blob: 79dd929f4084395ff82dd6fa8f8065dcc111b16f [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004 Silicon Graphics, Inc.
8 *
9 * Portions derived from Patrick Mochel's sysfs code.
10 * sysfs is Copyright (c) 2001-3 Patrick Mochel
11 * Portions Copyright (c) 2004 Silicon Graphics, Inc.
12 *
13 * 2003-10-10 Written by Simon Derr <simon.derr@bull.net>
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson <pj@sgi.com>
16 *
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file COPYING in the main directory of the Linux
19 * distribution for more details.
20 */
21
22#include <linux/config.h>
23#include <linux/cpu.h>
24#include <linux/cpumask.h>
25#include <linux/cpuset.h>
26#include <linux/err.h>
27#include <linux/errno.h>
28#include <linux/file.h>
29#include <linux/fs.h>
30#include <linux/init.h>
31#include <linux/interrupt.h>
32#include <linux/kernel.h>
33#include <linux/kmod.h>
34#include <linux/list.h>
35#include <linux/mm.h>
36#include <linux/module.h>
37#include <linux/mount.h>
38#include <linux/namei.h>
39#include <linux/pagemap.h>
40#include <linux/proc_fs.h>
41#include <linux/sched.h>
42#include <linux/seq_file.h>
43#include <linux/slab.h>
44#include <linux/smp_lock.h>
45#include <linux/spinlock.h>
46#include <linux/stat.h>
47#include <linux/string.h>
48#include <linux/time.h>
49#include <linux/backing-dev.h>
50#include <linux/sort.h>
51
52#include <asm/uaccess.h>
53#include <asm/atomic.h>
54#include <asm/semaphore.h>
55
56#define CPUSET_SUPER_MAGIC 0x27e0eb
57
58struct cpuset {
59 unsigned long flags; /* "unsigned long" so bitops work */
60 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
61 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
62
63 atomic_t count; /* count tasks using this cpuset */
64
65 /*
66 * We link our 'sibling' struct into our parents 'children'.
67 * Our children link their 'sibling' into our 'children'.
68 */
69 struct list_head sibling; /* my parents children */
70 struct list_head children; /* my children */
71
72 struct cpuset *parent; /* my parent */
73 struct dentry *dentry; /* cpuset fs entry */
74
75 /*
76 * Copy of global cpuset_mems_generation as of the most
77 * recent time this cpuset changed its mems_allowed.
78 */
79 int mems_generation;
80};
81
82/* bits in struct cpuset flags field */
83typedef enum {
84 CS_CPU_EXCLUSIVE,
85 CS_MEM_EXCLUSIVE,
86 CS_REMOVED,
87 CS_NOTIFY_ON_RELEASE
88} cpuset_flagbits_t;
89
90/* convenient tests for these bits */
91static inline int is_cpu_exclusive(const struct cpuset *cs)
92{
93 return !!test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
94}
95
96static inline int is_mem_exclusive(const struct cpuset *cs)
97{
98 return !!test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
99}
100
101static inline int is_removed(const struct cpuset *cs)
102{
103 return !!test_bit(CS_REMOVED, &cs->flags);
104}
105
106static inline int notify_on_release(const struct cpuset *cs)
107{
108 return !!test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
109}
110
111/*
112 * Increment this atomic integer everytime any cpuset changes its
113 * mems_allowed value. Users of cpusets can track this generation
114 * number, and avoid having to lock and reload mems_allowed unless
115 * the cpuset they're using changes generation.
116 *
117 * A single, global generation is needed because attach_task() could
118 * reattach a task to a different cpuset, which must not have its
119 * generation numbers aliased with those of that tasks previous cpuset.
120 *
121 * Generations are needed for mems_allowed because one task cannot
122 * modify anothers memory placement. So we must enable every task,
123 * on every visit to __alloc_pages(), to efficiently check whether
124 * its current->cpuset->mems_allowed has changed, requiring an update
125 * of its current->mems_allowed.
126 */
127static atomic_t cpuset_mems_generation = ATOMIC_INIT(1);
128
129static struct cpuset top_cpuset = {
130 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
131 .cpus_allowed = CPU_MASK_ALL,
132 .mems_allowed = NODE_MASK_ALL,
133 .count = ATOMIC_INIT(0),
134 .sibling = LIST_HEAD_INIT(top_cpuset.sibling),
135 .children = LIST_HEAD_INIT(top_cpuset.children),
136 .parent = NULL,
137 .dentry = NULL,
138 .mems_generation = 0,
139};
140
141static struct vfsmount *cpuset_mount;
142static struct super_block *cpuset_sb = NULL;
143
144/*
145 * cpuset_sem should be held by anyone who is depending on the children
146 * or sibling lists of any cpuset, or performing non-atomic operations
147 * on the flags or *_allowed values of a cpuset, such as raising the
148 * CS_REMOVED flag bit iff it is not already raised, or reading and
149 * conditionally modifying the *_allowed values. One kernel global
150 * cpuset semaphore should be sufficient - these things don't change
151 * that much.
152 *
153 * The code that modifies cpusets holds cpuset_sem across the entire
154 * operation, from cpuset_common_file_write() down, single threading
155 * all cpuset modifications (except for counter manipulations from
156 * fork and exit) across the system. This presumes that cpuset
157 * modifications are rare - better kept simple and safe, even if slow.
158 *
159 * The code that reads cpusets, such as in cpuset_common_file_read()
160 * and below, only holds cpuset_sem across small pieces of code, such
161 * as when reading out possibly multi-word cpumasks and nodemasks, as
162 * the risks are less, and the desire for performance a little greater.
163 * The proc_cpuset_show() routine needs to hold cpuset_sem to insure
164 * that no cs->dentry is NULL, as it walks up the cpuset tree to root.
165 *
166 * The hooks from fork and exit, cpuset_fork() and cpuset_exit(), don't
167 * (usually) grab cpuset_sem. These are the two most performance
168 * critical pieces of code here. The exception occurs on exit(),
Paul Jackson2efe86b2005-05-27 02:02:43 -0700169 * when a task in a notify_on_release cpuset exits. Then cpuset_sem
170 * is taken, and if the cpuset count is zero, a usermode call made
Linus Torvalds1da177e2005-04-16 15:20:36 -0700171 * to /sbin/cpuset_release_agent with the name of the cpuset (path
172 * relative to the root of cpuset file system) as the argument.
