blob: c094e4f5a25070e74e1119bdccc7560f57729655 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * mm/readahead.c - address_space-level file readahead.
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 09Apr2002 akpm@zip.com.au
7 * Initial version.
8 */
9
10#include <linux/kernel.h>
11#include <linux/fs.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/blkdev.h>
15#include <linux/backing-dev.h>
Andrew Morton8bde37f2006-12-10 02:19:40 -080016#include <linux/task_io_accounting_ops.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070017#include <linux/pagevec.h>
18
19void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
20{
21}
22EXPORT_SYMBOL(default_unplug_io_fn);
23
Fengguang Wuf615bfc2007-07-19 01:47:58 -070024/*
25 * Convienent macros for min/max read-ahead pages.
26 * Note that MAX_RA_PAGES is rounded down, while MIN_RA_PAGES is rounded up.
27 * The latter is necessary for systems with large page size(i.e. 64k).
28 */
29#define MAX_RA_PAGES (VM_MAX_READAHEAD*1024 / PAGE_CACHE_SIZE)
30#define MIN_RA_PAGES DIV_ROUND_UP(VM_MIN_READAHEAD*1024, PAGE_CACHE_SIZE)
31
Linus Torvalds1da177e2005-04-16 15:20:36 -070032struct backing_dev_info default_backing_dev_info = {
Fengguang Wuf615bfc2007-07-19 01:47:58 -070033 .ra_pages = MAX_RA_PAGES,
Linus Torvalds1da177e2005-04-16 15:20:36 -070034 .state = 0,
35 .capabilities = BDI_CAP_MAP_COPY,
36 .unplug_io_fn = default_unplug_io_fn,
37};
38EXPORT_SYMBOL_GPL(default_backing_dev_info);
39
40/*
41 * Initialise a struct file's readahead state. Assumes that the caller has
42 * memset *ra to zero.
43 */
44void
45file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
46{
47 ra->ra_pages = mapping->backing_dev_info->ra_pages;
Jan Kara6ce745e2007-05-06 14:49:26 -070048 ra->prev_index = -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -070049}
Steven Whitehoused41cc702006-01-30 08:53:33 +000050EXPORT_SYMBOL_GPL(file_ra_state_init);
Linus Torvalds1da177e2005-04-16 15:20:36 -070051
52/*
53 * Return max readahead size for this inode in number-of-pages.
54 */
55static inline unsigned long get_max_readahead(struct file_ra_state *ra)
56{
57 return ra->ra_pages;
58}
59
60static inline unsigned long get_min_readahead(struct file_ra_state *ra)
61{
Fengguang Wuf615bfc2007-07-19 01:47:58 -070062 return MIN_RA_PAGES;
Linus Torvalds1da177e2005-04-16 15:20:36 -070063}
64
Oleg Nesterova564da32006-03-22 00:08:47 -080065static inline void reset_ahead_window(struct file_ra_state *ra)
66{
67 /*
68 * ... but preserve ahead_start + ahead_size value,
69 * see 'recheck:' label in page_cache_readahead().
70 * Note: We never use ->ahead_size as rvalue without
71 * checking ->ahead_start != 0 first.
72 */
73 ra->ahead_size += ra->ahead_start;
74 ra->ahead_start = 0;
75}
76
Linus Torvalds1da177e2005-04-16 15:20:36 -070077static inline void ra_off(struct file_ra_state *ra)
78{
79 ra->start = 0;
80 ra->flags = 0;
81 ra->size = 0;
Oleg Nesterova564da32006-03-22 00:08:47 -080082 reset_ahead_window(ra);
Linus Torvalds1da177e2005-04-16 15:20:36 -070083 return;
84}
85
86/*
87 * Set the initial window size, round to next power of 2 and square
88 * for small size, x 4 for medium, and x 2 for large
89 * for 128k (32 page) max ra
90 * 1-8 page = 32k initial, > 8 page = 128k initial
91 */
92static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
93{
94 unsigned long newsize = roundup_pow_of_two(size);
95
Steven Prattaed75ff2006-03-22 00:08:48 -080096 if (newsize <= max / 32)
97 newsize = newsize * 4;
Linus Torvalds1da177e2005-04-16 15:20:36 -070098 else if (newsize <= max / 4)
Steven Prattaed75ff2006-03-22 00:08:48 -080099 newsize = newsize * 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700100 else
101 newsize = max;
102 return newsize;
103}
104
105/*
106 * Set the new window size, this is called only when I/O is to be submitted,
107 * not for each call to readahead. If a cache miss occured, reduce next I/O
108 * size, else increase depending on how close to max we are.
