Paul E. McKenney | e260be6 | 2008-01-25 21:08:24 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Read-Copy Update mechanism for mutual exclusion, realtime implementation |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License as published by |
| 6 | * the Free Software Foundation; either version 2 of the License, or |
| 7 | * (at your option) any later version. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, write to the Free Software |
| 16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 17 | * |
| 18 | * Copyright IBM Corporation, 2006 |
| 19 | * |
| 20 | * Authors: Paul E. McKenney <paulmck@us.ibm.com> |
| 21 | * With thanks to Esben Nielsen, Bill Huey, and Ingo Molnar |
| 22 | * for pushing me away from locks and towards counters, and |
| 23 | * to Suparna Bhattacharya for pushing me completely away |
| 24 | * from atomic instructions on the read side. |
| 25 | * |
Steven Rostedt | 2232c2d | 2008-02-29 18:46:50 +0100 | [diff] [blame] | 26 | * - Added handling of Dynamic Ticks |
| 27 | * Copyright 2007 - Paul E. Mckenney <paulmck@us.ibm.com> |
| 28 | * - Steven Rostedt <srostedt@redhat.com> |
| 29 | * |
Paul E. McKenney | e260be6 | 2008-01-25 21:08:24 +0100 | [diff] [blame] | 30 | * Papers: http://www.rdrop.com/users/paulmck/RCU |
| 31 | * |
| 32 | * Design Document: http://lwn.net/Articles/253651/ |
| 33 | * |
| 34 | * For detailed explanation of Read-Copy Update mechanism see - |
| 35 | * Documentation/RCU/ *.txt |
| 36 | * |
| 37 | */ |
| 38 | #include <linux/types.h> |
| 39 | #include <linux/kernel.h> |
| 40 | #include <linux/init.h> |
| 41 | #include <linux/spinlock.h> |
| 42 | #include <linux/smp.h> |
| 43 | #include <linux/rcupdate.h> |
| 44 | #include <linux/interrupt.h> |
| 45 | #include <linux/sched.h> |
| 46 | #include <asm/atomic.h> |
| 47 | #include <linux/bitops.h> |
| 48 | #include <linux/module.h> |
| 49 | #include <linux/completion.h> |
| 50 | #include <linux/moduleparam.h> |
| 51 | #include <linux/percpu.h> |
| 52 | #include <linux/notifier.h> |
| 53 | #include <linux/rcupdate.h> |
| 54 | #include <linux/cpu.h> |
| 55 | #include <linux/random.h> |
| 56 | #include <linux/delay.h> |
| 57 | #include <linux/byteorder/swabb.h> |
| 58 | #include <linux/cpumask.h> |
| 59 | #include <linux/rcupreempt_trace.h> |
| 60 | |
| 61 | /* |
| 62 | * Macro that prevents the compiler from reordering accesses, but does |
| 63 | * absolutely -nothing- to prevent CPUs from reordering. This is used |
| 64 | * only to mediate communication between mainline code and hardware |
| 65 | * interrupt and NMI handlers. |
| 66 | */ |
| 67 | #define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x)) |
| 68 | |
| 69 | /* |
| 70 | * PREEMPT_RCU data structures. |
| 71 | */ |
| 72 | |
| 73 | /* |
| 74 | * GP_STAGES specifies the number of times the state machine has |
| 75 | * to go through the all the rcu_try_flip_states (see below) |
| 76 | * in a single Grace Period. |
| 77 | * |
| 78 | * GP in GP_STAGES stands for Grace Period ;) |
| 79 | */ |
| 80 | #define GP_STAGES 2 |
| 81 | struct rcu_data { |
| 82 | spinlock_t lock; /* Protect rcu_data fields. */ |
| 83 | long completed; /* Number of last completed batch. */ |
| 84 | int waitlistcount; |
| 85 | struct tasklet_struct rcu_tasklet; |
| 86 | struct rcu_head *nextlist; |
| 87 | struct rcu_head **nexttail; |
| 88 | struct rcu_head *waitlist[GP_STAGES]; |
| 89 | struct rcu_head **waittail[GP_STAGES]; |
| 90 | struct rcu_head *donelist; |
| 91 | struct rcu_head **donetail; |
| 92 | long rcu_flipctr[2]; |
| 93 | #ifdef CONFIG_RCU_TRACE |
| 94 | struct rcupreempt_trace trace; |
| 95 | #endif /* #ifdef CONFIG_RCU_TRACE */ |
| 96 | }; |
| 97 | |
| 98 | /* |
| 99 | * States for rcu_try_flip() and friends. |
| 100 | */ |
| 101 | |
| 102 | enum rcu_try_flip_states { |
| 103 | |
| 104 | /* |
| 105 | * Stay here if nothing is happening. Flip the counter if somthing |
| 106 | * starts happening. Denoted by "I" |
| 107 | */ |
| 108 | rcu_try_flip_idle_state, |
| 109 | |
| 110 | /* |
| 111 | * Wait here for all CPUs to notice that the counter has flipped. This |
| 112 | * prevents the old set of counters from ever being incremented once |
| 113 | * we leave this state, which in turn is necessary because we cannot |
| 114 | * test any individual counter for zero -- we can only check the sum. |
| 115 | * Denoted by "A". |
| 116 | */ |
| 117 | rcu_try_flip_waitack_state, |
| 118 | |
| 119 | /* |
| 120 | * Wait here for the sum of the old per-CPU counters to reach zero. |
| 121 | * Denoted by "Z". |
| 122 | */ |
| 123 | rcu_try_flip_waitzero_state, |
| 124 | |
| 125 | /* |
| 126 | * Wait here for each of the other CPUs to execute a memory barrier. |
| 127 | * This is necessary to ensure that these other CPUs really have |
| 128 | * completed executing their RCU read-side critical sections, despite |
| 129 | * their CPUs wildly reordering memory. Denoted by "M". |
| 130 | */ |
| 131 | rcu_try_flip_waitmb_state, |
| 132 | }; |
| 133 | |
| 134 | struct rcu_ctrlblk { |
| 135 | spinlock_t fliplock; /* Protect state-machine transitions. */ |
| 136 | long completed; /* Number of last completed batch. */ |
| 137 | enum rcu_try_flip_states rcu_try_flip_state; /* The current state of |
| 138 | the rcu state machine */ |
| 139 | }; |
| 140 | |
| 141 | static DEFINE_PER_CPU(struct rcu_data, rcu_data); |
| 142 | static struct rcu_ctrlblk rcu_ctrlblk = { |
| 143 | .fliplock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.fliplock), |
| 144 | .completed = 0, |
| 145 | .rcu_try_flip_state = rcu_try_flip_idle_state, |
