Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Intel SMP support routines. |
| 3 | * |
| 4 | * (c) 1995 Alan Cox, Building #3 <alan@redhat.com> |
| 5 | * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com> |
| 6 | * |
| 7 | * This code is released under the GNU General Public License version 2 or |
| 8 | * later. |
| 9 | */ |
| 10 | |
| 11 | #include <linux/init.h> |
| 12 | |
| 13 | #include <linux/mm.h> |
| 14 | #include <linux/irq.h> |
| 15 | #include <linux/delay.h> |
| 16 | #include <linux/spinlock.h> |
| 17 | #include <linux/smp_lock.h> |
| 18 | #include <linux/kernel_stat.h> |
| 19 | #include <linux/mc146818rtc.h> |
| 20 | #include <linux/cache.h> |
| 21 | #include <linux/interrupt.h> |
Alexey Dobriyan | 129f694 | 2005-06-23 00:08:33 -0700 | [diff] [blame] | 22 | #include <linux/module.h> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 23 | |
| 24 | #include <asm/mtrr.h> |
| 25 | #include <asm/tlbflush.h> |
| 26 | #include <mach_apic.h> |
| 27 | |
| 28 | /* |
| 29 | * Some notes on x86 processor bugs affecting SMP operation: |
| 30 | * |
| 31 | * Pentium, Pentium Pro, II, III (and all CPUs) have bugs. |
| 32 | * The Linux implications for SMP are handled as follows: |
| 33 | * |
| 34 | * Pentium III / [Xeon] |
| 35 | * None of the E1AP-E3AP errata are visible to the user. |
| 36 | * |
| 37 | * E1AP. see PII A1AP |
| 38 | * E2AP. see PII A2AP |
| 39 | * E3AP. see PII A3AP |
| 40 | * |
| 41 | * Pentium II / [Xeon] |
| 42 | * None of the A1AP-A3AP errata are visible to the user. |
| 43 | * |
| 44 | * A1AP. see PPro 1AP |
| 45 | * A2AP. see PPro 2AP |
| 46 | * A3AP. see PPro 7AP |
| 47 | * |
| 48 | * Pentium Pro |
| 49 | * None of 1AP-9AP errata are visible to the normal user, |
| 50 | * except occasional delivery of 'spurious interrupt' as trap #15. |
| 51 | * This is very rare and a non-problem. |
| 52 | * |
| 53 | * 1AP. Linux maps APIC as non-cacheable |
| 54 | * 2AP. worked around in hardware |
| 55 | * 3AP. fixed in C0 and above steppings microcode update. |
| 56 | * Linux does not use excessive STARTUP_IPIs. |
| 57 | * 4AP. worked around in hardware |
| 58 | * 5AP. symmetric IO mode (normal Linux operation) not affected. |
| 59 | * 'noapic' mode has vector 0xf filled out properly. |
| 60 | * 6AP. 'noapic' mode might be affected - fixed in later steppings |
| 61 | * 7AP. We do not assume writes to the LVT deassering IRQs |
| 62 | * 8AP. We do not enable low power mode (deep sleep) during MP bootup |
| 63 | * 9AP. We do not use mixed mode |
| 64 | * |
| 65 | * Pentium |
| 66 | * There is a marginal case where REP MOVS on 100MHz SMP |
| 67 | * machines with B stepping processors can fail. XXX should provide |
| 68 | * an L1cache=Writethrough or L1cache=off option. |
| 69 | * |
| 70 | * B stepping CPUs may hang. There are hardware work arounds |
| 71 | * for this. We warn about it in case your board doesn't have the work |
| 72 | * arounds. Basically thats so I can tell anyone with a B stepping |
| 73 | * CPU and SMP problems "tough". |
| 74 | * |
| 75 | * Specific items [From Pentium Processor Specification Update] |
| 76 | * |
| 77 | * 1AP. Linux doesn't use remote read |
| 78 | * 2AP. Linux doesn't trust APIC errors |
| 79 | * 3AP. We work around this |
| 80 | * 4AP. Linux never generated 3 interrupts of the same priority |
| 81 | * to cause a lost local interrupt. |
| 82 | * 5AP. Remote read is never used |
| 83 | * 6AP. not affected - worked around in hardware |
| 84 | * 7AP. not affected - worked around in hardware |
| 85 | * 8AP. worked around in hardware - we get explicit CS errors if not |