109 */
110static inline unsigned long get_next_ra_size(struct file_ra_state *ra)
111{
112 unsigned long max = get_max_readahead(ra);
113 unsigned long min = get_min_readahead(ra);
114 unsigned long cur = ra->size;
115 unsigned long newsize;
116
117 if (ra->flags & RA_FLAG_MISS) {
118 ra->flags &= ~RA_FLAG_MISS;
119 newsize = max((cur - 2), min);
120 } else if (cur < max / 16) {
121 newsize = 4 * cur;
122 } else {
123 newsize = 2 * cur;
124 }
125 return min(newsize, max);
126}
127
128#define list_to_page(head) (list_entry((head)->prev, struct page, lru))
129
130/**
Randy Dunlapbd40cdd2006-06-25 05:48:08 -0700131 * read_cache_pages - populate an address space with some pages & start reads against them
Linus Torvalds1da177e2005-04-16 15:20:36 -0700132 * @mapping: the address_space
133 * @pages: The address of a list_head which contains the target pages. These
134 * pages have their ->index populated and are otherwise uninitialised.
135 * @filler: callback routine for filling a single page.
136 * @data: private data for the callback routine.
137 *
138 * Hides the details of the LRU cache etc from the filesystems.
139 */
140int read_cache_pages(struct address_space *mapping, struct list_head *pages,
141 int (*filler)(void *, struct page *), void *data)
142{
143 struct page *page;
144 struct pagevec lru_pvec;
145 int ret = 0;
146
147 pagevec_init(&lru_pvec, 0);
148
149 while (!list_empty(pages)) {
150 page = list_to_page(pages);
151 list_del(&page->lru);
152 if (add_to_page_cache(page, mapping, page->index, GFP_KERNEL)) {
153 page_cache_release(page);
154 continue;
155 }
156 ret = filler(data, page);
157 if (!pagevec_add(&lru_pvec, page))
158 __pagevec_lru_add(&lru_pvec);
159 if (ret) {
OGAWA Hirofumi38da2882006-12-06 20:36:46 -0800160 put_pages_list(pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700161 break;
162 }
Andrew Morton8bde37f2006-12-10 02:19:40 -0800163 task_io_account_read(PAGE_CACHE_SIZE);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700164 }
165 pagevec_lru_add(&lru_pvec);
166 return ret;
167}
168
169EXPORT_SYMBOL(read_cache_pages);
170
171static int read_pages(struct address_space *mapping, struct file *filp,
172 struct list_head *pages, unsigned nr_pages)
173{
174 unsigned page_idx;
175 struct pagevec lru_pvec;
Zach Brown994fc28c2005-12-15 14:28:17 -0800176 int ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700177
178 if (mapping->a_ops->readpages) {
179 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
OGAWA Hirofumi029e3322006-11-02 22:07:06 -0800180 /* Clean up the remaining pages */
181 put_pages_list(pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700182 goto out;
183 }
184
185 pagevec_init(&lru_pvec, 0);
186 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
187 struct page *page = list_to_page(pages);
188 list_del(&page->lru);
189 if (!add_to_page_cache(page, mapping,
190 page->index, GFP_KERNEL)) {
Zach Brown9f1a3cf2006-06-25 05:46:46 -0700191 mapping->a_ops->readpage(filp, page);
192 if (!pagevec_add(&lru_pvec, page))
193 __pagevec_lru_add(&lru_pvec);
194 } else
195 page_cache_release(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700196 }
197 pagevec_lru_add(&lru_pvec);
Zach Brown994fc28c2005-12-15 14:28:17 -0800198 ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700199out:
200 return ret;
201}
202
203/*
204 * Readahead design.
