blob: 827e9a636600fd1d498d039df7914d43c43fce4f [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_UTILS_SWAP_SPACE_H_
#define ART_COMPILER_UTILS_SWAP_SPACE_H_
#include <stddef.h>
#include <stdint.h>
#include <cstdlib>
#include <list>
#include <set>
#include <vector>
#include <android-base/logging.h>
#include "base/logging.h"
#include "base/macros.h"
#include "base/mutex.h"
namespace art {
// An arena pool that creates arenas backed by an mmaped file.
class SwapSpace {
public:
SwapSpace(int fd, size_t initial_size);
~SwapSpace();
void* Alloc(size_t size) REQUIRES(!lock_);
void Free(void* ptr, size_t size) REQUIRES(!lock_);
size_t GetSize() {
return size_;
}
private:
// Chunk of space.
struct SpaceChunk {
// We need mutable members as we keep these objects in a std::set<> (providing only const
// access) but we modify these members while carefully preserving the std::set<> ordering.
mutable uint8_t* ptr;
mutable size_t size;
uintptr_t Start() const {
return reinterpret_cast<uintptr_t>(ptr);
}
uintptr_t End() const {
return reinterpret_cast<uintptr_t>(ptr) + size;
}
};
class SortChunkByPtr {
public:
bool operator()(const SpaceChunk& a, const SpaceChunk& b) const {
return reinterpret_cast<uintptr_t>(a.ptr) < reinterpret_cast<uintptr_t>(b.ptr);
}
};
using FreeByStartSet = std::set<SpaceChunk, SortChunkByPtr>;
// Map size to an iterator to free_by_start_'s entry.
struct FreeBySizeEntry {
FreeBySizeEntry(size_t sz, FreeByStartSet::const_iterator entry)
: size(sz), free_by_start_entry(entry) { }
// We need mutable members as we keep these objects in a std::set<> (providing only const
// access) but we modify these members while carefully preserving the std::set<> ordering.
mutable size_t size;
mutable FreeByStartSet::const_iterator free_by_start_entry;
};
struct FreeBySizeComparator {
bool operator()(const FreeBySizeEntry& lhs, const FreeBySizeEntry& rhs) const {
if (lhs.size != rhs.size) {
return lhs.size < rhs.size;
} else {
return lhs.free_by_start_entry->Start() < rhs.free_by_start_entry->Start();
}
}
};
using FreeBySizeSet = std::set<FreeBySizeEntry, FreeBySizeComparator>;
SpaceChunk NewFileChunk(size_t min_size) REQUIRES(lock_);
void RemoveChunk(FreeBySizeSet::const_iterator free_by_size_pos) REQUIRES(lock_);
void InsertChunk(const SpaceChunk& chunk) REQUIRES(lock_);
int fd_;
size_t size_;
// NOTE: Boost.Bimap would be useful for the two following members.
// Map start of a free chunk to its size.
FreeByStartSet free_by_start_ GUARDED_BY(lock_);
// Free chunks ordered by size.
FreeBySizeSet free_by_size_ GUARDED_BY(lock_);
mutable Mutex lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
DISALLOW_COPY_AND_ASSIGN(SwapSpace);
};
template <typename T> class SwapAllocator;
template <>
class SwapAllocator<void> {
public:
using value_type = void;
using pointer = void*;
using const_pointer = const void*;
template <typename U>
struct rebind {
using other = SwapAllocator<U>;
};
explicit SwapAllocator(SwapSpace* swap_space) : swap_space_(swap_space) {}
template <typename U>
SwapAllocator(const SwapAllocator<U>& other)
: swap_space_(other.swap_space_) {}
SwapAllocator(const SwapAllocator& other) = default;
SwapAllocator& operator=(const SwapAllocator& other) = default;
~SwapAllocator() = default;
private:
SwapSpace* swap_space_;
template <typename U>
friend class SwapAllocator;
template <typename U>
friend bool operator==(const SwapAllocator<U>& lhs, const SwapAllocator<U>& rhs);
};
template <typename T>
class SwapAllocator {
public:
using value_type = T;
using pointer = T*;
using reference = T&;
using const_pointer = const T*;
using const_reference = const T&;
using size_type = size_t;
using difference_type = ptrdiff_t;
template <typename U>
struct rebind {
using other = SwapAllocator<U>;
};
explicit SwapAllocator(SwapSpace* swap_space) : swap_space_(swap_space) {}
template <typename U>
SwapAllocator(const SwapAllocator<U>& other)
: swap_space_(other.swap_space_) {}
SwapAllocator(const SwapAllocator& other) = default;
SwapAllocator& operator=(const SwapAllocator& other) = default;
~SwapAllocator() = default;
size_type max_size() const {
return static_cast<size_type>(-1) / sizeof(T);
}
pointer address(reference x) const { return &x; }
const_pointer address(const_reference x) const { return &x; }
pointer allocate(size_type n, SwapAllocator<void>::pointer hint ATTRIBUTE_UNUSED = nullptr) {
DCHECK_LE(n, max_size());
if (swap_space_ == nullptr) {
T* result = reinterpret_cast<T*>(malloc(n * sizeof(T)));
CHECK_IMPLIES(result == nullptr, n == 0u); // Abort if malloc() fails.
return result;
} else {
return reinterpret_cast<T*>(swap_space_->Alloc(n * sizeof(T)));
}
}
void deallocate(pointer p, size_type n) {
if (swap_space_ == nullptr) {
free(p);
} else {
swap_space_->Free(p, n * sizeof(T));
}
}
void construct(pointer p, const_reference val) {
new (static_cast<void*>(p)) value_type(val);
}
template <class U, class... Args>
void construct(U* p, Args&&... args) {
::new (static_cast<void*>(p)) U(std::forward<Args>(args)...);
}
void destroy(pointer p) {
p->~value_type();
}
inline bool operator==(SwapAllocator const& other) {
return swap_space_ == other.swap_space_;
}
inline bool operator!=(SwapAllocator const& other) {
return !operator==(other);
}
private:
SwapSpace* swap_space_;
template <typename U>
friend class SwapAllocator;
template <typename U>
friend bool operator==(const SwapAllocator<U>& lhs, const SwapAllocator<U>& rhs);
};
template <typename T>
inline bool operator==(const SwapAllocator<T>& lhs, const SwapAllocator<T>& rhs) {
return lhs.swap_space_ == rhs.swap_space_;
}
template <typename T>
inline bool operator!=(const SwapAllocator<T>& lhs, const SwapAllocator<T>& rhs) {
return !(lhs == rhs);
}
template <typename T>
using SwapVector = std::vector<T, SwapAllocator<T>>;
template <typename T, typename Comparator>
using SwapSet = std::set<T, Comparator, SwapAllocator<T>>;
} // namespace art
#endif // ART_COMPILER_UTILS_SWAP_SPACE_H_