/** @file | |
Contains code that implements the virtual machine. | |
Copyright (c) 2006 - 2010, Intel Corporation. All rights reserved.<BR> | |
This program and the accompanying materials | |
are licensed and made available under the terms and conditions of the BSD License | |
which accompanies this distribution. The full text of the license may be found at | |
http://opensource.org/licenses/bsd-license.php | |
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, | |
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. | |
**/ | |
#include "EbcInt.h" | |
#include "EbcExecute.h" | |
// | |
// Define some useful data size constants to allow switch statements based on | |
// size of operands or data. | |
// | |
#define DATA_SIZE_INVALID 0 | |
#define DATA_SIZE_8 1 | |
#define DATA_SIZE_16 2 | |
#define DATA_SIZE_32 4 | |
#define DATA_SIZE_64 8 | |
#define DATA_SIZE_N 48 // 4 or 8 | |
// | |
// Structure we'll use to dispatch opcodes to execute functions. | |
// | |
typedef struct { | |
EFI_STATUS (*ExecuteFunction) (IN VM_CONTEXT * VmPtr); | |
} | |
VM_TABLE_ENTRY; | |
typedef | |
UINT64 | |
(*DATA_MANIP_EXEC_FUNCTION) ( | |
IN VM_CONTEXT * VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
); | |
/** | |
Decode a 16-bit index to determine the offset. Given an index value: | |
b15 - sign bit | |
b14:12 - number of bits in this index assigned to natural units (=a) | |
ba:11 - constant units = ConstUnits | |
b0:a - natural units = NaturalUnits | |
Given this info, the offset can be computed by: | |
offset = sign_bit * (ConstUnits + NaturalUnits * sizeof(UINTN)) | |
Max offset is achieved with index = 0x7FFF giving an offset of | |
0x27B (32-bit machine) or 0x477 (64-bit machine). | |
Min offset is achieved with index = | |
@param VmPtr A pointer to VM context. | |
@param CodeOffset Offset from IP of the location of the 16-bit index | |
to decode. | |
@return The decoded offset. | |
**/ | |
INT16 | |
VmReadIndex16 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT32 CodeOffset | |
); | |
/** | |
Decode a 32-bit index to determine the offset. | |
@param VmPtr A pointer to VM context. | |
@param CodeOffset Offset from IP of the location of the 32-bit index | |
to decode. | |
@return Converted index per EBC VM specification. | |
**/ | |
INT32 | |
VmReadIndex32 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT32 CodeOffset | |
); | |
/** | |
Decode a 64-bit index to determine the offset. | |
@param VmPtr A pointer to VM context.s | |
@param CodeOffset Offset from IP of the location of the 64-bit index | |
to decode. | |
@return Converted index per EBC VM specification | |
**/ | |
INT64 | |
VmReadIndex64 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT32 CodeOffset | |
); | |
/** | |
Reads 8-bit data form the memory address. | |
@param VmPtr A pointer to VM context. | |
@param Addr The memory address. | |
@return The 8-bit value from the memory address. | |
**/ | |
UINT8 | |
VmReadMem8 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINTN Addr | |
); | |
/** | |
Reads 16-bit data form the memory address. | |
@param VmPtr A pointer to VM context. | |
@param Addr The memory address. | |
@return The 16-bit value from the memory address. | |
**/ | |
UINT16 | |
VmReadMem16 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINTN Addr | |
); | |
/** | |
Reads 32-bit data form the memory address. | |
@param VmPtr A pointer to VM context. | |
@param Addr The memory address. | |
@return The 32-bit value from the memory address. | |
**/ | |
UINT32 | |
VmReadMem32 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINTN Addr | |
); | |
/** | |
Reads 64-bit data form the memory address. | |
@param VmPtr A pointer to VM context. | |
@param Addr The memory address. | |
@return The 64-bit value from the memory address. | |
**/ | |
UINT64 | |
VmReadMem64 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINTN Addr | |
); | |
/** | |
Read a natural value from memory. May or may not be aligned. | |
@param VmPtr current VM context | |
@param Addr the address to read from | |
@return The natural value at address Addr. | |
**/ | |
UINTN | |
VmReadMemN ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINTN Addr | |
); | |
/** | |
Writes 8-bit data to memory address. | |
This routine is called by the EBC data | |
movement instructions that write to memory. Since these writes | |
may be to the stack, which looks like (high address on top) this, | |
[EBC entry point arguments] | |
[VM stack] | |
[EBC stack] | |
we need to detect all attempts to write to the EBC entry point argument | |
stack area and adjust the address (which will initially point into the | |
VM stack) to point into the EBC entry point arguments. | |
@param VmPtr A pointer to a VM context. | |
@param Addr Address to write to. | |
@param Data Value to write to Addr. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
@retval Other Some error occurs when writing data to the address. | |
**/ | |
EFI_STATUS | |
VmWriteMem8 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINTN Addr, | |
IN UINT8 Data | |
); | |
/** | |
Writes 16-bit data to memory address. | |
This routine is called by the EBC data | |
movement instructions that write to memory. Since these writes | |
may be to the stack, which looks like (high address on top) this, | |
[EBC entry point arguments] | |
[VM stack] | |
[EBC stack] | |
we need to detect all attempts to write to the EBC entry point argument | |
stack area and adjust the address (which will initially point into the | |
VM stack) to point into the EBC entry point arguments. | |
@param VmPtr A pointer to a VM context. | |
@param Addr Address to write to. | |
@param Data Value to write to Addr. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
@retval Other Some error occurs when writing data to the address. | |
**/ | |
EFI_STATUS | |
VmWriteMem16 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINTN Addr, | |
IN UINT16 Data | |
); | |
/** | |
Writes 32-bit data to memory address. | |
This routine is called by the EBC data | |
movement instructions that write to memory. Since these writes | |
may be to the stack, which looks like (high address on top) this, | |
[EBC entry point arguments] | |
[VM stack] | |
[EBC stack] | |
we need to detect all attempts to write to the EBC entry point argument | |
stack area and adjust the address (which will initially point into the | |
VM stack) to point into the EBC entry point arguments. | |
@param VmPtr A pointer to a VM context. | |
@param Addr Address to write to. | |
@param Data Value to write to Addr. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
@retval Other Some error occurs when writing data to the address. | |
**/ | |
EFI_STATUS | |
VmWriteMem32 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINTN Addr, | |
IN UINT32 Data | |
); | |
/** | |
Reads 16-bit unsigned data from the code stream. | |
This routine provides the ability to read raw unsigned data from the code | |
stream. | |
@param VmPtr A pointer to VM context | |
@param Offset Offset from current IP to the raw data to read. | |
@return The raw unsigned 16-bit value from the code stream. | |
**/ | |
UINT16 | |
VmReadCode16 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT32 Offset | |
); | |
/** | |
Reads 32-bit unsigned data from the code stream. | |
This routine provides the ability to read raw unsigned data from the code | |
stream. | |
@param VmPtr A pointer to VM context | |
@param Offset Offset from current IP to the raw data to read. | |
@return The raw unsigned 32-bit value from the code stream. | |
**/ | |
UINT32 | |
VmReadCode32 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT32 Offset | |
); | |
/** | |
Reads 64-bit unsigned data from the code stream. | |
This routine provides the ability to read raw unsigned data from the code | |
stream. | |
@param VmPtr A pointer to VM context | |
@param Offset Offset from current IP to the raw data to read. | |
@return The raw unsigned 64-bit value from the code stream. | |
**/ | |
UINT64 | |
VmReadCode64 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT32 Offset | |
); | |
/** | |
Reads 8-bit immediate value at the offset. | |
This routine is called by the EBC execute | |
functions to read EBC immediate values from the code stream. | |
Since we can't assume alignment, each tries to read in the biggest | |
chunks size available, but will revert to smaller reads if necessary. | |
@param VmPtr A pointer to a VM context. | |
@param Offset offset from IP of the code bytes to read. | |
@return Signed data of the requested size from the specified address. | |
**/ | |
INT8 | |
VmReadImmed8 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT32 Offset | |
); | |
/** | |
Reads 16-bit immediate value at the offset. | |
This routine is called by the EBC execute | |
functions to read EBC immediate values from the code stream. | |
Since we can't assume alignment, each tries to read in the biggest | |
chunks size available, but will revert to smaller reads if necessary. | |
@param VmPtr A pointer to a VM context. | |
@param Offset offset from IP of the code bytes to read. | |
@return Signed data of the requested size from the specified address. | |
**/ | |
INT16 | |
VmReadImmed16 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT32 Offset | |
); | |
/** | |
Reads 32-bit immediate value at the offset. | |
This routine is called by the EBC execute | |
functions to read EBC immediate values from the code stream. | |
Since we can't assume alignment, each tries to read in the biggest | |
chunks size available, but will revert to smaller reads if necessary. | |
@param VmPtr A pointer to a VM context. | |
@param Offset offset from IP of the code bytes to read. | |
@return Signed data of the requested size from the specified address. | |
**/ | |
INT32 | |
VmReadImmed32 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT32 Offset | |
); | |
/** | |
Reads 64-bit immediate value at the offset. | |
This routine is called by the EBC execute | |
functions to read EBC immediate values from the code stream. | |
Since we can't assume alignment, each tries to read in the biggest | |
chunks size available, but will revert to smaller reads if necessary. | |
@param VmPtr A pointer to a VM context. | |
@param Offset offset from IP of the code bytes to read. | |
@return Signed data of the requested size from the specified address. | |
**/ | |
INT64 | |
VmReadImmed64 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT32 Offset | |
); | |
/** | |
Given an address that EBC is going to read from or write to, return | |
an appropriate address that accounts for a gap in the stack. | |
The stack for this application looks like this (high addr on top) | |
[EBC entry point arguments] | |
[VM stack] | |
[EBC stack] | |
The EBC assumes that its arguments are at the top of its stack, which | |
is where the VM stack is really. Therefore if the EBC does memory | |
accesses into the VM stack area, then we need to convert the address | |
to point to the EBC entry point arguments area. Do this here. | |
@param VmPtr A Pointer to VM context. | |
@param Addr Address of interest | |
@return The unchanged address if it's not in the VM stack region. Otherwise, | |
adjust for the stack gap and return the modified address. | |
**/ | |
UINTN | |
ConvertStackAddr ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINTN Addr | |
); | |
/** | |
Execute all the EBC data manipulation instructions. | |
Since the EBC data manipulation instructions all have the same basic form, | |
they can share the code that does the fetch of operands and the write-back | |
of the result. This function performs the fetch of the operands (even if | |
both are not needed to be fetched, like NOT instruction), dispatches to the | |
appropriate subfunction, then writes back the returned result. | |
Format: | |
INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16} | |
@param VmPtr A pointer to VM context. | |
@param IsSignedOp Indicates whether the operand is signed or not. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteDataManip ( | |
IN VM_CONTEXT *VmPtr, | |
IN BOOLEAN IsSignedOp | |
); | |
// | |
// Functions that execute VM opcodes | |
// | |
/** | |
Execute the EBC BREAK instruction. | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteBREAK ( | |
IN VM_CONTEXT *VmPtr | |
); | |
/** | |
Execute the JMP instruction. | |
Instruction syntax: | |
JMP64{cs|cc} Immed64 | |
JMP32{cs|cc} {@}R1 {Immed32|Index32} | |
Encoding: | |
b0.7 - immediate data present | |
b0.6 - 1 = 64 bit immediate data | |
0 = 32 bit immediate data | |
b1.7 - 1 = conditional | |
b1.6 1 = CS (condition set) | |
0 = CC (condition clear) | |
b1.4 1 = relative address | |
0 = absolute address | |
b1.3 1 = operand1 indirect | |
b1.2-0 operand 1 | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteJMP ( | |
IN VM_CONTEXT *VmPtr | |
); | |
/** | |
Execute the EBC JMP8 instruction. | |
Instruction syntax: | |
JMP8{cs|cc} Offset/2 | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteJMP8 ( | |
IN VM_CONTEXT *VmPtr | |
); | |
/** | |
Implements the EBC CALL instruction. | |
Instruction format: | |
CALL64 Immed64 | |
CALL32 {@}R1 {Immed32|Index32} | |
CALLEX64 Immed64 | |
CALLEX16 {@}R1 {Immed32} | |
If Rx == R0, then it's a PC relative call to PC = PC + imm32. | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteCALL ( | |
IN VM_CONTEXT *VmPtr | |
); | |
/** | |
Execute the EBC RET instruction. | |
Instruction syntax: | |
RET | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteRET ( | |
IN VM_CONTEXT *VmPtr | |
); | |
/** | |
Execute the EBC CMP instruction. | |
Instruction syntax: | |
CMP[32|64][eq|lte|gte|ulte|ugte] R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteCMP ( | |
IN VM_CONTEXT *VmPtr | |
); | |
/** | |
Execute the EBC CMPI instruction | |
Instruction syntax: | |
CMPI[32|64]{w|d}[eq|lte|gte|ulte|ugte] {@}Rx {Index16}, Immed16|Immed32 | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteCMPI ( | |
IN VM_CONTEXT *VmPtr | |
); | |
/** | |
Execute the MOVxx instructions. | |
Instruction format: | |
MOV[b|w|d|q|n]{w|d} {@}R1 {Index16|32}, {@}R2 {Index16|32} | |
MOVqq {@}R1 {Index64}, {@}R2 {Index64} | |
Copies contents of [R2] -> [R1], zero extending where required. | |
First character indicates the size of the move. | |
Second character indicates the size of the index(s). | |
Invalid to have R1 direct with index. | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteMOVxx ( | |
IN VM_CONTEXT *VmPtr | |