173 *
174 * A cpuset can only be deleted if both its 'count' of using tasks is
175 * zero, and its list of 'children' cpusets is empty. Since all tasks
176 * in the system use _some_ cpuset, and since there is always at least
177 * one task in the system (init, pid == 1), therefore, top_cpuset
178 * always has either children cpusets and/or using tasks. So no need
179 * for any special hack to ensure that top_cpuset cannot be deleted.
180 */
181
182static DECLARE_MUTEX(cpuset_sem);
183
184/*
185 * A couple of forward declarations required, due to cyclic reference loop:
186 * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
187 * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
188 */
189
190static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
191static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
192
193static struct backing_dev_info cpuset_backing_dev_info = {
194 .ra_pages = 0, /* No readahead */
195 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
196};
197
198static struct inode *cpuset_new_inode(mode_t mode)
199{
200 struct inode *inode = new_inode(cpuset_sb);
201
202 if (inode) {
203 inode->i_mode = mode;
204 inode->i_uid = current->fsuid;
205 inode->i_gid = current->fsgid;
206 inode->i_blksize = PAGE_CACHE_SIZE;
207 inode->i_blocks = 0;
208 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
209 inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
210 }
211 return inode;
212}
213
214static void cpuset_diput(struct dentry *dentry, struct inode *inode)
215{
216 /* is dentry a directory ? if so, kfree() associated cpuset */
217 if (S_ISDIR(inode->i_mode)) {
218 struct cpuset *cs = dentry->d_fsdata;
219 BUG_ON(!(is_removed(cs)));
220 kfree(cs);
221 }
222 iput(inode);
223}
224
225static struct dentry_operations cpuset_dops = {
226 .d_iput = cpuset_diput,
227};
228
229static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
230{
Christoph Hellwig5f45f1a2005-06-23 00:09:12 -0700231 struct dentry *d = lookup_one_len(name, parent, strlen(name));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700232 if (!IS_ERR(d))
233 d->d_op = &cpuset_dops;
234 return d;
235}
236
237static void remove_dir(struct dentry *d)
238{
239 struct dentry *parent = dget(d->d_parent);
240
241 d_delete(d);
242 simple_rmdir(parent->d_inode, d);
243 dput(parent);
244}
245
246/*
247 * NOTE : the dentry must have been dget()'ed
248 */
249static void cpuset_d_remove_dir(struct dentry *dentry)
250{
251 struct list_head *node;
252
253 spin_lock(&dcache_lock);
254 node = dentry->d_subdirs.next;
255 while (node != &dentry->d_subdirs) {
256 struct dentry *d = list_entry(node, struct dentry, d_child);
257 list_del_init(node);
258 if (d->d_inode) {
259 d = dget_locked(d);
260 spin_unlock(&dcache_lock);
261 d_delete(d);
262 simple_unlink(dentry->d_inode, d);
263 dput(d);
264 spin_lock(&dcache_lock);
265 }
266 node = dentry->d_subdirs.next;
267 }
268 list_del_init(&dentry->d_child);
269 spin_unlock(&dcache_lock);
270 remove_dir(dentry);
271}
272
273static struct super_operations cpuset_ops = {
274 .statfs = simple_statfs,
275 .drop_inode = generic_delete_inode,
276};
277
278static int cpuset_fill_super(struct super_block *sb, void *unused_data,
279 int unused_silent)
280{
281 struct inode *inode;
282 struct dentry *root;
283
284 sb->s_blocksize = PAGE_CACHE_SIZE;
285 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
286 sb->s_magic = CPUSET_SUPER_MAGIC;
287 sb->s_op = &cpuset_ops;
288 cpuset_sb = sb;
289
290 inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
291 if (inode) {
292 inode->i_op = &simple_dir_inode_operations;
293 inode->i_fop = &simple_dir_operations;
294 /* directories start off with i_nlink == 2 (for "." entry) */
295 inode->i_nlink++;
296 } else {
297 return -ENOMEM;
298 }
299
300 root = d_alloc_root(inode);
301 if (!root) {
302 iput(inode);
303 return -ENOMEM;
304 }
305 sb->s_root = root;
306 return 0;
307}
308
309static struct super_block *cpuset_get_sb(struct file_system_type *fs_type,
310 int flags, const char *unused_dev_name,
311 void *data)
312{
313 return get_sb_single(fs_type, flags, data, cpuset_fill_super);
314}
315
316static struct file_system_type cpuset_fs_type = {
317 .name = "cpuset",
318 .get_sb = cpuset_get_sb,
319 .kill_sb = kill_litter_super,
320};
321
322/* struct cftype:
323 *
324 * The files in the cpuset filesystem mostly have a very simple read/write
325 * handling, some common function will take care of it. Nevertheless some cases
326 * (read tasks) are special and therefore I define this structure for every
327 * kind of file.
328 *
329 *
330 * When reading/writing to a file:
331 * - the cpuset to use in file->f_dentry->d_parent->d_fsdata
332 * - the 'cftype' of the file is file->f_dentry->d_fsdata
333 */
334
335struct cftype {
336 char *name;
337 int private;
338 int (*open) (struct inode *inode, struct file *file);
339 ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
340 loff_t *ppos);
341 int (*write) (struct file *file, const char __user *buf, size_t nbytes,
342 loff_t *ppos);
343 int (*release) (struct inode *inode, struct file *file);
344};
345
346static inline struct cpuset *__d_cs(struct dentry *dentry)
347{
348 return dentry->d_fsdata;
349}
350
351static inline struct cftype *__d_cft(struct dentry *dentry)
352{
353 return dentry->d_fsdata;
354}
355
356/*
357 * Call with cpuset_sem held. Writes path of cpuset into buf.
358 * Returns 0 on success, -errno on error.
