp(rs_rARM_SELF, ex_offset, rl_result.reg, kNotVolatile); |
| LoadConstant(reset_reg, 0); |
| StoreRefDisp(rs_rARM_SELF, ex_offset, reset_reg, kNotVolatile); |
| FreeTemp(reset_reg); |
| StoreValue(rl_dest, rl_result); |
| } |
| |
| void ArmMir2Lir::UnconditionallyMarkGCCard(RegStorage tgt_addr_reg) { |
| RegStorage reg_card_base = AllocTemp(); |
| RegStorage reg_card_no = AllocTemp(); |
| LoadWordDisp(rs_rARM_SELF, Thread::CardTableOffset<4>().Int32Value(), reg_card_base); |
| OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift); |
| StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0, kUnsignedByte); |
| FreeTemp(reg_card_base); |
| FreeTemp(reg_card_no); |
| } |
| |
| static dwarf::Reg DwarfCoreReg(int num) { |
| return dwarf::Reg::ArmCore(num); |
| } |
| |
| static dwarf::Reg DwarfFpReg(int num) { |
| return dwarf::Reg::ArmFp(num); |
| } |
| |
| void ArmMir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) { |
| DCHECK_EQ(cfi_.GetCurrentCFAOffset(), 0); // empty stack. |
| int spill_count = num_core_spills_ + num_fp_spills_; |
| /* |
| * On entry, r0, r1, r2 & r3 are live. Let the register allocation |
| * mechanism know so it doesn't try to use any of them when |
| * expanding the frame or flushing. This leaves the utility |
| * code with a single temp: r12. This should be enough. |
| */ |
| LockTemp(rs_r0); |
| LockTemp(rs_r1); |
| LockTemp(rs_r2); |
| LockTemp(rs_r3); |
| |
| /* |
| * We can safely skip the stack overflow check if we're |
| * a leaf *and* our frame size < fudge factor. |
| */ |
| bool skip_overflow_check = mir_graph_->MethodIsLeaf() && !FrameNeedsStackCheck(frame_size_, kArm); |
| const size_t kStackOverflowReservedUsableBytes = GetStackOverflowReservedBytes(kArm); |
| bool large_frame = (static_cast<size_t>(frame_size_) > kStackOverflowReservedUsableBytes); |
| bool generate_explicit_stack_overflow_check = large_frame || |
| !cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks(); |
| if (!skip_overflow_check) { |
| if (generate_explicit_stack_overflow_check) { |
| if (!large_frame) { |
| /* Load stack limit */ |
| LockTemp(rs_r12); |
| Load32Disp(rs_rARM_SELF, Thread::StackEndOffset<4>().Int32Value(), rs_r12); |
| } |
| } else { |
| // Implicit stack overflow check. |
| // Generate a load from [sp, #-overflowsize]. If this is in the stack |
| // redzone we will get a segmentation fault. |
| // |
| // Caveat coder: if someone changes the kStackOverflowReservedBytes value |
| // we need to make sure that it's loadable in an immediate field of |
| // a sub instruction. Otherwise we will get a temp allocation and the |
| // code size will increase. |
| // |
| // This is done before the callee save instructions to avoid any possibility |
| // of these overflowing. This uses r12 and that's never saved in a callee |
| // save. |
| OpRegRegImm(kOpSub, rs_r12, rs_rARM_SP, GetStackOverflowReservedBytes(kArm)); |
| Load32Disp(rs_r12, 0, rs_r12); |
| MarkPossibleStackOverflowException(); |
| } |
| } |
| /* Spill core callee saves */ |
| if (core_spill_mask_ != 0u) { |
| if ((core_spill_mask_ & ~(0xffu | (1u << rs_rARM_LR.GetRegNum()))) == 0u) { |
| // Spilling only low regs and/or LR, use 16-bit PUSH. |
| constexpr int lr_bit_shift = rs_rARM_LR.GetRegNum() - 8; |
| NewLIR1(kThumbPush, |
