blob: 68be7d0c7238c1feaf4eff4856fac04f111ae0dd [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Intel SMP support routines.
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
6 *
7 * This code is released under the GNU General Public License version 2 or
8 * later.
9 */
10
11#include <linux/init.h>
12
13#include <linux/mm.h>
14#include <linux/irq.h>
15#include <linux/delay.h>
16#include <linux/spinlock.h>
17#include <linux/smp_lock.h>
18#include <linux/kernel_stat.h>
19#include <linux/mc146818rtc.h>
20#include <linux/cache.h>
21#include <linux/interrupt.h>
Alexey Dobriyan129f6942005-06-23 00:08:33 -070022#include <linux/module.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070023
24#include <asm/mtrr.h>
25#include <asm/tlbflush.h>
26#include <mach_apic.h>
27
28/*
29 * Some notes on x86 processor bugs affecting SMP operation:
30 *
31 * Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
32 * The Linux implications for SMP are handled as follows:
33 *
34 * Pentium III / [Xeon]
35 * None of the E1AP-E3AP errata are visible to the user.
36 *
37 * E1AP. see PII A1AP
38 * E2AP. see PII A2AP
39 * E3AP. see PII A3AP
40 *
41 * Pentium II / [Xeon]
42 * None of the A1AP-A3AP errata are visible to the user.
43 *
44 * A1AP. see PPro 1AP
45 * A2AP. see PPro 2AP
46 * A3AP. see PPro 7AP
47 *
48 * Pentium Pro
49 * None of 1AP-9AP errata are visible to the normal user,
50 * except occasional delivery of 'spurious interrupt' as trap #15.
51 * This is very rare and a non-problem.
52 *
53 * 1AP. Linux maps APIC as non-cacheable
54 * 2AP. worked around in hardware
55 * 3AP. fixed in C0 and above steppings microcode update.
56 * Linux does not use excessive STARTUP_IPIs.
57 * 4AP. worked around in hardware
58 * 5AP. symmetric IO mode (normal Linux operation) not affected.
59 * 'noapic' mode has vector 0xf filled out properly.
60 * 6AP. 'noapic' mode might be affected - fixed in later steppings
61 * 7AP. We do not assume writes to the LVT deassering IRQs
62 * 8AP. We do not enable low power mode (deep sleep) during MP bootup
63 * 9AP. We do not use mixed mode
64 *
65 * Pentium
66 * There is a marginal case where REP MOVS on 100MHz SMP
67 * machines with B stepping processors can fail. XXX should provide
68 * an L1cache=Writethrough or L1cache=off option.
69 *
70 * B stepping CPUs may hang. There are hardware work arounds
71 * for this. We warn about it in case your board doesn't have the work
72 * arounds. Basically thats so I can tell anyone with a B stepping
73 * CPU and SMP problems "tough".
74 *
75 * Specific items [From Pentium Processor Specification Update]
76 *
77 * 1AP. Linux doesn't use remote read
78 * 2AP. Linux doesn't trust APIC errors
79 * 3AP. We work around this
80 * 4AP. Linux never generated 3 interrupts of the same priority
81 * to cause a lost local interrupt.
82 * 5AP. Remote read is never used
83 * 6AP. not affected - worked around in hardware
84 * 7AP. not affected - worked around in hardware
85 * 8AP. worked around in hardware - we get explicit CS errors if not
86 * 9AP. only 'noapic' mode affected. Might generate spurious
87 * interrupts, we log only the first one and count the
88 * rest silently.
89 * 10AP. not affected - worked around in hardware
90 * 11AP. Linux reads the APIC between writes to avoid this, as per
91 * the documentation. Make sure you preserve this as it affects
92 * the C stepping chips too.
93 * 12AP. not affected - worked around in hardware
94 * 13AP. not affected - worked around in hardware
95 * 14AP. we always deassert INIT during bootup
96 * 15AP. not affected - worked around in hardware
97 * 16AP. not affected - worked around in hardware
98 * 17AP. not affected - worked around in hardware
99 * 18AP. not affected - worked around in hardware
100 * 19AP. not affected - worked around in BIOS
101 *
102 * If this sounds worrying believe me these bugs are either ___RARE___,
103 * or are signal timing bugs worked around in hardware and there's
104 * about nothing of note with C stepping upwards.
105 */
106
107DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0, };
108
109/*
110 * the following functions deal with sending IPIs between CPUs.