); | |
/** | |
Execute the EBC MOVI. | |
Instruction syntax: | |
MOVI[b|w|d|q][w|d|q] {@}R1 {Index16}, ImmData16|32|64 | |
First variable character specifies the move size | |
Second variable character specifies size of the immediate data | |
Sign-extend the immediate data to the size of the operation, and zero-extend | |
if storing to a register. | |
Operand1 direct with index/immed is invalid. | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteMOVI ( | |
IN VM_CONTEXT *VmPtr | |
); | |
/** | |
Execute the EBC MOV immediate natural. This instruction moves an immediate | |
index value into a register or memory location. | |
Instruction syntax: | |
MOVIn[w|d|q] {@}R1 {Index16}, Index16|32|64 | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteMOVIn ( | |
IN VM_CONTEXT *VmPtr | |
); | |
/** | |
Execute the EBC MOVREL instruction. | |
Dest <- Ip + ImmData | |
Instruction syntax: | |
MOVREL[w|d|q] {@}R1 {Index16}, ImmData16|32|64 | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteMOVREL ( | |
IN VM_CONTEXT *VmPtr | |
); | |
/** | |
Execute the EBC PUSHn instruction | |
Instruction syntax: | |
PUSHn {@}R1 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecutePUSHn ( | |
IN VM_CONTEXT *VmPtr | |
); | |
/** | |
Execute the EBC PUSH instruction. | |
Instruction syntax: | |
PUSH[32|64] {@}R1 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecutePUSH ( | |
IN VM_CONTEXT *VmPtr | |
); | |
/** | |
Execute the EBC POPn instruction. | |
Instruction syntax: | |
POPn {@}R1 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecutePOPn ( | |
IN VM_CONTEXT *VmPtr | |
); | |
/** | |
Execute the EBC POP instruction. | |
Instruction syntax: | |
POPn {@}R1 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecutePOP ( | |
IN VM_CONTEXT *VmPtr | |
); | |
/** | |
Execute all the EBC signed data manipulation instructions. | |
Since the EBC data manipulation instructions all have the same basic form, | |
they can share the code that does the fetch of operands and the write-back | |
of the result. This function performs the fetch of the operands (even if | |
both are not needed to be fetched, like NOT instruction), dispatches to the | |
appropriate subfunction, then writes back the returned result. | |
Format: | |
INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16} | |
@param VmPtr A pointer to VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteSignedDataManip ( | |
IN VM_CONTEXT *VmPtr | |
); | |
/** | |
Execute all the EBC unsigned data manipulation instructions. | |
Since the EBC data manipulation instructions all have the same basic form, | |
they can share the code that does the fetch of operands and the write-back | |
of the result. This function performs the fetch of the operands (even if | |
both are not needed to be fetched, like NOT instruction), dispatches to the | |
appropriate subfunction, then writes back the returned result. | |
Format: | |
INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16} | |
@param VmPtr A pointer to VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteUnsignedDataManip ( | |
IN VM_CONTEXT *VmPtr | |
); | |
/** | |
Execute the EBC LOADSP instruction. | |
Instruction syntax: | |
LOADSP SP1, R2 | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteLOADSP ( | |
IN VM_CONTEXT *VmPtr | |
); | |
/** | |
Execute the EBC STORESP instruction. | |
Instruction syntax: | |
STORESP Rx, FLAGS|IP | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteSTORESP ( | |
IN VM_CONTEXT *VmPtr | |
); | |
/** | |
Execute the EBC MOVsnw instruction. This instruction loads a signed | |
natural value from memory or register to another memory or register. On | |
32-bit machines, the value gets sign-extended to 64 bits if the destination | |
is a register. | |
Instruction syntax: | |
MOVsnd {@}R1 {Indx32}, {@}R2 {Index32|Immed32} | |
0:7 1=>operand1 index present | |
0:6 1=>operand2 index present | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteMOVsnd ( | |
IN VM_CONTEXT *VmPtr | |
); | |
/** | |
Execute the EBC MOVsnw instruction. This instruction loads a signed | |
natural value from memory or register to another memory or register. On | |
32-bit machines, the value gets sign-extended to 64 bits if the destination | |
is a register. | |
Instruction syntax: | |
MOVsnw {@}R1 {Index16}, {@}R2 {Index16|Immed16} | |
0:7 1=>operand1 index present | |
0:6 1=>operand2 index present | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteMOVsnw ( | |
IN VM_CONTEXT *VmPtr | |
); | |
// | |
// Data manipulation subfunctions | |
// | |
/** | |
Execute the EBC NOT instruction.s | |
Instruction syntax: | |
NOT[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return ~Op2 | |
**/ | |
UINT64 | |
ExecuteNOT ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
); | |
/** | |
Execute the EBC NEG instruction. | |
Instruction syntax: | |
NEG[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op2 * -1 | |
**/ | |
UINT64 | |
ExecuteNEG ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
); | |
/** | |
Execute the EBC ADD instruction. | |
Instruction syntax: | |
ADD[32|64] {@}R1, {@}R2 {Index16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 + Op2 | |
**/ | |
UINT64 | |
ExecuteADD ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
); | |
/** | |
Execute the EBC SUB instruction. | |
Instruction syntax: | |
SUB[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 - Op2 | |
**/ | |
UINT64 | |
ExecuteSUB ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
); | |
/** | |
Execute the EBC MUL instruction. | |
Instruction syntax: | |
SUB[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 * Op2 | |
**/ | |
UINT64 | |
ExecuteMUL ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
); | |
/** | |
Execute the EBC MULU instruction | |
Instruction syntax: | |
MULU[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return (unsigned)Op1 * (unsigned)Op2 | |
**/ | |
UINT64 | |
ExecuteMULU ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
); | |
/** | |
Execute the EBC DIV instruction. | |
Instruction syntax: | |
DIV[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 / Op2 | |
**/ | |
UINT64 | |
ExecuteDIV ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
); | |
/** | |
Execute the EBC DIVU instruction | |
Instruction syntax: | |
DIVU[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return (unsigned)Op1 / (unsigned)Op2 | |
**/ | |
UINT64 | |
ExecuteDIVU ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
); | |
/** | |
Execute the EBC MOD instruction. | |
Instruction syntax: | |
MOD[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 MODULUS Op2 | |
**/ | |
UINT64 | |
ExecuteMOD ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
); | |
/** | |
Execute the EBC MODU instruction. | |
Instruction syntax: | |
MODU[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 UNSIGNED_MODULUS Op2 | |
**/ | |
UINT64 | |
ExecuteMODU ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
); | |
/** | |
Execute the EBC AND instruction. | |
Instruction syntax: | |
AND[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 AND Op2 | |
**/ | |
UINT64 | |
ExecuteAND ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
); | |
/** | |
Execute the EBC OR instruction. | |
Instruction syntax: | |
OR[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 OR Op2 | |
**/ | |
UINT64 | |
ExecuteOR ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
); | |
/** | |
Execute the EBC XOR instruction. | |
Instruction syntax: | |
XOR[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 XOR Op2 | |
**/ | |
UINT64 | |
ExecuteXOR ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
); | |
/** | |
Execute the EBC SHL shift left instruction. | |
Instruction syntax: | |
SHL[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 << Op2 | |
**/ | |
UINT64 | |
ExecuteSHL ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
); | |
/** | |
Execute the EBC SHR instruction. | |
Instruction syntax: | |
SHR[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 >> Op2 (unsigned operands) | |
**/ | |
UINT64 | |
ExecuteSHR ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
); | |
/** | |
Execute the EBC ASHR instruction. | |
Instruction syntax: | |
ASHR[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 >> Op2 (signed) | |
**/ | |
UINT64 | |
ExecuteASHR ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
); | |
/** | |
Execute the EBC EXTNDB instruction to sign-extend a byte value. | |
Instruction syntax: | |
EXTNDB[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return (INT64)(INT8)Op2 | |
**/ | |
UINT64 | |
ExecuteEXTNDB ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
); | |
/** | |
Execute the EBC EXTNDW instruction to sign-extend a 16-bit value. | |
Instruction syntax: | |
EXTNDW[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return (INT64)(INT16)Op2 | |
**/ | |
UINT64 | |
ExecuteEXTNDW ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
); | |
/** | |
Execute the EBC EXTNDD instruction to sign-extend a 32-bit value. | |
Instruction syntax: | |
EXTNDD[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return (INT64)(INT32)Op2 | |
**/ | |
UINT64 | |
ExecuteEXTNDD ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
); | |
// | |
// Once we retrieve the operands for the data manipulation instructions, | |
// call these functions to perform the operation. | |
// | |
CONST DATA_MANIP_EXEC_FUNCTION mDataManipDispatchTable[] = { | |
ExecuteNOT, | |
ExecuteNEG, | |
ExecuteADD, | |
ExecuteSUB, | |
ExecuteMUL, | |
ExecuteMULU, | |
ExecuteDIV, | |
ExecuteDIVU, | |
ExecuteMOD, | |
ExecuteMODU, | |
ExecuteAND, | |
ExecuteOR, | |
ExecuteXOR, | |
ExecuteSHL, | |
ExecuteSHR, | |
ExecuteASHR, | |
ExecuteEXTNDB, | |
ExecuteEXTNDW, | |
ExecuteEXTNDD, | |
}; | |
CONST VM_TABLE_ENTRY mVmOpcodeTable[] = { | |
{ ExecuteBREAK }, // opcode 0x00 | |
{ ExecuteJMP }, // opcode 0x01 | |
{ ExecuteJMP8 }, // opcode 0x02 | |
{ ExecuteCALL }, // opcode 0x03 | |
{ ExecuteRET }, // opcode 0x04 | |
{ ExecuteCMP }, // opcode 0x05 CMPeq | |
{ ExecuteCMP }, // opcode 0x06 CMPlte | |
{ ExecuteCMP }, // opcode 0x07 CMPgte | |
{ ExecuteCMP }, // opcode 0x08 CMPulte | |
{ ExecuteCMP }, // opcode 0x09 CMPugte | |
{ ExecuteUnsignedDataManip }, // opcode 0x0A NOT | |
{ ExecuteSignedDataManip }, // opcode 0x0B NEG | |
{ ExecuteSignedDataManip }, // opcode 0x0C ADD | |
{ ExecuteSignedDataManip }, // opcode 0x0D SUB | |
{ ExecuteSignedDataManip }, // opcode 0x0E MUL | |
{ ExecuteUnsignedDataManip }, // opcode 0x0F MULU | |
{ ExecuteSignedDataManip }, // opcode 0x10 DIV | |
{ ExecuteUnsignedDataManip }, // opcode 0x11 DIVU | |
{ ExecuteSignedDataManip }, // opcode 0x12 MOD | |
{ ExecuteUnsignedDataManip }, // opcode 0x13 MODU | |
{ ExecuteUnsignedDataManip }, // opcode 0x14 AND | |
{ ExecuteUnsignedDataManip }, // opcode 0x15 OR | |
{ ExecuteUnsignedDataManip }, // opcode 0x16 XOR | |
{ ExecuteUnsignedDataManip }, // opcode 0x17 SHL | |
{ ExecuteUnsignedDataManip }, // opcode 0x18 SHR | |
{ ExecuteSignedDataManip }, // opcode 0x19 ASHR | |
{ ExecuteUnsignedDataManip }, // opcode 0x1A EXTNDB | |
{ ExecuteUnsignedDataManip }, // opcode 0x1B EXTNDW | |
{ ExecuteUnsignedDataManip }, // opcode 0x1C EXTNDD | |
{ ExecuteMOVxx }, // opcode 0x1D MOVBW | |
{ ExecuteMOVxx }, // opcode 0x1E MOVWW | |
{ ExecuteMOVxx }, // opcode 0x1F MOVDW | |
{ ExecuteMOVxx }, // opcode 0x20 MOVQW | |
{ ExecuteMOVxx }, // opcode 0x21 MOVBD | |
{ ExecuteMOVxx }, // opcode 0x22 MOVWD | |
{ ExecuteMOVxx }, // opcode 0x23 MOVDD | |
{ ExecuteMOVxx }, // opcode 0x24 MOVQD | |
{ ExecuteMOVsnw }, // opcode 0x25 MOVsnw | |
{ ExecuteMOVsnd }, // opcode 0x26 MOVsnd | |
{ NULL }, // opcode 0x27 | |
{ ExecuteMOVxx }, // opcode 0x28 MOVqq | |
{ ExecuteLOADSP }, // opcode 0x29 LOADSP SP1, R2 | |
{ ExecuteSTORESP }, // opcode 0x2A STORESP R1, SP2 | |
{ ExecutePUSH }, // opcode 0x2B PUSH {@}R1 [imm16] | |
{ ExecutePOP }, // opcode 0x2C POP {@}R1 [imm16] | |
{ ExecuteCMPI }, // opcode 0x2D CMPIEQ | |
{ ExecuteCMPI }, // opcode 0x2E CMPILTE | |
{ ExecuteCMPI }, // opcode 0x2F CMPIGTE | |
{ ExecuteCMPI }, // opcode 0x30 CMPIULTE | |
{ ExecuteCMPI }, // opcode 0x31 CMPIUGTE | |
{ ExecuteMOVxx }, // opcode 0x32 MOVN | |
{ ExecuteMOVxx }, // opcode 0x33 MOVND | |
{ NULL }, // opcode 0x34 | |
{ ExecutePUSHn }, // opcode 0x35 | |
{ ExecutePOPn }, // opcode 0x36 | |
{ ExecuteMOVI }, // opcode 0x37 - mov immediate data | |
{ ExecuteMOVIn }, // opcode 0x38 - mov immediate natural | |
{ ExecuteMOVREL }, // opcode 0x39 - move data relative to PC | |
{ NULL }, // opcode 0x3a | |
{ NULL }, // opcode 0x3b | |
{ NULL }, // opcode 0x3c | |
{ NULL }, // opcode 0x3d | |
{ NULL }, // opcode 0x3e | |
{ NULL } // opcode 0x3f | |
}; | |
// | |
// Length of JMP instructions, depending on upper two bits of opcode. | |
// | |
CONST UINT8 mJMPLen[] = { 2, 2, 6, 10 }; | |
// | |
// Simple Debugger Protocol GUID | |
// | |
EFI_GUID mEbcSimpleDebuggerProtocolGuid = EFI_EBC_SIMPLE_DEBUGGER_PROTOCOL_GUID; | |
/** | |
Given a pointer to a new VM context, execute one or more instructions. This | |
function is only used for test purposes via the EBC VM test protocol. | |
@param This A pointer to the EFI_EBC_VM_TEST_PROTOCOL structure. | |
@param VmPtr A pointer to a VM context. | |
@param InstructionCount A pointer to a UINTN value holding the number of | |
instructions to execute. If it holds value of 0, | |
then the instruction to be executed is 1. | |
@retval EFI_UNSUPPORTED At least one of the opcodes is not supported. | |
@retval EFI_SUCCESS All of the instructions are executed successfully. | |
**/ | |
EFI_STATUS | |
EbcExecuteInstructions ( | |
IN EFI_EBC_VM_TEST_PROTOCOL *This, | |
IN VM_CONTEXT *VmPtr, | |
IN OUT UINTN *InstructionCount | |
) | |
{ | |
UINTN ExecFunc; | |
EFI_STATUS Status; | |
UINTN InstructionsLeft; | |
UINTN SavedInstructionCount; | |
Status = EFI_SUCCESS; | |
if (*InstructionCount == 0) { | |
InstructionsLeft = 1; | |
} else { | |
InstructionsLeft = *InstructionCount; | |
} | |
SavedInstructionCount = *InstructionCount; | |
*InstructionCount = 0; | |
// | |
// Index into the opcode table using the opcode byte for this instruction. | |
// This gives you the execute function, which we first test for null, then | |
// call it if it's not null. | |
// | |
while (InstructionsLeft != 0) { | |
ExecFunc = (UINTN) mVmOpcodeTable[(*VmPtr->Ip & OPCODE_M_OPCODE)].ExecuteFunction; | |
if (ExecFunc == (UINTN) NULL) { | |
EbcDebugSignalException (EXCEPT_EBC_INVALID_OPCODE, EXCEPTION_FLAG_FATAL, VmPtr); | |