| 86 | * 9AP. only 'noapic' mode affected. Might generate spurious |
| 87 | * interrupts, we log only the first one and count the |
| 88 | * rest silently. |
| 89 | * 10AP. not affected - worked around in hardware |
| 90 | * 11AP. Linux reads the APIC between writes to avoid this, as per |
| 91 | * the documentation. Make sure you preserve this as it affects |
| 92 | * the C stepping chips too. |
| 93 | * 12AP. not affected - worked around in hardware |
| 94 | * 13AP. not affected - worked around in hardware |
| 95 | * 14AP. we always deassert INIT during bootup |
| 96 | * 15AP. not affected - worked around in hardware |
| 97 | * 16AP. not affected - worked around in hardware |
| 98 | * 17AP. not affected - worked around in hardware |
| 99 | * 18AP. not affected - worked around in hardware |
| 100 | * 19AP. not affected - worked around in BIOS |
| 101 | * |
| 102 | * If this sounds worrying believe me these bugs are either ___RARE___, |
| 103 | * or are signal timing bugs worked around in hardware and there's |
| 104 | * about nothing of note with C stepping upwards. |
| 105 | */ |
| 106 | |
| 107 | DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0, }; |
| 108 | |
| 109 | /* |
| 110 | * the following functions deal with sending IPIs between CPUs. |
| 111 | * |
| 112 | * We use 'broadcast', CPU->CPU IPIs and self-IPIs too. |
| 113 | */ |
| 114 | |
| 115 | static inline int __prepare_ICR (unsigned int shortcut, int vector) |
| 116 | { |
| 117 | return APIC_DM_FIXED | shortcut | vector | APIC_DEST_LOGICAL; |
| 118 | } |
| 119 | |
| 120 | static inline int __prepare_ICR2 (unsigned int mask) |
| 121 | { |
| 122 | return SET_APIC_DEST_FIELD(mask); |
| 123 | } |
| 124 | |
| 125 | void __send_IPI_shortcut(unsigned int shortcut, int vector) |
| 126 | { |
| 127 | /* |
| 128 | * Subtle. In the case of the 'never do double writes' workaround |
| 129 | * we have to lock out interrupts to be safe. As we don't care |
| 130 | * of the value read we use an atomic rmw access to avoid costly |
| 131 | * cli/sti. Otherwise we use an even cheaper single atomic write |
| 132 | * to the APIC. |
| 133 | */ |
| 134 | unsigned int cfg; |
| 135 | |
| 136 | /* |
| 137 | * Wait for idle. |
| 138 | */ |
| 139 | apic_wait_icr_idle(); |
| 140 | |
| 141 | /* |
| 142 | * No need to touch the target chip field |
| 143 | */ |
| 144 | cfg = __prepare_ICR(shortcut, vector); |
| 145 | |
| 146 | /* |
| 147 | * Send the IPI. The write to APIC_ICR fires this off. |
| 148 | */ |
| 149 | apic_write_around(APIC_ICR, cfg); |
| 150 | } |
| 151 | |
| 152 | void fastcall send_IPI_self(int vector) |
| 153 | { |
| 154 | __send_IPI_shortcut(APIC_DEST_SELF, vector); |
| 155 | } |
| 156 | |
| 157 | /* |
| 158 | * This is only used on smaller machines. |
| 159 | */ |
| 160 | void send_IPI_mask_bitmask(cpumask_t cpumask, int vector) |
| 161 | { |
| 162 | unsigned long mask = cpus_addr(cpumask)[0]; |
| 163 | unsigned long cfg; |
| 164 | unsigned long flags; |
| 165 | |
| 166 | local_irq_save(flags); |
| 167 | |
| 168 | /* |
| 169 | * Wait for idle. |
| 170 | */ |
| 171 | apic_wait_icr_idle(); |
| 172 | |
| 173 | /* |
| 174 | * prepare target chip field |
| 175 | */ |
| 176 | cfg = __prepare_ICR2(mask); |
| 177 | apic_write_around(APIC_ICR2, cfg); |
| 178 | |
| 179 | /* |
| 180 | * program the ICR |
| 181 | */ |
| 182 | cfg = __prepare_ICR(0, vector); |
| 183 | |
| 184 | /* |
| 185 | * Send the IPI. The write to APIC_ICR fires this off. |
| 186 | */ |
| 187 | apic_write_around(APIC_ICR, cfg); |
| 188 | |
| 189 | local_irq_restore(flags); |