| 146 | }; |
| 147 | |
| 148 | |
| 149 | #ifdef CONFIG_RCU_TRACE |
| 150 | static char *rcu_try_flip_state_names[] = |
| 151 | { "idle", "waitack", "waitzero", "waitmb" }; |
| 152 | #endif /* #ifdef CONFIG_RCU_TRACE */ |
| 153 | |
Paul E. McKenney | eaf649e9 | 2008-01-25 21:08:25 +0100 | [diff] [blame] | 154 | static cpumask_t rcu_cpu_online_map __read_mostly = CPU_MASK_NONE; |
| 155 | |
Paul E. McKenney | e260be6 | 2008-01-25 21:08:24 +0100 | [diff] [blame] | 156 | /* |
| 157 | * Enum and per-CPU flag to determine when each CPU has seen |
| 158 | * the most recent counter flip. |
| 159 | */ |
| 160 | |
| 161 | enum rcu_flip_flag_values { |
| 162 | rcu_flip_seen, /* Steady/initial state, last flip seen. */ |
| 163 | /* Only GP detector can update. */ |
| 164 | rcu_flipped /* Flip just completed, need confirmation. */ |
| 165 | /* Only corresponding CPU can update. */ |
| 166 | }; |
| 167 | static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_flip_flag_values, rcu_flip_flag) |
| 168 | = rcu_flip_seen; |
| 169 | |
| 170 | /* |
| 171 | * Enum and per-CPU flag to determine when each CPU has executed the |
| 172 | * needed memory barrier to fence in memory references from its last RCU |
| 173 | * read-side critical section in the just-completed grace period. |
| 174 | */ |
| 175 | |
| 176 | enum rcu_mb_flag_values { |
| 177 | rcu_mb_done, /* Steady/initial state, no mb()s required. */ |
| 178 | /* Only GP detector can update. */ |
| 179 | rcu_mb_needed /* Flip just completed, need an mb(). */ |
| 180 | /* Only corresponding CPU can update. */ |
| 181 | }; |
| 182 | static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_mb_flag_values, rcu_mb_flag) |
| 183 | = rcu_mb_done; |
| 184 | |
| 185 | /* |
| 186 | * RCU_DATA_ME: find the current CPU's rcu_data structure. |
| 187 | * RCU_DATA_CPU: find the specified CPU's rcu_data structure. |
| 188 | */ |
| 189 | #define RCU_DATA_ME() (&__get_cpu_var(rcu_data)) |
| 190 | #define RCU_DATA_CPU(cpu) (&per_cpu(rcu_data, cpu)) |
| 191 | |
| 192 | /* |
| 193 | * Helper macro for tracing when the appropriate rcu_data is not |
| 194 | * cached in a local variable, but where the CPU number is so cached. |
| 195 | */ |
| 196 | #define RCU_TRACE_CPU(f, cpu) RCU_TRACE(f, &(RCU_DATA_CPU(cpu)->trace)); |
| 197 | |
| 198 | /* |
| 199 | * Helper macro for tracing when the appropriate rcu_data is not |
| 200 | * cached in a local variable. |
| 201 | */ |
| 202 | #define RCU_TRACE_ME(f) RCU_TRACE(f, &(RCU_DATA_ME()->trace)); |
| 203 | |
| 204 | /* |
| 205 | * Helper macro for tracing when the appropriate rcu_data is pointed |
| 206 | * to by a local variable. |
| 207 | */ |
| 208 | #define RCU_TRACE_RDP(f, rdp) RCU_TRACE(f, &((rdp)->trace)); |
| 209 | |
| 210 | /* |
| 211 | * Return the number of RCU batches processed thus far. Useful |
| 212 | * for debug and statistics. |
| 213 | */ |
| 214 | long rcu_batches_completed(void) |
| 215 | { |
| 216 | return rcu_ctrlblk.completed; |
| 217 | } |
| 218 | EXPORT_SYMBOL_GPL(rcu_batches_completed); |
| 219 | |
| 220 | EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); |
| 221 | |
| 222 | void __rcu_read_lock(void) |
| 223 | { |
| 224 | int idx; |
| 225 | struct task_struct *t = current; |
| 226 | int nesting; |
| 227 | |
| 228 | nesting = ACCESS_ONCE(t->rcu_read_lock_nesting); |
| 229 | if (nesting != 0) { |
| 230 | |
| 231 | /* An earlier rcu_read_lock() covers us, just count it. */ |
| 232 | |
| 233 | t->rcu_read_lock_nesting = nesting + 1; |
| 234 | |
| 235 | } else { |
| 236 | unsigned long flags; |
| 237 | |
| 238 | /* |
| 239 | * We disable interrupts for the following reasons: |
| 240 | * - If we get scheduling clock interrupt here, and we |
| 241 | * end up acking the counter flip, it's like a promise |
| 242 | * that we will never increment the old counter again. |
| 243 | * Thus we will break that promise if that |
| 244 | * scheduling clock interrupt happens between the time |
| 245 | * we pick the .completed field and the time that we |
| 246 | * increment our counter. |
| 247 | * |
| 248 | * - We don't want to be preempted out here. |
| 249 | * |
| 250 | * NMIs can still occur, of course, and might themselves |
| 251 | * contain rcu_read_lock(). |
| 252 | */ |
| 253 | |
| 254 | local_irq_save(flags); |
| 255 | |
| 256 | /* |
| 257 | * Outermost nesting of rcu_read_lock(), so increment |
| 258 | * the current counter for the current CPU. Use volatile |
| 259 | * casts to prevent the compiler from reordering. |
| 260 | */ |
| 261 | |
| 262 | idx = ACCESS_ONCE(rcu_ctrlblk.completed) & 0x1; |
| 263 | ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])++; |
| 264 | |
| 265 | /* |
| 266 | * Now that the per-CPU counter has been incremented, we |
| 267 | * are protected from races with rcu_read_lock() invoked |
| 268 | * from NMI handlers on this CPU. We can therefore safely |
| 269 | * increment the nesting counter, relieving further NMIs |
| 270 | * of the need to increment the per-CPU counter. |
| 271 | */ |
| 272 | |
| 273 | ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting + 1; |
| 274 | |
| 275 | /* |
| 276 | * Now that we have preventing any NMIs from storing |
| 277 | * to the ->rcu_flipctr_idx, we can safely use it to |
| 278 | * remember which counter to decrement in the matching |
| 279 | * rcu_read_unlock(). |
| 280 | */ |
| 281 | |
| 282 | ACCESS_ONCE(t->rcu_flipctr_idx) = idx; |
| 283 | local_irq_restore(flags); |
| 284 | } |
| 285 | } |
| 286 | EXPORT_SYMBOL_GPL(__rcu_read_lock); |
| 287 | |
| 288 | void __rcu_read_unlock(void) |