359 */
360
361static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
362{
363 char *start;
364
365 start = buf + buflen;
366
367 *--start = '\0';
368 for (;;) {
369 int len = cs->dentry->d_name.len;
370 if ((start -= len) < buf)
371 return -ENAMETOOLONG;
372 memcpy(start, cs->dentry->d_name.name, len);
373 cs = cs->parent;
374 if (!cs)
375 break;
376 if (!cs->parent)
377 continue;
378 if (--start < buf)
379 return -ENAMETOOLONG;
380 *start = '/';
381 }
382 memmove(buf, start, buf + buflen - start);
383 return 0;
384}
385
386/*
387 * Notify userspace when a cpuset is released, by running
388 * /sbin/cpuset_release_agent with the name of the cpuset (path
389 * relative to the root of cpuset file system) as the argument.
390 *
391 * Most likely, this user command will try to rmdir this cpuset.
392 *
393 * This races with the possibility that some other task will be
394 * attached to this cpuset before it is removed, or that some other
395 * user task will 'mkdir' a child cpuset of this cpuset. That's ok.
396 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
397 * unused, and this cpuset will be reprieved from its death sentence,
398 * to continue to serve a useful existence. Next time it's released,
399 * we will get notified again, if it still has 'notify_on_release' set.
400 *
401 * Note final arg to call_usermodehelper() is 0 - that means
402 * don't wait. Since we are holding the global cpuset_sem here,
403 * and we are asking another thread (started from keventd) to rmdir a
404 * cpuset, we can't wait - or we'd deadlock with the removing thread
405 * on cpuset_sem.
406 */
407
408static int cpuset_release_agent(char *cpuset_str)
409{
410 char *argv[3], *envp[3];
411 int i;
412
413 i = 0;
414 argv[i++] = "/sbin/cpuset_release_agent";
415 argv[i++] = cpuset_str;
416 argv[i] = NULL;
417
418 i = 0;
419 /* minimal command environment */
420 envp[i++] = "HOME=/";
421 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
422 envp[i] = NULL;
423
424 return call_usermodehelper(argv[0], argv, envp, 0);
425}
426
427/*
428 * Either cs->count of using tasks transitioned to zero, or the
429 * cs->children list of child cpusets just became empty. If this
430 * cs is notify_on_release() and now both the user count is zero and
431 * the list of children is empty, send notice to user land.
432 */
433
434static void check_for_release(struct cpuset *cs)
435{
436 if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
437 list_empty(&cs->children)) {
438 char *buf;
439
440 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
441 if (!buf)
442 return;
443 if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
444 goto out;
445 cpuset_release_agent(buf);
446out:
447 kfree(buf);
448 }
449}
450
451/*
452 * Return in *pmask the portion of a cpusets's cpus_allowed that
453 * are online. If none are online, walk up the cpuset hierarchy
454 * until we find one that does have some online cpus. If we get
455 * all the way to the top and still haven't found any online cpus,
456 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
457 * task, return cpu_online_map.
458 *
459 * One way or another, we guarantee to return some non-empty subset
460 * of cpu_online_map.
461 *
462 * Call with cpuset_sem held.
463 */
464
465static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
466{
467 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
468 cs = cs->parent;
469 if (cs)
470 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
471 else
472 *pmask = cpu_online_map;
473 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
474}
475
476/*
477 * Return in *pmask the portion of a cpusets's mems_allowed that
478 * are online. If none are online, walk up the cpuset hierarchy
479 * until we find one that does have some online mems. If we get
480 * all the way to the top and still haven't found any online mems,
481 * return node_online_map.
482 *
483 * One way or another, we guarantee to return some non-empty subset
484 * of node_online_map.
485 *
486 * Call with cpuset_sem held.
487 */
488
489static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
490{
491 while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
492 cs = cs->parent;
493 if (cs)
494 nodes_and(*pmask, cs->mems_allowed, node_online_map);
495 else
496 *pmask = node_online_map;
497 BUG_ON(!nodes_intersects(*pmask, node_online_map));
498}
499
500/*
501 * Refresh current tasks mems_allowed and mems_generation from
502 * current tasks cpuset. Call with cpuset_sem held.
503 *
504 * Be sure to call refresh_mems() on any cpuset operation which
505 * (1) holds cpuset_sem, and (2) might possibly alloc memory.
506 * Call after obtaining cpuset_sem lock, before any possible
507 * allocation. Otherwise one risks trying to allocate memory
508 * while the task cpuset_mems_generation is not the same as
509 * the mems_generation in its cpuset, which would deadlock on
510 * cpuset_sem in cpuset_update_current_mems_allowed().
511 *
512 * Since we hold cpuset_sem, once refresh_mems() is called, the
513 * test (current->cpuset_mems_generation != cs->mems_generation)
514 * in cpuset_update_current_mems_allowed() will remain false,
515 * until we drop cpuset_sem. Anyone else who would change our
516 * cpusets mems_generation needs to lock cpuset_sem first.
517 */
518
519static void refresh_mems(void)
520{
521 struct cpuset *cs = current->cpuset;
522
523 if (current->cpuset_mems_generation != cs->mems_generation) {
524 guarantee_online_mems(cs, &current->mems_allowed);
525 current->cpuset_mems_generation = cs->mems_generation;
526 }
527}
528
529/*
530 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
531 *
532 * One cpuset is a subset of another if all its allowed CPUs and
533 * Memory Nodes are a subset of the other, and its exclusive flags
534 * are only set if the other's are set.
535 */
536
537static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
538{
539 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
540 nodes_subset(p->mems_allowed, q->mems_allowed) &&
541 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
542 is_mem_exclusive(p) <= is_mem_exclusive(q);
543}
544
545/*
546 * validate_change() - Used to validate that any proposed cpuset change
547 * follows the structural rules for cpusets.
548 *
549 * If we replaced the flag and mask values of the current cpuset
550 * (cur) with those values in the trial cpuset (trial), would
551 * our various subset and exclusive rules still be valid? Presumes
552 * cpuset_sem held.
553 *
554 * 'cur' is the address of an actual, in-use cpuset. Operations
555 * such as list traversal that depend on the actual address of the
556 * cpuset in the list must use cur below, not trial.