return EFI_UNSUPPORTED; | |
} else { | |
mVmOpcodeTable[(*VmPtr->Ip & OPCODE_M_OPCODE)].ExecuteFunction (VmPtr); | |
*InstructionCount = *InstructionCount + 1; | |
} | |
// | |
// Decrement counter if applicable | |
// | |
if (SavedInstructionCount != 0) { | |
InstructionsLeft--; | |
} | |
} | |
return Status; | |
} | |
/** | |
Execute an EBC image from an entry point or from a published protocol. | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_UNSUPPORTED At least one of the opcodes is not supported. | |
@retval EFI_SUCCESS All of the instructions are executed successfully. | |
**/ | |
EFI_STATUS | |
EbcExecute ( | |
IN VM_CONTEXT *VmPtr | |
) | |
{ | |
UINTN ExecFunc; | |
UINT8 StackCorrupted; | |
EFI_STATUS Status; | |
EFI_EBC_SIMPLE_DEBUGGER_PROTOCOL *EbcSimpleDebugger; | |
mVmPtr = VmPtr; | |
EbcSimpleDebugger = NULL; | |
Status = EFI_SUCCESS; | |
StackCorrupted = 0; | |
// | |
// Make sure the magic value has been put on the stack before we got here. | |
// | |
if (*VmPtr->StackMagicPtr != (UINTN) VM_STACK_KEY_VALUE) { | |
StackCorrupted = 1; | |
} | |
VmPtr->FramePtr = (VOID *) ((UINT8 *) (UINTN) VmPtr->Gpr[0] + 8); | |
// | |
// Try to get the debug support for EBC | |
// | |
DEBUG_CODE_BEGIN (); | |
Status = gBS->LocateProtocol ( | |
&mEbcSimpleDebuggerProtocolGuid, | |
NULL, | |
(VOID **) &EbcSimpleDebugger | |
); | |
if (EFI_ERROR (Status)) { | |
EbcSimpleDebugger = NULL; | |
} | |
DEBUG_CODE_END (); | |
// | |
// Save the start IP for debug. For example, if we take an exception we | |
// can print out the location of the exception relative to the entry point, | |
// which could then be used in a disassembly listing to find the problem. | |
// | |
VmPtr->EntryPoint = (VOID *) VmPtr->Ip; | |
// | |
// We'll wait for this flag to know when we're done. The RET | |
// instruction sets it if it runs out of stack. | |
// | |
VmPtr->StopFlags = 0; | |
while ((VmPtr->StopFlags & STOPFLAG_APP_DONE) == 0) { | |
// | |
// If we've found a simple debugger protocol, call it | |
// | |
DEBUG_CODE_BEGIN (); | |
if (EbcSimpleDebugger != NULL) { | |
EbcSimpleDebugger->Debugger (EbcSimpleDebugger, VmPtr); | |
} | |
DEBUG_CODE_END (); | |
// | |
// Use the opcode bits to index into the opcode dispatch table. If the | |
// function pointer is null then generate an exception. | |
// | |
ExecFunc = (UINTN) mVmOpcodeTable[(*VmPtr->Ip & OPCODE_M_OPCODE)].ExecuteFunction; | |
if (ExecFunc == (UINTN) NULL) { | |
EbcDebugSignalException (EXCEPT_EBC_INVALID_OPCODE, EXCEPTION_FLAG_FATAL, VmPtr); | |
Status = EFI_UNSUPPORTED; | |
goto Done; | |
} | |
// | |
// The EBC VM is a strongly ordered processor, so perform a fence operation before | |
// and after each instruction is executed. | |
// | |
MemoryFence (); | |
mVmOpcodeTable[(*VmPtr->Ip & OPCODE_M_OPCODE)].ExecuteFunction (VmPtr); | |
MemoryFence (); | |
// | |
// If the step flag is set, signal an exception and continue. We don't | |
// clear it here. Assuming the debugger is responsible for clearing it. | |
// | |
if (VMFLAG_ISSET (VmPtr, VMFLAGS_STEP)) { | |
EbcDebugSignalException (EXCEPT_EBC_STEP, EXCEPTION_FLAG_NONE, VmPtr); | |
} | |
// | |
// Make sure stack has not been corrupted. Only report it once though. | |
// | |
if ((StackCorrupted == 0) && (*VmPtr->StackMagicPtr != (UINTN) VM_STACK_KEY_VALUE)) { | |
EbcDebugSignalException (EXCEPT_EBC_STACK_FAULT, EXCEPTION_FLAG_FATAL, VmPtr); | |
StackCorrupted = 1; | |
} | |
if ((StackCorrupted == 0) && ((UINT64)VmPtr->Gpr[0] <= (UINT64)(UINTN) VmPtr->StackTop)) { | |
EbcDebugSignalException (EXCEPT_EBC_STACK_FAULT, EXCEPTION_FLAG_FATAL, VmPtr); | |
StackCorrupted = 1; | |
} | |
} | |
Done: | |
mVmPtr = NULL; | |
return Status; | |
} | |
/** | |
Execute the MOVxx instructions. | |
Instruction format: | |
MOV[b|w|d|q|n]{w|d} {@}R1 {Index16|32}, {@}R2 {Index16|32} | |
MOVqq {@}R1 {Index64}, {@}R2 {Index64} | |
Copies contents of [R2] -> [R1], zero extending where required. | |
First character indicates the size of the move. | |
Second character indicates the size of the index(s). | |
Invalid to have R1 direct with index. | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteMOVxx ( | |
IN VM_CONTEXT *VmPtr | |
) | |
{ | |
UINT8 Opcode; | |
UINT8 OpcMasked; | |
UINT8 Operands; | |
UINT8 Size; | |
UINT8 MoveSize; | |
INT16 Index16; | |
INT32 Index32; | |
INT64 Index64Op1; | |
INT64 Index64Op2; | |
UINT64 Data64; | |
UINT64 DataMask; | |
UINTN Source; | |
Opcode = GETOPCODE (VmPtr); | |
OpcMasked = (UINT8) (Opcode & OPCODE_M_OPCODE); | |
// | |
// Get the operands byte so we can get R1 and R2 | |
// | |
Operands = GETOPERANDS (VmPtr); | |
// | |
// Assume no indexes | |
// | |
Index64Op1 = 0; | |
Index64Op2 = 0; | |
Data64 = 0; | |
// | |
// Determine if we have an index/immediate data. Base instruction size | |
// is 2 (opcode + operands). Add to this size each index specified. | |
// | |
Size = 2; | |
if ((Opcode & (OPCODE_M_IMMED_OP1 | OPCODE_M_IMMED_OP2)) != 0) { | |
// | |
// Determine size of the index from the opcode. Then get it. | |
// | |
if ((OpcMasked <= OPCODE_MOVQW) || (OpcMasked == OPCODE_MOVNW)) { | |
// | |
// MOVBW, MOVWW, MOVDW, MOVQW, and MOVNW have 16-bit immediate index. | |
// Get one or both index values. | |
// | |
if ((Opcode & OPCODE_M_IMMED_OP1) != 0) { | |
Index16 = VmReadIndex16 (VmPtr, 2); | |
Index64Op1 = (INT64) Index16; | |
Size += sizeof (UINT16); | |
} | |
if ((Opcode & OPCODE_M_IMMED_OP2) != 0) { | |
Index16 = VmReadIndex16 (VmPtr, Size); | |
Index64Op2 = (INT64) Index16; | |
Size += sizeof (UINT16); | |
} | |
} else if ((OpcMasked <= OPCODE_MOVQD) || (OpcMasked == OPCODE_MOVND)) { | |
// | |
// MOVBD, MOVWD, MOVDD, MOVQD, and MOVND have 32-bit immediate index | |
// | |
if ((Opcode & OPCODE_M_IMMED_OP1) != 0) { | |
Index32 = VmReadIndex32 (VmPtr, 2); | |
Index64Op1 = (INT64) Index32; | |
Size += sizeof (UINT32); | |
} | |
if ((Opcode & OPCODE_M_IMMED_OP2) != 0) { | |
Index32 = VmReadIndex32 (VmPtr, Size); | |
Index64Op2 = (INT64) Index32; | |
Size += sizeof (UINT32); | |
} | |
} else if (OpcMasked == OPCODE_MOVQQ) { | |
// | |
// MOVqq -- only form with a 64-bit index | |
// | |
if ((Opcode & OPCODE_M_IMMED_OP1) != 0) { | |
Index64Op1 = VmReadIndex64 (VmPtr, 2); | |
Size += sizeof (UINT64); | |
} | |
if ((Opcode & OPCODE_M_IMMED_OP2) != 0) { | |
Index64Op2 = VmReadIndex64 (VmPtr, Size); | |
Size += sizeof (UINT64); | |
} | |
} else { | |
// | |
// Obsolete MOVBQ, MOVWQ, MOVDQ, and MOVNQ have 64-bit immediate index | |
// | |
EbcDebugSignalException ( | |
EXCEPT_EBC_INSTRUCTION_ENCODING, | |
EXCEPTION_FLAG_FATAL, | |
VmPtr | |
); | |
return EFI_UNSUPPORTED; | |
} | |
} | |
// | |
// Determine the size of the move, and create a mask for it so we can | |
// clear unused bits. | |
// | |
if ((OpcMasked == OPCODE_MOVBW) || (OpcMasked == OPCODE_MOVBD)) { | |
MoveSize = DATA_SIZE_8; | |
DataMask = 0xFF; | |
} else if ((OpcMasked == OPCODE_MOVWW) || (OpcMasked == OPCODE_MOVWD)) { | |
MoveSize = DATA_SIZE_16; | |
DataMask = 0xFFFF; | |
} else if ((OpcMasked == OPCODE_MOVDW) || (OpcMasked == OPCODE_MOVDD)) { | |
MoveSize = DATA_SIZE_32; | |
DataMask = 0xFFFFFFFF; | |
} else if ((OpcMasked == OPCODE_MOVQW) || (OpcMasked == OPCODE_MOVQD) || (OpcMasked == OPCODE_MOVQQ)) { | |
MoveSize = DATA_SIZE_64; | |
DataMask = (UINT64)~0; | |
} else if ((OpcMasked == OPCODE_MOVNW) || (OpcMasked == OPCODE_MOVND)) { | |
MoveSize = DATA_SIZE_N; | |
DataMask = (UINT64)~0 >> (64 - 8 * sizeof (UINTN)); | |
} else { | |
// | |
// We were dispatched to this function and we don't recognize the opcode | |
// | |
EbcDebugSignalException (EXCEPT_EBC_UNDEFINED, EXCEPTION_FLAG_FATAL, VmPtr); | |
return EFI_UNSUPPORTED; | |
} | |
// | |
// Now get the source address | |
// | |
if (OPERAND2_INDIRECT (Operands)) { | |
// | |
// Indirect form @R2. Compute address of operand2 | |
// | |
Source = (UINTN) (VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index64Op2); | |
// | |
// Now get the data from the source. Always 0-extend and let the compiler | |
// sign-extend where required. | |
// | |
switch (MoveSize) { | |
case DATA_SIZE_8: | |
Data64 = (UINT64) (UINT8) VmReadMem8 (VmPtr, Source); | |
break; | |
case DATA_SIZE_16: | |
Data64 = (UINT64) (UINT16) VmReadMem16 (VmPtr, Source); | |
break; | |
case DATA_SIZE_32: | |
Data64 = (UINT64) (UINT32) VmReadMem32 (VmPtr, Source); | |
break; | |
case DATA_SIZE_64: | |
Data64 = (UINT64) VmReadMem64 (VmPtr, Source); | |
break; | |
case DATA_SIZE_N: | |
Data64 = (UINT64) (UINTN) VmReadMemN (VmPtr, Source); | |
break; | |
default: | |
// | |
// not reached | |
// | |
break; | |
} | |
} else { | |
// | |
// Not indirect source: MOVxx {@}Rx, Ry [Index] | |
// | |
Data64 = (UINT64) (VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index64Op2); | |
// | |
// Did Operand2 have an index? If so, treat as two signed values since | |
// indexes are signed values. | |
// | |
if ((Opcode & OPCODE_M_IMMED_OP2) != 0) { | |
// | |
// NOTE: need to find a way to fix this, most likely by changing the VM | |
// implementation to remove the stack gap. To do that, we'd need to | |
// allocate stack space for the VM and actually set the system | |
// stack pointer to the allocated buffer when the VM starts. | |
// | |
// Special case -- if someone took the address of a function parameter | |
// then we need to make sure it's not in the stack gap. We can identify | |
// this situation if (Operand2 register == 0) && (Operand2 is direct) | |
// && (Index applies to Operand2) && (Index > 0) && (Operand1 register != 0) | |
// Situations that to be aware of: | |
// * stack adjustments at beginning and end of functions R0 = R0 += stacksize | |
// | |
if ((OPERAND2_REGNUM (Operands) == 0) && | |
(!OPERAND2_INDIRECT (Operands)) && | |
(Index64Op2 > 0) && | |
(OPERAND1_REGNUM (Operands) == 0) && | |
(OPERAND1_INDIRECT (Operands)) | |
) { | |
Data64 = (UINT64) ConvertStackAddr (VmPtr, (UINTN) (INT64) Data64); | |
} | |
} | |
} | |
// | |
// Now write it back | |
// | |
if (OPERAND1_INDIRECT (Operands)) { | |
// | |
// Reuse the Source variable to now be dest. | |
// | |
Source = (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index64Op1); | |
// | |
// Do the write based on the size | |
// | |
switch (MoveSize) { | |
case DATA_SIZE_8: | |
VmWriteMem8 (VmPtr, Source, (UINT8) Data64); | |
break; | |
case DATA_SIZE_16: | |
VmWriteMem16 (VmPtr, Source, (UINT16) Data64); | |
break; | |
case DATA_SIZE_32: | |
VmWriteMem32 (VmPtr, Source, (UINT32) Data64); | |
break; | |
case DATA_SIZE_64: | |
VmWriteMem64 (VmPtr, Source, Data64); | |
break; | |
case DATA_SIZE_N: | |
VmWriteMemN (VmPtr, Source, (UINTN) Data64); | |
break; | |
default: | |
// | |
// not reached | |
// | |
break; | |
} | |
} else { | |
// | |
// Operand1 direct. | |
// Make sure we didn't have an index on operand1. | |
// | |
if ((Opcode & OPCODE_M_IMMED_OP1) != 0) { | |
EbcDebugSignalException ( | |
EXCEPT_EBC_INSTRUCTION_ENCODING, | |
EXCEPTION_FLAG_FATAL, | |
VmPtr | |
); | |
return EFI_UNSUPPORTED; | |
} | |
// | |
// Direct storage in register. Clear unused bits and store back to | |
// register. | |
// | |
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = Data64 & DataMask; | |
} | |
// | |
// Advance the instruction pointer | |
// | |
VmPtr->Ip += Size; | |
return EFI_SUCCESS; | |
} | |
/** | |
Execute the EBC BREAK instruction. | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteBREAK ( | |
IN VM_CONTEXT *VmPtr | |
) | |
{ | |
EFI_STATUS Status; | |
UINT8 Operands; | |
VOID *EbcEntryPoint; | |
VOID *Thunk; | |
UINT64 U64EbcEntryPoint; | |
INT32 Offset; | |
Operands = GETOPERANDS (VmPtr); | |
switch (Operands) { | |
// | |
// Runaway program break. Generate an exception and terminate | |
// | |
case 0: | |
EbcDebugSignalException (EXCEPT_EBC_BAD_BREAK, EXCEPTION_FLAG_FATAL, VmPtr); | |
break; | |
// | |
// Get VM version -- return VM revision number in R7 | |
// | |
case 1: | |
// | |
// Bits: | |
// 63-17 = 0 | |
// 16-8 = Major version | |
// 7-0 = Minor version | |
// | |
VmPtr->Gpr[7] = GetVmVersion (); | |
break; | |
// | |
// Debugger breakpoint | |
// | |
case 3: | |
VmPtr->StopFlags |= STOPFLAG_BREAKPOINT; | |
// | |
// See if someone has registered a handler | |
// | |
EbcDebugSignalException ( | |
EXCEPT_EBC_BREAKPOINT, | |
EXCEPTION_FLAG_NONE, | |
VmPtr | |
); | |
break; | |
// | |
// System call, which there are none, so NOP it. | |
// | |
case 4: | |
break; | |
// | |
// Create a thunk for EBC code. R7 points to a 32-bit (in a 64-bit slot) | |
// "offset from self" pointer to the EBC entry point. | |
// After we're done, *(UINT64 *)R7 will be the address of the new thunk. | |
// | |
case 5: | |
Offset = (INT32) VmReadMem32 (VmPtr, (UINTN) VmPtr->Gpr[7]); | |
U64EbcEntryPoint = (UINT64) (VmPtr->Gpr[7] + Offset + 4); | |
EbcEntryPoint = (VOID *) (UINTN) U64EbcEntryPoint; | |
// | |
// Now create a new thunk | |
// | |
Status = EbcCreateThunks (VmPtr->ImageHandle, EbcEntryPoint, &Thunk, 0); | |
if (EFI_ERROR (Status)) { | |
return Status; | |
} | |
// | |
// Finally replace the EBC entry point memory with the thunk address | |
// | |
VmWriteMem64 (VmPtr, (UINTN) VmPtr->Gpr[7], (UINT64) (UINTN) Thunk); | |
break; | |
// | |
// Compiler setting version per value in R7 | |
// | |
case 6: | |
VmPtr->CompilerVersion = (UINT32) VmPtr->Gpr[7]; | |
// | |
// Check compiler version against VM version? | |
// | |
break; | |
// | |
// Unhandled break code. Signal exception. | |
// | |
default: | |
EbcDebugSignalException (EXCEPT_EBC_BAD_BREAK, EXCEPTION_FLAG_FATAL, VmPtr); | |
break; | |
} | |
// | |
// Advance IP | |
// | |
VmPtr->Ip += 2; | |
return EFI_SUCCESS; | |
} | |
/** | |
Execute the JMP instruction. | |
Instruction syntax: | |
JMP64{cs|cc} Immed64 | |
JMP32{cs|cc} {@}R1 {Immed32|Index32} | |
Encoding: | |
b0.7 - immediate data present | |
b0.6 - 1 = 64 bit immediate data | |
0 = 32 bit immediate data | |
b1.7 - 1 = conditional | |
b1.6 1 = CS (condition set) | |
0 = CC (condition clear) | |
b1.4 1 = relative address | |
0 = absolute address | |
b1.3 1 = operand1 indirect | |
b1.2-0 operand 1 | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteJMP ( | |
IN VM_CONTEXT *VmPtr | |
) | |
{ | |
UINT8 Opcode; | |
UINT8 CompareSet; | |
UINT8 ConditionFlag; | |
UINT8 Size; | |
UINT8 Operand; | |
UINT64 Data64; | |
INT32 Index32; | |
UINTN Addr; | |
Operand = GETOPERANDS (VmPtr); | |
Opcode = GETOPCODE (VmPtr); | |
// | |
// Get instruction length from the opcode. The upper two bits are used here | |