| 289 | { |
| 290 | int idx; |
| 291 | struct task_struct *t = current; |
| 292 | int nesting; |
| 293 | |
| 294 | nesting = ACCESS_ONCE(t->rcu_read_lock_nesting); |
| 295 | if (nesting > 1) { |
| 296 | |
| 297 | /* |
| 298 | * We are still protected by the enclosing rcu_read_lock(), |
| 299 | * so simply decrement the counter. |
| 300 | */ |
| 301 | |
| 302 | t->rcu_read_lock_nesting = nesting - 1; |
| 303 | |
| 304 | } else { |
| 305 | unsigned long flags; |
| 306 | |
| 307 | /* |
| 308 | * Disable local interrupts to prevent the grace-period |
| 309 | * detection state machine from seeing us half-done. |
| 310 | * NMIs can still occur, of course, and might themselves |
| 311 | * contain rcu_read_lock() and rcu_read_unlock(). |
| 312 | */ |
| 313 | |
| 314 | local_irq_save(flags); |
| 315 | |
| 316 | /* |
| 317 | * Outermost nesting of rcu_read_unlock(), so we must |
| 318 | * decrement the current counter for the current CPU. |
| 319 | * This must be done carefully, because NMIs can |
| 320 | * occur at any point in this code, and any rcu_read_lock() |
| 321 | * and rcu_read_unlock() pairs in the NMI handlers |
| 322 | * must interact non-destructively with this code. |
| 323 | * Lots of volatile casts, and -very- careful ordering. |
| 324 | * |
| 325 | * Changes to this code, including this one, must be |
| 326 | * inspected, validated, and tested extremely carefully!!! |
| 327 | */ |
| 328 | |
| 329 | /* |
| 330 | * First, pick up the index. |
| 331 | */ |
| 332 | |
| 333 | idx = ACCESS_ONCE(t->rcu_flipctr_idx); |
| 334 | |
| 335 | /* |
| 336 | * Now that we have fetched the counter index, it is |
| 337 | * safe to decrement the per-task RCU nesting counter. |
| 338 | * After this, any interrupts or NMIs will increment and |
| 339 | * decrement the per-CPU counters. |
| 340 | */ |
| 341 | ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting - 1; |
| 342 | |
| 343 | /* |
| 344 | * It is now safe to decrement this task's nesting count. |
| 345 | * NMIs that occur after this statement will route their |
| 346 | * rcu_read_lock() calls through this "else" clause, and |
| 347 | * will thus start incrementing the per-CPU counter on |
| 348 | * their own. They will also clobber ->rcu_flipctr_idx, |
| 349 | * but that is OK, since we have already fetched it. |
| 350 | */ |
| 351 | |
| 352 | ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])--; |
| 353 | local_irq_restore(flags); |
| 354 | } |
| 355 | } |
| 356 | EXPORT_SYMBOL_GPL(__rcu_read_unlock); |
| 357 | |
| 358 | /* |
| 359 | * If a global counter flip has occurred since the last time that we |
| 360 | * advanced callbacks, advance them. Hardware interrupts must be |
| 361 | * disabled when calling this function. |
| 362 | */ |
| 363 | static void __rcu_advance_callbacks(struct rcu_data *rdp) |
| 364 | { |
| 365 | int cpu; |
| 366 | int i; |
| 367 | int wlc = 0; |
| 368 | |
| 369 | if (rdp->completed != rcu_ctrlblk.completed) { |
| 370 | if (rdp->waitlist[GP_STAGES - 1] != NULL) { |
| 371 | *rdp->donetail = rdp->waitlist[GP_STAGES - 1]; |
| 372 | rdp->donetail = rdp->waittail[GP_STAGES - 1]; |
| 373 | RCU_TRACE_RDP(rcupreempt_trace_move2done, rdp); |
| 374 | } |
| 375 | for (i = GP_STAGES - 2; i >= 0; i--) { |
| 376 | if (rdp->waitlist[i] != NULL) { |
| 377 | rdp->waitlist[i + 1] = rdp->waitlist[i]; |
| 378 | rdp->waittail[i + 1] = rdp->waittail[i]; |
| 379 | wlc++; |
| 380 | } else { |
| 381 | rdp->waitlist[i + 1] = NULL; |
| 382 | rdp->waittail[i + 1] = |
| 383 | &rdp->waitlist[i + 1]; |
| 384 | } |
| 385 | } |
| 386 | if (rdp->nextlist != NULL) { |
| 387 | rdp->waitlist[0] = rdp->nextlist; |
| 388 | rdp->waittail[0] = rdp->nexttail; |
| 389 | wlc++; |
| 390 | rdp->nextlist = NULL; |
| 391 | rdp->nexttail = &rdp->nextlist; |
| 392 | RCU_TRACE_RDP(rcupreempt_trace_move2wait, rdp); |
| 393 | } else { |
| 394 | rdp->waitlist[0] = NULL; |
| 395 | rdp->waittail[0] = &rdp->waitlist[0]; |
| 396 | } |
| 397 | rdp->waitlistcount = wlc; |
| 398 | rdp->completed = rcu_ctrlblk.completed; |
| 399 | } |
| 400 | |
| 401 | /* |
| 402 | * Check to see if this CPU needs to report that it has seen |
| 403 | * the most recent counter flip, thereby declaring that all |
| 404 | * subsequent rcu_read_lock() invocations will respect this flip. |
| 405 | */ |
| 406 | |
| 407 | cpu = raw_smp_processor_id(); |
| 408 | if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) { |
| 409 | smp_mb(); /* Subsequent counter accesses must see new value */ |
| 410 | per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen; |
| 411 | smp_mb(); /* Subsequent RCU read-side critical sections */ |
| 412 | /* seen -after- acknowledgement. */ |
| 413 | } |
| 414 | } |
| 415 | |
Steven Rostedt | 2232c2d | 2008-02-29 18:46:50 +0100 | [diff] [blame] | 416 | #ifdef CONFIG_NO_HZ |
| 417 | |
| 418 | DEFINE_PER_CPU(long, dynticks_progress_counter) = 1; |
| 419 | static DEFINE_PER_CPU(long, rcu_dyntick_snapshot); |
| 420 | static DEFINE_PER_CPU(int, rcu_update_flag); |
| 421 | |
| 422 | /** |
| 423 | * rcu_irq_enter - Called from Hard irq handlers and NMI/SMI. |
| 424 | * |
| 425 | * If the CPU was idle with dynamic ticks active, this updates the |
| 426 | * dynticks_progress_counter to let the RCU handling know that the |
| 427 | * CPU is active. |
| 428 | */ |
| 429 | void rcu_irq_enter(void) |
| 430 | { |
| 431 | int cpu = smp_processor_id(); |
| 432 | |
| 433 | if (per_cpu(rcu_update_flag, cpu)) |
| 434 | per_cpu(rcu_update_flag, cpu)++; |
| 435 | |
| 436 | /* |
| 437 | * Only update if we are coming from a stopped ticks mode |