205 *
206 * The fields in struct file_ra_state represent the most-recently-executed
207 * readahead attempt:
208 *
209 * start: Page index at which we started the readahead
210 * size: Number of pages in that read
211 * Together, these form the "current window".
212 * Together, start and size represent the `readahead window'.
Jan Kara6ce745e2007-05-06 14:49:26 -0700213 * prev_index: The page which the readahead algorithm most-recently inspected.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700214 * It is mainly used to detect sequential file reading.
215 * If page_cache_readahead sees that it is again being called for
216 * a page which it just looked at, it can return immediately without
217 * making any state changes.
Jan Kara6ce745e2007-05-06 14:49:26 -0700218 * offset: Offset in the prev_index where the last read ended - used for
Jan Karaec0f1632007-05-06 14:49:25 -0700219 * detection of sequential file reading.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700220 * ahead_start,
221 * ahead_size: Together, these form the "ahead window".
222 * ra_pages: The externally controlled max readahead for this fd.
223 *
224 * When readahead is in the off state (size == 0), readahead is disabled.
Jan Kara6ce745e2007-05-06 14:49:26 -0700225 * In this state, prev_index is used to detect the resumption of sequential I/O.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700226 *
227 * The readahead code manages two windows - the "current" and the "ahead"
228 * windows. The intent is that while the application is walking the pages
229 * in the current window, I/O is underway on the ahead window. When the
230 * current window is fully traversed, it is replaced by the ahead window
231 * and the ahead window is invalidated. When this copying happens, the
232 * new current window's pages are probably still locked. So
233 * we submit a new batch of I/O immediately, creating a new ahead window.
234 *
235 * So:
236 *
237 * ----|----------------|----------------|-----
238 * ^start ^start+size
239 * ^ahead_start ^ahead_start+ahead_size
240 *
241 * ^ When this page is read, we submit I/O for the
242 * ahead window.
243 *
244 * A `readahead hit' occurs when a read request is made against a page which is
245 * the next sequential page. Ahead window calculations are done only when it
246 * is time to submit a new IO. The code ramps up the size agressively at first,
247 * but slow down as it approaches max_readhead.
248 *
249 * Any seek/ramdom IO will result in readahead being turned off. It will resume
250 * at the first sequential access.
251 *
252 * There is a special-case: if the first page which the application tries to
253 * read happens to be the first page of the file, it is assumed that a linear
254 * read is about to happen and the window is immediately set to the initial size
255 * based on I/O request size and the max_readahead.
256 *
257 * This function is to be called for every read request, rather than when
258 * it is time to perform readahead. It is called only once for the entire I/O
259 * regardless of size unless readahead is unable to start enough I/O to satisfy
260 * the request (I/O request > max_readahead).
261 */
262
263/*
264 * do_page_cache_readahead actually reads a chunk of disk. It allocates all
265 * the pages first, then submits them all for I/O. This avoids the very bad
266 * behaviour which would occur if page allocations are causing VM writeback.
267 * We really don't want to intermingle reads and writes like that.
268 *
269 * Returns the number of pages requested, or the maximum amount of I/O allowed.
270 *
271 * do_page_cache_readahead() returns -1 if it encountered request queue
272 * congestion.