557 *
558 * 'trial' is the address of bulk structure copy of cur, with
559 * perhaps one or more of the fields cpus_allowed, mems_allowed,
560 * or flags changed to new, trial values.
561 *
562 * Return 0 if valid, -errno if not.
563 */
564
565static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
566{
567 struct cpuset *c, *par;
568
569 /* Each of our child cpusets must be a subset of us */
570 list_for_each_entry(c, &cur->children, sibling) {
571 if (!is_cpuset_subset(c, trial))
572 return -EBUSY;
573 }
574
575 /* Remaining checks don't apply to root cpuset */
576 if ((par = cur->parent) == NULL)
577 return 0;
578
579 /* We must be a subset of our parent cpuset */
580 if (!is_cpuset_subset(trial, par))
581 return -EACCES;
582
583 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
584 list_for_each_entry(c, &par->children, sibling) {
585 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
586 c != cur &&
587 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
588 return -EINVAL;
589 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
590 c != cur &&
591 nodes_intersects(trial->mems_allowed, c->mems_allowed))
592 return -EINVAL;
593 }
594
595 return 0;
596}
597
598static int update_cpumask(struct cpuset *cs, char *buf)
599{
600 struct cpuset trialcs;
601 int retval;
602
603 trialcs = *cs;
604 retval = cpulist_parse(buf, trialcs.cpus_allowed);
605 if (retval < 0)
606 return retval;
607 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
608 if (cpus_empty(trialcs.cpus_allowed))
609 return -ENOSPC;
610 retval = validate_change(cs, &trialcs);
611 if (retval == 0)
612 cs->cpus_allowed = trialcs.cpus_allowed;
613 return retval;
614}
615
616static int update_nodemask(struct cpuset *cs, char *buf)
617{
618 struct cpuset trialcs;
619 int retval;
620
621 trialcs = *cs;
622 retval = nodelist_parse(buf, trialcs.mems_allowed);
623 if (retval < 0)
624 return retval;
625 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
626 if (nodes_empty(trialcs.mems_allowed))
627 return -ENOSPC;
628 retval = validate_change(cs, &trialcs);
629 if (retval == 0) {
630 cs->mems_allowed = trialcs.mems_allowed;
631 atomic_inc(&cpuset_mems_generation);
632 cs->mems_generation = atomic_read(&cpuset_mems_generation);
633 }
634 return retval;
635}
636
637/*
638 * update_flag - read a 0 or a 1 in a file and update associated flag
639 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
640 * CS_NOTIFY_ON_RELEASE)
641 * cs: the cpuset to update
642 * buf: the buffer where we read the 0 or 1
643 */
644
645static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
646{
647 int turning_on;
648 struct cpuset trialcs;
649 int err;
650
651 turning_on = (simple_strtoul(buf, NULL, 10) != 0);
652
653 trialcs = *cs;
654 if (turning_on)
655 set_bit(bit, &trialcs.flags);
656 else
657 clear_bit(bit, &trialcs.flags);
658
659 err = validate_change(cs, &trialcs);
660 if (err == 0) {
661 if (turning_on)
662 set_bit(bit, &cs->flags);
663 else
664 clear_bit(bit, &cs->flags);
665 }
666 return err;
667}
668
669static int attach_task(struct cpuset *cs, char *buf)
670{
671 pid_t pid;
672 struct task_struct *tsk;
673 struct cpuset *oldcs;
674 cpumask_t cpus;
675
676 if (sscanf(buf, "%d", &pid) != 1)
677 return -EIO;
678 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
679 return -ENOSPC;
680
681 if (pid) {
682 read_lock(&tasklist_lock);
683
684 tsk = find_task_by_pid(pid);
685 if (!tsk) {
686 read_unlock(&tasklist_lock);
687 return -ESRCH;
688 }
689
690 get_task_struct(tsk);
691 read_unlock(&tasklist_lock);
692
693 if ((current->euid) && (current->euid != tsk->uid)
694 && (current->euid != tsk->suid)) {
695 put_task_struct(tsk);
696 return -EACCES;
697 }
698 } else {
699 tsk = current;
700 get_task_struct(tsk);
701 }
702
703 task_lock(tsk);
704 oldcs = tsk->cpuset;
705 if (!oldcs) {
706 task_unlock(tsk);
707 put_task_struct(tsk);
708 return -ESRCH;
709 }
710 atomic_inc(&cs->count);
711 tsk->cpuset = cs;
712 task_unlock(tsk);
713
714 guarantee_online_cpus(cs, &cpus);
715 set_cpus_allowed(tsk, cpus);
716
717 put_task_struct(tsk);
718 if (atomic_dec_and_test(&oldcs->count))
719 check_for_release(oldcs);
720 return 0;
721}
722
723/* The various types of files and directories in a cpuset file system */
724
725typedef enum {
726 FILE_ROOT,
727 FILE_DIR,
728 FILE_CPULIST,
729 FILE_MEMLIST,
730 FILE_CPU_EXCLUSIVE,
731 FILE_MEM_EXCLUSIVE,
732 FILE_NOTIFY_ON_RELEASE,
733 FILE_TASKLIST,
734} cpuset_filetype_t;
735
736static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf,
737 size_t nbytes, loff_t *unused_ppos)
738{
739 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
740 struct cftype *cft = __d_cft(file->f_dentry);
741 cpuset_filetype_t type = cft->private;
742 char *buffer;
743 int retval = 0;
744
745 /* Crude upper limit on largest legitimate cpulist user might write. */
746 if (nbytes > 100 + 6 * NR_CPUS)
747 return -E2BIG;
748
749 /* +1 for nul-terminator */
750 if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
751 return -ENOMEM;
752
753 if (copy_from_user(buffer, userbuf, nbytes)) {
754 retval = -EFAULT;
755 goto out1;
756 }
757 buffer[nbytes] = 0; /* nul-terminate */
758
759 down(&cpuset_sem);
760
761 if (is_removed(cs)) {
762 retval = -ENODEV;
763 goto out2;
764 }
765
766 switch (type) {
767 case FILE_CPULIST:
768 retval = update_cpumask(cs, buffer);
769 break;
770 case FILE_MEMLIST:
771 retval = update_nodemask(cs, buffer);
772 break;
773 case FILE_CPU_EXCLUSIVE:
774 retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
775 break;
776 case FILE_MEM_EXCLUSIVE:
777 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
778 break;
779 case FILE_NOTIFY_ON_RELEASE:
780 retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
781 break;
782 case FILE_TASKLIST:
783 retval = attach_task(cs, buffer);
784 break;
785 default:
786 retval = -EINVAL;
787 goto out2;
788 }
789
790 if (retval == 0)
791 retval = nbytes;
792out2:
793 up(&cpuset_sem);
794out1:
795 kfree(buffer);
796 return retval;
797}
798
799static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
800 size_t nbytes, loff_t *ppos)
801{
802 ssize_t retval = 0;
803 struct cftype *cft = __d_cft(file->f_dentry);
804 if (!cft)
805 return -ENODEV;
806
807 /* special function ? */
808 if (cft->write)
809 retval = cft->write(file, buf, nbytes, ppos);
810 else
811 retval = cpuset_common_file_write(file, buf, nbytes, ppos);
812
813 return retval;
814}
815
816/*
817 * These ascii lists should be read in a single call, by using a user
818 * buffer large enough to hold the entire map. If read in smaller
819 * chunks, there is no guarantee of atomicity. Since the display format
820 * used, list of ranges of sequential numbers, is variable length,
821 * and since these maps can change value dynamically, one could read
822 * gibberish by doing partial reads while a list was changing.