| 438 | * (dynticks_progress_counter is even). |
| 439 | */ |
| 440 | if (!in_interrupt() && |
| 441 | (per_cpu(dynticks_progress_counter, cpu) & 0x1) == 0) { |
| 442 | /* |
| 443 | * The following might seem like we could have a race |
| 444 | * with NMI/SMIs. But this really isn't a problem. |
| 445 | * Here we do a read/modify/write, and the race happens |
| 446 | * when an NMI/SMI comes in after the read and before |
| 447 | * the write. But NMI/SMIs will increment this counter |
| 448 | * twice before returning, so the zero bit will not |
| 449 | * be corrupted by the NMI/SMI which is the most important |
| 450 | * part. |
| 451 | * |
| 452 | * The only thing is that we would bring back the counter |
| 453 | * to a postion that it was in during the NMI/SMI. |
| 454 | * But the zero bit would be set, so the rest of the |
| 455 | * counter would again be ignored. |
| 456 | * |
| 457 | * On return from the IRQ, the counter may have the zero |
| 458 | * bit be 0 and the counter the same as the return from |
| 459 | * the NMI/SMI. If the state machine was so unlucky to |
| 460 | * see that, it still doesn't matter, since all |
| 461 | * RCU read-side critical sections on this CPU would |
| 462 | * have already completed. |
| 463 | */ |
| 464 | per_cpu(dynticks_progress_counter, cpu)++; |
| 465 | /* |
| 466 | * The following memory barrier ensures that any |
| 467 | * rcu_read_lock() primitives in the irq handler |
| 468 | * are seen by other CPUs to follow the above |
| 469 | * increment to dynticks_progress_counter. This is |
| 470 | * required in order for other CPUs to correctly |
| 471 | * determine when it is safe to advance the RCU |
| 472 | * grace-period state machine. |
| 473 | */ |
| 474 | smp_mb(); /* see above block comment. */ |
| 475 | /* |
| 476 | * Since we can't determine the dynamic tick mode from |
| 477 | * the dynticks_progress_counter after this routine, |
| 478 | * we use a second flag to acknowledge that we came |
| 479 | * from an idle state with ticks stopped. |
| 480 | */ |
| 481 | per_cpu(rcu_update_flag, cpu)++; |
| 482 | /* |
| 483 | * If we take an NMI/SMI now, they will also increment |
| 484 | * the rcu_update_flag, and will not update the |
| 485 | * dynticks_progress_counter on exit. That is for |
| 486 | * this IRQ to do. |
| 487 | */ |
| 488 | } |
| 489 | } |
| 490 | |
| 491 | /** |
| 492 | * rcu_irq_exit - Called from exiting Hard irq context. |
| 493 | * |
| 494 | * If the CPU was idle with dynamic ticks active, update the |
| 495 | * dynticks_progress_counter to put let the RCU handling be |
| 496 | * aware that the CPU is going back to idle with no ticks. |
| 497 | */ |
| 498 | void rcu_irq_exit(void) |
| 499 | { |
| 500 | int cpu = smp_processor_id(); |
| 501 | |
| 502 | /* |
| 503 | * rcu_update_flag is set if we interrupted the CPU |
| 504 | * when it was idle with ticks stopped. |
| 505 | * Once this occurs, we keep track of interrupt nesting |
| 506 | * because a NMI/SMI could also come in, and we still |
| 507 | * only want the IRQ that started the increment of the |
| 508 | * dynticks_progress_counter to be the one that modifies |
| 509 | * it on exit. |
| 510 | */ |
| 511 | if (per_cpu(rcu_update_flag, cpu)) { |
| 512 | if (--per_cpu(rcu_update_flag, cpu)) |
| 513 | return; |
| 514 | |
| 515 | /* This must match the interrupt nesting */ |
| 516 | WARN_ON(in_interrupt()); |
| 517 | |
| 518 | /* |
| 519 | * If an NMI/SMI happens now we are still |
| 520 | * protected by the dynticks_progress_counter being odd. |
| 521 | */ |
| 522 | |
| 523 | /* |
| 524 | * The following memory barrier ensures that any |
| 525 | * rcu_read_unlock() primitives in the irq handler |
| 526 | * are seen by other CPUs to preceed the following |
| 527 | * increment to dynticks_progress_counter. This |
| 528 | * is required in order for other CPUs to determine |
| 529 | * when it is safe to advance the RCU grace-period |
| 530 | * state machine. |
| 531 | */ |
| 532 | smp_mb(); /* see above block comment. */ |
| 533 | per_cpu(dynticks_progress_counter, cpu)++; |
| 534 | WARN_ON(per_cpu(dynticks_progress_counter, cpu) & 0x1); |
| 535 | } |
| 536 | } |
| 537 | |
| 538 | static void dyntick_save_progress_counter(int cpu) |
| 539 | { |
| 540 | per_cpu(rcu_dyntick_snapshot, cpu) = |
| 541 | per_cpu(dynticks_progress_counter, cpu); |
| 542 | } |
| 543 | |
| 544 | static inline int |
| 545 | rcu_try_flip_waitack_needed(int cpu) |
| 546 | { |
| 547 | long curr; |
| 548 | long snap; |
| 549 | |
| 550 | curr = per_cpu(dynticks_progress_counter, cpu); |
| 551 | snap = per_cpu(rcu_dyntick_snapshot, cpu); |
| 552 | smp_mb(); /* force ordering with cpu entering/leaving dynticks. */ |
| 553 | |
| 554 | /* |
| 555 | * If the CPU remained in dynticks mode for the entire time |
| 556 | * and didn't take any interrupts, NMIs, SMIs, or whatever, |
| 557 | * then it cannot be in the middle of an rcu_read_lock(), so |
| 558 | * the next rcu_read_lock() it executes must use the new value |
| 559 | * of the counter. So we can safely pretend that this CPU |
| 560 | * already acknowledged the counter. |
| 561 | */ |
| 562 | |
| 563 | if ((curr == snap) && ((curr & 0x1) == 0)) |
| 564 | return 0; |
| 565 | |
| 566 | /* |
| 567 | * If the CPU passed through or entered a dynticks idle phase with |
| 568 | * no active irq handlers, then, as above, we can safely pretend |
| 569 | * that this CPU already acknowledged the counter. |
| 570 | */ |
| 571 | |
| 572 | if ((curr - snap) > 2 || (snap & 0x1) == 0) |
| 573 | return 0; |
| 574 | |