273 */
274static int
275__do_page_cache_readahead(struct address_space *mapping, struct file *filp,
Fengguang Wu46fc3e72007-07-19 01:47:57 -0700276 pgoff_t offset, unsigned long nr_to_read,
277 unsigned long lookahead_size)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700278{
279 struct inode *inode = mapping->host;
280 struct page *page;
281 unsigned long end_index; /* The last page we want to read */
282 LIST_HEAD(page_pool);
283 int page_idx;
284 int ret = 0;
285 loff_t isize = i_size_read(inode);
286
287 if (isize == 0)
288 goto out;
289
Fengguang Wu46fc3e72007-07-19 01:47:57 -0700290 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700291
292 /*
293 * Preallocate as many pages as we will need.
294 */
295 read_lock_irq(&mapping->tree_lock);
296 for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
Andrew Morton7361f4d2005-11-07 00:59:28 -0800297 pgoff_t page_offset = offset + page_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700298
299 if (page_offset > end_index)
300 break;
301
302 page = radix_tree_lookup(&mapping->page_tree, page_offset);
303 if (page)
304 continue;
305
306 read_unlock_irq(&mapping->tree_lock);
307 page = page_cache_alloc_cold(mapping);
308 read_lock_irq(&mapping->tree_lock);
309 if (!page)
310 break;
311 page->index = page_offset;
312 list_add(&page->lru, &page_pool);
Fengguang Wu46fc3e72007-07-19 01:47:57 -0700313 if (page_idx == nr_to_read - lookahead_size)
314 SetPageReadahead(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700315 ret++;
316 }
317 read_unlock_irq(&mapping->tree_lock);
318
319 /*
320 * Now start the IO. We ignore I/O errors - if the page is not
321 * uptodate then the caller will launch readpage again, and
322 * will then handle the error.
323 */
324 if (ret)
325 read_pages(mapping, filp, &page_pool, ret);
326 BUG_ON(!list_empty(&page_pool));
327out:
328 return ret;
329}
330
331/*
332 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
333 * memory at once.
334 */
335int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
Andrew Morton7361f4d2005-11-07 00:59:28 -0800336 pgoff_t offset, unsigned long nr_to_read)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700337{
338 int ret = 0;
339
340 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
341 return -EINVAL;
342
343 while (nr_to_read) {
344 int err;
345
346 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
347
348 if (this_chunk > nr_to_read)
349 this_chunk = nr_to_read;
350 err = __do_page_cache_readahead(mapping, filp,
Fengguang Wu46fc3e72007-07-19 01:47:57 -0700351 offset, this_chunk, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700352 if (err < 0) {
353 ret = err;
354 break;
355 }
356 ret += err;
357 offset += this_chunk;
358 nr_to_read -= this_chunk;
359 }
360 return ret;
361}
362
363/*
364 * Check how effective readahead is being. If the amount of started IO is
365 * less than expected then the file is partly or fully in pagecache and
366 * readahead isn't helping.
367 *
368 */
369static inline int check_ra_success(struct file_ra_state *ra,
370 unsigned long nr_to_read, unsigned long actual)
371{
372 if (actual == 0) {
373 ra->cache_hit += nr_to_read;
374 if (ra->cache_hit >= VM_MAX_CACHE_HIT) {
375 ra_off(ra);
376 ra->flags |= RA_FLAG_INCACHE;
377 return 0;
378 }
379 } else {
380 ra->cache_hit=0;
381 }
382 return 1;
383}
384
385/*
386 * This version skips the IO if the queue is read-congested, and will tell the
387 * block layer to abandon the readahead if request allocation would block.
388 *
389 * force_page_cache_readahead() will ignore queue congestion and will block on
390 * request queues.
391 */
392int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
Andrew Morton7361f4d2005-11-07 00:59:28 -0800393 pgoff_t offset, unsigned long nr_to_read)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700394{
395 if (bdi_read_congested(mapping->backing_dev_info))
396 return -1;
397
Fengguang Wu46fc3e72007-07-19 01:47:57 -0700398 return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700399}
400
401/*
402 * Read 'nr_to_read' pages starting at page 'offset'. If the flag 'block'
403 * is set wait till the read completes. Otherwise attempt to read without
404 * blocking.
