blob: b9b3462483b75255cfd844c8e3d4d34b9436b254 [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Arjan van de Ven97455122008-01-25 21:08:34 +010025
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020026/*
Peter Zijlstra21805082007-08-25 18:41:53 +020027 * Targeted preemption latency for CPU-bound tasks:
Mike Galbraith172e0822009-09-09 15:41:37 +020028 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020029 *
Peter Zijlstra21805082007-08-25 18:41:53 +020030 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020031 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020034 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020035 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037 */
Mike Galbraith21406922010-03-11 17:17:15 +010038unsigned int sysctl_sched_latency = 6000000ULL;
39unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020040
41/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010042 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
53/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010054 * Minimal preemption granularity for CPU-bound tasks:
Mike Galbraith21406922010-03-11 17:17:15 +010055 * (default: 2 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010056 */
Mike Galbraith21406922010-03-11 17:17:15 +010057unsigned int sysctl_sched_min_granularity = 2000000ULL;
58unsigned int normalized_sysctl_sched_min_granularity = 2000000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010059
60/*
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
Mike Galbraith21406922010-03-11 17:17:15 +010063static unsigned int sched_nr_latency = 3;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010064
65/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020066 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020067 * parent will (try to) run first.
68 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020069unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020070
71/*
Ingo Molnar1799e352007-09-19 23:34:46 +020072 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77unsigned int __read_mostly sysctl_sched_compat_yield;
78
79/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020080 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020081 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020082 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
Mike Galbraith172e0822009-09-09 15:41:37 +020087unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010088unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020089
Ingo Molnarda84d962007-10-15 17:00:18 +020090const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
Peter Zijlstraa4c2f002008-10-17 19:27:03 +020092static const struct sched_class fair_sched_class;
93
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020094/**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
98#ifdef CONFIG_FAIR_GROUP_SCHED
99
100/* cpu runqueue to which this cfs_rq is attached */
101static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102{
103 return cfs_rq->rq;
104}
105
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200106/* An entity is a task if it doesn't "own" a runqueue */
107#define entity_is_task(se) (!se->my_q)
108
Peter Zijlstra8f488942009-07-24 12:25:30 +0200109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111#ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113#endif
114 return container_of(se, struct task_struct, se);
115}
116
Peter Zijlstrab7581492008-04-19 19:45:00 +0200117/* Walk up scheduling entities hierarchy */
118#define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122{
123 return p->se.cfs_rq;
124}
125
126/* runqueue on which this entity is (to be) queued */
127static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128{
129 return se->cfs_rq;
130}
131
132/* runqueue "owned" by this group */
133static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134{
135 return grp->my_q;
136}
137
138/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
140 */
141static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142{
143 return cfs_rq->tg->cfs_rq[this_cpu];
144}
145
146/* Iterate thr' all leaf cfs_rq's on a runqueue */
147#define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
149
150/* Do the two (enqueued) entities belong to the same group ? */
151static inline int
152is_same_group(struct sched_entity *se, struct sched_entity *pse)
153{
154 if (se->cfs_rq == pse->cfs_rq)
155 return 1;
156
157 return 0;
158}
159
160static inline struct sched_entity *parent_entity(struct sched_entity *se)
161{
162 return se->parent;
163}
164
Peter Zijlstra464b7522008-10-24 11:06:15 +0200165/* return depth at which a sched entity is present in the hierarchy */
166static inline int depth_se(struct sched_entity *se)
167{
168 int depth = 0;
169
170 for_each_sched_entity(se)
171 depth++;
172
173 return depth;
174}
175
176static void
177find_matching_se(struct sched_entity **se, struct sched_entity **pse)
178{
179 int se_depth, pse_depth;
180
181 /*
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
185 * parent.
186 */
187
188 /* First walk up until both entities are at same depth */
189 se_depth = depth_se(*se);
190 pse_depth = depth_se(*pse);
191
192 while (se_depth > pse_depth) {
193 se_depth--;
194 *se = parent_entity(*se);
195 }
196
197 while (pse_depth > se_depth) {
198 pse_depth--;
199 *pse = parent_entity(*pse);
200 }
201
202 while (!is_same_group(*se, *pse)) {
203 *se = parent_entity(*se);
204 *pse = parent_entity(*pse);
205 }
206}
207
Peter Zijlstra8f488942009-07-24 12:25:30 +0200208#else /* !CONFIG_FAIR_GROUP_SCHED */
209
210static inline struct task_struct *task_of(struct sched_entity *se)
211{
212 return container_of(se, struct task_struct, se);
213}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200214
215static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
216{
217 return container_of(cfs_rq, struct rq, cfs);
218}
219
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200220#define entity_is_task(se) 1
221
Peter Zijlstrab7581492008-04-19 19:45:00 +0200222#define for_each_sched_entity(se) \
223 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200224
Peter Zijlstrab7581492008-04-19 19:45:00 +0200225static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200226{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200227 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200228}
229
Peter Zijlstrab7581492008-04-19 19:45:00 +0200230static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
231{
232 struct task_struct *p = task_of(se);
233 struct rq *rq = task_rq(p);
234
235 return &rq->cfs;
236}
237
238/* runqueue "owned" by this group */
239static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
240{
241 return NULL;
242}
243
244static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
245{
246 return &cpu_rq(this_cpu)->cfs;
247}
248
249#define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
251
252static inline int
253is_same_group(struct sched_entity *se, struct sched_entity *pse)
254{
255 return 1;
256}
257
258static inline struct sched_entity *parent_entity(struct sched_entity *se)
259{
260 return NULL;
261}
262
Peter Zijlstra464b7522008-10-24 11:06:15 +0200263static inline void
264find_matching_se(struct sched_entity **se, struct sched_entity **pse)
265{
266}
267
Peter Zijlstrab7581492008-04-19 19:45:00 +0200268#endif /* CONFIG_FAIR_GROUP_SCHED */
269
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200270
271/**************************************************************
272 * Scheduling class tree data structure manipulation methods:
273 */
274
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200275static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200276{
Peter Zijlstra368059a2007-10-15 17:00:11 +0200277 s64 delta = (s64)(vruntime - min_vruntime);
278 if (delta > 0)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200279 min_vruntime = vruntime;
280
281 return min_vruntime;
282}
283
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200284static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200285{
286 s64 delta = (s64)(vruntime - min_vruntime);
287 if (delta < 0)
288 min_vruntime = vruntime;
289
290 return min_vruntime;
291}
292
Fabio Checconi54fdc582009-07-16 12:32:27 +0200293static inline int entity_before(struct sched_entity *a,
294 struct sched_entity *b)
295{
296 return (s64)(a->vruntime - b->vruntime) < 0;
297}
298
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200299static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra9014623c2007-10-15 17:00:05 +0200300{
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200301 return se->vruntime - cfs_rq->min_vruntime;
Peter Zijlstra9014623c2007-10-15 17:00:05 +0200302}
303
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200304static void update_min_vruntime(struct cfs_rq *cfs_rq)
305{
306 u64 vruntime = cfs_rq->min_vruntime;
307
308 if (cfs_rq->curr)
309 vruntime = cfs_rq->curr->vruntime;
310
311 if (cfs_rq->rb_leftmost) {
312 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313 struct sched_entity,
314 run_node);
315
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100316 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200317 vruntime = se->vruntime;
318 else
319 vruntime = min_vruntime(vruntime, se->vruntime);
320 }
321
322 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
323}
324
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200325/*
326 * Enqueue an entity into the rb-tree:
327 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200328static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200329{
330 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331 struct rb_node *parent = NULL;
332 struct sched_entity *entry;
Peter Zijlstra9014623c2007-10-15 17:00:05 +0200333 s64 key = entity_key(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200334 int leftmost = 1;
335
336 /*
337 * Find the right place in the rbtree:
338 */
339 while (*link) {
340 parent = *link;
341 entry = rb_entry(parent, struct sched_entity, run_node);
342 /*
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
345 */
Peter Zijlstra9014623c2007-10-15 17:00:05 +0200346 if (key < entity_key(cfs_rq, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200347 link = &parent->rb_left;
348 } else {
349 link = &parent->rb_right;
350 leftmost = 0;
351 }
352 }
353
354 /*
355 * Maintain a cache of leftmost tree entries (it is frequently
356 * used):
357 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200358 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200359 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200360
361 rb_link_node(&se->run_node, parent, link);
362 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200363}
364
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200365static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200366{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100367 if (cfs_rq->rb_leftmost == &se->run_node) {
368 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100369
370 next_node = rb_next(&se->run_node);
371 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100372 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200373
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200374 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200375}
376
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200377static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
378{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100379 struct rb_node *left = cfs_rq->rb_leftmost;
380
381 if (!left)
382 return NULL;
383
384 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200385}
386
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100387static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200388{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100389 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200390
Balbir Singh70eee742008-02-22 13:25:53 +0530391 if (!last)
392 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100393
394 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200395}
396
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200397/**************************************************************
398 * Scheduling class statistics methods:
399 */
400
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100401#ifdef CONFIG_SCHED_DEBUG
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100402int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700403 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100404 loff_t *ppos)
405{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100407 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100408
409 if (ret || !write)
410 return ret;
411
412 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
413 sysctl_sched_min_granularity);
414
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100415#define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity);
418 WRT_SYSCTL(sched_latency);
419 WRT_SYSCTL(sched_wakeup_granularity);
420 WRT_SYSCTL(sched_shares_ratelimit);
421#undef WRT_SYSCTL
422
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100423 return 0;
424}
425#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200426
427/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200428 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200429 */
430static inline unsigned long
431calc_delta_fair(unsigned long delta, struct sched_entity *se)
432{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200433 if (unlikely(se->load.weight != NICE_0_LOAD))
434 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200435
436 return delta;
437}
438
439/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200440 * The idea is to set a period in which each task runs once.