| 575 | /* We need this CPU to explicitly acknowledge the counter flip. */ |
| 576 | |
| 577 | return 1; |
| 578 | } |
| 579 | |
| 580 | static inline int |
| 581 | rcu_try_flip_waitmb_needed(int cpu) |
| 582 | { |
| 583 | long curr; |
| 584 | long snap; |
| 585 | |
| 586 | curr = per_cpu(dynticks_progress_counter, cpu); |
| 587 | snap = per_cpu(rcu_dyntick_snapshot, cpu); |
| 588 | smp_mb(); /* force ordering with cpu entering/leaving dynticks. */ |
| 589 | |
| 590 | /* |
| 591 | * If the CPU remained in dynticks mode for the entire time |
| 592 | * and didn't take any interrupts, NMIs, SMIs, or whatever, |
| 593 | * then it cannot have executed an RCU read-side critical section |
| 594 | * during that time, so there is no need for it to execute a |
| 595 | * memory barrier. |
| 596 | */ |
| 597 | |
| 598 | if ((curr == snap) && ((curr & 0x1) == 0)) |
| 599 | return 0; |
| 600 | |
| 601 | /* |
| 602 | * If the CPU either entered or exited an outermost interrupt, |
| 603 | * SMI, NMI, or whatever handler, then we know that it executed |
| 604 | * a memory barrier when doing so. So we don't need another one. |
| 605 | */ |
| 606 | if (curr != snap) |
| 607 | return 0; |
| 608 | |
| 609 | /* We need the CPU to execute a memory barrier. */ |
| 610 | |
| 611 | return 1; |
| 612 | } |
| 613 | |
| 614 | #else /* !CONFIG_NO_HZ */ |
| 615 | |
| 616 | # define dyntick_save_progress_counter(cpu) do { } while (0) |
| 617 | # define rcu_try_flip_waitack_needed(cpu) (1) |
| 618 | # define rcu_try_flip_waitmb_needed(cpu) (1) |
| 619 | |
| 620 | #endif /* CONFIG_NO_HZ */ |
| 621 | |
Paul E. McKenney | e260be6 | 2008-01-25 21:08:24 +0100 | [diff] [blame] | 622 | /* |
| 623 | * Get here when RCU is idle. Decide whether we need to |
| 624 | * move out of idle state, and return non-zero if so. |
| 625 | * "Straightforward" approach for the moment, might later |
| 626 | * use callback-list lengths, grace-period duration, or |
| 627 | * some such to determine when to exit idle state. |
| 628 | * Might also need a pre-idle test that does not acquire |
| 629 | * the lock, but let's get the simple case working first... |
| 630 | */ |
| 631 | |
| 632 | static int |
| 633 | rcu_try_flip_idle(void) |
| 634 | { |
| 635 | int cpu; |
| 636 | |
| 637 | RCU_TRACE_ME(rcupreempt_trace_try_flip_i1); |
| 638 | if (!rcu_pending(smp_processor_id())) { |
| 639 | RCU_TRACE_ME(rcupreempt_trace_try_flip_ie1); |
| 640 | return 0; |
| 641 | } |
| 642 | |
| 643 | /* |
| 644 | * Do the flip. |
| 645 | */ |
| 646 | |
| 647 | RCU_TRACE_ME(rcupreempt_trace_try_flip_g1); |
| 648 | rcu_ctrlblk.completed++; /* stands in for rcu_try_flip_g2 */ |
| 649 | |
| 650 | /* |
| 651 | * Need a memory barrier so that other CPUs see the new |
| 652 | * counter value before they see the subsequent change of all |
| 653 | * the rcu_flip_flag instances to rcu_flipped. |
| 654 | */ |
| 655 | |
| 656 | smp_mb(); /* see above block comment. */ |
| 657 | |
| 658 | /* Now ask each CPU for acknowledgement of the flip. */ |
| 659 | |
Steven Rostedt | 2232c2d | 2008-02-29 18:46:50 +0100 | [diff] [blame] | 660 | for_each_cpu_mask(cpu, rcu_cpu_online_map) { |
Paul E. McKenney | e260be6 | 2008-01-25 21:08:24 +0100 | [diff] [blame] | 661 | per_cpu(rcu_flip_flag, cpu) = rcu_flipped; |
Steven Rostedt | 2232c2d | 2008-02-29 18:46:50 +0100 | [diff] [blame] | 662 | dyntick_save_progress_counter(cpu); |
| 663 | } |
Paul E. McKenney | e260be6 | 2008-01-25 21:08:24 +0100 | [diff] [blame] | 664 | |
| 665 | return 1; |
| 666 | } |
| 667 | |
| 668 | /* |
| 669 | * Wait for CPUs to acknowledge the flip. |
| 670 | */ |
| 671 | |
| 672 | static int |
| 673 | rcu_try_flip_waitack(void) |
| 674 | { |
| 675 | int cpu; |
| 676 | |
| 677 | RCU_TRACE_ME(rcupreempt_trace_try_flip_a1); |
Paul E. McKenney | eaf649e9 | 2008-01-25 21:08:25 +0100 | [diff] [blame] | 678 | for_each_cpu_mask(cpu, rcu_cpu_online_map) |
Steven Rostedt | 2232c2d | 2008-02-29 18:46:50 +0100 | [diff] [blame] | 679 | if (rcu_try_flip_waitack_needed(cpu) && |
| 680 | per_cpu(rcu_flip_flag, cpu) != rcu_flip_seen) { |
Paul E. McKenney | e260be6 | 2008-01-25 21:08:24 +0100 | [diff] [blame] | 681 | RCU_TRACE_ME(rcupreempt_trace_try_flip_ae1); |
| 682 | return 0; |
| 683 | } |
| 684 | |
| 685 | /* |
| 686 | * Make sure our checks above don't bleed into subsequent |
| 687 | * waiting for the sum of the counters to reach zero. |
| 688 | */ |
| 689 | |
| 690 | smp_mb(); /* see above block comment. */ |
| 691 | RCU_TRACE_ME(rcupreempt_trace_try_flip_a2); |
| 692 | return 1; |
| 693 | } |
| 694 | |
| 695 | /* |
| 696 | * Wait for collective ``last'' counter to reach zero, |
| 697 | * then tell all CPUs to do an end-of-grace-period memory barrier. |
| 698 | */ |
| 699 | |
| 700 | static int |
| 701 | rcu_try_flip_waitzero(void) |
| 702 | { |
| 703 | int cpu; |
| 704 | int lastidx = !(rcu_ctrlblk.completed & 0x1); |
| 705 | int sum = 0; |
| 706 | |
| 707 | /* Check to see if the sum of the "last" counters is zero. */ |
| 708 | |
| 709 | RCU_TRACE_ME(rcupreempt_trace_try_flip_z1); |
Paul E. McKenney | eaf649e9 | 2008-01-25 21:08:25 +0100 | [diff] [blame] | 710 | for_each_cpu_mask(cpu, rcu_cpu_online_map) |
Paul E. McKenney | e260be6 | 2008-01-25 21:08:24 +0100 | [diff] [blame] | 711 | sum += RCU_DATA_CPU(cpu)->rcu_flipctr[lastidx]; |
| 712 | if (sum != 0) { |
| 713 | RCU_TRACE_ME(rcupreempt_trace_try_flip_ze1); |
| 714 | return 0; |
| 715 | } |
| 716 | |
| 717 | /* |
| 718 | * This ensures that the other CPUs see the call for |
| 719 | * memory barriers -after- the sum to zero has been |
| 720 | * detected here |