111 *
112 * We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
113 */
114
115static inline int __prepare_ICR (unsigned int shortcut, int vector)
116{
117 return APIC_DM_FIXED | shortcut | vector | APIC_DEST_LOGICAL;
118}
119
120static inline int __prepare_ICR2 (unsigned int mask)
121{
122 return SET_APIC_DEST_FIELD(mask);
123}
124
125void __send_IPI_shortcut(unsigned int shortcut, int vector)
126{
127 /*
128 * Subtle. In the case of the 'never do double writes' workaround
129 * we have to lock out interrupts to be safe. As we don't care
130 * of the value read we use an atomic rmw access to avoid costly
131 * cli/sti. Otherwise we use an even cheaper single atomic write
132 * to the APIC.
133 */
134 unsigned int cfg;
135
136 /*
137 * Wait for idle.
138 */
139 apic_wait_icr_idle();
140
141 /*
142 * No need to touch the target chip field
143 */
144 cfg = __prepare_ICR(shortcut, vector);
145
146 /*
147 * Send the IPI. The write to APIC_ICR fires this off.
148 */
149 apic_write_around(APIC_ICR, cfg);
150}
151
152void fastcall send_IPI_self(int vector)
153{
154 __send_IPI_shortcut(APIC_DEST_SELF, vector);
155}
156
157/*
158 * This is only used on smaller machines.
159 */
160void send_IPI_mask_bitmask(cpumask_t cpumask, int vector)
161{
162 unsigned long mask = cpus_addr(cpumask)[0];
163 unsigned long cfg;
164 unsigned long flags;
165
166 local_irq_save(flags);
167
168 /*
169 * Wait for idle.
170 */
171 apic_wait_icr_idle();
172
173 /*
174 * prepare target chip field
175 */
176 cfg = __prepare_ICR2(mask);
177 apic_write_around(APIC_ICR2, cfg);
178
179 /*
180 * program the ICR
181 */
182 cfg = __prepare_ICR(0, vector);
183
184 /*
185 * Send the IPI. The write to APIC_ICR fires this off.
186 */
187 apic_write_around(APIC_ICR, cfg);
188
189 local_irq_restore(flags);
190}
191
192void send_IPI_mask_sequence(cpumask_t mask, int vector)
193{
194 unsigned long cfg, flags;
195 unsigned int query_cpu;
196
197 /*
198 * Hack. The clustered APIC addressing mode doesn't allow us to send
199 * to an arbitrary mask, so I do a unicasts to each CPU instead. This
200 * should be modified to do 1 message per cluster ID - mbligh
201 */
202
203 local_irq_save(flags);
204
205 for (query_cpu = 0; query_cpu < NR_CPUS; ++query_cpu) {
206 if (cpu_isset(query_cpu, mask)) {
207
208 /*
209 * Wait for idle.
210 */
211 apic_wait_icr_idle();
212
213 /*
214 * prepare target chip field
215 */
216 cfg = __prepare_ICR2(cpu_to_logical_apicid(query_cpu));
217 apic_write_around(APIC_ICR2, cfg);
218
219 /*
220 * program the ICR
221 */
222 cfg = __prepare_ICR(0, vector);
223
224 /*
225 * Send the IPI. The write to APIC_ICR fires this off.
226 */
227 apic_write_around(APIC_ICR, cfg);
228 }
229 }
230 local_irq_restore(flags);
231}
232
233#include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */
234
235/*
236 * Smarter SMP flushing macros.
237 * c/o Linus Torvalds.
238 *
239 * These mean you can really definitely utterly forget about
240 * writing to user space from interrupts. (Its not allowed anyway).
241 *
242 * Optimizations Manfred Spraul <manfred@colorfullife.com>
243 */
244
245static cpumask_t flush_cpumask;
246static struct mm_struct * flush_mm;
247static unsigned long flush_va;
248static DEFINE_SPINLOCK(tlbstate_lock);
249#define FLUSH_ALL 0xffffffff
250
251/*
252 * We cannot call mmdrop() because we are in interrupt context,
253 * instead update mm->cpu_vm_mask.
254 *
255 * We need to reload %cr3 since the page tables may be going
256 * away from under us..
257 */
258static inline void leave_mm (unsigned long cpu)
259{
260 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
261 BUG();
262 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
263 load_cr3(swapper_pg_dir);
264}
265
266/*
267 *
268 * The flush IPI assumes that a thread switch happens in this order:
269 * [cpu0: the cpu that switches]
270 * 1) switch_mm() either 1a) or 1b)
271 * 1a) thread switch to a different mm
272 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
273 * Stop ipi delivery for the old mm. This is not synchronized with
274 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
275 * for the wrong mm, and in the worst case we perform a superflous
276 * tlb flush.
277 * 1a2) set cpu_tlbstate to TLBSTATE_OK
278 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
279 * was in lazy tlb mode.
280 * 1a3) update cpu_tlbstate[].active_mm
281 * Now cpu0 accepts tlb flushes for the new mm.
282 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
283 * Now the other cpus will send tlb flush ipis.