| 190 | } |
| 191 | |
| 192 | void send_IPI_mask_sequence(cpumask_t mask, int vector) |
| 193 | { |
| 194 | unsigned long cfg, flags; |
| 195 | unsigned int query_cpu; |
| 196 | |
| 197 | /* |
| 198 | * Hack. The clustered APIC addressing mode doesn't allow us to send |
| 199 | * to an arbitrary mask, so I do a unicasts to each CPU instead. This |
| 200 | * should be modified to do 1 message per cluster ID - mbligh |
| 201 | */ |
| 202 | |
| 203 | local_irq_save(flags); |
| 204 | |
| 205 | for (query_cpu = 0; query_cpu < NR_CPUS; ++query_cpu) { |
| 206 | if (cpu_isset(query_cpu, mask)) { |
| 207 | |
| 208 | /* |
| 209 | * Wait for idle. |
| 210 | */ |
| 211 | apic_wait_icr_idle(); |
| 212 | |
| 213 | /* |
| 214 | * prepare target chip field |
| 215 | */ |
| 216 | cfg = __prepare_ICR2(cpu_to_logical_apicid(query_cpu)); |
| 217 | apic_write_around(APIC_ICR2, cfg); |
| 218 | |
| 219 | /* |
| 220 | * program the ICR |
| 221 | */ |
| 222 | cfg = __prepare_ICR(0, vector); |
| 223 | |
| 224 | /* |
| 225 | * Send the IPI. The write to APIC_ICR fires this off. |
| 226 | */ |
| 227 | apic_write_around(APIC_ICR, cfg); |
| 228 | } |
| 229 | } |
| 230 | local_irq_restore(flags); |
| 231 | } |
| 232 | |
| 233 | #include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */ |
| 234 | |
| 235 | /* |
| 236 | * Smarter SMP flushing macros. |
| 237 | * c/o Linus Torvalds. |
| 238 | * |
| 239 | * These mean you can really definitely utterly forget about |
| 240 | * writing to user space from interrupts. (Its not allowed anyway). |
| 241 | * |
| 242 | * Optimizations Manfred Spraul <manfred@colorfullife.com> |
| 243 | */ |
| 244 | |
| 245 | static cpumask_t flush_cpumask; |
| 246 | static struct mm_struct * flush_mm; |
| 247 | static unsigned long flush_va; |
| 248 | static DEFINE_SPINLOCK(tlbstate_lock); |
| 249 | #define FLUSH_ALL 0xffffffff |
| 250 | |
| 251 | /* |
| 252 | * We cannot call mmdrop() because we are in interrupt context, |
| 253 | * instead update mm->cpu_vm_mask. |
| 254 | * |
| 255 | * We need to reload %cr3 since the page tables may be going |
| 256 | * away from under us.. |
| 257 | */ |
| 258 | static inline void leave_mm (unsigned long cpu) |
| 259 | { |
| 260 | if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) |
| 261 | BUG(); |
| 262 | cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask); |
| 263 | load_cr3(swapper_pg_dir); |
| 264 | } |
| 265 | |
| 266 | /* |
| 267 | * |
| 268 | * The flush IPI assumes that a thread switch happens in this order: |
| 269 | * [cpu0: the cpu that switches] |
| 270 | * 1) switch_mm() either 1a) or 1b) |
| 271 | * 1a) thread switch to a different mm |
| 272 | * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask); |
| 273 | * Stop ipi delivery for the old mm. This is not synchronized with |
| 274 | * the other cpus, but smp_invalidate_interrupt ignore flush ipis |
| 275 | * for the wrong mm, and in the worst case we perform a superflous |
| 276 | * tlb flush. |
| 277 | * 1a2) set cpu_tlbstate to TLBSTATE_OK |
| 278 | * Now the smp_invalidate_interrupt won't call leave_mm if cpu0 |
| 279 | * was in lazy tlb mode. |
| 280 | * 1a3) update cpu_tlbstate[].active_mm |
| 281 | * Now cpu0 accepts tlb flushes for the new mm. |
| 282 | * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask); |
| 283 | * Now the other cpus will send tlb flush ipis. |
| 284 | * 1a4) change cr3. |
| 285 | * 1b) thread switch without mm change |
| 286 | * cpu_tlbstate[].active_mm is correct, cpu0 already handles |
| 287 | * flush ipis. |
| 288 | * 1b1) set cpu_tlbstate to TLBSTATE_OK |