| 721 | */ |
| 722 | smp_mb(); /* ^^^^^^^^^^^^ */ |
| 723 | |
| 724 | /* Call for a memory barrier from each CPU. */ |
Steven Rostedt | 2232c2d | 2008-02-29 18:46:50 +0100 | [diff] [blame] | 725 | for_each_cpu_mask(cpu, rcu_cpu_online_map) { |
Paul E. McKenney | e260be6 | 2008-01-25 21:08:24 +0100 | [diff] [blame] | 726 | per_cpu(rcu_mb_flag, cpu) = rcu_mb_needed; |
Steven Rostedt | 2232c2d | 2008-02-29 18:46:50 +0100 | [diff] [blame] | 727 | dyntick_save_progress_counter(cpu); |
| 728 | } |
Paul E. McKenney | e260be6 | 2008-01-25 21:08:24 +0100 | [diff] [blame] | 729 | |
| 730 | RCU_TRACE_ME(rcupreempt_trace_try_flip_z2); |
| 731 | return 1; |
| 732 | } |
| 733 | |
| 734 | /* |
| 735 | * Wait for all CPUs to do their end-of-grace-period memory barrier. |
| 736 | * Return 0 once all CPUs have done so. |
| 737 | */ |
| 738 | |
| 739 | static int |
| 740 | rcu_try_flip_waitmb(void) |
| 741 | { |
| 742 | int cpu; |
| 743 | |
| 744 | RCU_TRACE_ME(rcupreempt_trace_try_flip_m1); |
Paul E. McKenney | eaf649e9 | 2008-01-25 21:08:25 +0100 | [diff] [blame] | 745 | for_each_cpu_mask(cpu, rcu_cpu_online_map) |
Steven Rostedt | 2232c2d | 2008-02-29 18:46:50 +0100 | [diff] [blame] | 746 | if (rcu_try_flip_waitmb_needed(cpu) && |
| 747 | per_cpu(rcu_mb_flag, cpu) != rcu_mb_done) { |
Paul E. McKenney | e260be6 | 2008-01-25 21:08:24 +0100 | [diff] [blame] | 748 | RCU_TRACE_ME(rcupreempt_trace_try_flip_me1); |
| 749 | return 0; |
| 750 | } |
| 751 | |
| 752 | smp_mb(); /* Ensure that the above checks precede any following flip. */ |
| 753 | RCU_TRACE_ME(rcupreempt_trace_try_flip_m2); |
| 754 | return 1; |
| 755 | } |
| 756 | |
| 757 | /* |
| 758 | * Attempt a single flip of the counters. Remember, a single flip does |
| 759 | * -not- constitute a grace period. Instead, the interval between |
| 760 | * at least GP_STAGES consecutive flips is a grace period. |
| 761 | * |
| 762 | * If anyone is nuts enough to run this CONFIG_PREEMPT_RCU implementation |
| 763 | * on a large SMP, they might want to use a hierarchical organization of |
| 764 | * the per-CPU-counter pairs. |
| 765 | */ |
| 766 | static void rcu_try_flip(void) |
| 767 | { |
| 768 | unsigned long flags; |
| 769 | |
| 770 | RCU_TRACE_ME(rcupreempt_trace_try_flip_1); |
| 771 | if (unlikely(!spin_trylock_irqsave(&rcu_ctrlblk.fliplock, flags))) { |
| 772 | RCU_TRACE_ME(rcupreempt_trace_try_flip_e1); |
| 773 | return; |
| 774 | } |
| 775 | |
| 776 | /* |
| 777 | * Take the next transition(s) through the RCU grace-period |
| 778 | * flip-counter state machine. |
| 779 | */ |
| 780 | |
| 781 | switch (rcu_ctrlblk.rcu_try_flip_state) { |
| 782 | case rcu_try_flip_idle_state: |
| 783 | if (rcu_try_flip_idle()) |
| 784 | rcu_ctrlblk.rcu_try_flip_state = |
| 785 | rcu_try_flip_waitack_state; |
| 786 | break; |
| 787 | case rcu_try_flip_waitack_state: |
| 788 | if (rcu_try_flip_waitack()) |
| 789 | rcu_ctrlblk.rcu_try_flip_state = |
| 790 | rcu_try_flip_waitzero_state; |
| 791 | break; |
| 792 | case rcu_try_flip_waitzero_state: |
| 793 | if (rcu_try_flip_waitzero()) |
| 794 | rcu_ctrlblk.rcu_try_flip_state = |
| 795 | rcu_try_flip_waitmb_state; |
| 796 | break; |
| 797 | case rcu_try_flip_waitmb_state: |
| 798 | if (rcu_try_flip_waitmb()) |
| 799 | rcu_ctrlblk.rcu_try_flip_state = |
| 800 | rcu_try_flip_idle_state; |
| 801 | } |
| 802 | spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags); |
| 803 | } |
| 804 | |
| 805 | /* |
| 806 | * Check to see if this CPU needs to do a memory barrier in order to |
| 807 | * ensure that any prior RCU read-side critical sections have committed |
| 808 | * their counter manipulations and critical-section memory references |
| 809 | * before declaring the grace period to be completed. |
| 810 | */ |
| 811 | static void rcu_check_mb(int cpu) |
| 812 | { |
| 813 | if (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed) { |
| 814 | smp_mb(); /* Ensure RCU read-side accesses are visible. */ |
| 815 | per_cpu(rcu_mb_flag, cpu) = rcu_mb_done; |
| 816 | } |
| 817 | } |
| 818 | |
| 819 | void rcu_check_callbacks(int cpu, int user) |
| 820 | { |
| 821 | unsigned long flags; |
| 822 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); |
| 823 | |
| 824 | rcu_check_mb(cpu); |
| 825 | if (rcu_ctrlblk.completed == rdp->completed) |
| 826 | rcu_try_flip(); |
| 827 | spin_lock_irqsave(&rdp->lock, flags); |
| 828 | RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp); |
| 829 | __rcu_advance_callbacks(rdp); |
| 830 | if (rdp->donelist == NULL) { |
| 831 | spin_unlock_irqrestore(&rdp->lock, flags); |
| 832 | } else { |
| 833 | spin_unlock_irqrestore(&rdp->lock, flags); |
| 834 | raise_softirq(RCU_SOFTIRQ); |
| 835 | } |
| 836 | } |
| 837 | |
| 838 | /* |
| 839 | * Needed by dynticks, to make sure all RCU processing has finished |
| 840 | * when we go idle: |
| 841 | */ |
| 842 | void rcu_advance_callbacks(int cpu, int user) |
| 843 | { |
| 844 | unsigned long flags; |
| 845 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); |
| 846 | |
| 847 | if (rcu_ctrlblk.completed == rdp->completed) { |
| 848 | rcu_try_flip(); |
| 849 | if (rcu_ctrlblk.completed == rdp->completed) |
| 850 | return; |
| 851 | } |
| 852 | spin_lock_irqsave(&rdp->lock, flags); |
| 853 | RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp); |
| 854 | __rcu_advance_callbacks(rdp); |
| 855 | spin_unlock_irqrestore(&rdp->lock, flags); |
| 856 | } |
| 857 | |
Paul E. McKenney | eaf649e9 | 2008-01-25 21:08:25 +0100 | [diff] [blame] | 858 | #ifdef CONFIG_HOTPLUG_CPU |