441 *
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
444 *
445 * p = (nr <= nl) ? l : l*nr/nl
446 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200447static u64 __sched_period(unsigned long nr_running)
448{
449 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100450 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200451
452 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100453 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200454 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200455 }
456
457 return period;
458}
459
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200460/*
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
463 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200464 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200465 */
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +0200466static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200467{
Mike Galbraith0a582442009-01-02 12:16:42 +0100468 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200469
Mike Galbraith0a582442009-01-02 12:16:42 +0100470 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100471 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200472 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100473
474 cfs_rq = cfs_rq_of(se);
475 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200476
Mike Galbraith0a582442009-01-02 12:16:42 +0100477 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200478 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100479
480 update_load_add(&lw, se->load.weight);
481 load = &lw;
482 }
483 slice = calc_delta_mine(slice, se->load.weight, load);
484 }
485 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200486}
487
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200488/*
Peter Zijlstraac884de2008-04-19 19:45:00 +0200489 * We calculate the vruntime slice of a to be inserted task
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200490 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200491 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200492 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200493static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200494{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200495 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200496}
497
498/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
501 */
502static inline void
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200503__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
504 unsigned long delta_exec)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200505{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200506 unsigned long delta_exec_weighted;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200507
Lucas De Marchi41acab82010-03-10 23:37:45 -0300508 schedstat_set(curr->statistics.exec_max,
509 max((u64)delta_exec, curr->statistics.exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200510
511 curr->sum_exec_runtime += delta_exec;
Ingo Molnar7a62eab2007-10-15 17:00:06 +0200512 schedstat_add(cfs_rq, exec_clock, delta_exec);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200513 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100514
Ingo Molnare9acbff2007-10-15 17:00:04 +0200515 curr->vruntime += delta_exec_weighted;
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200516 update_min_vruntime(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200517}
518
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200519static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200520{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200521 struct sched_entity *curr = cfs_rq->curr;
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200522 u64 now = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200523 unsigned long delta_exec;
524
525 if (unlikely(!curr))
526 return;
527
528 /*
529 * Get the amount of time the current task was running
530 * since the last time we changed load (this cannot
531 * overflow on 32 bits):
532 */
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200533 delta_exec = (unsigned long)(now - curr->exec_start);
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100534 if (!delta_exec)
535 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200537 __update_curr(cfs_rq, curr, delta_exec);
538 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100539
540 if (entity_is_task(curr)) {
541 struct task_struct *curtask = task_of(curr);
542
Ingo Molnarf977bb42009-09-13 18:15:54 +0200543 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100544 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700545 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100546 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200547}
548
549static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200550update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200551{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300552 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200553}
554
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200555/*
556 * Task is being enqueued - update stats:
557 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200558static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200559{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200560 /*
561 * Are we enqueueing a waiting task? (for current tasks
562 * a dequeue/enqueue event is a NOP)
563 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200564 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200565 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200566}
567
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200568static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200569update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200570{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300571 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
572 rq_of(cfs_rq)->clock - se->statistics.wait_start));
573 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
574 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
575 rq_of(cfs_rq)->clock - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200576#ifdef CONFIG_SCHEDSTATS
577 if (entity_is_task(se)) {
578 trace_sched_stat_wait(task_of(se),
Lucas De Marchi41acab82010-03-10 23:37:45 -0300579 rq_of(cfs_rq)->clock - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200580 }
581#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300582 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200583}
584
585static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200586update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200587{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200588 /*
589 * Mark the end of the wait period if dequeueing a
590 * waiting task:
591 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200592 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200593 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200594}
595
596/*
597 * We are picking a new current task - update its stats:
598 */
599static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200600update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200601{
602 /*
603 * We are starting a new run period:
604 */
Ingo Molnard2819182007-08-09 11:16:47 +0200605 se->exec_start = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200606}
607
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200608/**************************************************
609 * Scheduling class queueing methods:
610 */
611
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200612#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
613static void
614add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
615{
616 cfs_rq->task_weight += weight;
617}
618#else
619static inline void
620add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
621{
622}
623#endif
624
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200625static void
626account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
627{
628 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200629 if (!parent_entity(se))
630 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
Bharata B Raob87f1722008-09-25 09:53:54 +0530631 if (entity_is_task(se)) {
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200632 add_cfs_task_weight(cfs_rq, se->load.weight);
Bharata B Raob87f1722008-09-25 09:53:54 +0530633 list_add(&se->group_node, &cfs_rq->tasks);
634 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200635 cfs_rq->nr_running++;
636 se->on_rq = 1;
637}
638
639static void
640account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
641{
642 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200643 if (!parent_entity(se))
644 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
Bharata B Raob87f1722008-09-25 09:53:54 +0530645 if (entity_is_task(se)) {
Peter Zijlstrac09595f2008-06-27 13:41:14 +0200646 add_cfs_task_weight(cfs_rq, -se->load.weight);
Bharata B Raob87f1722008-09-25 09:53:54 +0530647 list_del_init(&se->group_node);
648 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200649 cfs_rq->nr_running--;
650 se->on_rq = 0;
651}
652
Ingo Molnar2396af62007-08-09 11:16:48 +0200653static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200654{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200655#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +0200656 struct task_struct *tsk = NULL;
657
658 if (entity_is_task(se))
659 tsk = task_of(se);
660
Lucas De Marchi41acab82010-03-10 23:37:45 -0300661 if (se->statistics.sleep_start) {
662 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200663
664 if ((s64)delta < 0)
665 delta = 0;
666
Lucas De Marchi41acab82010-03-10 23:37:45 -0300667 if (unlikely(delta > se->statistics.sleep_max))
668 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200669
Lucas De Marchi41acab82010-03-10 23:37:45 -0300670 se->statistics.sleep_start = 0;
671 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +0100672
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200673 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +0200674 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200675 trace_sched_stat_sleep(tsk, delta);
676 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200677 }
Lucas De Marchi41acab82010-03-10 23:37:45 -0300678 if (se->statistics.block_start) {
679 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200680
681 if ((s64)delta < 0)
682 delta = 0;
683
Lucas De Marchi41acab82010-03-10 23:37:45 -0300684 if (unlikely(delta > se->statistics.block_max))
685 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200686
Lucas De Marchi41acab82010-03-10 23:37:45 -0300687 se->statistics.block_start = 0;
688 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +0200689
Peter Zijlstrae4143142009-07-23 20:13:26 +0200690 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -0700691 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -0300692 se->statistics.iowait_sum += delta;
693 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200694 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -0700695 }
696
Peter Zijlstrae4143142009-07-23 20:13:26 +0200697 /*
698 * Blocking time is in units of nanosecs, so shift by
699 * 20 to get a milliseconds-range estimation of the
700 * amount of time that the task spent sleeping:
701 */
702 if (unlikely(prof_on == SLEEP_PROFILING)) {
703 profile_hits(SLEEP_PROFILING,
704 (void *)get_wchan(tsk),
705 delta >> 20);
706 }
707 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +0200708 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200709 }
710#endif
711}
712
Peter Zijlstraddc97292007-10-15 17:00:10 +0200713static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
714{
715#ifdef CONFIG_SCHED_DEBUG
716 s64 d = se->vruntime - cfs_rq->min_vruntime;
717
718 if (d < 0)
719 d = -d;
720
721 if (d > 3*sysctl_sched_latency)
722 schedstat_inc(cfs_rq, nr_spread_over);
723#endif
724}
725
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200726static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200727place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
728{
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200729 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +0200730
Peter Zijlstra2cb86002007-11-09 22:39:37 +0100731 /*
732 * The 'current' period is already promised to the current tasks,
733 * however the extra weight of the new task will slow them down a
734 * little, place the new task so that it fits in the slot that
735 * stays open at the end.