| 289 | * 1b2) test_and_set the cpu bit in cpu_vm_mask. |
| 290 | * Atomically set the bit [other cpus will start sending flush ipis], |
| 291 | * and test the bit. |
| 292 | * 1b3) if the bit was 0: leave_mm was called, flush the tlb. |
| 293 | * 2) switch %%esp, ie current |
| 294 | * |
| 295 | * The interrupt must handle 2 special cases: |
| 296 | * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm. |
| 297 | * - the cpu performs speculative tlb reads, i.e. even if the cpu only |
| 298 | * runs in kernel space, the cpu could load tlb entries for user space |
| 299 | * pages. |
| 300 | * |
| 301 | * The good news is that cpu_tlbstate is local to each cpu, no |
| 302 | * write/read ordering problems. |
| 303 | */ |
| 304 | |
| 305 | /* |
| 306 | * TLB flush IPI: |
| 307 | * |
| 308 | * 1) Flush the tlb entries if the cpu uses the mm that's being flushed. |
| 309 | * 2) Leave the mm if we are in the lazy tlb mode. |
| 310 | */ |
| 311 | |
| 312 | fastcall void smp_invalidate_interrupt(struct pt_regs *regs) |
| 313 | { |
| 314 | unsigned long cpu; |
| 315 | |
| 316 | cpu = get_cpu(); |
| 317 | |
| 318 | if (!cpu_isset(cpu, flush_cpumask)) |
| 319 | goto out; |
| 320 | /* |
| 321 | * This was a BUG() but until someone can quote me the |
| 322 | * line from the intel manual that guarantees an IPI to |
| 323 | * multiple CPUs is retried _only_ on the erroring CPUs |
| 324 | * its staying as a return |
| 325 | * |
| 326 | * BUG(); |
| 327 | */ |
| 328 | |
| 329 | if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) { |
| 330 | if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) { |
| 331 | if (flush_va == FLUSH_ALL) |
| 332 | local_flush_tlb(); |
| 333 | else |
| 334 | __flush_tlb_one(flush_va); |
| 335 | } else |
| 336 | leave_mm(cpu); |
| 337 | } |
| 338 | ack_APIC_irq(); |
| 339 | smp_mb__before_clear_bit(); |
| 340 | cpu_clear(cpu, flush_cpumask); |
| 341 | smp_mb__after_clear_bit(); |
| 342 | out: |
| 343 | put_cpu_no_resched(); |
| 344 | } |
| 345 | |
| 346 | static void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm, |
| 347 | unsigned long va) |
| 348 | { |
| 349 | cpumask_t tmp; |
| 350 | /* |
| 351 | * A couple of (to be removed) sanity checks: |
| 352 | * |
| 353 | * - we do not send IPIs to not-yet booted CPUs. |
| 354 | * - current CPU must not be in mask |
| 355 | * - mask must exist :) |
| 356 | */ |
| 357 | BUG_ON(cpus_empty(cpumask)); |
| 358 | |
| 359 | cpus_and(tmp, cpumask, cpu_online_map); |
| 360 | BUG_ON(!cpus_equal(cpumask, tmp)); |
| 361 | BUG_ON(cpu_isset(smp_processor_id(), cpumask)); |
| 362 | BUG_ON(!mm); |
| 363 | |
| 364 | /* |
| 365 | * i'm not happy about this global shared spinlock in the |
| 366 | * MM hot path, but we'll see how contended it is. |
| 367 | * Temporarily this turns IRQs off, so that lockups are |
| 368 | * detected by the NMI watchdog. |
| 369 | */ |
| 370 | spin_lock(&tlbstate_lock); |
| 371 | |
| 372 | flush_mm = mm; |
| 373 | flush_va = va; |
| 374 | #if NR_CPUS <= BITS_PER_LONG |
| 375 | atomic_set_mask(cpumask, &flush_cpumask); |
| 376 | #else |
| 377 | { |
| 378 | int k; |
| 379 | unsigned long *flush_mask = (unsigned long *)&flush_cpumask; |
| 380 | unsigned long *cpu_mask = (unsigned long *)&cpumask; |
| 381 | for (k = 0; k < BITS_TO_LONGS(NR_CPUS); ++k) |
| 382 | atomic_set_mask(cpu_mask[k], &flush_mask[k]); |
| 383 | } |
| 384 | #endif |
| 385 | /* |
| 386 | * We have to send the IPI only to |
| 387 | * CPUs affected. |
| 388 | */ |
| 389 | send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR); |
| 390 | |