| (core_spill_mask_ & ~(1u << rs_rARM_LR.GetRegNum())) | |
| ((core_spill_mask_ & (1u << rs_rARM_LR.GetRegNum())) >> lr_bit_shift)); |
| } else if (IsPowerOfTwo(core_spill_mask_)) { |
| // kThumb2Push cannot be used to spill a single register. |
| NewLIR1(kThumb2Push1, CTZ(core_spill_mask_)); |
| } else { |
| NewLIR1(kThumb2Push, core_spill_mask_); |
| } |
| cfi_.AdjustCFAOffset(num_core_spills_ * kArmPointerSize); |
| cfi_.RelOffsetForMany(DwarfCoreReg(0), 0, core_spill_mask_, kArmPointerSize); |
| } |
| /* Need to spill any FP regs? */ |
| if (num_fp_spills_ != 0u) { |
| /* |
| * NOTE: fp spills are a little different from core spills in that |
| * they are pushed as a contiguous block. When promoting from |
| * the fp set, we must allocate all singles from s16..highest-promoted |
| */ |
| NewLIR1(kThumb2VPushCS, num_fp_spills_); |
| cfi_.AdjustCFAOffset(num_fp_spills_ * kArmPointerSize); |
| cfi_.RelOffsetForMany(DwarfFpReg(0), 0, fp_spill_mask_, kArmPointerSize); |
| } |
| |
| const int spill_size = spill_count * 4; |
| const int frame_size_without_spills = frame_size_ - spill_size; |
| if (!skip_overflow_check) { |
| if (generate_explicit_stack_overflow_check) { |
| class StackOverflowSlowPath : public LIRSlowPath { |
| public: |
| StackOverflowSlowPath(Mir2Lir* m2l, LIR* branch, bool restore_lr, size_t sp_displace) |
| : LIRSlowPath(m2l, branch), restore_lr_(restore_lr), |
| sp_displace_(sp_displace) { |
| } |
| void Compile() OVERRIDE { |
| m2l_->ResetRegPool(); |
| m2l_->ResetDefTracking(); |
| GenerateTargetLabel(kPseudoThrowTarget); |
| if (restore_lr_) { |
| m2l_->LoadWordDisp(rs_rARM_SP, sp_displace_ - 4, rs_rARM_LR); |
| } |
| m2l_->OpRegImm(kOpAdd, rs_rARM_SP, sp_displace_); |
| m2l_->cfi().AdjustCFAOffset(-sp_displace_); |
| m2l_->ClobberCallerSave(); |
| ThreadOffset<4> func_offset = QUICK_ENTRYPOINT_OFFSET(4, pThrowStackOverflow); |
| // Load the entrypoint directly into the pc instead of doing a load + branch. Assumes |
| // codegen and target are in thumb2 mode. |
| // NOTE: native pointer. |
| m2l_->LoadWordDisp(rs_rARM_SELF, func_offset.Int32Value(), rs_rARM_PC); |
| m2l_->cfi().AdjustCFAOffset(sp_displace_); |
| } |
| |
| private: |
| const bool restore_lr_; |
| const size_t sp_displace_; |
| }; |
| if (large_frame) { |
| // Note: may need a temp reg, and we only have r12 free at this point. |
| OpRegRegImm(kOpSub, rs_rARM_LR, rs_rARM_SP, frame_size_without_spills); |
| Load32Disp(rs_rARM_SELF, Thread::StackEndOffset<4>().Int32Value(), rs_r12); |
| LIR* branch = OpCmpBranch(kCondUlt, rs_rARM_LR, rs_r12, nullptr); |
| // Need to restore LR since we used it as a temp. |
| AddSlowPath(new(arena_)StackOverflowSlowPath(this, branch, true, spill_size)); |
| OpRegCopy(rs_rARM_SP, rs_rARM_LR); // Establish stack |
| cfi_.AdjustCFAOffset(frame_size_without_spills); |
| } else { |
| /* |
| * If the frame is small enough we are guaranteed to have enough space that remains to |
| * handle signals on the user stack. However, we may not have any free temp |
| * registers at this point, so we'll temporarily add LR to the temp pool. |
| */ |
| DCHECK(!GetRegInfo(rs_rARM_LR)->IsTemp()); |
| MarkTemp(rs_rARM_LR); |
| FreeTemp(rs_rARM_LR); |
| OpRegRegImm(kOpSub, rs_rARM_SP, rs_rARM_SP, frame_size_without_spills); |
| cfi_.AdjustCFAOffset(frame_size_without_spills); |