736 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +0200737 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200738 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200739
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +0200740 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +0100741 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +0200742 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200743
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +0200744 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +0200745 * Halve their sleep time's effect, to allow
746 * for a gentler effect of sleepers:
747 */
748 if (sched_feat(GENTLE_FAIR_SLEEPERS))
749 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +0200750
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +0200751 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200752 }
753
Mike Galbraithb5d9d732009-09-08 11:12:28 +0200754 /* ensure we never gain time by being placed backwards. */
755 vruntime = max_vruntime(se->vruntime, vruntime);
756
Peter Zijlstra67e9fb22007-10-15 17:00:10 +0200757 se->vruntime = vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200758}
759
760static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100761enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200762{
763 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100764 * Update the normalized vruntime before updating min_vruntime
765 * through callig update_curr().
766 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +0100767 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100768 se->vruntime += cfs_rq->min_vruntime;
769
770 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +0200771 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200772 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200773 update_curr(cfs_rq);
Peter Zijlstraa9922412008-05-05 23:56:17 +0200774 account_entity_enqueue(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200775
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100776 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200777 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +0200778 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +0200779 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200780
Ingo Molnard2417e52007-08-09 11:16:47 +0200781 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +0200782 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +0200783 if (se != cfs_rq->curr)
784 __enqueue_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200785}
786
Peter Zijlstraa571bbe2009-01-28 14:51:40 +0100787static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +0100788{
Peter Zijlstrade69a802009-09-17 09:01:20 +0200789 if (!se || cfs_rq->last == se)
Peter Zijlstra2002c692008-11-11 11:52:33 +0100790 cfs_rq->last = NULL;
791
Peter Zijlstrade69a802009-09-17 09:01:20 +0200792 if (!se || cfs_rq->next == se)
Peter Zijlstra2002c692008-11-11 11:52:33 +0100793 cfs_rq->next = NULL;
794}
795
Peter Zijlstraa571bbe2009-01-28 14:51:40 +0100796static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
797{
798 for_each_sched_entity(se)
799 __clear_buddies(cfs_rq_of(se), se);
800}
801
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200802static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +0100803dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200804{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +0200805 /*
806 * Update run-time statistics of the 'current'.
807 */
808 update_curr(cfs_rq);
809
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200810 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +0100811 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +0200812#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200813 if (entity_is_task(se)) {
814 struct task_struct *tsk = task_of(se);
815
816 if (tsk->state & TASK_INTERRUPTIBLE)
Lucas De Marchi41acab82010-03-10 23:37:45 -0300817 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200818 if (tsk->state & TASK_UNINTERRUPTIBLE)
Lucas De Marchi41acab82010-03-10 23:37:45 -0300819 se->statistics.block_start = rq_of(cfs_rq)->clock;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200820 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +0200821#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +0200822 }
823
Peter Zijlstra2002c692008-11-11 11:52:33 +0100824 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +0100825
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +0200826 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200827 __dequeue_entity(cfs_rq, se);
828 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200829 update_min_vruntime(cfs_rq);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100830
831 /*
832 * Normalize the entity after updating the min_vruntime because the
833 * update can refer to the ->curr item and we need to reflect this
834 * movement in our normalized position.
835 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +0100836 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100837 se->vruntime -= cfs_rq->min_vruntime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200838}
839
840/*
841 * Preempt the current task with a newly woken task if needed:
842 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +0200843static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +0200844check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200845{
Peter Zijlstra11697832007-09-05 14:32:49 +0200846 unsigned long ideal_runtime, delta_exec;
847
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +0200848 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +0200849 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +0100850 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200851 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +0100852 /*
853 * The current task ran long enough, ensure it doesn't get
854 * re-elected due to buddy favours.
855 */
856 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +0200857 return;
858 }
859
860 /*
861 * Ensure that a task that missed wakeup preemption by a
862 * narrow margin doesn't have to wait for a full slice.
863 * This also mitigates buddy induced latencies under load.
864 */
865 if (!sched_feat(WAKEUP_PREEMPT))
866 return;
867
868 if (delta_exec < sysctl_sched_min_granularity)
869 return;
870
871 if (cfs_rq->nr_running > 1) {
872 struct sched_entity *se = __pick_next_entity(cfs_rq);
873 s64 delta = curr->vruntime - se->vruntime;
874
875 if (delta > ideal_runtime)
876 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +0100877 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200878}
879
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +0200880static void
Ingo Molnar8494f412007-08-09 11:16:48 +0200881set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200882{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +0200883 /* 'current' is not kept within the tree. */
884 if (se->on_rq) {
885 /*
886 * Any task has to be enqueued before it get to execute on
887 * a CPU. So account for the time it spent waiting on the
888 * runqueue.
889 */
890 update_stats_wait_end(cfs_rq, se);
891 __dequeue_entity(cfs_rq, se);
892 }
893
Ingo Molnar79303e92007-08-09 11:16:47 +0200894 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +0200895 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +0200896#ifdef CONFIG_SCHEDSTATS
897 /*
898 * Track our maximum slice length, if the CPU's load is at
899 * least twice that of our own weight (i.e. dont track it
900 * when there are only lesser-weight tasks around):
901 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +0200902 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -0300903 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +0200904 se->sum_exec_runtime - se->prev_sum_exec_runtime);
905 }
906#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +0200907 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200908}
909
Peter Zijlstra3f3a4902008-10-24 11:06:16 +0200910static int
911wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
912
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100913static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +0100914{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100915 struct sched_entity *se = __pick_next_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +0200916 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100917
Mike Galbraithf685cea2009-10-23 23:09:22 +0200918 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
919 se = cfs_rq->next;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +0100920
Mike Galbraithf685cea2009-10-23 23:09:22 +0200921 /*
922 * Prefer last buddy, try to return the CPU to a preempted task.
923 */
924 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
925 se = cfs_rq->last;
926
927 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +0100928
929 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +0100930}
931
Ingo Molnarab6cde22007-08-09 11:16:48 +0200932static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200933{
934 /*
935 * If still on the runqueue then deactivate_task()
936 * was not called and update_curr() has to be done:
937 */
938 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200939 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200940
Peter Zijlstraddc97292007-10-15 17:00:10 +0200941 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200942 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +0200943 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200944 /* Put 'current' back into the tree. */
945 __enqueue_entity(cfs_rq, prev);
946 }
Ingo Molnar429d43b2007-10-15 17:00:03 +0200947 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200948}
949
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100950static void
951entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200952{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200953 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200954 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200955 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +0200956 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200957
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100958#ifdef CONFIG_SCHED_HRTICK
959 /*
960 * queued ticks are scheduled to match the slice, so don't bother
961 * validating it and just reschedule.