| 859 | #define rcu_offline_cpu_enqueue(srclist, srctail, dstlist, dsttail) do { \ |
| 860 | *dsttail = srclist; \ |
| 861 | if (srclist != NULL) { \ |
| 862 | dsttail = srctail; \ |
| 863 | srclist = NULL; \ |
| 864 | srctail = &srclist;\ |
| 865 | } \ |
| 866 | } while (0) |
| 867 | |
| 868 | void rcu_offline_cpu(int cpu) |
| 869 | { |
| 870 | int i; |
| 871 | struct rcu_head *list = NULL; |
| 872 | unsigned long flags; |
| 873 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); |
| 874 | struct rcu_head **tail = &list; |
| 875 | |
| 876 | /* |
| 877 | * Remove all callbacks from the newly dead CPU, retaining order. |
| 878 | * Otherwise rcu_barrier() will fail |
| 879 | */ |
| 880 | |
| 881 | spin_lock_irqsave(&rdp->lock, flags); |
| 882 | rcu_offline_cpu_enqueue(rdp->donelist, rdp->donetail, list, tail); |
| 883 | for (i = GP_STAGES - 1; i >= 0; i--) |
| 884 | rcu_offline_cpu_enqueue(rdp->waitlist[i], rdp->waittail[i], |
| 885 | list, tail); |
| 886 | rcu_offline_cpu_enqueue(rdp->nextlist, rdp->nexttail, list, tail); |
| 887 | spin_unlock_irqrestore(&rdp->lock, flags); |
| 888 | rdp->waitlistcount = 0; |
| 889 | |
| 890 | /* Disengage the newly dead CPU from the grace-period computation. */ |
| 891 | |
| 892 | spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags); |
| 893 | rcu_check_mb(cpu); |
| 894 | if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) { |
| 895 | smp_mb(); /* Subsequent counter accesses must see new value */ |
| 896 | per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen; |
| 897 | smp_mb(); /* Subsequent RCU read-side critical sections */ |
| 898 | /* seen -after- acknowledgement. */ |
| 899 | } |
| 900 | |
| 901 | RCU_DATA_ME()->rcu_flipctr[0] += RCU_DATA_CPU(cpu)->rcu_flipctr[0]; |
| 902 | RCU_DATA_ME()->rcu_flipctr[1] += RCU_DATA_CPU(cpu)->rcu_flipctr[1]; |
| 903 | |
| 904 | RCU_DATA_CPU(cpu)->rcu_flipctr[0] = 0; |
| 905 | RCU_DATA_CPU(cpu)->rcu_flipctr[1] = 0; |
| 906 | |
| 907 | cpu_clear(cpu, rcu_cpu_online_map); |
| 908 | |
| 909 | spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags); |
| 910 | |
| 911 | /* |
| 912 | * Place the removed callbacks on the current CPU's queue. |
| 913 | * Make them all start a new grace period: simple approach, |
| 914 | * in theory could starve a given set of callbacks, but |
| 915 | * you would need to be doing some serious CPU hotplugging |
| 916 | * to make this happen. If this becomes a problem, adding |
| 917 | * a synchronize_rcu() to the hotplug path would be a simple |
| 918 | * fix. |
| 919 | */ |
| 920 | |
| 921 | rdp = RCU_DATA_ME(); |
| 922 | spin_lock_irqsave(&rdp->lock, flags); |
| 923 | *rdp->nexttail = list; |
| 924 | if (list) |
| 925 | rdp->nexttail = tail; |
| 926 | spin_unlock_irqrestore(&rdp->lock, flags); |
| 927 | } |
| 928 | |
| 929 | void __devinit rcu_online_cpu(int cpu) |
| 930 | { |
| 931 | unsigned long flags; |
| 932 | |
| 933 | spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags); |
| 934 | cpu_set(cpu, rcu_cpu_online_map); |
| 935 | spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags); |
| 936 | } |
| 937 | |
| 938 | #else /* #ifdef CONFIG_HOTPLUG_CPU */ |
| 939 | |
| 940 | void rcu_offline_cpu(int cpu) |
| 941 | { |
| 942 | } |
| 943 | |
| 944 | void __devinit rcu_online_cpu(int cpu) |
| 945 | { |
| 946 | } |
| 947 | |
| 948 | #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ |
| 949 | |
Paul E. McKenney | e260be6 | 2008-01-25 21:08:24 +0100 | [diff] [blame] | 950 | static void rcu_process_callbacks(struct softirq_action *unused) |
| 951 | { |
| 952 | unsigned long flags; |
| 953 | struct rcu_head *next, *list; |
| 954 | struct rcu_data *rdp = RCU_DATA_ME(); |
| 955 | |
| 956 | spin_lock_irqsave(&rdp->lock, flags); |
| 957 | list = rdp->donelist; |
| 958 | if (list == NULL) { |
| 959 | spin_unlock_irqrestore(&rdp->lock, flags); |
| 960 | return; |
| 961 | } |
| 962 | rdp->donelist = NULL; |
| 963 | rdp->donetail = &rdp->donelist; |
| 964 | RCU_TRACE_RDP(rcupreempt_trace_done_remove, rdp); |
| 965 | spin_unlock_irqrestore(&rdp->lock, flags); |
| 966 | while (list) { |
| 967 | next = list->next; |
| 968 | list->func(list); |
| 969 | list = next; |
| 970 | RCU_TRACE_ME(rcupreempt_trace_invoke); |
| 971 | } |
| 972 | } |
| 973 | |
| 974 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) |
| 975 | { |
| 976 | unsigned long flags; |
| 977 | struct rcu_data *rdp; |
| 978 | |
| 979 | head->func = func; |
| 980 | head->next = NULL; |
| 981 | local_irq_save(flags); |
| 982 | rdp = RCU_DATA_ME(); |
| 983 | spin_lock(&rdp->lock); |
| 984 | __rcu_advance_callbacks(rdp); |
| 985 | *rdp->nexttail = head; |
| 986 | rdp->nexttail = &head->next; |
| 987 | RCU_TRACE_RDP(rcupreempt_trace_next_add, rdp); |
| 988 | spin_unlock(&rdp->lock); |
| 989 | local_irq_restore(flags); |
| 990 | } |
| 991 | EXPORT_SYMBOL_GPL(call_rcu); |
| 992 | |
| 993 | /* |
| 994 | * Wait until all currently running preempt_disable() code segments |
| 995 | * (including hardware-irq-disable segments) complete. Note that |
| 996 | * in -rt this does -not- necessarily result in all currently executing |
| 997 | * interrupt -handlers- having completed. |
| 998 | */ |
| 999 | void __synchronize_sched(void) |
| 1000 | { |
| 1001 | cpumask_t oldmask; |
| 1002 | int cpu; |
| 1003 | |
| 1004 | if (sched_getaffinity(0, &oldmask) < 0) |
| 1005 | oldmask = cpu_possible_map; |
| 1006 | for_each_online_cpu(cpu) { |
| 1007 | sched_setaffinity(0, cpumask_of_cpu(cpu)); |
| 1008 | schedule(); |
| 1009 | } |
| 1010 | sched_setaffinity(0, oldmask); |
| 1011 | } |
| 1012 | EXPORT_SYMBOL_GPL(__synchronize_sched); |