284 * 1a4) change cr3.
285 * 1b) thread switch without mm change
286 * cpu_tlbstate[].active_mm is correct, cpu0 already handles
287 * flush ipis.
288 * 1b1) set cpu_tlbstate to TLBSTATE_OK
289 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
290 * Atomically set the bit [other cpus will start sending flush ipis],
291 * and test the bit.
292 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
293 * 2) switch %%esp, ie current
294 *
295 * The interrupt must handle 2 special cases:
296 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
297 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
298 * runs in kernel space, the cpu could load tlb entries for user space
299 * pages.
300 *
301 * The good news is that cpu_tlbstate is local to each cpu, no
302 * write/read ordering problems.
303 */
304
305/*
306 * TLB flush IPI:
307 *
308 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
309 * 2) Leave the mm if we are in the lazy tlb mode.
310 */
311
312fastcall void smp_invalidate_interrupt(struct pt_regs *regs)
313{
314 unsigned long cpu;
315
316 cpu = get_cpu();
317
318 if (!cpu_isset(cpu, flush_cpumask))
319 goto out;
320 /*
321 * This was a BUG() but until someone can quote me the
322 * line from the intel manual that guarantees an IPI to
323 * multiple CPUs is retried _only_ on the erroring CPUs
324 * its staying as a return
325 *
326 * BUG();
327 */
328
329 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
330 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
331 if (flush_va == FLUSH_ALL)
332 local_flush_tlb();
333 else
334 __flush_tlb_one(flush_va);
335 } else
336 leave_mm(cpu);
337 }
338 ack_APIC_irq();
339 smp_mb__before_clear_bit();
340 cpu_clear(cpu, flush_cpumask);
341 smp_mb__after_clear_bit();
342out:
343 put_cpu_no_resched();
344}
345
346static void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm,
347 unsigned long va)
348{
349 cpumask_t tmp;
350 /*
351 * A couple of (to be removed) sanity checks:
352 *
353 * - we do not send IPIs to not-yet booted CPUs.
354 * - current CPU must not be in mask
355 * - mask must exist :)
356 */
357 BUG_ON(cpus_empty(cpumask));
358
359 cpus_and(tmp, cpumask, cpu_online_map);
360 BUG_ON(!cpus_equal(cpumask, tmp));
361 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
362 BUG_ON(!mm);
363
364 /*
365 * i'm not happy about this global shared spinlock in the
366 * MM hot path, but we'll see how contended it is.
367 * Temporarily this turns IRQs off, so that lockups are
368 * detected by the NMI watchdog.
369 */
370 spin_lock(&tlbstate_lock);
371
372 flush_mm = mm;
373 flush_va = va;
374#if NR_CPUS <= BITS_PER_LONG
375 atomic_set_mask(cpumask, &flush_cpumask);
376#else
377 {
378 int k;
379 unsigned long *flush_mask = (unsigned long *)&flush_cpumask;
380 unsigned long *cpu_mask = (unsigned long *)&cpumask;
381 for (k = 0; k < BITS_TO_LONGS(NR_CPUS); ++k)
382 atomic_set_mask(cpu_mask[k], &flush_mask[k]);
383 }
384#endif
385 /*
386 * We have to send the IPI only to
387 * CPUs affected.
388 */
389 send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);
390
391 while (!cpus_empty(flush_cpumask))
392 /* nothing. lockup detection does not belong here */
393 mb();
394
395 flush_mm = NULL;
396 flush_va = 0;
397 spin_unlock(&tlbstate_lock);
398}
399
400void flush_tlb_current_task(void)
401{
402 struct mm_struct *mm = current->mm;
403 cpumask_t cpu_mask;
404
405 preempt_disable();
406 cpu_mask = mm->cpu_vm_mask;
407 cpu_clear(smp_processor_id(), cpu_mask);
408
409 local_flush_tlb();
410 if (!cpus_empty(cpu_mask))
411 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
412 preempt_enable();
413}
414
415void flush_tlb_mm (struct mm_struct * mm)
416{
417 cpumask_t cpu_mask;
418
419 preempt_disable();
420 cpu_mask = mm->cpu_vm_mask;
421 cpu_clear(smp_processor_id(), cpu_mask);
422
423 if (current->active_mm == mm) {
424 if (current->mm)
425 local_flush_tlb();
426 else
427 leave_mm(smp_processor_id());
428 }
429 if (!cpus_empty(cpu_mask))
430 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
431
432 preempt_enable();
433}
434
435void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
436{
437 struct mm_struct *mm = vma->vm_mm;
438 cpumask_t cpu_mask;
439
440 preempt_disable();
441 cpu_mask = mm->cpu_vm_mask;
442 cpu_clear(smp_processor_id(), cpu_mask);
443
444 if (current->active_mm == mm) {
445 if(current->mm)
446 __flush_tlb_one(va);
447 else
448 leave_mm(smp_processor_id());
449 }
450
451 if (!cpus_empty(cpu_mask))
452 flush_tlb_others(cpu_mask, mm, va);
453
454 preempt_enable();
455}
Alexey Dobriyan129f6942005-06-23 00:08:33 -0700456EXPORT_SYMBOL(flush_tlb_page);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700457
458static void do_flush_tlb_all(void* info)
459{
460 unsigned long cpu = smp_processor_id();
461
462 __flush_tlb_all();
463 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
464 leave_mm(cpu);
465}
466
467void flush_tlb_all(void)
468{
469 on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
470}
471
472/*
473 * this function sends a 'reschedule' IPI to another CPU.