823 * A single large read to a buffer that crosses a page boundary is
824 * ok, because the result being copied to user land is not recomputed
825 * across a page fault.
826 */
827
828static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
829{
830 cpumask_t mask;
831
832 down(&cpuset_sem);
833 mask = cs->cpus_allowed;
834 up(&cpuset_sem);
835
836 return cpulist_scnprintf(page, PAGE_SIZE, mask);
837}
838
839static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
840{
841 nodemask_t mask;
842
843 down(&cpuset_sem);
844 mask = cs->mems_allowed;
845 up(&cpuset_sem);
846
847 return nodelist_scnprintf(page, PAGE_SIZE, mask);
848}
849
850static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
851 size_t nbytes, loff_t *ppos)
852{
853 struct cftype *cft = __d_cft(file->f_dentry);
854 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
855 cpuset_filetype_t type = cft->private;
856 char *page;
857 ssize_t retval = 0;
858 char *s;
859 char *start;
860 size_t n;
861
862 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
863 return -ENOMEM;
864
865 s = page;
866
867 switch (type) {
868 case FILE_CPULIST:
869 s += cpuset_sprintf_cpulist(s, cs);
870 break;
871 case FILE_MEMLIST:
872 s += cpuset_sprintf_memlist(s, cs);
873 break;
874 case FILE_CPU_EXCLUSIVE:
875 *s++ = is_cpu_exclusive(cs) ? '1' : '0';
876 break;
877 case FILE_MEM_EXCLUSIVE:
878 *s++ = is_mem_exclusive(cs) ? '1' : '0';
879 break;
880 case FILE_NOTIFY_ON_RELEASE:
881 *s++ = notify_on_release(cs) ? '1' : '0';
882 break;
883 default:
884 retval = -EINVAL;
885 goto out;
886 }
887 *s++ = '\n';
888 *s = '\0';
889
890 start = page + *ppos;
891 n = s - start;
892 retval = n - copy_to_user(buf, start, min(n, nbytes));
893 *ppos += retval;
894out:
895 free_page((unsigned long)page);
896 return retval;
897}
898
899static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
900 loff_t *ppos)
901{
902 ssize_t retval = 0;
903 struct cftype *cft = __d_cft(file->f_dentry);
904 if (!cft)
905 return -ENODEV;
906
907 /* special function ? */
908 if (cft->read)
909 retval = cft->read(file, buf, nbytes, ppos);
910 else
911 retval = cpuset_common_file_read(file, buf, nbytes, ppos);
912
913 return retval;
914}
915
916static int cpuset_file_open(struct inode *inode, struct file *file)
917{
918 int err;
919 struct cftype *cft;
920
921 err = generic_file_open(inode, file);
922 if (err)
923 return err;
924
925 cft = __d_cft(file->f_dentry);
926 if (!cft)
927 return -ENODEV;
928 if (cft->open)
929 err = cft->open(inode, file);
930 else
931 err = 0;
932
933 return err;
934}
935
936static int cpuset_file_release(struct inode *inode, struct file *file)
937{
938 struct cftype *cft = __d_cft(file->f_dentry);
939 if (cft->release)
940 return cft->release(inode, file);
941 return 0;
942}
943
944static struct file_operations cpuset_file_operations = {
945 .read = cpuset_file_read,
946 .write = cpuset_file_write,
947 .llseek = generic_file_llseek,
948 .open = cpuset_file_open,
949 .release = cpuset_file_release,
950};
951
952static struct inode_operations cpuset_dir_inode_operations = {
953 .lookup = simple_lookup,
954 .mkdir = cpuset_mkdir,
955 .rmdir = cpuset_rmdir,
956};
957
958static int cpuset_create_file(struct dentry *dentry, int mode)
959{
960 struct inode *inode;
961
962 if (!dentry)
963 return -ENOENT;
964 if (dentry->d_inode)
965 return -EEXIST;
966
967 inode = cpuset_new_inode(mode);
968 if (!inode)
969 return -ENOMEM;
970
971 if (S_ISDIR(mode)) {
972 inode->i_op = &cpuset_dir_inode_operations;
973 inode->i_fop = &simple_dir_operations;
974
975 /* start off with i_nlink == 2 (for "." entry) */
976 inode->i_nlink++;
977 } else if (S_ISREG(mode)) {
978 inode->i_size = 0;
979 inode->i_fop = &cpuset_file_operations;
980 }
981
982 d_instantiate(dentry, inode);
983 dget(dentry); /* Extra count - pin the dentry in core */
984 return 0;
985}
986
987/*
988 * cpuset_create_dir - create a directory for an object.