// to index into the length array. | |
// | |
Size = mJMPLen[(Opcode >> 6) & 0x03]; | |
// | |
// Decode instruction conditions | |
// If we haven't met the condition, then simply advance the IP and return. | |
// | |
CompareSet = (UINT8) (((Operand & JMP_M_CS) != 0) ? 1 : 0); | |
ConditionFlag = (UINT8) VMFLAG_ISSET (VmPtr, VMFLAGS_CC); | |
if ((Operand & CONDITION_M_CONDITIONAL) != 0) { | |
if (CompareSet != ConditionFlag) { | |
VmPtr->Ip += Size; | |
return EFI_SUCCESS; | |
} | |
} | |
// | |
// Check for 64-bit form and do it right away since it's the most | |
// straight-forward form. | |
// | |
if ((Opcode & OPCODE_M_IMMDATA64) != 0) { | |
// | |
// Double check for immediate-data, which is required. If not there, | |
// then signal an exception | |
// | |
if ((Opcode & OPCODE_M_IMMDATA) == 0) { | |
EbcDebugSignalException ( | |
EXCEPT_EBC_INSTRUCTION_ENCODING, | |
EXCEPTION_FLAG_ERROR, | |
VmPtr | |
); | |
return EFI_UNSUPPORTED; | |
} | |
// | |
// 64-bit immediate data is full address. Read the immediate data, | |
// check for alignment, and jump absolute. | |
// | |
Data64 = (UINT64) VmReadImmed64 (VmPtr, 2); | |
if (!IS_ALIGNED ((UINTN) Data64, sizeof (UINT16))) { | |
EbcDebugSignalException ( | |
EXCEPT_EBC_ALIGNMENT_CHECK, | |
EXCEPTION_FLAG_FATAL, | |
VmPtr | |
); | |
return EFI_UNSUPPORTED; | |
} | |
// | |
// Take jump -- relative or absolute | |
// | |
if ((Operand & JMP_M_RELATIVE) != 0) { | |
VmPtr->Ip += (UINTN) Data64 + Size; | |
} else { | |
VmPtr->Ip = (VMIP) (UINTN) Data64; | |
} | |
return EFI_SUCCESS; | |
} | |
// | |
// 32-bit forms: | |
// Get the index if there is one. May be either an index, or an immediate | |
// offset depending on indirect operand. | |
// JMP32 @R1 Index32 -- immediate data is an index | |
// JMP32 R1 Immed32 -- immedate data is an offset | |
// | |
if ((Opcode & OPCODE_M_IMMDATA) != 0) { | |
if (OPERAND1_INDIRECT (Operand)) { | |
Index32 = VmReadIndex32 (VmPtr, 2); | |
} else { | |
Index32 = VmReadImmed32 (VmPtr, 2); | |
} | |
} else { | |
Index32 = 0; | |
} | |
// | |
// Get the register data. If R == 0, then special case where it's ignored. | |
// | |
if (OPERAND1_REGNUM (Operand) == 0) { | |
Data64 = 0; | |
} else { | |
Data64 = (UINT64) OPERAND1_REGDATA (VmPtr, Operand); | |
} | |
// | |
// Decode the forms | |
// | |
if (OPERAND1_INDIRECT (Operand)) { | |
// | |
// Form: JMP32 @Rx {Index32} | |
// | |
Addr = VmReadMemN (VmPtr, (UINTN) Data64 + Index32); | |
if (!IS_ALIGNED ((UINTN) Addr, sizeof (UINT16))) { | |
EbcDebugSignalException ( | |
EXCEPT_EBC_ALIGNMENT_CHECK, | |
EXCEPTION_FLAG_FATAL, | |
VmPtr | |
); | |
return EFI_UNSUPPORTED; | |
} | |
if ((Operand & JMP_M_RELATIVE) != 0) { | |
VmPtr->Ip += (UINTN) Addr + Size; | |
} else { | |
VmPtr->Ip = (VMIP) Addr; | |
} | |
} else { | |
// | |
// Form: JMP32 Rx {Immed32} | |
// | |
Addr = (UINTN) (Data64 + Index32); | |
if (!IS_ALIGNED ((UINTN) Addr, sizeof (UINT16))) { | |
EbcDebugSignalException ( | |
EXCEPT_EBC_ALIGNMENT_CHECK, | |
EXCEPTION_FLAG_FATAL, | |
VmPtr | |
); | |
return EFI_UNSUPPORTED; | |
} | |
if ((Operand & JMP_M_RELATIVE) != 0) { | |
VmPtr->Ip += (UINTN) Addr + Size; | |
} else { | |
VmPtr->Ip = (VMIP) Addr; | |
} | |
} | |
return EFI_SUCCESS; | |
} | |
/** | |
Execute the EBC JMP8 instruction. | |
Instruction syntax: | |
JMP8{cs|cc} Offset/2 | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteJMP8 ( | |
IN VM_CONTEXT *VmPtr | |
) | |
{ | |
UINT8 Opcode; | |
UINT8 ConditionFlag; | |
UINT8 CompareSet; | |
INT8 Offset; | |
// | |
// Decode instruction. | |
// | |
Opcode = GETOPCODE (VmPtr); | |
CompareSet = (UINT8) (((Opcode & JMP_M_CS) != 0) ? 1 : 0); | |
ConditionFlag = (UINT8) VMFLAG_ISSET (VmPtr, VMFLAGS_CC); | |
// | |
// If we haven't met the condition, then simply advance the IP and return | |
// | |
if ((Opcode & CONDITION_M_CONDITIONAL) != 0) { | |
if (CompareSet != ConditionFlag) { | |
VmPtr->Ip += 2; | |
return EFI_SUCCESS; | |
} | |
} | |
// | |
// Get the offset from the instruction stream. It's relative to the | |
// following instruction, and divided by 2. | |
// | |
Offset = VmReadImmed8 (VmPtr, 1); | |
// | |
// Want to check for offset == -2 and then raise an exception? | |
// | |
VmPtr->Ip += (Offset * 2) + 2; | |
return EFI_SUCCESS; | |
} | |
/** | |
Execute the EBC MOVI. | |
Instruction syntax: | |
MOVI[b|w|d|q][w|d|q] {@}R1 {Index16}, ImmData16|32|64 | |
First variable character specifies the move size | |
Second variable character specifies size of the immediate data | |
Sign-extend the immediate data to the size of the operation, and zero-extend | |
if storing to a register. | |
Operand1 direct with index/immed is invalid. | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteMOVI ( | |
IN VM_CONTEXT *VmPtr | |
) | |
{ | |
UINT8 Opcode; | |
UINT8 Operands; | |
UINT8 Size; | |
INT16 Index16; | |
INT64 ImmData64; | |
UINT64 Op1; | |
UINT64 Mask64; | |
// | |
// Get the opcode and operands byte so we can get R1 and R2 | |
// | |
Opcode = GETOPCODE (VmPtr); | |
Operands = GETOPERANDS (VmPtr); | |
// | |
// Get the index (16-bit) if present | |
// | |
if ((Operands & MOVI_M_IMMDATA) != 0) { | |
Index16 = VmReadIndex16 (VmPtr, 2); | |
Size = 4; | |
} else { | |
Index16 = 0; | |
Size = 2; | |
} | |
// | |
// Extract the immediate data. Sign-extend always. | |
// | |
if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH16) { | |
ImmData64 = (INT64) (INT16) VmReadImmed16 (VmPtr, Size); | |
Size += 2; | |
} else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH32) { | |
ImmData64 = (INT64) (INT32) VmReadImmed32 (VmPtr, Size); | |
Size += 4; | |
} else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH64) { | |
ImmData64 = (INT64) VmReadImmed64 (VmPtr, Size); | |
Size += 8; | |
} else { | |
// | |
// Invalid encoding | |
// | |
EbcDebugSignalException ( | |
EXCEPT_EBC_INSTRUCTION_ENCODING, | |
EXCEPTION_FLAG_FATAL, | |
VmPtr | |
); | |
return EFI_UNSUPPORTED; | |
} | |
// | |
// Now write back the result | |
// | |
if (!OPERAND1_INDIRECT (Operands)) { | |
// | |
// Operand1 direct. Make sure it didn't have an index. | |
// | |
if ((Operands & MOVI_M_IMMDATA) != 0) { | |
EbcDebugSignalException ( | |
EXCEPT_EBC_INSTRUCTION_ENCODING, | |
EXCEPTION_FLAG_FATAL, | |
VmPtr | |
); | |
return EFI_UNSUPPORTED; | |
} | |
// | |
// Writing directly to a register. Clear unused bits. | |
// | |
if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH8) { | |
Mask64 = 0x000000FF; | |
} else if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH16) { | |
Mask64 = 0x0000FFFF; | |
} else if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH32) { | |
Mask64 = 0x00000000FFFFFFFF; | |
} else { | |
Mask64 = (UINT64)~0; | |
} | |
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = ImmData64 & Mask64; | |
} else { | |
// | |
// Get the address then write back based on size of the move | |
// | |
Op1 = (UINT64) VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16; | |
if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH8) { | |
VmWriteMem8 (VmPtr, (UINTN) Op1, (UINT8) ImmData64); | |
} else if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH16) { | |
VmWriteMem16 (VmPtr, (UINTN) Op1, (UINT16) ImmData64); | |
} else if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH32) { | |
VmWriteMem32 (VmPtr, (UINTN) Op1, (UINT32) ImmData64); | |
} else { | |
VmWriteMem64 (VmPtr, (UINTN) Op1, (UINT64) ImmData64); | |
} | |
} | |
// | |
// Advance the instruction pointer | |
// | |
VmPtr->Ip += Size; | |
return EFI_SUCCESS; | |
} | |
/** | |
Execute the EBC MOV immediate natural. This instruction moves an immediate | |
index value into a register or memory location. | |
Instruction syntax: | |
MOVIn[w|d|q] {@}R1 {Index16}, Index16|32|64 | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteMOVIn ( | |
IN VM_CONTEXT *VmPtr | |
) | |
{ | |
UINT8 Opcode; | |
UINT8 Operands; | |
UINT8 Size; | |
INT16 Index16; | |
INT16 ImmedIndex16; | |
INT32 ImmedIndex32; | |
INT64 ImmedIndex64; | |
UINT64 Op1; | |
// | |
// Get the opcode and operands byte so we can get R1 and R2 | |
// | |
Opcode = GETOPCODE (VmPtr); | |
Operands = GETOPERANDS (VmPtr); | |
// | |
// Get the operand1 index (16-bit) if present | |
// | |
if ((Operands & MOVI_M_IMMDATA) != 0) { | |
Index16 = VmReadIndex16 (VmPtr, 2); | |
Size = 4; | |
} else { | |
Index16 = 0; | |
Size = 2; | |
} | |
// | |
// Extract the immediate data and convert to a 64-bit index. | |
// | |
if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH16) { | |
ImmedIndex16 = VmReadIndex16 (VmPtr, Size); | |
ImmedIndex64 = (INT64) ImmedIndex16; | |
Size += 2; | |
} else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH32) { | |
ImmedIndex32 = VmReadIndex32 (VmPtr, Size); | |
ImmedIndex64 = (INT64) ImmedIndex32; | |
Size += 4; | |
} else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH64) { | |
ImmedIndex64 = VmReadIndex64 (VmPtr, Size); | |
Size += 8; | |
} else { | |
// | |
// Invalid encoding | |
// | |
EbcDebugSignalException ( | |
EXCEPT_EBC_INSTRUCTION_ENCODING, | |
EXCEPTION_FLAG_FATAL, | |
VmPtr | |
); | |
return EFI_UNSUPPORTED; | |
} | |
// | |
// Now write back the result | |
// | |
if (!OPERAND1_INDIRECT (Operands)) { | |
// | |
// Check for MOVIn R1 Index16, Immed (not indirect, with index), which | |
// is illegal | |
// | |
if ((Operands & MOVI_M_IMMDATA) != 0) { | |
EbcDebugSignalException ( | |
EXCEPT_EBC_INSTRUCTION_ENCODING, | |
EXCEPTION_FLAG_FATAL, | |
VmPtr | |
); | |
return EFI_UNSUPPORTED; | |
} | |
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = ImmedIndex64; | |
} else { | |
// | |
// Get the address | |
// | |
Op1 = (UINT64) VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16; | |
VmWriteMemN (VmPtr, (UINTN) Op1, (UINTN)(INTN) ImmedIndex64); | |
} | |
// | |
// Advance the instruction pointer | |
// | |
VmPtr->Ip += Size; | |
return EFI_SUCCESS; | |
} | |
/** | |
Execute the EBC MOVREL instruction. | |
Dest <- Ip + ImmData | |
Instruction syntax: | |
MOVREL[w|d|q] {@}R1 {Index16}, ImmData16|32|64 | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteMOVREL ( | |
IN VM_CONTEXT *VmPtr | |
) | |
{ | |
UINT8 Opcode; | |
UINT8 Operands; | |
UINT8 Size; | |
INT16 Index16; | |
INT64 ImmData64; | |
UINT64 Op1; | |
UINT64 Op2; | |
// | |
// Get the opcode and operands byte so we can get R1 and R2 | |
// | |
Opcode = GETOPCODE (VmPtr); | |
Operands = GETOPERANDS (VmPtr); | |
// | |
// Get the Operand 1 index (16-bit) if present | |
// | |
if ((Operands & MOVI_M_IMMDATA) != 0) { | |
Index16 = VmReadIndex16 (VmPtr, 2); | |
Size = 4; | |
} else { | |
Index16 = 0; | |
Size = 2; | |
} | |
// | |
// Get the immediate data. | |
// | |
if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH16) { | |
ImmData64 = (INT64) VmReadImmed16 (VmPtr, Size); | |
Size += 2; | |
} else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH32) { | |
ImmData64 = (INT64) VmReadImmed32 (VmPtr, Size); | |
Size += 4; | |
} else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH64) { | |
ImmData64 = VmReadImmed64 (VmPtr, Size); | |
Size += 8; | |
} else { | |
// | |
// Invalid encoding | |
// | |
EbcDebugSignalException ( | |
EXCEPT_EBC_INSTRUCTION_ENCODING, | |
EXCEPTION_FLAG_FATAL, | |
VmPtr | |
); | |
return EFI_UNSUPPORTED; | |
} | |
// | |
// Compute the value and write back the result | |
// | |
Op2 = (UINT64) ((INT64) ((UINT64) (UINTN) VmPtr->Ip) + (INT64) ImmData64 + Size); | |
if (!OPERAND1_INDIRECT (Operands)) { | |
// | |
// Check for illegal combination of operand1 direct with immediate data | |
// | |
if ((Operands & MOVI_M_IMMDATA) != 0) { | |
EbcDebugSignalException ( | |
EXCEPT_EBC_INSTRUCTION_ENCODING, | |
EXCEPTION_FLAG_FATAL, | |
VmPtr | |
); | |
return EFI_UNSUPPORTED; | |
} | |
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = (VM_REGISTER) Op2; | |
} else { | |
// | |
// Get the address = [Rx] + Index16 | |
// Write back the result. Always a natural size write, since | |
// we're talking addresses here. | |
// | |
Op1 = (UINT64) VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16; | |
VmWriteMemN (VmPtr, (UINTN) Op1, (UINTN) Op2); | |
} | |
// | |
// Advance the instruction pointer | |
// | |
VmPtr->Ip += Size; | |
return EFI_SUCCESS; | |
} | |
/** | |
Execute the EBC MOVsnw instruction. This instruction loads a signed | |
natural value from memory or register to another memory or register. On | |
32-bit machines, the value gets sign-extended to 64 bits if the destination | |
is a register. | |
Instruction syntax: | |
MOVsnw {@}R1 {Index16}, {@}R2 {Index16|Immed16} | |
0:7 1=>operand1 index present | |
0:6 1=>operand2 index present | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteMOVsnw ( | |
IN VM_CONTEXT *VmPtr | |
) | |
{ | |
UINT8 Opcode; | |
UINT8 Operands; | |
UINT8 Size; | |
INT16 Op1Index; | |
INT16 Op2Index; | |
UINT64 Op2; | |
// | |
// Get the opcode and operand bytes | |
// | |
Opcode = GETOPCODE (VmPtr); | |
Operands = GETOPERANDS (VmPtr); | |
Op1Index = Op2Index = 0; | |
// | |
// Get the indexes if present. | |
// | |
Size = 2; | |
if ((Opcode & OPCODE_M_IMMED_OP1) !=0) { | |
if (OPERAND1_INDIRECT (Operands)) { | |
Op1Index = VmReadIndex16 (VmPtr, 2); | |
} else { | |
// | |
// Illegal form operand1 direct with index: MOVsnw R1 Index16, {@}R2 | |
// | |
EbcDebugSignalException ( | |
EXCEPT_EBC_INSTRUCTION_ENCODING, | |
EXCEPTION_FLAG_FATAL, | |
VmPtr | |
); | |
return EFI_UNSUPPORTED; | |
} | |
Size += sizeof (UINT16); | |
} | |
if ((Opcode & OPCODE_M_IMMED_OP2) != 0) { | |
if (OPERAND2_INDIRECT (Operands)) { | |
Op2Index = VmReadIndex16 (VmPtr, Size); | |
} else { | |
Op2Index = VmReadImmed16 (VmPtr, Size); | |
} | |
Size += sizeof (UINT16); | |
} | |
// | |
// Get the data from the source. | |
// | |
Op2 = (UINT64) (VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Op2Index); | |
if (OPERAND2_INDIRECT (Operands)) { | |
Op2 = (UINT64) VmReadMemN (VmPtr, (UINTN) Op2); | |
} | |
// | |
// Now write back the result. | |
// | |
if (!OPERAND1_INDIRECT (Operands)) { | |
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = Op2; | |
} else { | |
VmWriteMemN (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Op1Index), (UINTN) Op2); | |
} | |
// | |
// Advance the instruction pointer | |
// | |
VmPtr->Ip += Size; | |
return EFI_SUCCESS; | |
} | |
/** | |
Execute the EBC MOVsnw instruction. This instruction loads a signed | |
natural value from memory or register to another memory or register. On | |
32-bit machines, the value gets sign-extended to 64 bits if the destination | |