474 * it goes straight through and wastes no time serializing
475 * anything. Worst case is that we lose a reschedule ...
476 */
477void smp_send_reschedule(int cpu)
478{
479 send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
480}
481
482/*
483 * Structure and data for smp_call_function(). This is designed to minimise
484 * static memory requirements. It also looks cleaner.
485 */
486static DEFINE_SPINLOCK(call_lock);
487
488struct call_data_struct {
489 void (*func) (void *info);
490 void *info;
491 atomic_t started;
492 atomic_t finished;
493 int wait;
494};
495
496static struct call_data_struct * call_data;
497
498/*
499 * this function sends a 'generic call function' IPI to all other CPUs
500 * in the system.
501 */
502
503int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
504 int wait)
505/*
506 * [SUMMARY] Run a function on all other CPUs.
507 * <func> The function to run. This must be fast and non-blocking.
508 * <info> An arbitrary pointer to pass to the function.
509 * <nonatomic> currently unused.
510 * <wait> If true, wait (atomically) until function has completed on other CPUs.
511 * [RETURNS] 0 on success, else a negative status code. Does not return until
512 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
513 *
514 * You must not call this function with disabled interrupts or from a
515 * hardware interrupt handler or from a bottom half handler.
516 */
517{
518 struct call_data_struct data;
519 int cpus = num_online_cpus()-1;
520
521 if (!cpus)
522 return 0;
523
524 /* Can deadlock when called with interrupts disabled */
525 WARN_ON(irqs_disabled());
526
527 data.func = func;
528 data.info = info;
529 atomic_set(&data.started, 0);
530 data.wait = wait;
531 if (wait)
532 atomic_set(&data.finished, 0);
533
534 spin_lock(&call_lock);
535 call_data = &data;
536 mb();
537
538 /* Send a message to all other CPUs and wait for them to respond */
539 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
540
541 /* Wait for response */
542 while (atomic_read(&data.started) != cpus)
543 cpu_relax();
544
545 if (wait)
546 while (atomic_read(&data.finished) != cpus)
547 cpu_relax();
548 spin_unlock(&call_lock);
549
550 return 0;
551}
Alexey Dobriyan129f6942005-06-23 00:08:33 -0700552EXPORT_SYMBOL(smp_call_function);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700553
554static void stop_this_cpu (void * dummy)
555{
556 /*
557 * Remove this CPU:
558 */
559 cpu_clear(smp_processor_id(), cpu_online_map);
560 local_irq_disable();
561 disable_local_APIC();
562 if (cpu_data[smp_processor_id()].hlt_works_ok)
563 for(;;) __asm__("hlt");
564 for (;;);
565}
566
567/*
568 * this function calls the 'stop' function on all other CPUs in the system.
569 */
570
571void smp_send_stop(void)
572{
573 smp_call_function(stop_this_cpu, NULL, 1, 0);
574
575 local_irq_disable();
576 disable_local_APIC();
577 local_irq_enable();
578}
579
580/*
581 * Reschedule call back. Nothing to do,
582 * all the work is done automatically when
583 * we return from the interrupt.
584 */
585fastcall void smp_reschedule_interrupt(struct pt_regs *regs)
586{
587 ack_APIC_irq();
588}
589
590fastcall void smp_call_function_interrupt(struct pt_regs *regs)
591{
592 void (*func) (void *info) = call_data->func;
593 void *info = call_data->info;
594 int wait = call_data->wait;
595
596 ack_APIC_irq();
597 /*
598 * Notify initiating CPU that I've grabbed the data and am
599 * about to execute the function
600 */
601 mb();
602 atomic_inc(&call_data->started);
603 /*
604 * At this point the info structure may be out of scope unless wait==1
605 */
606 irq_enter();
607 (*func)(info);
608 irq_exit();
609
610 if (wait) {
611 mb();
612 atomic_inc(&call_data->finished);
613 }
614}
615