| 391 | while (!cpus_empty(flush_cpumask)) |
| 392 | /* nothing. lockup detection does not belong here */ |
| 393 | mb(); |
| 394 | |
| 395 | flush_mm = NULL; |
| 396 | flush_va = 0; |
| 397 | spin_unlock(&tlbstate_lock); |
| 398 | } |
| 399 | |
| 400 | void flush_tlb_current_task(void) |
| 401 | { |
| 402 | struct mm_struct *mm = current->mm; |
| 403 | cpumask_t cpu_mask; |
| 404 | |
| 405 | preempt_disable(); |
| 406 | cpu_mask = mm->cpu_vm_mask; |
| 407 | cpu_clear(smp_processor_id(), cpu_mask); |
| 408 | |
| 409 | local_flush_tlb(); |
| 410 | if (!cpus_empty(cpu_mask)) |
| 411 | flush_tlb_others(cpu_mask, mm, FLUSH_ALL); |
| 412 | preempt_enable(); |
| 413 | } |
| 414 | |
| 415 | void flush_tlb_mm (struct mm_struct * mm) |
| 416 | { |
| 417 | cpumask_t cpu_mask; |
| 418 | |
| 419 | preempt_disable(); |
| 420 | cpu_mask = mm->cpu_vm_mask; |
| 421 | cpu_clear(smp_processor_id(), cpu_mask); |
| 422 | |
| 423 | if (current->active_mm == mm) { |
| 424 | if (current->mm) |
| 425 | local_flush_tlb(); |
| 426 | else |
| 427 | leave_mm(smp_processor_id()); |
| 428 | } |
| 429 | if (!cpus_empty(cpu_mask)) |
| 430 | flush_tlb_others(cpu_mask, mm, FLUSH_ALL); |
| 431 | |
| 432 | preempt_enable(); |
| 433 | } |
| 434 | |
| 435 | void flush_tlb_page(struct vm_area_struct * vma, unsigned long va) |
| 436 | { |
| 437 | struct mm_struct *mm = vma->vm_mm; |
| 438 | cpumask_t cpu_mask; |
| 439 | |
| 440 | preempt_disable(); |
| 441 | cpu_mask = mm->cpu_vm_mask; |
| 442 | cpu_clear(smp_processor_id(), cpu_mask); |
| 443 | |
| 444 | if (current->active_mm == mm) { |
| 445 | if(current->mm) |
| 446 | __flush_tlb_one(va); |
| 447 | else |
| 448 | leave_mm(smp_processor_id()); |
| 449 | } |
| 450 | |
| 451 | if (!cpus_empty(cpu_mask)) |
| 452 | flush_tlb_others(cpu_mask, mm, va); |
| 453 | |
| 454 | preempt_enable(); |
| 455 | } |
Alexey Dobriyan | 129f694 | 2005-06-23 00:08:33 -0700 | [diff] [blame] | 456 | EXPORT_SYMBOL(flush_tlb_page); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 457 | |
| 458 | static void do_flush_tlb_all(void* info) |
| 459 | { |
| 460 | unsigned long cpu = smp_processor_id(); |
| 461 | |
| 462 | __flush_tlb_all(); |
| 463 | if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY) |
| 464 | leave_mm(cpu); |
| 465 | } |
| 466 | |
| 467 | void flush_tlb_all(void) |
| 468 | { |
| 469 | on_each_cpu(do_flush_tlb_all, NULL, 1, 1); |
| 470 | } |
| 471 | |
| 472 | /* |
| 473 | * this function sends a 'reschedule' IPI to another CPU. |
| 474 | * it goes straight through and wastes no time serializing |
| 475 | * anything. Worst case is that we lose a reschedule ... |
| 476 | */ |
| 477 | void smp_send_reschedule(int cpu) |
| 478 | { |
| 479 | send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR); |
| 480 | } |
| 481 | |
| 482 | /* |
| 483 | * Structure and data for smp_call_function(). This is designed to minimise |
| 484 | * static memory requirements. It also looks cleaner. |
| 485 | */ |
| 486 | static DEFINE_SPINLOCK(call_lock); |
| 487 | |
| 488 | struct call_data_struct { |
| 489 | void (*func) (void *info); |
| 490 | void *info; |
| 491 | atomic_t started; |
| 492 | atomic_t finished; |
| 493 | int wait; |
| 494 | }; |
| 495 | |
| 496 | static struct call_data_struct * call_data; |
| 497 | |
| 498 | /* |
| 499 | * this function sends a 'generic call function' IPI to all other CPUs |
| 500 | * in the system. |
| 501 | */ |
| 502 | |
| 503 | int smp_call_function (void (*func) (void *info), void *info, int nonatomic, |
| 504 | int wait) |
| 505 | /* |
| 506 | * [SUMMARY] Run a function on all other CPUs. |