is a register. | |
Instruction syntax: | |
MOVsnd {@}R1 {Indx32}, {@}R2 {Index32|Immed32} | |
0:7 1=>operand1 index present | |
0:6 1=>operand2 index present | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteMOVsnd ( | |
IN VM_CONTEXT *VmPtr | |
) | |
{ | |
UINT8 Opcode; | |
UINT8 Operands; | |
UINT8 Size; | |
INT32 Op1Index; | |
INT32 Op2Index; | |
UINT64 Op2; | |
// | |
// Get the opcode and operand bytes | |
// | |
Opcode = GETOPCODE (VmPtr); | |
Operands = GETOPERANDS (VmPtr); | |
Op1Index = Op2Index = 0; | |
// | |
// Get the indexes if present. | |
// | |
Size = 2; | |
if ((Opcode & OPCODE_M_IMMED_OP1) != 0) { | |
if (OPERAND1_INDIRECT (Operands)) { | |
Op1Index = VmReadIndex32 (VmPtr, 2); | |
} else { | |
// | |
// Illegal form operand1 direct with index: MOVsnd R1 Index16,.. | |
// | |
EbcDebugSignalException ( | |
EXCEPT_EBC_INSTRUCTION_ENCODING, | |
EXCEPTION_FLAG_FATAL, | |
VmPtr | |
); | |
return EFI_UNSUPPORTED; | |
} | |
Size += sizeof (UINT32); | |
} | |
if ((Opcode & OPCODE_M_IMMED_OP2) != 0) { | |
if (OPERAND2_INDIRECT (Operands)) { | |
Op2Index = VmReadIndex32 (VmPtr, Size); | |
} else { | |
Op2Index = VmReadImmed32 (VmPtr, Size); | |
} | |
Size += sizeof (UINT32); | |
} | |
// | |
// Get the data from the source. | |
// | |
Op2 = (UINT64) (VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Op2Index); | |
if (OPERAND2_INDIRECT (Operands)) { | |
Op2 = (UINT64) VmReadMemN (VmPtr, (UINTN) Op2); | |
} | |
// | |
// Now write back the result. | |
// | |
if (!OPERAND1_INDIRECT (Operands)) { | |
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = Op2; | |
} else { | |
VmWriteMemN (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Op1Index), (UINTN) Op2); | |
} | |
// | |
// Advance the instruction pointer | |
// | |
VmPtr->Ip += Size; | |
return EFI_SUCCESS; | |
} | |
/** | |
Execute the EBC PUSHn instruction | |
Instruction syntax: | |
PUSHn {@}R1 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecutePUSHn ( | |
IN VM_CONTEXT *VmPtr | |
) | |
{ | |
UINT8 Opcode; | |
UINT8 Operands; | |
INT16 Index16; | |
UINTN DataN; | |
// | |
// Get opcode and operands | |
// | |
Opcode = GETOPCODE (VmPtr); | |
Operands = GETOPERANDS (VmPtr); | |
// | |
// Get index if present | |
// | |
if ((Opcode & PUSHPOP_M_IMMDATA) != 0) { | |
if (OPERAND1_INDIRECT (Operands)) { | |
Index16 = VmReadIndex16 (VmPtr, 2); | |
} else { | |
Index16 = VmReadImmed16 (VmPtr, 2); | |
} | |
VmPtr->Ip += 4; | |
} else { | |
Index16 = 0; | |
VmPtr->Ip += 2; | |
} | |
// | |
// Get the data to push | |
// | |
if (OPERAND1_INDIRECT (Operands)) { | |
DataN = VmReadMemN (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16)); | |
} else { | |
DataN = (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16); | |
} | |
// | |
// Adjust the stack down. | |
// | |
VmPtr->Gpr[0] -= sizeof (UINTN); | |
VmWriteMemN (VmPtr, (UINTN) VmPtr->Gpr[0], DataN); | |
return EFI_SUCCESS; | |
} | |
/** | |
Execute the EBC PUSH instruction. | |
Instruction syntax: | |
PUSH[32|64] {@}R1 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecutePUSH ( | |
IN VM_CONTEXT *VmPtr | |
) | |
{ | |
UINT8 Opcode; | |
UINT8 Operands; | |
UINT32 Data32; | |
UINT64 Data64; | |
INT16 Index16; | |
// | |
// Get opcode and operands | |
// | |
Opcode = GETOPCODE (VmPtr); | |
Operands = GETOPERANDS (VmPtr); | |
// | |
// Get immediate index if present, then advance the IP. | |
// | |
if ((Opcode & PUSHPOP_M_IMMDATA) != 0) { | |
if (OPERAND1_INDIRECT (Operands)) { | |
Index16 = VmReadIndex16 (VmPtr, 2); | |
} else { | |
Index16 = VmReadImmed16 (VmPtr, 2); | |
} | |
VmPtr->Ip += 4; | |
} else { | |
Index16 = 0; | |
VmPtr->Ip += 2; | |
} | |
// | |
// Get the data to push | |
// | |
if ((Opcode & PUSHPOP_M_64) != 0) { | |
if (OPERAND1_INDIRECT (Operands)) { | |
Data64 = VmReadMem64 (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16)); | |
} else { | |
Data64 = (UINT64) VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16; | |
} | |
// | |
// Adjust the stack down, then write back the data | |
// | |
VmPtr->Gpr[0] -= sizeof (UINT64); | |
VmWriteMem64 (VmPtr, (UINTN) VmPtr->Gpr[0], Data64); | |
} else { | |
// | |
// 32-bit data | |
// | |
if (OPERAND1_INDIRECT (Operands)) { | |
Data32 = VmReadMem32 (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16)); | |
} else { | |
Data32 = (UINT32) VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16; | |
} | |
// | |
// Adjust the stack down and write the data | |
// | |
VmPtr->Gpr[0] -= sizeof (UINT32); | |
VmWriteMem32 (VmPtr, (UINTN) VmPtr->Gpr[0], Data32); | |
} | |
return EFI_SUCCESS; | |
} | |
/** | |
Execute the EBC POPn instruction. | |
Instruction syntax: | |
POPn {@}R1 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecutePOPn ( | |
IN VM_CONTEXT *VmPtr | |
) | |
{ | |
UINT8 Opcode; | |
UINT8 Operands; | |
INT16 Index16; | |
UINTN DataN; | |
// | |
// Get opcode and operands | |
// | |
Opcode = GETOPCODE (VmPtr); | |
Operands = GETOPERANDS (VmPtr); | |
// | |
// Get immediate data if present, and advance the IP | |
// | |
if ((Opcode & PUSHPOP_M_IMMDATA) != 0) { | |
if (OPERAND1_INDIRECT (Operands)) { | |
Index16 = VmReadIndex16 (VmPtr, 2); | |
} else { | |
Index16 = VmReadImmed16 (VmPtr, 2); | |
} | |
VmPtr->Ip += 4; | |
} else { | |
Index16 = 0; | |
VmPtr->Ip += 2; | |
} | |
// | |
// Read the data off the stack, then adjust the stack pointer | |
// | |
DataN = VmReadMemN (VmPtr, (UINTN) VmPtr->Gpr[0]); | |
VmPtr->Gpr[0] += sizeof (UINTN); | |
// | |
// Do the write-back | |
// | |
if (OPERAND1_INDIRECT (Operands)) { | |
VmWriteMemN (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16), DataN); | |
} else { | |
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = (INT64) (UINT64) ((UINTN) DataN + Index16); | |
} | |
return EFI_SUCCESS; | |
} | |
/** | |
Execute the EBC POP instruction. | |
Instruction syntax: | |
POPn {@}R1 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecutePOP ( | |
IN VM_CONTEXT *VmPtr | |
) | |
{ | |
UINT8 Opcode; | |
UINT8 Operands; | |
INT16 Index16; | |
INT32 Data32; | |
UINT64 Data64; | |
// | |
// Get opcode and operands | |
// | |
Opcode = GETOPCODE (VmPtr); | |
Operands = GETOPERANDS (VmPtr); | |
// | |
// Get immediate data if present, and advance the IP. | |
// | |
if ((Opcode & PUSHPOP_M_IMMDATA) != 0) { | |
if (OPERAND1_INDIRECT (Operands)) { | |
Index16 = VmReadIndex16 (VmPtr, 2); | |
} else { | |
Index16 = VmReadImmed16 (VmPtr, 2); | |
} | |
VmPtr->Ip += 4; | |
} else { | |
Index16 = 0; | |
VmPtr->Ip += 2; | |
} | |
// | |
// Get the data off the stack, then write it to the appropriate location | |
// | |
if ((Opcode & PUSHPOP_M_64) != 0) { | |
// | |
// Read the data off the stack, then adjust the stack pointer | |
// | |
Data64 = VmReadMem64 (VmPtr, (UINTN) VmPtr->Gpr[0]); | |
VmPtr->Gpr[0] += sizeof (UINT64); | |
// | |
// Do the write-back | |
// | |
if (OPERAND1_INDIRECT (Operands)) { | |
VmWriteMem64 (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16), Data64); | |
} else { | |
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = Data64 + Index16; | |
} | |
} else { | |
// | |
// 32-bit pop. Read it off the stack and adjust the stack pointer | |
// | |
Data32 = (INT32) VmReadMem32 (VmPtr, (UINTN) VmPtr->Gpr[0]); | |
VmPtr->Gpr[0] += sizeof (UINT32); | |
// | |
// Do the write-back | |
// | |
if (OPERAND1_INDIRECT (Operands)) { | |
VmWriteMem32 (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16), Data32); | |
} else { | |
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = (INT64) Data32 + Index16; | |
} | |
} | |
return EFI_SUCCESS; | |
} | |
/** | |
Implements the EBC CALL instruction. | |
Instruction format: | |
CALL64 Immed64 | |
CALL32 {@}R1 {Immed32|Index32} | |
CALLEX64 Immed64 | |
CALLEX16 {@}R1 {Immed32} | |
If Rx == R0, then it's a PC relative call to PC = PC + imm32. | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteCALL ( | |
IN VM_CONTEXT *VmPtr | |
) | |
{ | |
UINT8 Opcode; | |
UINT8 Operands; | |
INT32 Immed32; | |
UINT8 Size; | |
INT64 Immed64; | |
VOID *FramePtr; | |
// | |
// Get opcode and operands | |
// | |
Opcode = GETOPCODE (VmPtr); | |
Operands = GETOPERANDS (VmPtr); | |
// | |
// Assign these as well to avoid compiler warnings | |
// | |
Immed64 = 0; | |
Immed32 = 0; | |
FramePtr = VmPtr->FramePtr; | |
// | |
// Determine the instruction size, and get immediate data if present | |
// | |
if ((Opcode & OPCODE_M_IMMDATA) != 0) { | |
if ((Opcode & OPCODE_M_IMMDATA64) != 0) { | |
Immed64 = VmReadImmed64 (VmPtr, 2); | |
Size = 10; | |
} else { | |
// | |
// If register operand is indirect, then the immediate data is an index | |
// | |
if (OPERAND1_INDIRECT (Operands)) { | |
Immed32 = VmReadIndex32 (VmPtr, 2); | |
} else { | |
Immed32 = VmReadImmed32 (VmPtr, 2); | |
} | |
Size = 6; | |
} | |
} else { | |
Size = 2; | |
} | |
// | |
// If it's a call to EBC, adjust the stack pointer down 16 bytes and | |
// put our return address and frame pointer on the VM stack. | |
// | |
if ((Operands & OPERAND_M_NATIVE_CALL) == 0) { | |
VmPtr->Gpr[0] -= 8; | |
VmWriteMemN (VmPtr, (UINTN) VmPtr->Gpr[0], (UINTN) FramePtr); | |
VmPtr->FramePtr = (VOID *) (UINTN) VmPtr->Gpr[0]; | |
VmPtr->Gpr[0] -= 8; | |
VmWriteMem64 (VmPtr, (UINTN) VmPtr->Gpr[0], (UINT64) (UINTN) (VmPtr->Ip + Size)); | |
} | |
// | |
// If 64-bit data, then absolute jump only | |
// | |
if ((Opcode & OPCODE_M_IMMDATA64) != 0) { | |
// | |
// Native or EBC call? | |
// | |
if ((Operands & OPERAND_M_NATIVE_CALL) == 0) { | |
VmPtr->Ip = (VMIP) (UINTN) Immed64; | |
} else { | |
// | |
// Call external function, get the return value, and advance the IP | |
// | |
EbcLLCALLEX (VmPtr, (UINTN) Immed64, (UINTN) VmPtr->Gpr[0], FramePtr, Size); | |
} | |
} else { | |
// | |
// Get the register data. If operand1 == 0, then ignore register and | |
// take immediate data as relative or absolute address. | |
// Compiler should take care of upper bits if 32-bit machine. | |
// | |
if (OPERAND1_REGNUM (Operands) != 0) { | |
Immed64 = (UINT64) (UINTN) VmPtr->Gpr[OPERAND1_REGNUM (Operands)]; | |
} | |
// | |
// Get final address | |
// | |
if (OPERAND1_INDIRECT (Operands)) { | |
Immed64 = (INT64) (UINT64) (UINTN) VmReadMemN (VmPtr, (UINTN) (Immed64 + Immed32)); | |
} else { | |
Immed64 += Immed32; | |
} | |
// | |
// Now determine if external call, and then if relative or absolute | |
// | |
if ((Operands & OPERAND_M_NATIVE_CALL) == 0) { | |
// | |
// EBC call. Relative or absolute? If relative, then it's relative to the | |
// start of the next instruction. | |
// | |
if ((Operands & OPERAND_M_RELATIVE_ADDR) != 0) { | |
VmPtr->Ip += Immed64 + Size; | |
} else { | |
VmPtr->Ip = (VMIP) (UINTN) Immed64; | |
} | |
} else { | |
// | |
// Native call. Relative or absolute? | |
// | |
if ((Operands & OPERAND_M_RELATIVE_ADDR) != 0) { | |
EbcLLCALLEX (VmPtr, (UINTN) (Immed64 + VmPtr->Ip + Size), (UINTN) VmPtr->Gpr[0], FramePtr, Size); | |
} else { | |
if ((VmPtr->StopFlags & STOPFLAG_BREAK_ON_CALLEX) != 0) { | |
CpuBreakpoint (); | |
} | |
EbcLLCALLEX (VmPtr, (UINTN) Immed64, (UINTN) VmPtr->Gpr[0], FramePtr, Size); | |
} | |
} | |
} | |
return EFI_SUCCESS; | |
} | |
/** | |
Execute the EBC RET instruction. | |
Instruction syntax: | |
RET | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteRET ( | |
IN VM_CONTEXT *VmPtr | |
) | |
{ | |
// | |
// If we're at the top of the stack, then simply set the done | |
// flag and return | |
// | |
if (VmPtr->StackRetAddr == (UINT64) VmPtr->Gpr[0]) { | |
VmPtr->StopFlags |= STOPFLAG_APP_DONE; | |
} else { | |
// | |
// Pull the return address off the VM app's stack and set the IP | |
// to it | |
// | |
if (!IS_ALIGNED ((UINTN) VmPtr->Gpr[0], sizeof (UINT16))) { | |
EbcDebugSignalException ( | |
EXCEPT_EBC_ALIGNMENT_CHECK, | |
EXCEPTION_FLAG_FATAL, | |
VmPtr | |
); | |
} | |
// | |
// Restore the IP and frame pointer from the stack | |
// | |
VmPtr->Ip = (VMIP) (UINTN) VmReadMem64 (VmPtr, (UINTN) VmPtr->Gpr[0]); | |
VmPtr->Gpr[0] += 8; | |
VmPtr->FramePtr = (VOID *) VmReadMemN (VmPtr, (UINTN) VmPtr->Gpr[0]); | |
VmPtr->Gpr[0] += 8; | |
} | |
return EFI_SUCCESS; | |
} | |
/** | |
Execute the EBC CMP instruction. | |
Instruction syntax: | |
CMP[32|64][eq|lte|gte|ulte|ugte] R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteCMP ( | |
IN VM_CONTEXT *VmPtr | |
) | |
{ | |
UINT8 Opcode; | |
UINT8 Operands; | |
UINT8 Size; | |
INT16 Index16; | |
UINT32 Flag; | |
INT64 Op2; | |
INT64 Op1; | |
// | |
// Get opcode and operands | |
// | |
Opcode = GETOPCODE (VmPtr); | |
Operands = GETOPERANDS (VmPtr); | |
// | |
// Get the register data we're going to compare to | |
// | |
Op1 = VmPtr->Gpr[OPERAND1_REGNUM (Operands)]; | |
// | |
// Get immediate data | |
// | |
if ((Opcode & OPCODE_M_IMMDATA) != 0) { | |
if (OPERAND2_INDIRECT (Operands)) { | |
Index16 = VmReadIndex16 (VmPtr, 2); | |
} else { | |
Index16 = VmReadImmed16 (VmPtr, 2); | |
} | |
Size = 4; | |
} else { | |
Index16 = 0; | |
Size = 2; | |
} | |
// | |
// Now get Op2 | |
// | |
if (OPERAND2_INDIRECT (Operands)) { | |
if ((Opcode & OPCODE_M_64BIT) != 0) { | |
Op2 = (INT64) VmReadMem64 (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index16)); | |
} else { | |
// | |
// 32-bit operations. 0-extend the values for all cases. | |
// | |
Op2 = (INT64) (UINT64) ((UINT32) VmReadMem32 (VmPtr, (UINTN) (VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index16))); | |
} | |
} else { | |
Op2 = VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index16; | |
} | |
// | |
// Now do the compare | |
// | |
Flag = 0; | |
if ((Opcode & OPCODE_M_64BIT) != 0) { | |
// | |
// 64-bit compares | |
// | |
switch (Opcode & OPCODE_M_OPCODE) { | |
case OPCODE_CMPEQ: | |
if (Op1 == Op2) { | |
Flag = 1; | |
} | |
break; | |
case OPCODE_CMPLTE: | |
if (Op1 <= Op2) { | |
Flag = 1; | |
} | |
break; | |
case OPCODE_CMPGTE: | |
if (Op1 >= Op2) { | |
Flag = 1; | |
} | |
break; | |
case OPCODE_CMPULTE: | |
if ((UINT64) Op1 <= (UINT64) Op2) { | |
Flag = 1; | |
} | |
break; | |
case OPCODE_CMPUGTE: | |
if ((UINT64) Op1 >= (UINT64) Op2) { | |
Flag = 1; | |
} | |
break; | |
default: | |
ASSERT (0); | |
} | |
} else { | |
// | |
// 32-bit compares | |
// | |
switch (Opcode & OPCODE_M_OPCODE) { | |
case OPCODE_CMPEQ: | |
if ((INT32) Op1 == (INT32) Op2) { | |
Flag = 1; | |
} | |
break; | |
case OPCODE_CMPLTE: | |
if ((INT32) Op1 <= (INT32) Op2) { | |
Flag = 1; | |
} | |
break; | |
case OPCODE_CMPGTE: | |
if ((INT32) Op1 >= (INT32) Op2) { | |
Flag = 1; | |
} | |
break; | |
case OPCODE_CMPULTE: | |