| Clobber(rs_rARM_LR); |
| UnmarkTemp(rs_rARM_LR); |
| LIR* branch = OpCmpBranch(kCondUlt, rs_rARM_SP, rs_r12, nullptr); |
| AddSlowPath(new(arena_)StackOverflowSlowPath(this, branch, false, frame_size_)); |
| } |
| } else { |
| // Implicit stack overflow check has already been done. Just make room on the |
| // stack for the frame now. |
| OpRegImm(kOpSub, rs_rARM_SP, frame_size_without_spills); |
| cfi_.AdjustCFAOffset(frame_size_without_spills); |
| } |
| } else { |
| OpRegImm(kOpSub, rs_rARM_SP, frame_size_without_spills); |
| cfi_.AdjustCFAOffset(frame_size_without_spills); |
| } |
| |
| FlushIns(ArgLocs, rl_method); |
| |
| // We can promote a PC-relative reference to dex cache arrays to a register |
| // if it's used at least twice. Without investigating where we should lazily |
| // load the reference, we conveniently load it after flushing inputs. |
| if (dex_cache_arrays_base_reg_.Valid()) { |
| OpPcRelDexCacheArrayAddr(cu_->dex_file, dex_cache_arrays_min_offset_, |
| dex_cache_arrays_base_reg_); |
| } |
| |
| FreeTemp(rs_r0); |
| FreeTemp(rs_r1); |
| FreeTemp(rs_r2); |
| FreeTemp(rs_r3); |
| FreeTemp(rs_r12); |
| } |
| |
| void ArmMir2Lir::GenExitSequence() { |
| cfi_.RememberState(); |
| int spill_count = num_core_spills_ + num_fp_spills_; |
| |
| /* |
| * In the exit path, r0/r1 are live - make sure they aren't |
| * allocated by the register utilities as temps. |
| */ |
| LockTemp(rs_r0); |
| LockTemp(rs_r1); |
| |
| int adjust = frame_size_ - (spill_count * kArmPointerSize); |
| OpRegImm(kOpAdd, rs_rARM_SP, adjust); |
| cfi_.AdjustCFAOffset(-adjust); |
| /* Need to restore any FP callee saves? */ |
| if (num_fp_spills_) { |
| NewLIR1(kThumb2VPopCS, num_fp_spills_); |
| cfi_.AdjustCFAOffset(-num_fp_spills_ * kArmPointerSize); |
| cfi_.RestoreMany(DwarfFpReg(0), fp_spill_mask_); |
| } |
| bool unspill_LR_to_PC = (core_spill_mask_ & (1 << rs_rARM_LR.GetRegNum())) != 0; |
| if (unspill_LR_to_PC) { |
| core_spill_mask_ &= ~(1 << rs_rARM_LR.GetRegNum()); |
| core_spill_mask_ |= (1 << rs_rARM_PC.GetRegNum()); |
| } |
| if (core_spill_mask_ != 0u) { |
| if ((core_spill_mask_ & ~(0xffu | (1u << rs_rARM_PC.GetRegNum()))) == 0u) { |
| // Unspilling only low regs and/or PC, use 16-bit POP. |
| constexpr int pc_bit_shift = rs_rARM_PC.GetRegNum() - 8; |
| NewLIR1(kThumbPop, |
| (core_spill_mask_ & ~(1u << rs_rARM_PC.GetRegNum())) | |
| ((core_spill_mask_ & (1u << rs_rARM_PC.GetRegNum())) >> pc_bit_shift)); |
| } else if (IsPowerOfTwo(core_spill_mask_)) { |
| // kThumb2Pop cannot be used to unspill a single register. |
| NewLIR1(kThumb2Pop1, CTZ(core_spill_mask_)); |
| } else { |
| NewLIR1(kThumb2Pop, core_spill_mask_); |
| } |
| // If we pop to PC, there is no further epilogue code. |
| if (!unspill_LR_to_PC) { |
| cfi_.AdjustCFAOffset(-num_core_spills_ * kArmPointerSize); |
| cfi_.RestoreMany(DwarfCoreReg(0), core_spill_mask_); |
| DCHECK_EQ(cfi_.GetCurrentCFAOffset(), 0); // empty stack. |
| } |
| } |
| if (!unspill_LR_to_PC) { |
| /* We didn't pop to rARM_PC, so must do a bv rARM_LR */ |
| NewLIR1(kThumbBx, rs_rARM_LR.GetReg()); |
| } |
| // The CFI should be restored for any code that follows the exit block. |
| cfi_.RestoreState(); |
| cfi_.DefCFAOffset(frame_size_); |
| } |
| |
| void ArmMir2Lir::GenSpecialExitSequence() { |