Andreas Mohrd6e05ed2006-06-26 18:35:02 +0200405 * Returns 1 meaning 'success' if read is successful without switching off
406 * readahead mode. Otherwise return failure.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700407 */
408static int
409blockable_page_cache_readahead(struct address_space *mapping, struct file *filp,
Andrew Morton7361f4d2005-11-07 00:59:28 -0800410 pgoff_t offset, unsigned long nr_to_read,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700411 struct file_ra_state *ra, int block)
412{
413 int actual;
414
415 if (!block && bdi_read_congested(mapping->backing_dev_info))
416 return 0;
417
Fengguang Wu46fc3e72007-07-19 01:47:57 -0700418 actual = __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700419
420 return check_ra_success(ra, nr_to_read, actual);
421}
422
423static int make_ahead_window(struct address_space *mapping, struct file *filp,
424 struct file_ra_state *ra, int force)
425{
426 int block, ret;
427
428 ra->ahead_size = get_next_ra_size(ra);
429 ra->ahead_start = ra->start + ra->size;
430
Jan Kara6ce745e2007-05-06 14:49:26 -0700431 block = force || (ra->prev_index >= ra->ahead_start);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700432 ret = blockable_page_cache_readahead(mapping, filp,
433 ra->ahead_start, ra->ahead_size, ra, block);
434
435 if (!ret && !force) {
436 /* A read failure in blocking mode, implies pages are
437 * all cached. So we can safely assume we have taken
438 * care of all the pages requested in this call.
439 * A read failure in non-blocking mode, implies we are
440 * reading more pages than requested in this call. So
441 * we safely assume we have taken care of all the pages
442 * requested in this call.
443 *
444 * Just reset the ahead window in case we failed due to
445 * congestion. The ahead window will any way be closed
446 * in case we failed due to excessive page cache hits.
447 */
Oleg Nesterova564da32006-03-22 00:08:47 -0800448 reset_ahead_window(ra);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700449 }
450
451 return ret;
452}
453
Andrew Morton7361f4d2005-11-07 00:59:28 -0800454/**
455 * page_cache_readahead - generic adaptive readahead
456 * @mapping: address_space which holds the pagecache and I/O vectors
457 * @ra: file_ra_state which holds the readahead state
458 * @filp: passed on to ->readpage() and ->readpages()
459 * @offset: start offset into @mapping, in PAGE_CACHE_SIZE units
460 * @req_size: hint: total size of the read which the caller is performing in
461 * PAGE_CACHE_SIZE units
462 *
Fengguang Wu46fc3e72007-07-19 01:47:57 -0700463 * page_cache_readahead() is the main function. It performs the adaptive
Linus Torvalds1da177e2005-04-16 15:20:36 -0700464 * readahead window size management and submits the readahead I/O.
Andrew Morton7361f4d2005-11-07 00:59:28 -0800465 *
466 * Note that @filp is purely used for passing on to the ->readpage[s]()
467 * handler: it may refer to a different file from @mapping (so we may not use
Josef Sipeke9536ae2006-12-08 02:37:21 -0800468 * @filp->f_mapping or @filp->f_path.dentry->d_inode here).
Andrew Morton7361f4d2005-11-07 00:59:28 -0800469 * Also, @ra may not be equal to &@filp->f_ra.
470 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700471 */
472unsigned long
473page_cache_readahead(struct address_space *mapping, struct file_ra_state *ra,
Andrew Morton7361f4d2005-11-07 00:59:28 -0800474 struct file *filp, pgoff_t offset, unsigned long req_size)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700475{
476 unsigned long max, newsize;
477 int sequential;
478
479 /*
480 * We avoid doing extra work and bogusly perturbing the readahead
481 * window expansion logic.