989 * cs: the cpuset we create the directory for.
990 * It must have a valid ->parent field
991 * And we are going to fill its ->dentry field.
992 * name: The name to give to the cpuset directory. Will be copied.
993 * mode: mode to set on new directory.
994 */
995
996static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
997{
998 struct dentry *dentry = NULL;
999 struct dentry *parent;
1000 int error = 0;
1001
1002 parent = cs->parent->dentry;
1003 dentry = cpuset_get_dentry(parent, name);
1004 if (IS_ERR(dentry))
1005 return PTR_ERR(dentry);
1006 error = cpuset_create_file(dentry, S_IFDIR | mode);
1007 if (!error) {
1008 dentry->d_fsdata = cs;
1009 parent->d_inode->i_nlink++;
1010 cs->dentry = dentry;
1011 }
1012 dput(dentry);
1013
1014 return error;
1015}
1016
1017static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
1018{
1019 struct dentry *dentry;
1020 int error;
1021
1022 down(&dir->d_inode->i_sem);
1023 dentry = cpuset_get_dentry(dir, cft->name);
1024 if (!IS_ERR(dentry)) {
1025 error = cpuset_create_file(dentry, 0644 | S_IFREG);
1026 if (!error)
1027 dentry->d_fsdata = (void *)cft;
1028 dput(dentry);
1029 } else
1030 error = PTR_ERR(dentry);
1031 up(&dir->d_inode->i_sem);
1032 return error;
1033}
1034
1035/*
1036 * Stuff for reading the 'tasks' file.
1037 *
1038 * Reading this file can return large amounts of data if a cpuset has
1039 * *lots* of attached tasks. So it may need several calls to read(),
1040 * but we cannot guarantee that the information we produce is correct
1041 * unless we produce it entirely atomically.
1042 *
1043 * Upon tasks file open(), a struct ctr_struct is allocated, that
1044 * will have a pointer to an array (also allocated here). The struct
1045 * ctr_struct * is stored in file->private_data. Its resources will
1046 * be freed by release() when the file is closed. The array is used
1047 * to sprintf the PIDs and then used by read().
1048 */
1049
1050/* cpusets_tasks_read array */
1051
1052struct ctr_struct {
1053 char *buf;
1054 int bufsz;
1055};
1056
1057/*
1058 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
1059 * Return actual number of pids loaded.
1060 */
1061static inline int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
1062{
1063 int n = 0;
1064 struct task_struct *g, *p;
1065
1066 read_lock(&tasklist_lock);
1067
1068 do_each_thread(g, p) {
1069 if (p->cpuset == cs) {
1070 pidarray[n++] = p->pid;
1071 if (unlikely(n == npids))
1072 goto array_full;
1073 }
1074 } while_each_thread(g, p);
1075
1076array_full:
1077 read_unlock(&tasklist_lock);
1078 return n;
1079}
1080
1081static int cmppid(const void *a, const void *b)
1082{
1083 return *(pid_t *)a - *(pid_t *)b;
1084}
1085
1086/*
1087 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1088 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1089 * count 'cnt' of how many chars would be written if buf were large enough.
1090 */
1091static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1092{
1093 int cnt = 0;
1094 int i;
1095
1096 for (i = 0; i < npids; i++)
1097 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1098 return cnt;
1099}
1100
1101static int cpuset_tasks_open(struct inode *unused, struct file *file)
1102{
1103 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1104 struct ctr_struct *ctr;
1105 pid_t *pidarray;
1106 int npids;
1107 char c;
1108
1109 if (!(file->f_mode & FMODE_READ))
1110 return 0;
1111
1112 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1113 if (!ctr)
1114 goto err0;
1115
1116 /*
1117 * If cpuset gets more users after we read count, we won't have
1118 * enough space - tough. This race is indistinguishable to the
1119 * caller from the case that the additional cpuset users didn't
1120 * show up until sometime later on.
1121 */
1122 npids = atomic_read(&cs->count);
1123 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1124 if (!pidarray)
1125 goto err1;
1126
1127 npids = pid_array_load(pidarray, npids, cs);
1128 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1129
1130 /* Call pid_array_to_buf() twice, first just to get bufsz */
1131 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1132 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1133 if (!ctr->buf)
1134 goto err2;
1135 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1136
1137 kfree(pidarray);
1138 file->private_data = ctr;
1139 return 0;
1140
1141err2:
1142 kfree(pidarray);
1143err1:
1144 kfree(ctr);
1145err0:
1146 return -ENOMEM;
1147}
1148
1149static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
1150 size_t nbytes, loff_t *ppos)
1151{
1152 struct ctr_struct *ctr = file->private_data;
1153
1154 if (*ppos + nbytes > ctr->bufsz)
1155 nbytes = ctr->bufsz - *ppos;
1156 if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
1157 return -EFAULT;
1158 *ppos += nbytes;
1159 return nbytes;
1160}
1161
1162static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
1163{
1164 struct ctr_struct *ctr;
1165
1166 if (file->f_mode & FMODE_READ) {
1167 ctr = file->private_data;
1168 kfree(ctr->buf);
1169 kfree(ctr);
1170 }
1171 return 0;
1172}
1173
1174/*
1175 * for the common functions, 'private' gives the type of file
1176 */
1177
1178static struct cftype cft_tasks = {
1179 .name = "tasks",
1180 .open = cpuset_tasks_open,
1181 .read = cpuset_tasks_read,
1182 .release = cpuset_tasks_release,
1183 .private = FILE_TASKLIST,
1184};
1185
1186static struct cftype cft_cpus = {
1187 .name = "cpus",
1188 .private = FILE_CPULIST,
1189};
1190
1191static struct cftype cft_mems = {
1192 .name = "mems",
1193 .private = FILE_MEMLIST,
1194};
1195
1196static struct cftype cft_cpu_exclusive = {
1197 .name = "cpu_exclusive",
1198 .private = FILE_CPU_EXCLUSIVE,
1199};
1200
1201static struct cftype cft_mem_exclusive = {
1202 .name = "mem_exclusive",
1203 .private = FILE_MEM_EXCLUSIVE,
1204};
1205
1206static struct cftype cft_notify_on_release = {
1207 .name = "notify_on_release",
1208 .private = FILE_NOTIFY_ON_RELEASE,
1209};
1210
1211static int cpuset_populate_dir(struct dentry *cs_dentry)
1212{
1213 int err;
1214
1215 if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
1216 return err;
1217 if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
1218 return err;
1219 if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
1220 return err;
1221 if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
1222 return err;
1223 if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
1224 return err;
1225 if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
1226 return err;
1227 return 0;
1228}
1229
1230/*
1231 * cpuset_create - create a cpuset
1232 * parent: cpuset that will be parent of the new cpuset.