| NewLIR1(kThumbBx, rs_rARM_LR.GetReg()); |
| } |
| |
| void ArmMir2Lir::GenSpecialEntryForSuspend() { |
| // Keep 16-byte stack alignment - push r0, i.e. ArtMethod*, r5, r6, lr. |
| DCHECK(!IsTemp(rs_r5)); |
| DCHECK(!IsTemp(rs_r6)); |
| core_spill_mask_ = |
| (1u << rs_r5.GetRegNum()) | (1u << rs_r6.GetRegNum()) | (1u << rs_rARM_LR.GetRegNum()); |
| num_core_spills_ = 3u; |
| fp_spill_mask_ = 0u; |
| num_fp_spills_ = 0u; |
| frame_size_ = 16u; |
| core_vmap_table_.clear(); |
| fp_vmap_table_.clear(); |
| NewLIR1(kThumbPush, (1u << rs_r0.GetRegNum()) | // ArtMethod* |
| (core_spill_mask_ & ~(1u << rs_rARM_LR.GetRegNum())) | // Spills other than LR. |
| (1u << 8)); // LR encoded for 16-bit push. |
| cfi_.AdjustCFAOffset(frame_size_); |
| // Do not generate CFI for scratch register r0. |
| cfi_.RelOffsetForMany(DwarfCoreReg(0), 4, core_spill_mask_, kArmPointerSize); |
| } |
| |
| void ArmMir2Lir::GenSpecialExitForSuspend() { |
| // Pop the frame. (ArtMethod* no longer needed but restore it anyway.) |
| NewLIR1(kThumb2Pop, (1u << rs_r0.GetRegNum()) | core_spill_mask_); // 32-bit because of LR. |
| cfi_.AdjustCFAOffset(-frame_size_); |
| cfi_.RestoreMany(DwarfCoreReg(0), core_spill_mask_); |
| } |
| |
| static bool ArmUseRelativeCall(CompilationUnit* cu, const MethodReference& target_method) { |
| // Emit relative calls only within a dex file due to the limited range of the BL insn. |
| return cu->dex_file == target_method.dex_file; |
| } |
| |
| /* |
| * Bit of a hack here - in the absence of a real scheduling pass, |
| * emit the next instruction in static & direct invoke sequences. |
| */ |
| int ArmMir2Lir::ArmNextSDCallInsn(CompilationUnit* cu, CallInfo* info, |
| int state, const MethodReference& target_method, |
| uint32_t unused_idx ATTRIBUTE_UNUSED, |
| uintptr_t direct_code, uintptr_t direct_method, |
| InvokeType type) { |
| ArmMir2Lir* cg = static_cast<ArmMir2Lir*>(cu->cg.get()); |
| if (info->string_init_offset != 0) { |
| RegStorage arg0_ref = cg->TargetReg(kArg0, kRef); |
| switch (state) { |
| case 0: { // Grab target method* from thread pointer |
| cg->LoadRefDisp(rs_rARM_SELF, info->string_init_offset, arg0_ref, kNotVolatile); |
| break; |
| } |
| case 1: // Grab the code from the method* |
| if (direct_code == 0) { |
| // kInvokeTgt := arg0_ref->entrypoint |
| cg->LoadWordDisp(arg0_ref, |
| ArtMethod::EntryPointFromQuickCompiledCodeOffset( |
| kArmPointerSize).Int32Value(), cg->TargetPtrReg(kInvokeTgt)); |
| } |
| break; |
| default: |
| return -1; |
| } |
| } else if (direct_code != 0 && direct_method != 0) { |
| switch (state) { |
| case 0: // Get the current Method* [sets kArg0] |
| if (direct_code != static_cast<uintptr_t>(-1)) { |
| cg->LoadConstant(cg->TargetPtrReg(kInvokeTgt), direct_code); |
| } else if (ArmUseRelativeCall(cu, target_method)) { |
| // Defer to linker patch. |
| } else { |
| cg->LoadCodeAddress(target_method, type, kInvokeTgt); |
| } |
| if (direct_method != static_cast<uintptr_t>(-1)) { |
| cg->LoadConstant(cg->TargetReg(kArg0, kRef), direct_method); |
| } else { |
| cg->LoadMethodAddress(target_method, type, kArg0); |
| } |
| break; |
| default: |
| return -1; |
| } |
| } else { |
| bool use_pc_rel = cg->CanUseOpPcRelDexCacheArrayLoad(); |
| RegStorage arg0_ref = cg->TargetReg(kArg0, kRef); |