if ((UINT32) Op1 <= (UINT32) Op2) { | |
Flag = 1; | |
} | |
break; | |
case OPCODE_CMPUGTE: | |
if ((UINT32) Op1 >= (UINT32) Op2) { | |
Flag = 1; | |
} | |
break; | |
default: | |
ASSERT (0); | |
} | |
} | |
// | |
// Now set the flag accordingly for the comparison | |
// | |
if (Flag != 0) { | |
VMFLAG_SET (VmPtr, VMFLAGS_CC); | |
} else { | |
VMFLAG_CLEAR (VmPtr, VMFLAGS_CC); | |
} | |
// | |
// Advance the IP | |
// | |
VmPtr->Ip += Size; | |
return EFI_SUCCESS; | |
} | |
/** | |
Execute the EBC CMPI instruction | |
Instruction syntax: | |
CMPI[32|64]{w|d}[eq|lte|gte|ulte|ugte] {@}Rx {Index16}, Immed16|Immed32 | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteCMPI ( | |
IN VM_CONTEXT *VmPtr | |
) | |
{ | |
UINT8 Opcode; | |
UINT8 Operands; | |
UINT8 Size; | |
INT64 Op1; | |
INT64 Op2; | |
INT16 Index16; | |
UINT32 Flag; | |
// | |
// Get opcode and operands | |
// | |
Opcode = GETOPCODE (VmPtr); | |
Operands = GETOPERANDS (VmPtr); | |
// | |
// Get operand1 index if present | |
// | |
Size = 2; | |
if ((Operands & OPERAND_M_CMPI_INDEX) != 0) { | |
Index16 = VmReadIndex16 (VmPtr, 2); | |
Size += 2; | |
} else { | |
Index16 = 0; | |
} | |
// | |
// Get operand1 data we're going to compare to | |
// | |
Op1 = (INT64) VmPtr->Gpr[OPERAND1_REGNUM (Operands)]; | |
if (OPERAND1_INDIRECT (Operands)) { | |
// | |
// Indirect operand1. Fetch 32 or 64-bit value based on compare size. | |
// | |
if ((Opcode & OPCODE_M_CMPI64) != 0) { | |
Op1 = (INT64) VmReadMem64 (VmPtr, (UINTN) Op1 + Index16); | |
} else { | |
Op1 = (INT64) VmReadMem32 (VmPtr, (UINTN) Op1 + Index16); | |
} | |
} else { | |
// | |
// Better not have been an index with direct. That is, CMPI R1 Index,... | |
// is illegal. | |
// | |
if ((Operands & OPERAND_M_CMPI_INDEX) != 0) { | |
EbcDebugSignalException ( | |
EXCEPT_EBC_INSTRUCTION_ENCODING, | |
EXCEPTION_FLAG_ERROR, | |
VmPtr | |
); | |
VmPtr->Ip += Size; | |
return EFI_UNSUPPORTED; | |
} | |
} | |
// | |
// Get immediate data -- 16- or 32-bit sign extended | |
// | |
if ((Opcode & OPCODE_M_CMPI32_DATA) != 0) { | |
Op2 = (INT64) VmReadImmed32 (VmPtr, Size); | |
Size += 4; | |
} else { | |
// | |
// 16-bit immediate data. Sign extend always. | |
// | |
Op2 = (INT64) ((INT16) VmReadImmed16 (VmPtr, Size)); | |
Size += 2; | |
} | |
// | |
// Now do the compare | |
// | |
Flag = 0; | |
if ((Opcode & OPCODE_M_CMPI64) != 0) { | |
// | |
// 64 bit comparison | |
// | |
switch (Opcode & OPCODE_M_OPCODE) { | |
case OPCODE_CMPIEQ: | |
if (Op1 == (INT64) Op2) { | |
Flag = 1; | |
} | |
break; | |
case OPCODE_CMPILTE: | |
if (Op1 <= (INT64) Op2) { | |
Flag = 1; | |
} | |
break; | |
case OPCODE_CMPIGTE: | |
if (Op1 >= (INT64) Op2) { | |
Flag = 1; | |
} | |
break; | |
case OPCODE_CMPIULTE: | |
if ((UINT64) Op1 <= (UINT64) ((UINT32) Op2)) { | |
Flag = 1; | |
} | |
break; | |
case OPCODE_CMPIUGTE: | |
if ((UINT64) Op1 >= (UINT64) ((UINT32) Op2)) { | |
Flag = 1; | |
} | |
break; | |
default: | |
ASSERT (0); | |
} | |
} else { | |
// | |
// 32-bit comparisons | |
// | |
switch (Opcode & OPCODE_M_OPCODE) { | |
case OPCODE_CMPIEQ: | |
if ((INT32) Op1 == Op2) { | |
Flag = 1; | |
} | |
break; | |
case OPCODE_CMPILTE: | |
if ((INT32) Op1 <= Op2) { | |
Flag = 1; | |
} | |
break; | |
case OPCODE_CMPIGTE: | |
if ((INT32) Op1 >= Op2) { | |
Flag = 1; | |
} | |
break; | |
case OPCODE_CMPIULTE: | |
if ((UINT32) Op1 <= (UINT32) Op2) { | |
Flag = 1; | |
} | |
break; | |
case OPCODE_CMPIUGTE: | |
if ((UINT32) Op1 >= (UINT32) Op2) { | |
Flag = 1; | |
} | |
break; | |
default: | |
ASSERT (0); | |
} | |
} | |
// | |
// Now set the flag accordingly for the comparison | |
// | |
if (Flag != 0) { | |
VMFLAG_SET (VmPtr, VMFLAGS_CC); | |
} else { | |
VMFLAG_CLEAR (VmPtr, VMFLAGS_CC); | |
} | |
// | |
// Advance the IP | |
// | |
VmPtr->Ip += Size; | |
return EFI_SUCCESS; | |
} | |
/** | |
Execute the EBC NOT instruction.s | |
Instruction syntax: | |
NOT[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return ~Op2 | |
**/ | |
UINT64 | |
ExecuteNOT ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
) | |
{ | |
return ~Op2; | |
} | |
/** | |
Execute the EBC NEG instruction. | |
Instruction syntax: | |
NEG[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op2 * -1 | |
**/ | |
UINT64 | |
ExecuteNEG ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
) | |
{ | |
return ~Op2 + 1; | |
} | |
/** | |
Execute the EBC ADD instruction. | |
Instruction syntax: | |
ADD[32|64] {@}R1, {@}R2 {Index16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 + Op2 | |
**/ | |
UINT64 | |
ExecuteADD ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
) | |
{ | |
return Op1 + Op2; | |
} | |
/** | |
Execute the EBC SUB instruction. | |
Instruction syntax: | |
SUB[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 - Op2 | |
**/ | |
UINT64 | |
ExecuteSUB ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
) | |
{ | |
if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) { | |
return (UINT64) ((INT64) ((INT64) Op1 - (INT64) Op2)); | |
} else { | |
return (UINT64) ((INT64) ((INT32) Op1 - (INT32) Op2)); | |
} | |
} | |
/** | |
Execute the EBC MUL instruction. | |
Instruction syntax: | |
SUB[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 * Op2 | |
**/ | |
UINT64 | |
ExecuteMUL ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
) | |
{ | |
if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) { | |
return MultS64x64 ((INT64)Op1, (INT64)Op2); | |
} else { | |
return (UINT64) ((INT64) ((INT32) Op1 * (INT32) Op2)); | |
} | |
} | |
/** | |
Execute the EBC MULU instruction | |
Instruction syntax: | |
MULU[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return (unsigned)Op1 * (unsigned)Op2 | |
**/ | |
UINT64 | |
ExecuteMULU ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
) | |
{ | |
if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) { | |
return MultU64x64 (Op1, Op2); | |
} else { | |
return (UINT64) ((UINT32) Op1 * (UINT32) Op2); | |
} | |
} | |
/** | |
Execute the EBC DIV instruction. | |
Instruction syntax: | |
DIV[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 / Op2 | |
**/ | |
UINT64 | |
ExecuteDIV ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
) | |
{ | |
INT64 Remainder; | |
// | |
// Check for divide-by-0 | |
// | |
if (Op2 == 0) { | |
EbcDebugSignalException ( | |
EXCEPT_EBC_DIVIDE_ERROR, | |
EXCEPTION_FLAG_FATAL, | |
VmPtr | |
); | |
return 0; | |
} else { | |
if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) { | |
return (UINT64) (DivS64x64Remainder (Op1, Op2, &Remainder)); | |
} else { | |
return (UINT64) ((INT64) ((INT32) Op1 / (INT32) Op2)); | |
} | |
} | |
} | |
/** | |
Execute the EBC DIVU instruction | |
Instruction syntax: | |
DIVU[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return (unsigned)Op1 / (unsigned)Op2 | |
**/ | |
UINT64 | |
ExecuteDIVU ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
) | |
{ | |
UINT64 Remainder; | |
// | |
// Check for divide-by-0 | |
// | |
if (Op2 == 0) { | |
EbcDebugSignalException ( | |
EXCEPT_EBC_DIVIDE_ERROR, | |
EXCEPTION_FLAG_FATAL, | |
VmPtr | |
); | |
return 0; | |
} else { | |
// | |
// Get the destination register | |
// | |
if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) { | |
return (UINT64) (DivU64x64Remainder (Op1, Op2, &Remainder)); | |
} else { | |
return (UINT64) ((UINT32) Op1 / (UINT32) Op2); | |
} | |
} | |
} | |
/** | |
Execute the EBC MOD instruction. | |
Instruction syntax: | |
MOD[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 MODULUS Op2 | |
**/ | |
UINT64 | |
ExecuteMOD ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
) | |
{ | |
INT64 Remainder; | |
// | |
// Check for divide-by-0 | |
// | |
if (Op2 == 0) { | |
EbcDebugSignalException ( | |
EXCEPT_EBC_DIVIDE_ERROR, | |
EXCEPTION_FLAG_FATAL, | |
VmPtr | |
); | |
return 0; | |
} else { | |
DivS64x64Remainder ((INT64)Op1, (INT64)Op2, &Remainder); | |
return Remainder; | |
} | |
} | |
/** | |
Execute the EBC MODU instruction. | |
Instruction syntax: | |
MODU[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 UNSIGNED_MODULUS Op2 | |
**/ | |
UINT64 | |
ExecuteMODU ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
) | |
{ | |
UINT64 Remainder; | |
// | |
// Check for divide-by-0 | |
// | |
if (Op2 == 0) { | |
EbcDebugSignalException ( | |
EXCEPT_EBC_DIVIDE_ERROR, | |
EXCEPTION_FLAG_FATAL, | |
VmPtr | |
); | |
return 0; | |
} else { | |
DivU64x64Remainder (Op1, Op2, &Remainder); | |
return Remainder; | |
} | |
} | |
/** | |
Execute the EBC AND instruction. | |
Instruction syntax: | |
AND[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 AND Op2 | |
**/ | |
UINT64 | |
ExecuteAND ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
) | |
{ | |
return Op1 & Op2; | |
} | |
/** | |
Execute the EBC OR instruction. | |
Instruction syntax: | |
OR[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 OR Op2 | |
**/ | |
UINT64 | |
ExecuteOR ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
) | |
{ | |
return Op1 | Op2; | |
} | |
/** | |
Execute the EBC XOR instruction. | |
Instruction syntax: | |
XOR[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 XOR Op2 | |
**/ | |
UINT64 | |
ExecuteXOR ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
) | |
{ | |
return Op1 ^ Op2; | |
} | |
/** | |
Execute the EBC SHL shift left instruction. | |
Instruction syntax: | |
SHL[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 << Op2 | |
**/ | |
UINT64 | |
ExecuteSHL ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
) | |
{ | |
if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) { | |
return LShiftU64 (Op1, (UINTN)Op2); | |
} else { | |
return (UINT64) ((UINT32) ((UINT32) Op1 << (UINT32) Op2)); | |
} | |
} | |
/** | |
Execute the EBC SHR instruction. | |
Instruction syntax: | |
SHR[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 >> Op2 (unsigned operands) | |
**/ | |
UINT64 | |
ExecuteSHR ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
) | |
{ | |
if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) { | |
return RShiftU64 (Op1, (UINTN)Op2); | |
} else { | |
return (UINT64) ((UINT32) Op1 >> (UINT32) Op2); | |
} | |
} | |
/** | |
Execute the EBC ASHR instruction. | |
Instruction syntax: | |
ASHR[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return Op1 >> Op2 (signed) | |
**/ | |
UINT64 | |
ExecuteASHR ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
) | |
{ | |
if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) { | |
return ARShiftU64 (Op1, (UINTN)Op2); | |
} else { | |
return (UINT64) ((INT64) ((INT32) Op1 >> (UINT32) Op2)); | |
} | |
} | |
/** | |
Execute the EBC EXTNDB instruction to sign-extend a byte value. | |
Instruction syntax: | |
EXTNDB[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return (INT64)(INT8)Op2 | |
**/ | |
UINT64 | |
ExecuteEXTNDB ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
) | |
{ | |
INT8 Data8; | |
INT64 Data64; | |
// | |
// Convert to byte, then return as 64-bit signed value to let compiler | |
// sign-extend the value | |
// | |
Data8 = (INT8) Op2; | |
Data64 = (INT64) Data8; | |
return (UINT64) Data64; | |
} | |
/** | |
Execute the EBC EXTNDW instruction to sign-extend a 16-bit value. | |
Instruction syntax: | |
EXTNDW[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return (INT64)(INT16)Op2 | |
**/ | |
UINT64 | |
ExecuteEXTNDW ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
) | |
{ | |
INT16 Data16; | |
INT64 Data64; | |
// | |
// Convert to word, then return as 64-bit signed value to let compiler | |
// sign-extend the value | |
// | |
Data16 = (INT16) Op2; | |
Data64 = (INT64) Data16; | |
return (UINT64) Data64; | |
} | |
// | |
// Execute the EBC EXTNDD instruction. | |
// | |
// Format: EXTNDD {@}Rx, {@}Ry [Index16|Immed16] | |
// EXTNDD Dest, Source | |
// | |
// Operation: Dest <- SignExtended((DWORD)Source)) | |
// | |
/** | |
Execute the EBC EXTNDD instruction to sign-extend a 32-bit value. | |
Instruction syntax: | |
EXTNDD[32|64] {@}R1, {@}R2 {Index16|Immed16} | |
@param VmPtr A pointer to a VM context. | |
@param Op1 Operand 1 from the instruction | |
@param Op2 Operand 2 from the instruction | |
@return (INT64)(INT32)Op2 | |
**/ | |
UINT64 | |
ExecuteEXTNDD ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT64 Op1, | |
IN UINT64 Op2 | |
) | |
{ | |
INT32 Data32; | |
INT64 Data64; | |
// | |
// Convert to 32-bit value, then return as 64-bit signed value to let compiler | |
// sign-extend the value | |
// | |
Data32 = (INT32) Op2; | |
Data64 = (INT64) Data32; | |
return (UINT64) Data64; | |
} | |
/** | |
Execute all the EBC signed data manipulation instructions. | |
Since the EBC data manipulation instructions all have the same basic form, | |
they can share the code that does the fetch of operands and the write-back | |
of the result. This function performs the fetch of the operands (even if | |
both are not needed to be fetched, like NOT instruction), dispatches to the | |
appropriate subfunction, then writes back the returned result. | |
Format: | |
INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16} | |
@param VmPtr A pointer to VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteSignedDataManip ( | |
IN VM_CONTEXT *VmPtr | |
) | |
{ | |
// | |
// Just call the data manipulation function with a flag indicating this | |
// is a signed operation. | |
// | |
return ExecuteDataManip (VmPtr, TRUE); | |
} | |
/** | |
Execute all the EBC unsigned data manipulation instructions. | |
Since the EBC data manipulation instructions all have the same basic form, | |
they can share the code that does the fetch of operands and the write-back | |
of the result. This function performs the fetch of the operands (even if | |
both are not needed to be fetched, like NOT instruction), dispatches to the | |
appropriate subfunction, then writes back the returned result. | |
Format: | |
INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16} | |
@param VmPtr A pointer to VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteUnsignedDataManip ( | |
IN VM_CONTEXT *VmPtr | |
) | |
{ | |
// | |
// Just call the data manipulation function with a flag indicating this | |
// is not a signed operation. | |
// | |
return ExecuteDataManip (VmPtr, FALSE); | |
} | |
/** | |
Execute all the EBC data manipulation instructions. | |
Since the EBC data manipulation instructions all have the same basic form, | |
they can share the code that does the fetch of operands and the write-back | |
of the result. This function performs the fetch of the operands (even if | |