962 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -0700963 if (queued) {
964 resched_task(rq_of(cfs_rq)->curr);
965 return;
966 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100967 /*
968 * don't let the period tick interfere with the hrtick preemption
969 */
970 if (!sched_feat(DOUBLE_TICK) &&
971 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
972 return;
973#endif
974
Peter Zijlstrace6c1312007-10-15 17:00:14 +0200975 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
Ingo Molnar2e09bf52007-10-15 17:00:05 +0200976 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200977}
978
979/**************************************************
980 * CFS operations on tasks:
981 */
982
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100983#ifdef CONFIG_SCHED_HRTICK
984static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
985{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +0100986 struct sched_entity *se = &p->se;
987 struct cfs_rq *cfs_rq = cfs_rq_of(se);
988
989 WARN_ON(task_rq(p) != rq);
990
991 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
992 u64 slice = sched_slice(cfs_rq, se);
993 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
994 s64 delta = slice - ran;
995
996 if (delta < 0) {
997 if (rq->curr == p)
998 resched_task(p);
999 return;
1000 }
1001
1002 /*
1003 * Don't schedule slices shorter than 10000ns, that just
1004 * doesn't make sense. Rely on vruntime for fairness.
1005 */
Peter Zijlstra31656512008-07-18 18:01:23 +02001006 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02001007 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001008
Peter Zijlstra31656512008-07-18 18:01:23 +02001009 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001010 }
1011}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02001012
1013/*
1014 * called from enqueue/dequeue and updates the hrtick when the
1015 * current task is from our class and nr_running is low enough
1016 * to matter.
1017 */
1018static void hrtick_update(struct rq *rq)
1019{
1020 struct task_struct *curr = rq->curr;
1021
1022 if (curr->sched_class != &fair_sched_class)
1023 return;
1024
1025 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1026 hrtick_start_fair(rq, curr);
1027}
Dhaval Giani55e12e52008-06-24 23:39:43 +05301028#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001029static inline void
1030hrtick_start_fair(struct rq *rq, struct task_struct *p)
1031{
1032}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02001033
1034static inline void hrtick_update(struct rq *rq)
1035{
1036}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001037#endif
1038
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001039/*
1040 * The enqueue_task method is called before nr_running is
1041 * increased. Here we update the fair scheduling stats and
1042 * then put the task into the rbtree:
1043 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00001044static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01001045enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001046{
1047 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01001048 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001049
1050 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01001051 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001052 break;
1053 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001054 enqueue_entity(cfs_rq, se, flags);
1055 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001056 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001057
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02001058 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001059}
1060
1061/*
1062 * The dequeue_task method is called before nr_running is
1063 * decreased. We remove the task from the rbtree and
1064 * update the fair scheduling stats:
1065 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01001066static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001067{
1068 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01001069 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001070
1071 for_each_sched_entity(se) {
1072 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01001073 dequeue_entity(cfs_rq, se, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001074 /* Don't dequeue parent if it has other entities besides us */
Peter Zijlstra62fb1852008-02-25 17:34:02 +01001075 if (cfs_rq->load.weight)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001076 break;
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01001077 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001078 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001079
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02001080 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001081}
1082
1083/*
Ingo Molnar1799e352007-09-19 23:34:46 +02001084 * sched_yield() support is very simple - we dequeue and enqueue.
1085 *
1086 * If compat_yield is turned on then we requeue to the end of the tree.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001087 */
Dmitry Adamushko4530d7a2007-10-15 17:00:08 +02001088static void yield_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001089{
Ingo Molnardb292ca2007-12-04 17:04:39 +01001090 struct task_struct *curr = rq->curr;
1091 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1092 struct sched_entity *rightmost, *se = &curr->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001093
1094 /*
Ingo Molnar1799e352007-09-19 23:34:46 +02001095 * Are we the only task in the tree?
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001096 */
Ingo Molnar1799e352007-09-19 23:34:46 +02001097 if (unlikely(cfs_rq->nr_running == 1))
1098 return;
1099
Peter Zijlstra2002c692008-11-11 11:52:33 +01001100 clear_buddies(cfs_rq, se);
1101
Ingo Molnardb292ca2007-12-04 17:04:39 +01001102 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
Peter Zijlstra3e51f332008-05-03 18:29:28 +02001103 update_rq_clock(rq);
Ingo Molnar1799e352007-09-19 23:34:46 +02001104 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02001105 * Update run-time statistics of the 'current'.
Ingo Molnar1799e352007-09-19 23:34:46 +02001106 */
Dmitry Adamushko2b1e3152007-10-15 17:00:12 +02001107 update_curr(cfs_rq);
Ingo Molnar1799e352007-09-19 23:34:46 +02001108
1109 return;
1110 }
1111 /*
1112 * Find the rightmost entry in the rbtree:
1113 */
Dmitry Adamushko2b1e3152007-10-15 17:00:12 +02001114 rightmost = __pick_last_entity(cfs_rq);
Ingo Molnar1799e352007-09-19 23:34:46 +02001115 /*
1116 * Already in the rightmost position?
1117 */
Fabio Checconi54fdc582009-07-16 12:32:27 +02001118 if (unlikely(!rightmost || entity_before(rightmost, se)))
Ingo Molnar1799e352007-09-19 23:34:46 +02001119 return;
1120
1121 /*
1122 * Minimally necessary key value to be last in the tree:
Dmitry Adamushko2b1e3152007-10-15 17:00:12 +02001123 * Upon rescheduling, sched_class::put_prev_task() will place
1124 * 'current' within the tree based on its new key value.
Ingo Molnar1799e352007-09-19 23:34:46 +02001125 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001126 se->vruntime = rightmost->vruntime + 1;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001127}
1128
Gregory Haskinse7693a32008-01-25 21:08:09 +01001129#ifdef CONFIG_SMP
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001130
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01001131static void task_waking_fair(struct rq *rq, struct task_struct *p)
1132{
1133 struct sched_entity *se = &p->se;
1134 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1135
1136 se->vruntime -= cfs_rq->min_vruntime;
1137}
1138
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001139#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02001140/*
1141 * effective_load() calculates the load change as seen from the root_task_group
1142 *
1143 * Adding load to a group doesn't make a group heavier, but can cause movement
1144 * of group shares between cpus. Assuming the shares were perfectly aligned one
1145 * can calculate the shift in shares.
1146 *
1147 * The problem is that perfectly aligning the shares is rather expensive, hence
1148 * we try to avoid doing that too often - see update_shares(), which ratelimits
1149 * this change.
1150 *
1151 * We compensate this by not only taking the current delta into account, but
1152 * also considering the delta between when the shares were last adjusted and
1153 * now.
1154 *
1155 * We still saw a performance dip, some tracing learned us that between
1156 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1157 * significantly. Therefore try to bias the error in direction of failing
1158 * the affine wakeup.
1159 *
1160 */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02001161static long effective_load(struct task_group *tg, int cpu,
1162 long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001163{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001164 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02001165
1166 if (!tg->parent)
1167 return wl;
1168
1169 /*
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02001170 * By not taking the decrease of shares on the other cpu into
1171 * account our error leans towards reducing the affine wakeups.
1172 */
1173 if (!wl && sched_feat(ASYM_EFF_LOAD))
1174 return wl;
1175
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001176 for_each_sched_entity(se) {
Peter Zijlstracb5ef422008-06-27 13:41:32 +02001177 long S, rw, s, a, b;
Peter Zijlstra940959e2008-09-23 15:33:42 +02001178 long more_w;
1179
1180 /*
1181 * Instead of using this increment, also add the difference
1182 * between when the shares were last updated and now.