482 */
Jan Kara6ce745e2007-05-06 14:49:26 -0700483 if (offset == ra->prev_index && --req_size)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700484 ++offset;
485
Jan Kara6ce745e2007-05-06 14:49:26 -0700486 /* Note that prev_index == -1 if it is a first read */
487 sequential = (offset == ra->prev_index + 1);
488 ra->prev_index = offset;
489 ra->prev_offset = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700490
491 max = get_max_readahead(ra);
492 newsize = min(req_size, max);
493
494 /* No readahead or sub-page sized read or file already in cache */
495 if (newsize == 0 || (ra->flags & RA_FLAG_INCACHE))
496 goto out;
497
Jan Kara6ce745e2007-05-06 14:49:26 -0700498 ra->prev_index += newsize - 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700499
500 /*
501 * Special case - first read at start of file. We'll assume it's
502 * a whole-file read and grow the window fast. Or detect first
503 * sequential access
504 */
505 if (sequential && ra->size == 0) {
506 ra->size = get_init_ra_size(newsize, max);
507 ra->start = offset;
508 if (!blockable_page_cache_readahead(mapping, filp, offset,
509 ra->size, ra, 1))
510 goto out;
511
512 /*
513 * If the request size is larger than our max readahead, we
514 * at least want to be sure that we get 2 IOs in flight and
515 * we know that we will definitly need the new I/O.
516 * once we do this, subsequent calls should be able to overlap
517 * IOs,* thus preventing stalls. so issue the ahead window
518 * immediately.
519 */
520 if (req_size >= max)
521 make_ahead_window(mapping, filp, ra, 1);
522
523 goto out;
524 }
525
526 /*
527 * Now handle the random case:
528 * partial page reads and first access were handled above,
529 * so this must be the next page otherwise it is random
530 */
531 if (!sequential) {
532 ra_off(ra);
533 blockable_page_cache_readahead(mapping, filp, offset,
534 newsize, ra, 1);
535 goto out;
536 }
537
538 /*
539 * If we get here we are doing sequential IO and this was not the first
540 * occurence (ie we have an existing window)
541 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700542 if (ra->ahead_start == 0) { /* no ahead window yet */
543 if (!make_ahead_window(mapping, filp, ra, 0))
Oleg Nesterova564da32006-03-22 00:08:47 -0800544 goto recheck;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700545 }
Oleg Nesterova564da32006-03-22 00:08:47 -0800546
Linus Torvalds1da177e2005-04-16 15:20:36 -0700547 /*
548 * Already have an ahead window, check if we crossed into it.
549 * If so, shift windows and issue a new ahead window.
550 * Only return the #pages that are in the current window, so that
551 * we get called back on the first page of the ahead window which
552 * will allow us to submit more IO.
553 */
Jan Kara6ce745e2007-05-06 14:49:26 -0700554 if (ra->prev_index >= ra->ahead_start) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700555 ra->start = ra->ahead_start;
556 ra->size = ra->ahead_size;
557 make_ahead_window(mapping, filp, ra, 0);
Oleg Nesterova564da32006-03-22 00:08:47 -0800558recheck:
Jan Kara6ce745e2007-05-06 14:49:26 -0700559 /* prev_index shouldn't overrun the ahead window */
560 ra->prev_index = min(ra->prev_index,
Oleg Nesterova564da32006-03-22 00:08:47 -0800561 ra->ahead_start + ra->ahead_size - 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700562 }
563
564out:
Jan Kara6ce745e2007-05-06 14:49:26 -0700565 return ra->prev_index + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700566}
Andrew Mortond8733c22006-03-23 03:00:11 -0800567EXPORT_SYMBOL_GPL(page_cache_readahead);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700568
569/*
570 * handle_ra_miss() is called when it is known that a page which should have
571 * been present in the pagecache (we just did some readahead there) was in fact
572 * not found. This will happen if it was evicted by the VM (readahead
573 * thrashing)
574 *
575 * Turn on the cache miss flag in the RA struct, this will cause the RA code
576 * to reduce the RA size on the next read.