| switch (state) { |
| case 0: // Get the current Method* [sets kArg0] |
| // TUNING: we can save a reg copy if Method* has been promoted. |
| if (!use_pc_rel) { |
| cg->LoadCurrMethodDirect(arg0_ref); |
| break; |
| } |
| ++state; |
| FALLTHROUGH_INTENDED; |
| case 1: // Get method->dex_cache_resolved_methods_ |
| if (!use_pc_rel) { |
| cg->LoadBaseDisp(arg0_ref, |
| ArtMethod::DexCacheResolvedMethodsOffset(kArmPointerSize).Int32Value(), |
| arg0_ref, |
| k32, |
| kNotVolatile); |
| } |
| // Set up direct code if known. |
| if (direct_code != 0) { |
| if (direct_code != static_cast<uintptr_t>(-1)) { |
| cg->LoadConstant(cg->TargetPtrReg(kInvokeTgt), direct_code); |
| } else if (ArmUseRelativeCall(cu, target_method)) { |
| // Defer to linker patch. |
| } else { |
| CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds()); |
| cg->LoadCodeAddress(target_method, type, kInvokeTgt); |
| } |
| } |
| if (!use_pc_rel || direct_code != 0) { |
| break; |
| } |
| ++state; |
| FALLTHROUGH_INTENDED; |
| case 2: // Grab target method* |
| CHECK_EQ(cu->dex_file, target_method.dex_file); |
| if (!use_pc_rel) { |
| cg->LoadRefDisp(arg0_ref, |
| cg->GetCachePointerOffset(target_method.dex_method_index, |
| kArmPointerSize), |
| arg0_ref, |
| kNotVolatile); |
| } else { |
| size_t offset = cg->dex_cache_arrays_layout_.MethodOffset(target_method.dex_method_index); |
| cg->OpPcRelDexCacheArrayLoad(cu->dex_file, offset, arg0_ref, false); |
| } |
| break; |
| case 3: // Grab the code from the method* |
| if (direct_code == 0) { |
| // kInvokeTgt := arg0_ref->entrypoint |
| cg->LoadWordDisp(arg0_ref, |
| ArtMethod::EntryPointFromQuickCompiledCodeOffset( |
| kArmPointerSize).Int32Value(), cg->TargetPtrReg(kInvokeTgt)); |
| } |
| break; |
| default: |
| return -1; |
| } |
| } |
| return state + 1; |
| } |
| |
| NextCallInsn ArmMir2Lir::GetNextSDCallInsn() { |
| return ArmNextSDCallInsn; |
| } |
| |
| LIR* ArmMir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) { |
| // For ARM, just generate a relative BL instruction that will be filled in at 'link time'. |
| // If the target turns out to be too far, the linker will generate a thunk for dispatch. |
| int target_method_idx = target_method.dex_method_index; |
| const DexFile* target_dex_file = target_method.dex_file; |
| |
| // Generate the call instruction and save index, dex_file, and type. |
| // NOTE: Method deduplication takes linker patches into account, so we can just pass 0 |
| // as a placeholder for the offset. |
| LIR* call = RawLIR(current_dalvik_offset_, kThumb2Bl, 0, |
| target_method_idx, WrapPointer(target_dex_file), type); |
| AppendLIR(call); |
| call_method_insns_.push_back(call); |
| return call; |
| } |
| |
| LIR* ArmMir2Lir::GenCallInsn(const MirMethodLoweringInfo& method_info) { |
| LIR* call_insn; |
| if (method_info.FastPath() && ArmUseRelativeCall(cu_, method_info.GetTargetMethod()) && |
| (method_info.GetSharpType() == kDirect || method_info.GetSharpType() == kStatic) && |
| method_info.DirectCode() == static_cast<uintptr_t>(-1)) { |
| call_insn = CallWithLinkerFixup(method_info.GetTargetMethod(), method_info.GetSharpType()); |
| } else { |
| call_insn = OpReg(kOpBlx, TargetPtrReg(kInvokeTgt)); |
| } |
| return call_insn; |
| } |
| |
| } // namespace art |