| 507 | * <func> The function to run. This must be fast and non-blocking. |
| 508 | * <info> An arbitrary pointer to pass to the function. |
| 509 | * <nonatomic> currently unused. |
| 510 | * <wait> If true, wait (atomically) until function has completed on other CPUs. |
| 511 | * [RETURNS] 0 on success, else a negative status code. Does not return until |
| 512 | * remote CPUs are nearly ready to execute <<func>> or are or have executed. |
| 513 | * |
| 514 | * You must not call this function with disabled interrupts or from a |
| 515 | * hardware interrupt handler or from a bottom half handler. |
| 516 | */ |
| 517 | { |
| 518 | struct call_data_struct data; |
| 519 | int cpus = num_online_cpus()-1; |
| 520 | |
| 521 | if (!cpus) |
| 522 | return 0; |
| 523 | |
| 524 | /* Can deadlock when called with interrupts disabled */ |
| 525 | WARN_ON(irqs_disabled()); |
| 526 | |
| 527 | data.func = func; |
| 528 | data.info = info; |
| 529 | atomic_set(&data.started, 0); |
| 530 | data.wait = wait; |
| 531 | if (wait) |
| 532 | atomic_set(&data.finished, 0); |
| 533 | |
| 534 | spin_lock(&call_lock); |
| 535 | call_data = &data; |
| 536 | mb(); |
| 537 | |
| 538 | /* Send a message to all other CPUs and wait for them to respond */ |
| 539 | send_IPI_allbutself(CALL_FUNCTION_VECTOR); |
| 540 | |
| 541 | /* Wait for response */ |
| 542 | while (atomic_read(&data.started) != cpus) |
| 543 | cpu_relax(); |
| 544 | |
| 545 | if (wait) |
| 546 | while (atomic_read(&data.finished) != cpus) |
| 547 | cpu_relax(); |
| 548 | spin_unlock(&call_lock); |
| 549 | |
| 550 | return 0; |
| 551 | } |
Alexey Dobriyan | 129f694 | 2005-06-23 00:08:33 -0700 | [diff] [blame] | 552 | EXPORT_SYMBOL(smp_call_function); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 553 | |
| 554 | static void stop_this_cpu (void * dummy) |
| 555 | { |
| 556 | /* |
| 557 | * Remove this CPU: |
| 558 | */ |
| 559 | cpu_clear(smp_processor_id(), cpu_online_map); |
| 560 | local_irq_disable(); |
| 561 | disable_local_APIC(); |
| 562 | if (cpu_data[smp_processor_id()].hlt_works_ok) |
| 563 | for(;;) __asm__("hlt"); |
| 564 | for (;;); |
| 565 | } |
| 566 | |
| 567 | /* |
| 568 | * this function calls the 'stop' function on all other CPUs in the system. |
| 569 | */ |
| 570 | |
| 571 | void smp_send_stop(void) |
| 572 | { |
| 573 | smp_call_function(stop_this_cpu, NULL, 1, 0); |
| 574 | |
| 575 | local_irq_disable(); |
| 576 | disable_local_APIC(); |
| 577 | local_irq_enable(); |
| 578 | } |
| 579 | |
| 580 | /* |
| 581 | * Reschedule call back. Nothing to do, |
| 582 | * all the work is done automatically when |
| 583 | * we return from the interrupt. |
| 584 | */ |
| 585 | fastcall void smp_reschedule_interrupt(struct pt_regs *regs) |
| 586 | { |
| 587 | ack_APIC_irq(); |
| 588 | } |
| 589 | |
| 590 | fastcall void smp_call_function_interrupt(struct pt_regs *regs) |
| 591 | { |
| 592 | void (*func) (void *info) = call_data->func; |
| 593 | void *info = call_data->info; |
| 594 | int wait = call_data->wait; |
| 595 | |
| 596 | ack_APIC_irq(); |
| 597 | /* |
| 598 | * Notify initiating CPU that I've grabbed the data and am |
| 599 | * about to execute the function |
| 600 | */ |
| 601 | mb(); |
| 602 | atomic_inc(&call_data->started); |
| 603 | /* |
| 604 | * At this point the info structure may be out of scope unless wait==1 |
| 605 | */ |
| 606 | irq_enter(); |
| 607 | (*func)(info); |
| 608 | irq_exit(); |
| 609 | |
| 610 | if (wait) { |
| 611 | mb(); |
| 612 | atomic_inc(&call_data->finished); |
| 613 | } |
| 614 | } |
| 615 | |