577 */
578void handle_ra_miss(struct address_space *mapping,
579 struct file_ra_state *ra, pgoff_t offset)
580{
581 ra->flags |= RA_FLAG_MISS;
582 ra->flags &= ~RA_FLAG_INCACHE;
Steven Pratt3b30bbd2005-09-06 15:17:06 -0700583 ra->cache_hit = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700584}
585
586/*
587 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
588 * sensible upper limit.
589 */
590unsigned long max_sane_readahead(unsigned long nr)
591{
Christoph Lameter05a04162007-02-10 01:43:05 -0800592 return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE)
593 + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700594}
Fengguang Wu5ce11102007-07-19 01:47:59 -0700595
596/*
597 * Submit IO for the read-ahead request in file_ra_state.
598 */
599unsigned long ra_submit(struct file_ra_state *ra,
600 struct address_space *mapping, struct file *filp)
601{
602 unsigned long ra_size;
603 unsigned long la_size;
604 int actual;
605
606 ra_size = ra_readahead_size(ra);
607 la_size = ra_lookahead_size(ra);
608 actual = __do_page_cache_readahead(mapping, filp,
609 ra->ra_index, ra_size, la_size);
610
611 return actual;
612}
613EXPORT_SYMBOL_GPL(ra_submit);
Fengguang Wu122a21d2007-07-19 01:48:01 -0700614
615/*
616 * Get the previous window size, ramp it up, and
617 * return it as the new window size.
618 */
619static unsigned long get_next_ra_size2(struct file_ra_state *ra,
620 unsigned long max)
621{
622 unsigned long cur = ra->readahead_index - ra->ra_index;
623 unsigned long newsize;
624
625 if (cur < max / 16)
626 newsize = cur * 4;
627 else
628 newsize = cur * 2;
629
630 return min(newsize, max);
631}
632
633/*
634 * On-demand readahead design.
635 *
636 * The fields in struct file_ra_state represent the most-recently-executed
637 * readahead attempt:
638 *
639 * |-------- last readahead window -------->|
640 * |-- application walking here -->|
641 * ======#============|==================#=====================|
642 * ^la_index ^ra_index ^lookahead_index ^readahead_index
643 *
644 * [ra_index, readahead_index) represents the last readahead window.
645 *
646 * [la_index, lookahead_index] is where the application would be walking(in
647 * the common case of cache-cold sequential reads): the last window was
648 * established when the application was at la_index, and the next window will
649 * be bring in when the application reaches lookahead_index.
650 *
651 * To overlap application thinking time and disk I/O time, we do
652 * `readahead pipelining': Do not wait until the application consumed all
653 * readahead pages and stalled on the missing page at readahead_index;
654 * Instead, submit an asynchronous readahead I/O as early as the application
655 * reads on the page at lookahead_index. Normally lookahead_index will be
656 * equal to ra_index, for maximum pipelining.
657 *
658 * In interleaved sequential reads, concurrent streams on the same fd can
659 * be invalidating each other's readahead state. So we flag the new readahead
660 * page at lookahead_index with PG_readahead, and use it as readahead
661 * indicator. The flag won't be set on already cached pages, to avoid the
662 * readahead-for-nothing fuss, saving pointless page cache lookups.
663 *
664 * prev_index tracks the last visited page in the _previous_ read request.
665 * It should be maintained by the caller, and will be used for detecting
666 * small random reads. Note that the readahead algorithm checks loosely
667 * for sequential patterns. Hence interleaved reads might be served as
668 * sequential ones.
669 *
670 * There is a special-case: if the first page which the application tries to
671 * read happens to be the first page of the file, it is assumed that a linear
672 * read is about to happen and the window is immediately set to the initial size
673 * based on I/O request size and the max_readahead.