| 1013 | |
| 1014 | /* |
| 1015 | * Check to see if any future RCU-related work will need to be done |
| 1016 | * by the current CPU, even if none need be done immediately, returning |
| 1017 | * 1 if so. Assumes that notifiers would take care of handling any |
| 1018 | * outstanding requests from the RCU core. |
| 1019 | * |
| 1020 | * This function is part of the RCU implementation; it is -not- |
| 1021 | * an exported member of the RCU API. |
| 1022 | */ |
| 1023 | int rcu_needs_cpu(int cpu) |
| 1024 | { |
| 1025 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); |
| 1026 | |
| 1027 | return (rdp->donelist != NULL || |
| 1028 | !!rdp->waitlistcount || |
| 1029 | rdp->nextlist != NULL); |
| 1030 | } |
| 1031 | |
| 1032 | int rcu_pending(int cpu) |
| 1033 | { |
| 1034 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); |
| 1035 | |
| 1036 | /* The CPU has at least one callback queued somewhere. */ |
| 1037 | |
| 1038 | if (rdp->donelist != NULL || |
| 1039 | !!rdp->waitlistcount || |
| 1040 | rdp->nextlist != NULL) |
| 1041 | return 1; |
| 1042 | |
| 1043 | /* The RCU core needs an acknowledgement from this CPU. */ |
| 1044 | |
| 1045 | if ((per_cpu(rcu_flip_flag, cpu) == rcu_flipped) || |
| 1046 | (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed)) |
| 1047 | return 1; |
| 1048 | |
| 1049 | /* This CPU has fallen behind the global grace-period number. */ |
| 1050 | |
| 1051 | if (rdp->completed != rcu_ctrlblk.completed) |
| 1052 | return 1; |
| 1053 | |
| 1054 | /* Nothing needed from this CPU. */ |
| 1055 | |
| 1056 | return 0; |
| 1057 | } |
| 1058 | |
Paul E. McKenney | eaf649e9 | 2008-01-25 21:08:25 +0100 | [diff] [blame] | 1059 | static int __cpuinit rcu_cpu_notify(struct notifier_block *self, |
| 1060 | unsigned long action, void *hcpu) |
| 1061 | { |
| 1062 | long cpu = (long)hcpu; |
| 1063 | |
| 1064 | switch (action) { |
| 1065 | case CPU_UP_PREPARE: |
| 1066 | case CPU_UP_PREPARE_FROZEN: |
| 1067 | rcu_online_cpu(cpu); |
| 1068 | break; |
| 1069 | case CPU_UP_CANCELED: |
| 1070 | case CPU_UP_CANCELED_FROZEN: |
| 1071 | case CPU_DEAD: |
| 1072 | case CPU_DEAD_FROZEN: |
| 1073 | rcu_offline_cpu(cpu); |
| 1074 | break; |
| 1075 | default: |
| 1076 | break; |
| 1077 | } |
| 1078 | return NOTIFY_OK; |
| 1079 | } |
| 1080 | |
| 1081 | static struct notifier_block __cpuinitdata rcu_nb = { |
| 1082 | .notifier_call = rcu_cpu_notify, |
| 1083 | }; |
| 1084 | |
Paul E. McKenney | e260be6 | 2008-01-25 21:08:24 +0100 | [diff] [blame] | 1085 | void __init __rcu_init(void) |
| 1086 | { |
| 1087 | int cpu; |
| 1088 | int i; |
| 1089 | struct rcu_data *rdp; |
| 1090 | |
| 1091 | printk(KERN_NOTICE "Preemptible RCU implementation.\n"); |
| 1092 | for_each_possible_cpu(cpu) { |
| 1093 | rdp = RCU_DATA_CPU(cpu); |
| 1094 | spin_lock_init(&rdp->lock); |
| 1095 | rdp->completed = 0; |
| 1096 | rdp->waitlistcount = 0; |
| 1097 | rdp->nextlist = NULL; |
| 1098 | rdp->nexttail = &rdp->nextlist; |
| 1099 | for (i = 0; i < GP_STAGES; i++) { |
| 1100 | rdp->waitlist[i] = NULL; |
| 1101 | rdp->waittail[i] = &rdp->waitlist[i]; |
| 1102 | } |
| 1103 | rdp->donelist = NULL; |
| 1104 | rdp->donetail = &rdp->donelist; |
| 1105 | rdp->rcu_flipctr[0] = 0; |
| 1106 | rdp->rcu_flipctr[1] = 0; |
| 1107 | } |
Paul E. McKenney | eaf649e9 | 2008-01-25 21:08:25 +0100 | [diff] [blame] | 1108 | register_cpu_notifier(&rcu_nb); |
| 1109 | |
| 1110 | /* |
| 1111 | * We don't need protection against CPU-Hotplug here |
| 1112 | * since |
| 1113 | * a) If a CPU comes online while we are iterating over the |
| 1114 | * cpu_online_map below, we would only end up making a |
| 1115 | * duplicate call to rcu_online_cpu() which sets the corresponding |
| 1116 | * CPU's mask in the rcu_cpu_online_map. |
| 1117 | * |
| 1118 | * b) A CPU cannot go offline at this point in time since the user |
| 1119 | * does not have access to the sysfs interface, nor do we |
| 1120 | * suspend the system. |
| 1121 | */ |
| 1122 | for_each_online_cpu(cpu) |
| 1123 | rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long) cpu); |
| 1124 | |
Paul E. McKenney | e260be6 | 2008-01-25 21:08:24 +0100 | [diff] [blame] | 1125 | open_softirq(RCU_SOFTIRQ, rcu_process_callbacks, NULL); |
| 1126 | } |
| 1127 | |
| 1128 | /* |
| 1129 | * Deprecated, use synchronize_rcu() or synchronize_sched() instead. |
| 1130 | */ |
| 1131 | void synchronize_kernel(void) |
| 1132 | { |
| 1133 | synchronize_rcu(); |
| 1134 | } |
| 1135 | |
| 1136 | #ifdef CONFIG_RCU_TRACE |
| 1137 | long *rcupreempt_flipctr(int cpu) |
| 1138 | { |
| 1139 | return &RCU_DATA_CPU(cpu)->rcu_flipctr[0]; |
| 1140 | } |
| 1141 | EXPORT_SYMBOL_GPL(rcupreempt_flipctr); |
| 1142 | |
| 1143 | int rcupreempt_flip_flag(int cpu) |
| 1144 | { |
| 1145 | return per_cpu(rcu_flip_flag, cpu); |
| 1146 | } |
| 1147 | EXPORT_SYMBOL_GPL(rcupreempt_flip_flag); |
| 1148 | |
| 1149 | int rcupreempt_mb_flag(int cpu) |
| 1150 | { |
| 1151 | return per_cpu(rcu_mb_flag, cpu); |
| 1152 | } |
| 1153 | EXPORT_SYMBOL_GPL(rcupreempt_mb_flag); |
| 1154 | |
| 1155 | char *rcupreempt_try_flip_state_name(void) |
| 1156 | { |
| 1157 | return rcu_try_flip_state_names[rcu_ctrlblk.rcu_try_flip_state]; |
| 1158 | } |
| 1159 | EXPORT_SYMBOL_GPL(rcupreempt_try_flip_state_name); |
| 1160 | |
| 1161 | struct rcupreempt_trace *rcupreempt_trace_cpu(int cpu) |
| 1162 | { |
| 1163 | struct rcu_data *rdp = RCU_DATA_CPU(cpu); |
| 1164 | |
| 1165 | return &rdp->trace; |
| 1166 | } |
| 1167 | EXPORT_SYMBOL_GPL(rcupreempt_trace_cpu); |
| 1168 | |
| 1169 | #endif /* #ifdef RCU_TRACE */ |