both are not needed to be fetched, like NOT instruction), dispatches to the | |
appropriate subfunction, then writes back the returned result. | |
Format: | |
INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16} | |
@param VmPtr A pointer to VM context. | |
@param IsSignedOp Indicates whether the operand is signed or not. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteDataManip ( | |
IN VM_CONTEXT *VmPtr, | |
IN BOOLEAN IsSignedOp | |
) | |
{ | |
UINT8 Opcode; | |
INT16 Index16; | |
UINT8 Operands; | |
UINT8 Size; | |
UINT64 Op1; | |
UINT64 Op2; | |
INTN DataManipDispatchTableIndex; | |
// | |
// Get opcode and operands | |
// | |
Opcode = GETOPCODE (VmPtr); | |
Operands = GETOPERANDS (VmPtr); | |
// | |
// Determine if we have immediate data by the opcode | |
// | |
if ((Opcode & DATAMANIP_M_IMMDATA) != 0) { | |
// | |
// Index16 if Ry is indirect, or Immed16 if Ry direct. | |
// | |
if (OPERAND2_INDIRECT (Operands)) { | |
Index16 = VmReadIndex16 (VmPtr, 2); | |
} else { | |
Index16 = VmReadImmed16 (VmPtr, 2); | |
} | |
Size = 4; | |
} else { | |
Index16 = 0; | |
Size = 2; | |
} | |
// | |
// Now get operand2 (source). It's of format {@}R2 {Index16|Immed16} | |
// | |
Op2 = (UINT64) VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index16; | |
if (OPERAND2_INDIRECT (Operands)) { | |
// | |
// Indirect form: @R2 Index16. Fetch as 32- or 64-bit data | |
// | |
if ((Opcode & DATAMANIP_M_64) != 0) { | |
Op2 = VmReadMem64 (VmPtr, (UINTN) Op2); | |
} else { | |
// | |
// Read as signed value where appropriate. | |
// | |
if (IsSignedOp) { | |
Op2 = (UINT64) (INT64) ((INT32) VmReadMem32 (VmPtr, (UINTN) Op2)); | |
} else { | |
Op2 = (UINT64) VmReadMem32 (VmPtr, (UINTN) Op2); | |
} | |
} | |
} else { | |
if ((Opcode & DATAMANIP_M_64) == 0) { | |
if (IsSignedOp) { | |
Op2 = (UINT64) (INT64) ((INT32) Op2); | |
} else { | |
Op2 = (UINT64) ((UINT32) Op2); | |
} | |
} | |
} | |
// | |
// Get operand1 (destination and sometimes also an actual operand) | |
// of form {@}R1 | |
// | |
Op1 = (UINT64) VmPtr->Gpr[OPERAND1_REGNUM (Operands)]; | |
if (OPERAND1_INDIRECT (Operands)) { | |
if ((Opcode & DATAMANIP_M_64) != 0) { | |
Op1 = VmReadMem64 (VmPtr, (UINTN) Op1); | |
} else { | |
if (IsSignedOp) { | |
Op1 = (UINT64) (INT64) ((INT32) VmReadMem32 (VmPtr, (UINTN) Op1)); | |
} else { | |
Op1 = (UINT64) VmReadMem32 (VmPtr, (UINTN) Op1); | |
} | |
} | |
} else { | |
if ((Opcode & DATAMANIP_M_64) == 0) { | |
if (IsSignedOp) { | |
Op1 = (UINT64) (INT64) ((INT32) Op1); | |
} else { | |
Op1 = (UINT64) ((UINT32) Op1); | |
} | |
} | |
} | |
// | |
// Dispatch to the computation function | |
// | |
DataManipDispatchTableIndex = (Opcode & OPCODE_M_OPCODE) - OPCODE_NOT; | |
if ((DataManipDispatchTableIndex < 0) || | |
(DataManipDispatchTableIndex >= sizeof (mDataManipDispatchTable) / sizeof (mDataManipDispatchTable[0]))) { | |
EbcDebugSignalException ( | |
EXCEPT_EBC_INVALID_OPCODE, | |
EXCEPTION_FLAG_ERROR, | |
VmPtr | |
); | |
// | |
// Advance and return | |
// | |
VmPtr->Ip += Size; | |
return EFI_UNSUPPORTED; | |
} else { | |
Op2 = mDataManipDispatchTable[DataManipDispatchTableIndex](VmPtr, Op1, Op2); | |
} | |
// | |
// Write back the result. | |
// | |
if (OPERAND1_INDIRECT (Operands)) { | |
Op1 = (UINT64) VmPtr->Gpr[OPERAND1_REGNUM (Operands)]; | |
if ((Opcode & DATAMANIP_M_64) != 0) { | |
VmWriteMem64 (VmPtr, (UINTN) Op1, Op2); | |
} else { | |
VmWriteMem32 (VmPtr, (UINTN) Op1, (UINT32) Op2); | |
} | |
} else { | |
// | |
// Storage back to a register. Write back, clearing upper bits (as per | |
// the specification) if 32-bit operation. | |
// | |
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = Op2; | |
if ((Opcode & DATAMANIP_M_64) == 0) { | |
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] &= 0xFFFFFFFF; | |
} | |
} | |
// | |
// Advance the instruction pointer | |
// | |
VmPtr->Ip += Size; | |
return EFI_SUCCESS; | |
} | |
/** | |
Execute the EBC LOADSP instruction. | |
Instruction syntax: | |
LOADSP SP1, R2 | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteLOADSP ( | |
IN VM_CONTEXT *VmPtr | |
) | |
{ | |
UINT8 Operands; | |
// | |
// Get the operands | |
// | |
Operands = GETOPERANDS (VmPtr); | |
// | |
// Do the operation | |
// | |
switch (OPERAND1_REGNUM (Operands)) { | |
// | |
// Set flags | |
// | |
case 0: | |
// | |
// Spec states that this instruction will not modify reserved bits in | |
// the flags register. | |
// | |
VmPtr->Flags = (VmPtr->Flags &~VMFLAGS_ALL_VALID) | (VmPtr->Gpr[OPERAND2_REGNUM (Operands)] & VMFLAGS_ALL_VALID); | |
break; | |
default: | |
EbcDebugSignalException ( | |
EXCEPT_EBC_INSTRUCTION_ENCODING, | |
EXCEPTION_FLAG_WARNING, | |
VmPtr | |
); | |
VmPtr->Ip += 2; | |
return EFI_UNSUPPORTED; | |
} | |
VmPtr->Ip += 2; | |
return EFI_SUCCESS; | |
} | |
/** | |
Execute the EBC STORESP instruction. | |
Instruction syntax: | |
STORESP Rx, FLAGS|IP | |
@param VmPtr A pointer to a VM context. | |
@retval EFI_UNSUPPORTED The opcodes/operands is not supported. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
**/ | |
EFI_STATUS | |
ExecuteSTORESP ( | |
IN VM_CONTEXT *VmPtr | |
) | |
{ | |
UINT8 Operands; | |
// | |
// Get the operands | |
// | |
Operands = GETOPERANDS (VmPtr); | |
// | |
// Do the operation | |
// | |
switch (OPERAND2_REGNUM (Operands)) { | |
// | |
// Get flags | |
// | |
case 0: | |
// | |
// Retrieve the value in the flags register, then clear reserved bits | |
// | |
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = (UINT64) (VmPtr->Flags & VMFLAGS_ALL_VALID); | |
break; | |
// | |
// Get IP -- address of following instruction | |
// | |
case 1: | |
VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = (UINT64) (UINTN) VmPtr->Ip + 2; | |
break; | |
default: | |
EbcDebugSignalException ( | |
EXCEPT_EBC_INSTRUCTION_ENCODING, | |
EXCEPTION_FLAG_WARNING, | |
VmPtr | |
); | |
VmPtr->Ip += 2; | |
return EFI_UNSUPPORTED; | |
break; | |
} | |
VmPtr->Ip += 2; | |
return EFI_SUCCESS; | |
} | |
/** | |
Decode a 16-bit index to determine the offset. Given an index value: | |
b15 - sign bit | |
b14:12 - number of bits in this index assigned to natural units (=a) | |
ba:11 - constant units = ConstUnits | |
b0:a - natural units = NaturalUnits | |
Given this info, the offset can be computed by: | |
offset = sign_bit * (ConstUnits + NaturalUnits * sizeof(UINTN)) | |
Max offset is achieved with index = 0x7FFF giving an offset of | |
0x27B (32-bit machine) or 0x477 (64-bit machine). | |
Min offset is achieved with index = | |
@param VmPtr A pointer to VM context. | |
@param CodeOffset Offset from IP of the location of the 16-bit index | |
to decode. | |
@return The decoded offset. | |
**/ | |
INT16 | |
VmReadIndex16 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT32 CodeOffset | |
) | |
{ | |
UINT16 Index; | |
INT16 Offset; | |
INT16 ConstUnits; | |
INT16 NaturalUnits; | |
INT16 NBits; | |
INT16 Mask; | |
// | |
// First read the index from the code stream | |
// | |
Index = VmReadCode16 (VmPtr, CodeOffset); | |
// | |
// Get the mask for NaturalUnits. First get the number of bits from the index. | |
// | |
NBits = (INT16) ((Index & 0x7000) >> 12); | |
// | |
// Scale it for 16-bit indexes | |
// | |
NBits *= 2; | |
// | |
// Now using the number of bits, create a mask. | |
// | |
Mask = (INT16) ((INT16)~0 << NBits); | |
// | |
// Now using the mask, extract NaturalUnits from the lower bits of the index. | |
// | |
NaturalUnits = (INT16) (Index &~Mask); | |
// | |
// Now compute ConstUnits | |
// | |
ConstUnits = (INT16) (((Index &~0xF000) & Mask) >> NBits); | |
Offset = (INT16) (NaturalUnits * sizeof (UINTN) + ConstUnits); | |
// | |
// Now set the sign | |
// | |
if ((Index & 0x8000) != 0) { | |
// | |
// Do it the hard way to work around a bogus compiler warning | |
// | |
// Offset = -1 * Offset; | |
// | |
Offset = (INT16) ((INT32) Offset * -1); | |
} | |
return Offset; | |
} | |
/** | |
Decode a 32-bit index to determine the offset. | |
@param VmPtr A pointer to VM context. | |
@param CodeOffset Offset from IP of the location of the 32-bit index | |
to decode. | |
@return Converted index per EBC VM specification. | |
**/ | |
INT32 | |
VmReadIndex32 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT32 CodeOffset | |
) | |
{ | |
UINT32 Index; | |
INT32 Offset; | |
INT32 ConstUnits; | |
INT32 NaturalUnits; | |
INT32 NBits; | |
INT32 Mask; | |
Index = VmReadImmed32 (VmPtr, CodeOffset); | |
// | |
// Get the mask for NaturalUnits. First get the number of bits from the index. | |
// | |
NBits = (Index & 0x70000000) >> 28; | |
// | |
// Scale it for 32-bit indexes | |
// | |
NBits *= 4; | |
// | |
// Now using the number of bits, create a mask. | |
// | |
Mask = (INT32)~0 << NBits; | |
// | |
// Now using the mask, extract NaturalUnits from the lower bits of the index. | |
// | |
NaturalUnits = Index &~Mask; | |
// | |
// Now compute ConstUnits | |
// | |
ConstUnits = ((Index &~0xF0000000) & Mask) >> NBits; | |
Offset = NaturalUnits * sizeof (UINTN) + ConstUnits; | |
// | |
// Now set the sign | |
// | |
if ((Index & 0x80000000) != 0) { | |
Offset = Offset * -1; | |
} | |
return Offset; | |
} | |
/** | |
Decode a 64-bit index to determine the offset. | |
@param VmPtr A pointer to VM context.s | |
@param CodeOffset Offset from IP of the location of the 64-bit index | |
to decode. | |
@return Converted index per EBC VM specification | |
**/ | |
INT64 | |
VmReadIndex64 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT32 CodeOffset | |
) | |
{ | |
UINT64 Index; | |
INT64 Offset; | |
INT64 ConstUnits; | |
INT64 NaturalUnits; | |
INT64 NBits; | |
INT64 Mask; | |
Index = VmReadCode64 (VmPtr, CodeOffset); | |
// | |
// Get the mask for NaturalUnits. First get the number of bits from the index. | |
// | |
NBits = RShiftU64 ((Index & 0x7000000000000000ULL), 60); | |
// | |
// Scale it for 64-bit indexes (multiply by 8 by shifting left 3) | |
// | |
NBits = LShiftU64 ((UINT64)NBits, 3); | |
// | |
// Now using the number of bits, create a mask. | |
// | |
Mask = (LShiftU64 ((UINT64)~0, (UINTN)NBits)); | |
// | |
// Now using the mask, extract NaturalUnits from the lower bits of the index. | |
// | |
NaturalUnits = Index &~Mask; | |
// | |
// Now compute ConstUnits | |
// | |
ConstUnits = ARShiftU64 (((Index &~0xF000000000000000ULL) & Mask), (UINTN)NBits); | |
Offset = MultU64x64 ((UINT64) NaturalUnits, sizeof (UINTN)) + ConstUnits; | |
// | |
// Now set the sign | |
// | |
if ((Index & 0x8000000000000000ULL) != 0) { | |
Offset = MultS64x64 (Offset, -1); | |
} | |
return Offset; | |
} | |
/** | |
Writes 8-bit data to memory address. | |
This routine is called by the EBC data | |
movement instructions that write to memory. Since these writes | |
may be to the stack, which looks like (high address on top) this, | |
[EBC entry point arguments] | |
[VM stack] | |
[EBC stack] | |
we need to detect all attempts to write to the EBC entry point argument | |
stack area and adjust the address (which will initially point into the | |
VM stack) to point into the EBC entry point arguments. | |
@param VmPtr A pointer to a VM context. | |
@param Addr Address to write to. | |
@param Data Value to write to Addr. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
@retval Other Some error occurs when writing data to the address. | |
**/ | |
EFI_STATUS | |
VmWriteMem8 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINTN Addr, | |
IN UINT8 Data | |
) | |
{ | |
// | |
// Convert the address if it's in the stack gap | |
// | |
Addr = ConvertStackAddr (VmPtr, Addr); | |
*(UINT8 *) Addr = Data; | |
return EFI_SUCCESS; | |
} | |
/** | |
Writes 16-bit data to memory address. | |
This routine is called by the EBC data | |
movement instructions that write to memory. Since these writes | |
may be to the stack, which looks like (high address on top) this, | |
[EBC entry point arguments] | |
[VM stack] | |
[EBC stack] | |
we need to detect all attempts to write to the EBC entry point argument | |
stack area and adjust the address (which will initially point into the | |
VM stack) to point into the EBC entry point arguments. | |
@param VmPtr A pointer to a VM context. | |
@param Addr Address to write to. | |
@param Data Value to write to Addr. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
@retval Other Some error occurs when writing data to the address. | |
**/ | |
EFI_STATUS | |
VmWriteMem16 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINTN Addr, | |
IN UINT16 Data | |
) | |
{ | |
EFI_STATUS Status; | |
// | |
// Convert the address if it's in the stack gap | |
// | |
Addr = ConvertStackAddr (VmPtr, Addr); | |
// | |
// Do a simple write if aligned | |
// | |
if (IS_ALIGNED (Addr, sizeof (UINT16))) { | |
*(UINT16 *) Addr = Data; | |
} else { | |
// | |
// Write as two bytes | |
// | |
MemoryFence (); | |
if ((Status = VmWriteMem8 (VmPtr, Addr, (UINT8) Data)) != EFI_SUCCESS) { | |
return Status; | |
} | |
MemoryFence (); | |
if ((Status = VmWriteMem8 (VmPtr, Addr + 1, (UINT8) (Data >> 8))) != EFI_SUCCESS) { | |
return Status; | |
} | |
MemoryFence (); | |
} | |
return EFI_SUCCESS; | |
} | |
/** | |
Writes 32-bit data to memory address. | |
This routine is called by the EBC data | |
movement instructions that write to memory. Since these writes | |
may be to the stack, which looks like (high address on top) this, | |
[EBC entry point arguments] | |
[VM stack] | |
[EBC stack] | |
we need to detect all attempts to write to the EBC entry point argument | |
stack area and adjust the address (which will initially point into the | |
VM stack) to point into the EBC entry point arguments. | |
@param VmPtr A pointer to a VM context. | |
@param Addr Address to write to. | |
@param Data Value to write to Addr. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
@retval Other Some error occurs when writing data to the address. | |
**/ | |
EFI_STATUS | |
VmWriteMem32 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINTN Addr, | |
IN UINT32 Data | |
) | |
{ | |
EFI_STATUS Status; | |
// | |
// Convert the address if it's in the stack gap | |
// | |
Addr = ConvertStackAddr (VmPtr, Addr); | |
// | |
// Do a simple write if aligned | |
// | |
if (IS_ALIGNED (Addr, sizeof (UINT32))) { | |
*(UINT32 *) Addr = Data; | |
} else { | |
// | |
// Write as two words | |
// | |
MemoryFence (); | |
if ((Status = VmWriteMem16 (VmPtr, Addr, (UINT16) Data)) != EFI_SUCCESS) { | |
return Status; | |
} | |
MemoryFence (); | |
if ((Status = VmWriteMem16 (VmPtr, Addr + sizeof (UINT16), (UINT16) (Data >> 16))) != EFI_SUCCESS) { | |