674 *
675 * The code ramps up the readahead size aggressively at first, but slow down as
676 * it approaches max_readhead.
677 */
678
679/*
680 * A minimal readahead algorithm for trivial sequential/random reads.
681 */
682static unsigned long
683ondemand_readahead(struct address_space *mapping,
684 struct file_ra_state *ra, struct file *filp,
685 struct page *page, pgoff_t offset,
686 unsigned long req_size)
687{
688 unsigned long max; /* max readahead pages */
689 pgoff_t ra_index; /* readahead index */
690 unsigned long ra_size; /* readahead size */
691 unsigned long la_size; /* lookahead size */
692 int sequential;
693
694 max = ra->ra_pages;
695 sequential = (offset - ra->prev_index <= 1UL) || (req_size > max);
696
697 /*
698 * Lookahead/readahead hit, assume sequential access.
699 * Ramp up sizes, and push forward the readahead window.
700 */
701 if (offset && (offset == ra->lookahead_index ||
702 offset == ra->readahead_index)) {
703 ra_index = ra->readahead_index;
704 ra_size = get_next_ra_size2(ra, max);
705 la_size = ra_size;
706 goto fill_ra;
707 }
708
709 /*
710 * Standalone, small read.
711 * Read as is, and do not pollute the readahead state.
712 */
713 if (!page && !sequential) {
714 return __do_page_cache_readahead(mapping, filp,
715 offset, req_size, 0);
716 }
717
718 /*
719 * It may be one of
720 * - first read on start of file
721 * - sequential cache miss
722 * - oversize random read
723 * Start readahead for it.
724 */
725 ra_index = offset;
726 ra_size = get_init_ra_size(req_size, max);
727 la_size = ra_size > req_size ? ra_size - req_size : ra_size;
728
729 /*
730 * Hit on a lookahead page without valid readahead state.
731 * E.g. interleaved reads.
732 * Not knowing its readahead pos/size, bet on the minimal possible one.
733 */
734 if (page) {
735 ra_index++;
736 ra_size = min(4 * ra_size, max);
737 }
738
739fill_ra:
740 ra_set_index(ra, offset, ra_index);
741 ra_set_size(ra, ra_size, la_size);
742
743 return ra_submit(ra, mapping, filp);
744}
745
746/**
747 * page_cache_readahead_ondemand - generic file readahead
748 * @mapping: address_space which holds the pagecache and I/O vectors
749 * @ra: file_ra_state which holds the readahead state
750 * @filp: passed on to ->readpage() and ->readpages()
751 * @page: the page at @offset, or NULL if non-present
752 * @offset: start offset into @mapping, in PAGE_CACHE_SIZE units
753 * @req_size: hint: total size of the read which the caller is performing in
754 * PAGE_CACHE_SIZE units
755 *
756 * page_cache_readahead_ondemand() is the entry point of readahead logic.
757 * This function should be called when it is time to perform readahead:
758 * 1) @page == NULL
759 * A cache miss happened, time for synchronous readahead.
760 * 2) @page != NULL && PageReadahead(@page)
761 * A look-ahead hit occured, time for asynchronous readahead.
762 */
763unsigned long
764page_cache_readahead_ondemand(struct address_space *mapping,
765 struct file_ra_state *ra, struct file *filp,
766 struct page *page, pgoff_t offset,
767 unsigned long req_size)
768{
769 /* no read-ahead */
770 if (!ra->ra_pages)
771 return 0;
772
773 if (page) {
774 ClearPageReadahead(page);
775
776 /*
777 * Defer asynchronous read-ahead on IO congestion.
778 */
779 if (bdi_read_congested(mapping->backing_dev_info))
780 return 0;
781 }
782
783 /* do read-ahead */
784 return ondemand_readahead(mapping, ra, filp, page,
785 offset, req_size);
786}
787EXPORT_SYMBOL_GPL(page_cache_readahead_ondemand);