1183 */
1184 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1185 wl += more_w;
1186 wg += more_w;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001187
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001188 S = se->my_q->tg->shares;
1189 s = se->my_q->shares;
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02001190 rw = se->my_q->rq_weight;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001191
Peter Zijlstracb5ef422008-06-27 13:41:32 +02001192 a = S*(rw + wl);
1193 b = S*rw + s*wg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001194
Peter Zijlstra940959e2008-09-23 15:33:42 +02001195 wl = s*(a-b);
1196
1197 if (likely(b))
1198 wl /= b;
1199
Peter Zijlstra83378262008-06-27 13:41:37 +02001200 /*
1201 * Assume the group is already running and will
1202 * thus already be accounted for in the weight.
1203 *
1204 * That is, moving shares between CPUs, does not
1205 * alter the group weight.
1206 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001207 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001208 }
1209
1210 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001211}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001212
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001213#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001214
Peter Zijlstra83378262008-06-27 13:41:37 +02001215static inline unsigned long effective_load(struct task_group *tg, int cpu,
1216 unsigned long wl, unsigned long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001217{
Peter Zijlstra83378262008-06-27 13:41:37 +02001218 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001219}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02001220
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02001221#endif
1222
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001223static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001224{
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001225 unsigned long this_load, load;
1226 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001227 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001228 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02001229 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02001230 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001231
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001232 idx = sd->wake_idx;
1233 this_cpu = smp_processor_id();
1234 prev_cpu = task_cpu(p);
1235 load = source_load(prev_cpu, idx);
1236 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001237
1238 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001239 * If sync wakeup then subtract the (maximum possible)
1240 * effect of the currently running task from the load
1241 * of the current CPU:
1242 */
Peter Zijlstra83378262008-06-27 13:41:37 +02001243 if (sync) {
1244 tg = task_group(current);
1245 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001246
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001247 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02001248 load += effective_load(tg, prev_cpu, 0, -weight);
1249 }
1250
1251 tg = task_group(p);
1252 weight = p->se.load.weight;
1253
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02001254 /*
1255 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001256 * due to the sync cause above having dropped this_load to 0, we'll
1257 * always have an imbalance, but there's really nothing you can do
1258 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02001259 *
1260 * Otherwise check if either cpus are near enough in load to allow this
1261 * task to be woken on this_cpu.
1262 */
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02001263 if (this_load) {
1264 unsigned long this_eff_load, prev_eff_load;
1265
1266 this_eff_load = 100;
1267 this_eff_load *= power_of(prev_cpu);
1268 this_eff_load *= this_load +
1269 effective_load(tg, this_cpu, weight, weight);
1270
1271 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1272 prev_eff_load *= power_of(this_cpu);
1273 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1274
1275 balanced = this_eff_load <= prev_eff_load;
1276 } else
1277 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02001278
1279 /*
1280 * If the currently running task will sleep within
1281 * a reasonable amount of time then attract this newly
1282 * woken task:
1283 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02001284 if (sync && balanced)
1285 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02001286
Lucas De Marchi41acab82010-03-10 23:37:45 -03001287 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02001288 tl_per_task = cpu_avg_load_per_task(this_cpu);
1289
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001290 if (balanced ||
1291 (this_load <= load &&
1292 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001293 /*
1294 * This domain has SD_WAKE_AFFINE and
1295 * p is cache cold in this domain, and
1296 * there is no bad imbalance.
1297 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001298 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03001299 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01001300
1301 return 1;
1302 }
1303 return 0;
1304}
1305
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001306/*
1307 * find_idlest_group finds and returns the least busy CPU group within the
1308 * domain.
1309 */
1310static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02001311find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02001312 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01001313{
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001314 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1315 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001316 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001317
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001318 do {
1319 unsigned long load, avg_load;
1320 int local_group;
1321 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001322
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001323 /* Skip over this group if it has no CPUs allowed */
1324 if (!cpumask_intersects(sched_group_cpus(group),
1325 &p->cpus_allowed))
1326 continue;
1327
1328 local_group = cpumask_test_cpu(this_cpu,
1329 sched_group_cpus(group));
1330
1331 /* Tally up the load of all CPUs in the group */
1332 avg_load = 0;
1333
1334 for_each_cpu(i, sched_group_cpus(group)) {
1335 /* Bias balancing toward cpus of our domain */
1336 if (local_group)
1337 load = source_load(i, load_idx);
1338 else
1339 load = target_load(i, load_idx);
1340
1341 avg_load += load;
1342 }
1343
1344 /* Adjust by relative CPU power of the group */
1345 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1346
1347 if (local_group) {
1348 this_load = avg_load;
1349 this = group;
1350 } else if (avg_load < min_load) {
1351 min_load = avg_load;
1352 idlest = group;
1353 }
1354 } while (group = group->next, group != sd->groups);
1355
1356 if (!idlest || 100*this_load < imbalance*min_load)
1357 return NULL;
1358 return idlest;
1359}
1360
1361/*
1362 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1363 */
1364static int
1365find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1366{
1367 unsigned long load, min_load = ULONG_MAX;
1368 int idlest = -1;
1369 int i;
1370
1371 /* Traverse only the allowed CPUs */
1372 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1373 load = weighted_cpuload(i);
1374
1375 if (load < min_load || (load == min_load && i == this_cpu)) {
1376 min_load = load;
1377 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001378 }
1379 }
1380
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001381 return idlest;
1382}
Gregory Haskinse7693a32008-01-25 21:08:09 +01001383
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001384/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001385 * Try and locate an idle CPU in the sched_domain.
1386 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07001387static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001388{
1389 int cpu = smp_processor_id();
1390 int prev_cpu = task_cpu(p);
Suresh Siddha99bd5e22010-03-31 16:47:45 -07001391 struct sched_domain *sd;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001392 int i;
1393
1394 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07001395 * If the task is going to be woken-up on this cpu and if it is
1396 * already idle, then it is the right target.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001397 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07001398 if (target == cpu && idle_cpu(cpu))
1399 return cpu;
1400
1401 /*
1402 * If the task is going to be woken-up on the cpu where it previously
1403 * ran and if it is currently idle, then it the right target.
1404 */
1405 if (target == prev_cpu && idle_cpu(prev_cpu))
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01001406 return prev_cpu;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001407
1408 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07001409 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001410 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07001411 for_each_domain(target, sd) {
1412 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01001413 break;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07001414
1415 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1416 if (idle_cpu(i)) {
1417 target = i;
1418 break;
1419 }
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001420 }
Suresh Siddha99bd5e22010-03-31 16:47:45 -07001421
1422 /*
1423 * Lets stop looking for an idle sibling when we reached
1424 * the domain that spans the current cpu and prev_cpu.
1425 */
1426 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1427 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1428 break;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01001429 }
1430
1431 return target;
1432}
1433
1434/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001435 * sched_balance_self: balance the current task (running on cpu) in domains
1436 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1437 * SD_BALANCE_EXEC.
1438 *
1439 * Balance, ie. select the least loaded group.
1440 *
1441 * Returns the target CPU number, or the same CPU if no balancing is needed.
1442 *
1443 * preempt must be disabled.
1444 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01001445static int
1446select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001447{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001448 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001449 int cpu = smp_processor_id();
1450 int prev_cpu = task_cpu(p);
1451 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07001452 int want_affine = 0;
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001453 int want_sd = 1;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02001454 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001455
Peter Zijlstra0763a662009-09-14 19:37:39 +02001456 if (sd_flag & SD_BALANCE_WAKE) {
Mike Galbraithbeac4c72010-03-11 17:17:20 +01001457 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001458 want_affine = 1;
1459 new_cpu = prev_cpu;
1460 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01001461
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001462 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f42882009-12-16 18:04:34 +01001463 if (!(tmp->flags & SD_LOAD_BALANCE))
1464 continue;
1465
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001466 /*
Peter Zijlstraae154be2009-09-10 14:40:57 +02001467 * If power savings logic is enabled for a domain, see if we
1468 * are not overloaded, if so, don't balance wider.