1233 * name: name of the new cpuset. Will be strcpy'ed.
1234 * mode: mode to set on new inode
1235 *
1236 * Must be called with the semaphore on the parent inode held
1237 */
1238
1239static long cpuset_create(struct cpuset *parent, const char *name, int mode)
1240{
1241 struct cpuset *cs;
1242 int err;
1243
1244 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1245 if (!cs)
1246 return -ENOMEM;
1247
1248 down(&cpuset_sem);
1249 refresh_mems();
1250 cs->flags = 0;
1251 if (notify_on_release(parent))
1252 set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
1253 cs->cpus_allowed = CPU_MASK_NONE;
1254 cs->mems_allowed = NODE_MASK_NONE;
1255 atomic_set(&cs->count, 0);
1256 INIT_LIST_HEAD(&cs->sibling);
1257 INIT_LIST_HEAD(&cs->children);
1258 atomic_inc(&cpuset_mems_generation);
1259 cs->mems_generation = atomic_read(&cpuset_mems_generation);
1260
1261 cs->parent = parent;
1262
1263 list_add(&cs->sibling, &cs->parent->children);
1264
1265 err = cpuset_create_dir(cs, name, mode);
1266 if (err < 0)
1267 goto err;
1268
1269 /*
1270 * Release cpuset_sem before cpuset_populate_dir() because it
1271 * will down() this new directory's i_sem and if we race with
1272 * another mkdir, we might deadlock.
1273 */
1274 up(&cpuset_sem);
1275
1276 err = cpuset_populate_dir(cs->dentry);
1277 /* If err < 0, we have a half-filled directory - oh well ;) */
1278 return 0;
1279err:
1280 list_del(&cs->sibling);
1281 up(&cpuset_sem);
1282 kfree(cs);
1283 return err;
1284}
1285
1286static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1287{
1288 struct cpuset *c_parent = dentry->d_parent->d_fsdata;
1289
1290 /* the vfs holds inode->i_sem already */
1291 return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
1292}
1293
1294static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
1295{
1296 struct cpuset *cs = dentry->d_fsdata;
1297 struct dentry *d;
1298 struct cpuset *parent;
1299
1300 /* the vfs holds both inode->i_sem already */
1301
1302 down(&cpuset_sem);
1303 refresh_mems();
1304 if (atomic_read(&cs->count) > 0) {
1305 up(&cpuset_sem);
1306 return -EBUSY;
1307 }
1308 if (!list_empty(&cs->children)) {
1309 up(&cpuset_sem);
1310 return -EBUSY;
1311 }
1312 spin_lock(&cs->dentry->d_lock);
1313 parent = cs->parent;
1314 set_bit(CS_REMOVED, &cs->flags);
1315 list_del(&cs->sibling); /* delete my sibling from parent->children */
1316 if (list_empty(&parent->children))
1317 check_for_release(parent);
1318 d = dget(cs->dentry);
1319 cs->dentry = NULL;
1320 spin_unlock(&d->d_lock);
1321 cpuset_d_remove_dir(d);
1322 dput(d);
1323 up(&cpuset_sem);
1324 return 0;
1325}
1326
1327/**
1328 * cpuset_init - initialize cpusets at system boot
1329 *
1330 * Description: Initialize top_cpuset and the cpuset internal file system,
1331 **/
1332
1333int __init cpuset_init(void)
1334{
1335 struct dentry *root;
1336 int err;
1337
1338 top_cpuset.cpus_allowed = CPU_MASK_ALL;
1339 top_cpuset.mems_allowed = NODE_MASK_ALL;
1340
1341 atomic_inc(&cpuset_mems_generation);
1342 top_cpuset.mems_generation = atomic_read(&cpuset_mems_generation);
1343
1344 init_task.cpuset = &top_cpuset;
1345
1346 err = register_filesystem(&cpuset_fs_type);
1347 if (err < 0)
1348 goto out;
1349 cpuset_mount = kern_mount(&cpuset_fs_type);
1350 if (IS_ERR(cpuset_mount)) {
1351 printk(KERN_ERR "cpuset: could not mount!\n");
1352 err = PTR_ERR(cpuset_mount);
1353 cpuset_mount = NULL;
1354 goto out;
1355 }
1356 root = cpuset_mount->mnt_sb->s_root;
1357 root->d_fsdata = &top_cpuset;
1358 root->d_inode->i_nlink++;
1359 top_cpuset.dentry = root;
1360 root->d_inode->i_op = &cpuset_dir_inode_operations;
1361 err = cpuset_populate_dir(root);
1362out:
1363 return err;
1364}
1365
1366/**
1367 * cpuset_init_smp - initialize cpus_allowed
1368 *
1369 * Description: Finish top cpuset after cpu, node maps are initialized
1370 **/
1371
1372void __init cpuset_init_smp(void)
1373{
1374 top_cpuset.cpus_allowed = cpu_online_map;
1375 top_cpuset.mems_allowed = node_online_map;
1376}
1377
1378/**
1379 * cpuset_fork - attach newly forked task to its parents cpuset.
1380 * @p: pointer to task_struct of forking parent process.
1381 *
1382 * Description: By default, on fork, a task inherits its
1383 * parents cpuset. The pointer to the shared cpuset is
1384 * automatically copied in fork.c by dup_task_struct().
1385 * This cpuset_fork() routine need only increment the usage
1386 * counter in that cpuset.