return Status; | |
} | |
MemoryFence (); | |
} | |
return EFI_SUCCESS; | |
} | |
/** | |
Writes 64-bit data to memory address. | |
This routine is called by the EBC data | |
movement instructions that write to memory. Since these writes | |
may be to the stack, which looks like (high address on top) this, | |
[EBC entry point arguments] | |
[VM stack] | |
[EBC stack] | |
we need to detect all attempts to write to the EBC entry point argument | |
stack area and adjust the address (which will initially point into the | |
VM stack) to point into the EBC entry point arguments. | |
@param VmPtr A pointer to a VM context. | |
@param Addr Address to write to. | |
@param Data Value to write to Addr. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
@retval Other Some error occurs when writing data to the address. | |
**/ | |
EFI_STATUS | |
VmWriteMem64 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINTN Addr, | |
IN UINT64 Data | |
) | |
{ | |
EFI_STATUS Status; | |
// | |
// Convert the address if it's in the stack gap | |
// | |
Addr = ConvertStackAddr (VmPtr, Addr); | |
// | |
// Do a simple write if aligned | |
// | |
if (IS_ALIGNED (Addr, sizeof (UINT64))) { | |
*(UINT64 *) Addr = Data; | |
} else { | |
// | |
// Write as two 32-bit words | |
// | |
MemoryFence (); | |
if ((Status = VmWriteMem32 (VmPtr, Addr, (UINT32) Data)) != EFI_SUCCESS) { | |
return Status; | |
} | |
MemoryFence (); | |
if ((Status = VmWriteMem32 (VmPtr, Addr + sizeof (UINT32), (UINT32) RShiftU64(Data, 32))) != EFI_SUCCESS) { | |
return Status; | |
} | |
MemoryFence (); | |
} | |
return EFI_SUCCESS; | |
} | |
/** | |
Writes UINTN data to memory address. | |
This routine is called by the EBC data | |
movement instructions that write to memory. Since these writes | |
may be to the stack, which looks like (high address on top) this, | |
[EBC entry point arguments] | |
[VM stack] | |
[EBC stack] | |
we need to detect all attempts to write to the EBC entry point argument | |
stack area and adjust the address (which will initially point into the | |
VM stack) to point into the EBC entry point arguments. | |
@param VmPtr A pointer to a VM context. | |
@param Addr Address to write to. | |
@param Data Value to write to Addr. | |
@retval EFI_SUCCESS The instruction is executed successfully. | |
@retval Other Some error occurs when writing data to the address. | |
**/ | |
EFI_STATUS | |
VmWriteMemN ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINTN Addr, | |
IN UINTN Data | |
) | |
{ | |
EFI_STATUS Status; | |
UINTN Index; | |
Status = EFI_SUCCESS; | |
// | |
// Convert the address if it's in the stack gap | |
// | |
Addr = ConvertStackAddr (VmPtr, Addr); | |
// | |
// Do a simple write if aligned | |
// | |
if (IS_ALIGNED (Addr, sizeof (UINTN))) { | |
*(UINTN *) Addr = Data; | |
} else { | |
for (Index = 0; Index < sizeof (UINTN) / sizeof (UINT32); Index++) { | |
MemoryFence (); | |
Status = VmWriteMem32 (VmPtr, Addr + Index * sizeof (UINT32), (UINT32) Data); | |
MemoryFence (); | |
Data = (UINTN) RShiftU64 ((UINT64)Data, 32); | |
} | |
} | |
return Status; | |
} | |
/** | |
Reads 8-bit immediate value at the offset. | |
This routine is called by the EBC execute | |
functions to read EBC immediate values from the code stream. | |
Since we can't assume alignment, each tries to read in the biggest | |
chunks size available, but will revert to smaller reads if necessary. | |
@param VmPtr A pointer to a VM context. | |
@param Offset offset from IP of the code bytes to read. | |
@return Signed data of the requested size from the specified address. | |
**/ | |
INT8 | |
VmReadImmed8 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT32 Offset | |
) | |
{ | |
// | |
// Simply return the data in flat memory space | |
// | |
return * (INT8 *) (VmPtr->Ip + Offset); | |
} | |
/** | |
Reads 16-bit immediate value at the offset. | |
This routine is called by the EBC execute | |
functions to read EBC immediate values from the code stream. | |
Since we can't assume alignment, each tries to read in the biggest | |
chunks size available, but will revert to smaller reads if necessary. | |
@param VmPtr A pointer to a VM context. | |
@param Offset offset from IP of the code bytes to read. | |
@return Signed data of the requested size from the specified address. | |
**/ | |
INT16 | |
VmReadImmed16 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT32 Offset | |
) | |
{ | |
// | |
// Read direct if aligned | |
// | |
if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (INT16))) { | |
return * (INT16 *) (VmPtr->Ip + Offset); | |
} else { | |
// | |
// All code word reads should be aligned | |
// | |
EbcDebugSignalException ( | |
EXCEPT_EBC_ALIGNMENT_CHECK, | |
EXCEPTION_FLAG_WARNING, | |
VmPtr | |
); | |
} | |
// | |
// Return unaligned data | |
// | |
return (INT16) (*(UINT8 *) (VmPtr->Ip + Offset) + (*(UINT8 *) (VmPtr->Ip + Offset + 1) << 8)); | |
} | |
/** | |
Reads 32-bit immediate value at the offset. | |
This routine is called by the EBC execute | |
functions to read EBC immediate values from the code stream. | |
Since we can't assume alignment, each tries to read in the biggest | |
chunks size available, but will revert to smaller reads if necessary. | |
@param VmPtr A pointer to a VM context. | |
@param Offset offset from IP of the code bytes to read. | |
@return Signed data of the requested size from the specified address. | |
**/ | |
INT32 | |
VmReadImmed32 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT32 Offset | |
) | |
{ | |
UINT32 Data; | |
// | |
// Read direct if aligned | |
// | |
if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (UINT32))) { | |
return * (INT32 *) (VmPtr->Ip + Offset); | |
} | |
// | |
// Return unaligned data | |
// | |
Data = (UINT32) VmReadCode16 (VmPtr, Offset); | |
Data |= (UINT32)(VmReadCode16 (VmPtr, Offset + 2) << 16); | |
return Data; | |
} | |
/** | |
Reads 64-bit immediate value at the offset. | |
This routine is called by the EBC execute | |
functions to read EBC immediate values from the code stream. | |
Since we can't assume alignment, each tries to read in the biggest | |
chunks size available, but will revert to smaller reads if necessary. | |
@param VmPtr A pointer to a VM context. | |
@param Offset offset from IP of the code bytes to read. | |
@return Signed data of the requested size from the specified address. | |
**/ | |
INT64 | |
VmReadImmed64 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT32 Offset | |
) | |
{ | |
UINT64 Data64; | |
UINT32 Data32; | |
UINT8 *Ptr; | |
// | |
// Read direct if aligned | |
// | |
if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (UINT64))) { | |
return * (UINT64 *) (VmPtr->Ip + Offset); | |
} | |
// | |
// Return unaligned data. | |
// | |
Ptr = (UINT8 *) &Data64; | |
Data32 = VmReadCode32 (VmPtr, Offset); | |
*(UINT32 *) Ptr = Data32; | |
Ptr += sizeof (Data32); | |
Data32 = VmReadCode32 (VmPtr, Offset + sizeof (UINT32)); | |
*(UINT32 *) Ptr = Data32; | |
return Data64; | |
} | |
/** | |
Reads 16-bit unsigned data from the code stream. | |
This routine provides the ability to read raw unsigned data from the code | |
stream. | |
@param VmPtr A pointer to VM context | |
@param Offset Offset from current IP to the raw data to read. | |
@return The raw unsigned 16-bit value from the code stream. | |
**/ | |
UINT16 | |
VmReadCode16 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT32 Offset | |
) | |
{ | |
// | |
// Read direct if aligned | |
// | |
if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (UINT16))) { | |
return * (UINT16 *) (VmPtr->Ip + Offset); | |
} else { | |
// | |
// All code word reads should be aligned | |
// | |
EbcDebugSignalException ( | |
EXCEPT_EBC_ALIGNMENT_CHECK, | |
EXCEPTION_FLAG_WARNING, | |
VmPtr | |
); | |
} | |
// | |
// Return unaligned data | |
// | |
return (UINT16) (*(UINT8 *) (VmPtr->Ip + Offset) + (*(UINT8 *) (VmPtr->Ip + Offset + 1) << 8)); | |
} | |
/** | |
Reads 32-bit unsigned data from the code stream. | |
This routine provides the ability to read raw unsigned data from the code | |
stream. | |
@param VmPtr A pointer to VM context | |
@param Offset Offset from current IP to the raw data to read. | |
@return The raw unsigned 32-bit value from the code stream. | |
**/ | |
UINT32 | |
VmReadCode32 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT32 Offset | |
) | |
{ | |
UINT32 Data; | |
// | |
// Read direct if aligned | |
// | |
if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (UINT32))) { | |
return * (UINT32 *) (VmPtr->Ip + Offset); | |
} | |
// | |
// Return unaligned data | |
// | |
Data = (UINT32) VmReadCode16 (VmPtr, Offset); | |
Data |= (VmReadCode16 (VmPtr, Offset + 2) << 16); | |
return Data; | |
} | |
/** | |
Reads 64-bit unsigned data from the code stream. | |
This routine provides the ability to read raw unsigned data from the code | |
stream. | |
@param VmPtr A pointer to VM context | |
@param Offset Offset from current IP to the raw data to read. | |
@return The raw unsigned 64-bit value from the code stream. | |
**/ | |
UINT64 | |
VmReadCode64 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINT32 Offset | |
) | |
{ | |
UINT64 Data64; | |
UINT32 Data32; | |
UINT8 *Ptr; | |
// | |
// Read direct if aligned | |
// | |
if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (UINT64))) { | |
return * (UINT64 *) (VmPtr->Ip + Offset); | |
} | |
// | |
// Return unaligned data. | |
// | |
Ptr = (UINT8 *) &Data64; | |
Data32 = VmReadCode32 (VmPtr, Offset); | |
*(UINT32 *) Ptr = Data32; | |
Ptr += sizeof (Data32); | |
Data32 = VmReadCode32 (VmPtr, Offset + sizeof (UINT32)); | |
*(UINT32 *) Ptr = Data32; | |
return Data64; | |
} | |
/** | |
Reads 8-bit data form the memory address. | |
@param VmPtr A pointer to VM context. | |
@param Addr The memory address. | |
@return The 8-bit value from the memory address. | |
**/ | |
UINT8 | |
VmReadMem8 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINTN Addr | |
) | |
{ | |
// | |
// Convert the address if it's in the stack gap | |
// | |
Addr = ConvertStackAddr (VmPtr, Addr); | |
// | |
// Simply return the data in flat memory space | |
// | |
return * (UINT8 *) Addr; | |
} | |
/** | |
Reads 16-bit data form the memory address. | |
@param VmPtr A pointer to VM context. | |
@param Addr The memory address. | |
@return The 16-bit value from the memory address. | |
**/ | |
UINT16 | |
VmReadMem16 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINTN Addr | |
) | |
{ | |
// | |
// Convert the address if it's in the stack gap | |
// | |
Addr = ConvertStackAddr (VmPtr, Addr); | |
// | |
// Read direct if aligned | |
// | |
if (IS_ALIGNED (Addr, sizeof (UINT16))) { | |
return * (UINT16 *) Addr; | |
} | |
// | |
// Return unaligned data | |
// | |
return (UINT16) (*(UINT8 *) Addr + (*(UINT8 *) (Addr + 1) << 8)); | |
} | |
/** | |
Reads 32-bit data form the memory address. | |
@param VmPtr A pointer to VM context. | |
@param Addr The memory address. | |
@return The 32-bit value from the memory address. | |
**/ | |
UINT32 | |
VmReadMem32 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINTN Addr | |
) | |
{ | |
UINT32 Data; | |
// | |
// Convert the address if it's in the stack gap | |
// | |
Addr = ConvertStackAddr (VmPtr, Addr); | |
// | |
// Read direct if aligned | |
// | |
if (IS_ALIGNED (Addr, sizeof (UINT32))) { | |
return * (UINT32 *) Addr; | |
} | |
// | |
// Return unaligned data | |
// | |
Data = (UINT32) VmReadMem16 (VmPtr, Addr); | |
Data |= (VmReadMem16 (VmPtr, Addr + 2) << 16); | |
return Data; | |
} | |
/** | |
Reads 64-bit data form the memory address. | |
@param VmPtr A pointer to VM context. | |
@param Addr The memory address. | |
@return The 64-bit value from the memory address. | |
**/ | |
UINT64 | |
VmReadMem64 ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINTN Addr | |
) | |
{ | |
UINT64 Data; | |
UINT32 Data32; | |
// | |
// Convert the address if it's in the stack gap | |
// | |
Addr = ConvertStackAddr (VmPtr, Addr); | |
// | |
// Read direct if aligned | |
// | |
if (IS_ALIGNED (Addr, sizeof (UINT64))) { | |
return * (UINT64 *) Addr; | |
} | |
// | |
// Return unaligned data. Assume little endian. | |
// | |
Data32 = VmReadMem32 (VmPtr, Addr); | |
Data = (UINT64) VmReadMem32 (VmPtr, Addr + sizeof (UINT32)); | |
Data = LShiftU64 (Data, 32) | Data32; | |
return Data; | |
} | |
/** | |
Given an address that EBC is going to read from or write to, return | |
an appropriate address that accounts for a gap in the stack. | |
The stack for this application looks like this (high addr on top) | |
[EBC entry point arguments] | |
[VM stack] | |
[EBC stack] | |
The EBC assumes that its arguments are at the top of its stack, which | |
is where the VM stack is really. Therefore if the EBC does memory | |
accesses into the VM stack area, then we need to convert the address | |
to point to the EBC entry point arguments area. Do this here. | |
@param VmPtr A Pointer to VM context. | |
@param Addr Address of interest | |
@return The unchanged address if it's not in the VM stack region. Otherwise, | |
adjust for the stack gap and return the modified address. | |
**/ | |
UINTN | |
ConvertStackAddr ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINTN Addr | |
) | |
{ | |
ASSERT(((Addr < VmPtr->LowStackTop) || (Addr > VmPtr->HighStackBottom))); | |
return Addr; | |
} | |
/** | |
Read a natural value from memory. May or may not be aligned. | |
@param VmPtr current VM context | |
@param Addr the address to read from | |
@return The natural value at address Addr. | |
**/ | |
UINTN | |
VmReadMemN ( | |
IN VM_CONTEXT *VmPtr, | |
IN UINTN Addr | |
) | |
{ | |
UINTN Data; | |
volatile UINT32 Size; | |
UINT8 *FromPtr; | |
UINT8 *ToPtr; | |
// | |
// Convert the address if it's in the stack gap | |
// | |
Addr = ConvertStackAddr (VmPtr, Addr); | |
// | |
// Read direct if aligned | |
// | |
if (IS_ALIGNED (Addr, sizeof (UINTN))) { | |
return * (UINTN *) Addr; | |
} | |
// | |
// Return unaligned data | |
// | |
Data = 0; | |
FromPtr = (UINT8 *) Addr; | |
ToPtr = (UINT8 *) &Data; | |
for (Size = 0; Size < sizeof (Data); Size++) { | |
*ToPtr = *FromPtr; | |
ToPtr++; | |
FromPtr++; | |
} | |
return Data; | |
} | |
/** | |
Returns the version of the EBC virtual machine. | |
@return The 64-bit version of EBC virtual machine. | |
**/ | |
UINT64 | |
GetVmVersion ( | |
VOID | |
) | |
{ | |
return (UINT64) (((VM_MAJOR_VERSION & 0xFFFF) << 16) | ((VM_MINOR_VERSION & 0xFFFF))); | |
} |