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001469 */
Peter Zijlstra59abf022009-09-16 08:28:30 +02001470 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
Peter Zijlstraae154be2009-09-10 14:40:57 +02001471 unsigned long power = 0;
1472 unsigned long nr_running = 0;
1473 unsigned long capacity;
1474 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001475
Peter Zijlstraae154be2009-09-10 14:40:57 +02001476 for_each_cpu(i, sched_domain_span(tmp)) {
1477 power += power_of(i);
1478 nr_running += cpu_rq(i)->cfs.nr_running;
1479 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01001480
Peter Zijlstraae154be2009-09-10 14:40:57 +02001481 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01001482
Peter Zijlstra59abf022009-09-16 08:28:30 +02001483 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1484 nr_running /= 2;
1485
1486 if (nr_running < capacity)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001487 want_sd = 0;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001488 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001489
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01001490 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07001491 * If both cpu and prev_cpu are part of this domain,
1492 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01001493 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07001494 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1495 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1496 affine_sd = tmp;
1497 want_affine = 0;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001498 }
1499
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001500 if (!want_sd && !want_affine)
1501 break;
1502
Peter Zijlstra0763a662009-09-14 19:37:39 +02001503 if (!(tmp->flags & sd_flag))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001504 continue;
1505
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001506 if (want_sd)
1507 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001508 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001509
Mike Galbraith8b911ac2010-03-11 17:17:16 +01001510#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001511 if (sched_feat(LB_SHARES_UPDATE)) {
1512 /*
1513 * Pick the largest domain to update shares over
1514 */
1515 tmp = sd;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02001516 if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight))
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001517 tmp = affine_sd;
1518
Peter Zijlstra0017d732010-03-24 18:34:10 +01001519 if (tmp) {
1520 raw_spin_unlock(&rq->lock);
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001521 update_shares(tmp);
Peter Zijlstra0017d732010-03-24 18:34:10 +01001522 raw_spin_lock(&rq->lock);
1523 }
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001524 }
Mike Galbraith8b911ac2010-03-11 17:17:16 +01001525#endif
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02001526
Mike Galbraith8b911ac2010-03-11 17:17:16 +01001527 if (affine_sd) {
Suresh Siddha99bd5e22010-03-31 16:47:45 -07001528 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1529 return select_idle_sibling(p, cpu);
1530 else
1531 return select_idle_sibling(p, prev_cpu);
Mike Galbraith8b911ac2010-03-11 17:17:16 +01001532 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02001533
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001534 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02001535 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001536 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001537 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001538
Peter Zijlstra0763a662009-09-14 19:37:39 +02001539 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001540 sd = sd->child;
1541 continue;
1542 }
1543
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02001544 if (sd_flag & SD_BALANCE_WAKE)
1545 load_idx = sd->wake_idx;
1546
1547 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001548 if (!group) {
1549 sd = sd->child;
1550 continue;
1551 }
1552
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02001553 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001554 if (new_cpu == -1 || new_cpu == cpu) {
1555 /* Now try balancing at a lower domain level of cpu */
1556 sd = sd->child;
1557 continue;
1558 }
1559
1560 /* Now try balancing at a lower domain level of new_cpu */
1561 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02001562 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001563 sd = NULL;
1564 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02001565 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001566 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02001567 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02001568 sd = tmp;
1569 }
1570 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01001571 }
1572
Peter Zijlstrac88d5912009-09-10 13:50:02 +02001573 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01001574}
1575#endif /* CONFIG_SMP */
1576
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01001577static unsigned long
1578wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02001579{
1580 unsigned long gran = sysctl_sched_wakeup_granularity;
1581
1582 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01001583 * Since its curr running now, convert the gran from real-time
1584 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01001585 *
1586 * By using 'se' instead of 'curr' we penalize light tasks, so
1587 * they get preempted easier. That is, if 'se' < 'curr' then
1588 * the resulting gran will be larger, therefore penalizing the
1589 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1590 * be smaller, again penalizing the lighter task.
1591 *
1592 * This is especially important for buddies when the leftmost
1593 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02001594 */
Mike Galbraith13814d42010-03-11 17:17:04 +01001595 if (unlikely(se->load.weight != NICE_0_LOAD))
1596 gran = calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02001597
1598 return gran;
1599}
1600
1601/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02001602 * Should 'se' preempt 'curr'.
1603 *
1604 * |s1
1605 * |s2
1606 * |s3
1607 * g
1608 * |<--->|c
1609 *
1610 * w(c, s1) = -1
1611 * w(c, s2) = 0
1612 * w(c, s3) = 1
1613 *
1614 */
1615static int
1616wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1617{
1618 s64 gran, vdiff = curr->vruntime - se->vruntime;
1619
1620 if (vdiff <= 0)
1621 return -1;
1622
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01001623 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02001624 if (vdiff > gran)
1625 return 1;
1626
1627 return 0;
1628}
1629
Peter Zijlstra02479092008-11-04 21:25:10 +01001630static void set_last_buddy(struct sched_entity *se)
1631{
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001632 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1633 for_each_sched_entity(se)
1634 cfs_rq_of(se)->last = se;
1635 }
Peter Zijlstra02479092008-11-04 21:25:10 +01001636}
1637
1638static void set_next_buddy(struct sched_entity *se)
1639{
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001640 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1641 for_each_sched_entity(se)
1642 cfs_rq_of(se)->next = se;
1643 }
Peter Zijlstra02479092008-11-04 21:25:10 +01001644}
1645
Peter Zijlstra464b7522008-10-24 11:06:15 +02001646/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001647 * Preempt the current task with a newly woken task if needed:
1648 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02001649static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001650{
1651 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02001652 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01001653 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02001654 int scale = cfs_rq->nr_running >= sched_nr_latency;
Mike Galbraith03e89e42008-12-16 08:45:30 +01001655
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001656 if (unlikely(rt_prio(p->prio)))
1657 goto preempt;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01001658
Peter Zijlstrad95f98d2008-11-04 21:25:08 +01001659 if (unlikely(p->sched_class != &fair_sched_class))
1660 return;
1661
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01001662 if (unlikely(se == pse))
1663 return;
1664
Mike Galbraithf685cea2009-10-23 23:09:22 +02001665 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
Mike Galbraith3cb63d52009-09-11 12:01:17 +02001666 set_next_buddy(pse);
Peter Zijlstra57fdc262008-09-23 15:33:45 +02001667
Bharata B Raoaec0a512008-08-28 14:42:49 +05301668 /*
1669 * We can come here with TIF_NEED_RESCHED already set from new task
1670 * wake up path.
1671 */
1672 if (test_tsk_need_resched(curr))
1673 return;
1674
Ingo Molnar91c234b2007-10-15 17:00:18 +02001675 /*
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001676 * Batch and idle tasks do not preempt (their preemption is driven by
Ingo Molnar91c234b2007-10-15 17:00:18 +02001677 * the tick):
1678 */
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001679 if (unlikely(p->policy != SCHED_NORMAL))
Ingo Molnar91c234b2007-10-15 17:00:18 +02001680 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001681
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001682 /* Idle tasks are by definition preempted by everybody. */
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001683 if (unlikely(curr->policy == SCHED_IDLE))
1684 goto preempt;
Peter Zijlstra6bc912b2009-01-15 14:53:38 +01001685
Peter Zijlstraad4b78b2009-09-16 12:31:31 +02001686 if (!sched_feat(WAKEUP_PREEMPT))
1687 return;
1688
Jupyung Leea65ac742009-11-17 18:51:40 +09001689 update_curr(cfs_rq);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001690 find_matching_se(&se, &pse);
1691 BUG_ON(!pse);
1692 if (wakeup_preempt_entity(se, pse) == 1)
1693 goto preempt;
Jupyung Leea65ac742009-11-17 18:51:40 +09001694
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01001695 return;
1696
1697preempt:
1698 resched_task(curr);
1699 /*
1700 * Only set the backward buddy when the current task is still
1701 * on the rq. This can happen when a wakeup gets interleaved
1702 * with schedule on the ->pre_schedule() or idle_balance()
1703 * point, either of which can * drop the rq lock.
1704 *
1705 * Also, during early boot the idle thread is in the fair class,
1706 * for obvious reasons its a bad idea to schedule back to it.