1387 **/
1388
1389void cpuset_fork(struct task_struct *tsk)
1390{
1391 atomic_inc(&tsk->cpuset->count);
1392}
1393
1394/**
1395 * cpuset_exit - detach cpuset from exiting task
1396 * @tsk: pointer to task_struct of exiting process
1397 *
1398 * Description: Detach cpuset from @tsk and release it.
1399 *
Paul Jackson2efe86b2005-05-27 02:02:43 -07001400 * Note that cpusets marked notify_on_release force every task
1401 * in them to take the global cpuset_sem semaphore when exiting.
1402 * This could impact scaling on very large systems. Be reluctant
1403 * to use notify_on_release cpusets where very high task exit
1404 * scaling is required on large systems.
1405 *
1406 * Don't even think about derefencing 'cs' after the cpuset use
1407 * count goes to zero, except inside a critical section guarded
1408 * by the cpuset_sem semaphore. If you don't hold cpuset_sem,
1409 * then a zero cpuset use count is a license to any other task to
1410 * nuke the cpuset immediately.
1411 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001412 **/
1413
1414void cpuset_exit(struct task_struct *tsk)
1415{
1416 struct cpuset *cs;
1417
1418 task_lock(tsk);
1419 cs = tsk->cpuset;
1420 tsk->cpuset = NULL;
1421 task_unlock(tsk);
1422
Paul Jackson2efe86b2005-05-27 02:02:43 -07001423 if (notify_on_release(cs)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001424 down(&cpuset_sem);
Paul Jackson2efe86b2005-05-27 02:02:43 -07001425 if (atomic_dec_and_test(&cs->count))
1426 check_for_release(cs);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001427 up(&cpuset_sem);
Paul Jackson2efe86b2005-05-27 02:02:43 -07001428 } else {
1429 atomic_dec(&cs->count);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001430 }
1431}
1432
1433/**
1434 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1435 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1436 *
1437 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1438 * attached to the specified @tsk. Guaranteed to return some non-empty
1439 * subset of cpu_online_map, even if this means going outside the
1440 * tasks cpuset.
1441 **/
1442
Benoit Boissinot9a848892005-04-16 15:25:59 -07001443cpumask_t cpuset_cpus_allowed(const struct task_struct *tsk)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001444{
1445 cpumask_t mask;
1446
1447 down(&cpuset_sem);
1448 task_lock((struct task_struct *)tsk);
1449 guarantee_online_cpus(tsk->cpuset, &mask);
1450 task_unlock((struct task_struct *)tsk);
1451 up(&cpuset_sem);
1452
1453 return mask;
1454}
1455
1456void cpuset_init_current_mems_allowed(void)
1457{
1458 current->mems_allowed = NODE_MASK_ALL;
1459}
1460
1461/*
1462 * If the current tasks cpusets mems_allowed changed behind our backs,
1463 * update current->mems_allowed and mems_generation to the new value.
1464 * Do not call this routine if in_interrupt().
1465 */
1466
1467void cpuset_update_current_mems_allowed(void)
1468{
1469 struct cpuset *cs = current->cpuset;
1470
1471 if (!cs)
1472 return; /* task is exiting */
1473 if (current->cpuset_mems_generation != cs->mems_generation) {
1474 down(&cpuset_sem);
1475 refresh_mems();
1476 up(&cpuset_sem);
1477 }
1478}
1479
1480void cpuset_restrict_to_mems_allowed(unsigned long *nodes)
1481{
1482 bitmap_and(nodes, nodes, nodes_addr(current->mems_allowed),
1483 MAX_NUMNODES);
1484}
1485
1486/*
1487 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
1488 */
1489int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
1490{
1491 int i;
1492
1493 for (i = 0; zl->zones[i]; i++) {
1494 int nid = zl->zones[i]->zone_pgdat->node_id;
1495
1496 if (node_isset(nid, current->mems_allowed))
1497 return 1;
1498 }
1499 return 0;
1500}
1501
1502/*
1503 * Is 'current' valid, and is zone z allowed in current->mems_allowed?
1504 */
1505int cpuset_zone_allowed(struct zone *z)
1506{
1507 return in_interrupt() ||
1508 node_isset(z->zone_pgdat->node_id, current->mems_allowed);
1509}
1510
1511/*
1512 * proc_cpuset_show()
1513 * - Print tasks cpuset path into seq_file.
1514 * - Used for /proc/<pid>/cpuset.
1515 */
1516
1517static int proc_cpuset_show(struct seq_file *m, void *v)
1518{
1519 struct cpuset *cs;
1520 struct task_struct *tsk;
1521 char *buf;
1522 int retval = 0;
1523
1524 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1525 if (!buf)
1526 return -ENOMEM;
1527
1528 tsk = m->private;
1529 down(&cpuset_sem);
1530 task_lock(tsk);
1531 cs = tsk->cpuset;
1532 task_unlock(tsk);
1533 if (!cs) {
1534 retval = -EINVAL;
1535 goto out;
1536 }
1537
1538 retval = cpuset_path(cs, buf, PAGE_SIZE);
1539 if (retval < 0)
1540 goto out;
1541 seq_puts(m, buf);
1542 seq_putc(m, '\n');
1543out:
1544 up(&cpuset_sem);
1545 kfree(buf);
1546 return retval;
1547}
1548
1549static int cpuset_open(struct inode *inode, struct file *file)
1550{
1551 struct task_struct *tsk = PROC_I(inode)->task;
1552 return single_open(file, proc_cpuset_show, tsk);
1553}
1554
1555struct file_operations proc_cpuset_operations = {
1556 .open = cpuset_open,
1557 .read = seq_read,
1558 .llseek = seq_lseek,
1559 .release = single_release,
1560};
1561
1562/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
1563char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
1564{
1565 buffer += sprintf(buffer, "Cpus_allowed:\t");
1566 buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
1567 buffer += sprintf(buffer, "\n");
1568 buffer += sprintf(buffer, "Mems_allowed:\t");
1569 buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
1570 buffer += sprintf(buffer, "\n");
1571 return buffer;
1572}