1707 */
1708 if (unlikely(!se->on_rq || curr == rq->idle))
1709 return;
1710
1711 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1712 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001713}
1714
Ingo Molnarfb8d4722007-08-09 11:16:48 +02001715static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001716{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001717 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001718 struct cfs_rq *cfs_rq = &rq->cfs;
1719 struct sched_entity *se;
1720
Tim Blechmann36ace272009-11-24 11:55:45 +01001721 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001722 return NULL;
1723
1724 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02001725 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01001726 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001727 cfs_rq = group_cfs_rq(se);
1728 } while (cfs_rq);
1729
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001730 p = task_of(se);
1731 hrtick_start_fair(rq, p);
1732
1733 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001734}
1735
1736/*
1737 * Account for a descheduled task:
1738 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02001739static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001740{
1741 struct sched_entity *se = &prev->se;
1742 struct cfs_rq *cfs_rq;
1743
1744 for_each_sched_entity(se) {
1745 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02001746 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001747 }
1748}
1749
Peter Williams681f3e62007-10-24 18:23:51 +02001750#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001751/**************************************************
1752 * Fair scheduling class load-balancing methods:
1753 */
1754
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001755/*
1756 * pull_task - move a task from a remote runqueue to the local runqueue.
1757 * Both runqueues must be locked.
1758 */
1759static void pull_task(struct rq *src_rq, struct task_struct *p,
1760 struct rq *this_rq, int this_cpu)
1761{
1762 deactivate_task(src_rq, p, 0);
1763 set_task_cpu(p, this_cpu);
1764 activate_task(this_rq, p, 0);
1765 check_preempt_curr(this_rq, p, 0);
1766}
1767
1768/*
1769 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1770 */
1771static
1772int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1773 struct sched_domain *sd, enum cpu_idle_type idle,
1774 int *all_pinned)
1775{
1776 int tsk_cache_hot = 0;
1777 /*
1778 * We do not migrate tasks that are:
1779 * 1) running (obviously), or
1780 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1781 * 3) are cache-hot on their current CPU.
1782 */
1783 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03001784 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001785 return 0;
1786 }
1787 *all_pinned = 0;
1788
1789 if (task_running(rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03001790 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001791 return 0;
1792 }
1793
1794 /*
1795 * Aggressive migration if:
1796 * 1) task is cache cold, or
1797 * 2) too many balance attempts have failed.
1798 */
1799
1800 tsk_cache_hot = task_hot(p, rq->clock, sd);
1801 if (!tsk_cache_hot ||
1802 sd->nr_balance_failed > sd->cache_nice_tries) {
1803#ifdef CONFIG_SCHEDSTATS
1804 if (tsk_cache_hot) {
1805 schedstat_inc(sd, lb_hot_gained[idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03001806 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001807 }
1808#endif
1809 return 1;
1810 }
1811
1812 if (tsk_cache_hot) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03001813 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001814 return 0;
1815 }
1816 return 1;
1817}
1818
Peter Zijlstra897c3952009-12-17 17:45:42 +01001819/*
1820 * move_one_task tries to move exactly one task from busiest to this_rq, as
1821 * part of active balancing operations within "domain".
1822 * Returns 1 if successful and 0 otherwise.
1823 *
1824 * Called with both runqueues locked.
1825 */
1826static int
1827move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1828 struct sched_domain *sd, enum cpu_idle_type idle)
1829{
1830 struct task_struct *p, *n;
1831 struct cfs_rq *cfs_rq;
1832 int pinned = 0;
1833
1834 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1835 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1836
1837 if (!can_migrate_task(p, busiest, this_cpu,
1838 sd, idle, &pinned))
1839 continue;
1840
1841 pull_task(busiest, p, this_rq, this_cpu);
1842 /*
1843 * Right now, this is only the second place pull_task()
1844 * is called, so we can safely collect pull_task()
1845 * stats here rather than inside pull_task().
1846 */
1847 schedstat_inc(sd, lb_gained[idle]);
1848 return 1;
1849 }
1850 }
1851
1852 return 0;
1853}
1854
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001855static unsigned long
1856balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1857 unsigned long max_load_move, struct sched_domain *sd,
1858 enum cpu_idle_type idle, int *all_pinned,
Peter Zijlstraee00e662009-12-17 17:25:20 +01001859 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001860{
1861 int loops = 0, pulled = 0, pinned = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001862 long rem_load_move = max_load_move;
Peter Zijlstraee00e662009-12-17 17:25:20 +01001863 struct task_struct *p, *n;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001864
1865 if (max_load_move == 0)
1866 goto out;
1867
1868 pinned = 1;
1869
Peter Zijlstraee00e662009-12-17 17:25:20 +01001870 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
1871 if (loops++ > sysctl_sched_nr_migrate)
1872 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001873
Peter Zijlstraee00e662009-12-17 17:25:20 +01001874 if ((p->se.load.weight >> 1) > rem_load_move ||
1875 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
1876 continue;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001877
Peter Zijlstraee00e662009-12-17 17:25:20 +01001878 pull_task(busiest, p, this_rq, this_cpu);
1879 pulled++;
1880 rem_load_move -= p->se.load.weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001881
1882#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01001883 /*
1884 * NEWIDLE balancing is a source of latency, so preemptible
1885 * kernels will stop after the first task is pulled to minimize
1886 * the critical section.
1887 */
1888 if (idle == CPU_NEWLY_IDLE)
1889 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001890#endif
1891
Peter Zijlstraee00e662009-12-17 17:25:20 +01001892 /*
1893 * We only want to steal up to the prescribed amount of
1894 * weighted load.
1895 */
1896 if (rem_load_move <= 0)
1897 break;
1898
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001899 if (p->prio < *this_best_prio)
1900 *this_best_prio = p->prio;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001901 }
1902out:
1903 /*
1904 * Right now, this is one of only two places pull_task() is called,
1905 * so we can safely collect pull_task() stats here rather than
1906 * inside pull_task().
1907 */
1908 schedstat_add(sd, lb_gained[idle], pulled);
1909
1910 if (all_pinned)
1911 *all_pinned = pinned;
1912
1913 return max_load_move - rem_load_move;
1914}
1915
Peter Zijlstra230059de2009-12-17 17:47:12 +01001916#ifdef CONFIG_FAIR_GROUP_SCHED
1917static unsigned long
1918load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1919 unsigned long max_load_move,
1920 struct sched_domain *sd, enum cpu_idle_type idle,
1921 int *all_pinned, int *this_best_prio)
1922{
1923 long rem_load_move = max_load_move;
1924 int busiest_cpu = cpu_of(busiest);
1925 struct task_group *tg;
1926
1927 rcu_read_lock();
1928 update_h_load(busiest_cpu);
1929
1930 list_for_each_entry_rcu(tg, &task_groups, list) {
1931 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1932 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1933 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1934 u64 rem_load, moved_load;
1935
1936 /*
1937 * empty group
1938 */
1939 if (!busiest_cfs_rq->task_weight)
1940 continue;
1941
1942 rem_load = (u64)rem_load_move * busiest_weight;
1943 rem_load = div_u64(rem_load, busiest_h_load + 1);
1944
1945 moved_load = balance_tasks(this_rq, this_cpu, busiest,
1946 rem_load, sd, idle, all_pinned, this_best_prio,
1947 busiest_cfs_rq);
1948
1949 if (!moved_load)
1950 continue;
1951
1952 moved_load *= busiest_h_load;
1953 moved_load = div_u64(moved_load, busiest_weight + 1);
1954
1955 rem_load_move -= moved_load;
1956 if (rem_load_move < 0)
1957 break;
1958 }
1959 rcu_read_unlock();
1960
1961 return max_load_move - rem_load_move;
1962}
1963#else
1964static unsigned long
1965load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1966 unsigned long max_load_move,
1967 struct sched_domain *sd, enum cpu_idle_type idle,
1968 int *all_pinned, int *this_best_prio)
1969{
1970 return balance_tasks(this_rq, this_cpu, busiest,
1971 max_load_move, sd, idle, all_pinned,
1972 this_best_prio, &busiest->cfs);
1973}
1974#endif
1975
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001976/*
1977 * move_tasks tries to move up to max_load_move weighted load from busiest to
1978 * this_rq, as part of a balancing operation within domain "sd".
1979 * Returns 1 if successful and 0 otherwise.
1980 *
1981 * Called with both runqueues locked.
1982 */
1983static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1984 unsigned long max_load_move,
1985 struct sched_domain *sd, enum cpu_idle_type idle,
1986 int *all_pinned)
1987{
Peter Zijlstra3d45fd82009-12-17 17:12:46 +01001988 unsigned long total_load_moved = 0, load_moved;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001989 int this_best_prio = this_rq->curr->prio;
1990
1991 do {
Peter Zijlstra3d45fd82009-12-17 17:12:46 +01001992 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001993 max_load_move - total_load_moved,
1994 sd, idle, all_pinned, &this_best_prio);
Peter Zijlstra3d45fd82009-12-17 17:12:46 +01001995
1996 total_load_moved += load_moved;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01001997
1998#ifdef CONFIG_PREEMPT
1999 /*
2000 * NEWIDLE balancing is a source of latency, so preemptible
2001 * kernels will stop after the first task is pulled to minimize
2002 * the critical section.
2003 */
2004 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2005 break;
Peter Zijlstrabaa8c112009-12-17 18:10:09 +01002006
2007 if (raw_spin_is_contended(&this_rq->lock) ||
2008 raw_spin_is_contended(&busiest->lock))
2009 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002010#endif
Peter Zijlstra3d45fd82009-12-17 17:12:46 +01002011 } while (load_moved && max_load_move > total_load_moved);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002012
2013 return total_load_moved > 0;
2014}
2015
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002016/********** Helpers for find_busiest_group ************************/
2017/*
2018 * sd_lb_stats - Structure to store the statistics of a sched_domain
2019 * during load balancing.
2020 */
2021struct sd_lb_stats {
2022 struct sched_group *busiest; /* Busiest group in this sd */
2023 struct sched_group *this; /* Local group in this sd */
2024 unsigned long total_load; /* Total load of all groups in sd */
2025 unsigned long total_pwr; /* Total power of all groups in sd */
2026 unsigned long avg_load; /* Average load across all groups in sd */
2027
2028 /** Statistics of this group */
2029 unsigned long this_load;
2030 unsigned long this_load_per_task;
2031 unsigned long this_nr_running;
2032
2033 /* Statistics of the busiest group */
2034 unsigned long max_load;
2035 unsigned long busiest_load_per_task;
2036 unsigned long busiest_nr_running;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002037 unsigned long busiest_group_capacity;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002038
2039 int group_imb; /* Is there imbalance in this sd */
2040#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2041 int power_savings_balance; /* Is powersave balance needed for this sd */
2042 struct sched_group *group_min; /* Least loaded group in sd */
2043 struct sched_group *group_leader; /* Group which relieves group_min */
2044 unsigned long min_load_per_task; /* load_per_task in group_min */
2045 unsigned long leader_nr_running; /* Nr running of group_leader */
2046 unsigned long min_nr_running; /* Nr running of group_min */
2047#endif
2048};
2049
2050/*
2051 * sg_lb_stats - stats of a sched_group required for load_balancing
2052 */
2053struct sg_lb_stats {
2054 unsigned long avg_load; /*Avg load across the CPUs of the group */
2055 unsigned long group_load; /* Total load over the CPUs of the group */
2056 unsigned long sum_nr_running; /* Nr tasks running in the group */
2057 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2058 unsigned long group_capacity;
2059 int group_imb; /* Is there an imbalance in the group ? */
2060};
2061
2062/**
2063 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2064 * @group: The group whose first cpu is to be returned.
2065 */
2066static inline unsigned int group_first_cpu(struct sched_group *group)
2067{
2068 return cpumask_first(sched_group_cpus(group));
2069}
2070
2071/**
2072 * get_sd_load_idx - Obtain the load index for a given sched domain.
2073 * @sd: The sched_domain whose load_idx is to be obtained.
2074 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2075 */
2076static inline int get_sd_load_idx(struct sched_domain *sd,
2077 enum cpu_idle_type idle)
2078{
2079 int load_idx;
2080
2081 switch (idle) {
2082 case CPU_NOT_IDLE:
2083 load_idx = sd->busy_idx;
2084 break;
2085
2086 case CPU_NEWLY_IDLE:
2087 load_idx = sd->newidle_idx;
2088 break;
2089 default:
2090 load_idx = sd->idle_idx;
2091 break;
2092 }
2093
2094 return load_idx;
2095}
2096
2097
2098#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2099/**
2100 * init_sd_power_savings_stats - Initialize power savings statistics for
2101 * the given sched_domain, during load balancing.
2102 *
2103 * @sd: Sched domain whose power-savings statistics are to be initialized.
2104 * @sds: Variable containing the statistics for sd.
2105 * @idle: Idle status of the CPU at which we're performing load-balancing.
2106 */
2107static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2108 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2109{
2110 /*
2111 * Busy processors will not participate in power savings
2112 * balance.
2113 */
2114 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2115 sds->power_savings_balance = 0;
2116 else {
2117 sds->power_savings_balance = 1;
2118 sds->min_nr_running = ULONG_MAX;
2119 sds->leader_nr_running = 0;
2120 }
2121}
2122
2123/**
2124 * update_sd_power_savings_stats - Update the power saving stats for a
2125 * sched_domain while performing load balancing.
2126 *
2127 * @group: sched_group belonging to the sched_domain under consideration.
2128 * @sds: Variable containing the statistics of the sched_domain
2129 * @local_group: Does group contain the CPU for which we're performing
2130 * load balancing ?
2131 * @sgs: Variable containing the statistics of the group.
2132 */
2133static inline void update_sd_power_savings_stats(struct sched_group *group,
2134 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2135{
2136
2137 if (!sds->power_savings_balance)
2138 return;
2139
2140 /*
2141 * If the local group is idle or completely loaded
2142 * no need to do power savings balance at this domain
2143 */
2144 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2145 !sds->this_nr_running))
2146 sds->power_savings_balance = 0;
2147
2148 /*
2149 * If a group is already running at full capacity or idle,
2150 * don't include that group in power savings calculations
2151 */
2152 if (!sds->power_savings_balance ||
2153 sgs->sum_nr_running >= sgs->group_capacity ||
2154 !sgs->sum_nr_running)
2155 return;
2156
2157 /*
2158 * Calculate the group which has the least non-idle load.
2159 * This is the group from where we need to pick up the load
2160 * for saving power
2161 */
2162 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2163 (sgs->sum_nr_running == sds->min_nr_running &&
2164 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2165 sds->group_min = group;
2166 sds->min_nr_running = sgs->sum_nr_running;
2167 sds->min_load_per_task = sgs->sum_weighted_load /
2168 sgs->sum_nr_running;
2169 }
2170
2171 /*
2172 * Calculate the group which is almost near its
2173 * capacity but still has some space to pick up some load
2174 * from other group and save more power
2175 */
2176 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2177 return;
2178
2179 if (sgs->sum_nr_running > sds->leader_nr_running ||
2180 (sgs->sum_nr_running == sds->leader_nr_running &&
2181 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2182 sds->group_leader = group;
2183 sds->leader_nr_running = sgs->sum_nr_running;
2184 }
2185}
2186
2187/**
2188 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2189 * @sds: Variable containing the statistics of the sched_domain
2190 * under consideration.
2191 * @this_cpu: Cpu at which we're currently performing load-balancing.
2192 * @imbalance: Variable to store the imbalance.
2193 *
2194 * Description:
2195 * Check if we have potential to perform some power-savings balance.
2196 * If yes, set the busiest group to be the least loaded group in the
2197 * sched_domain, so that it's CPUs can be put to idle.
2198 *
2199 * Returns 1 if there is potential to perform power-savings balance.
2200 * Else returns 0.
2201 */
2202static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2203 int this_cpu, unsigned long *imbalance)
2204{
2205 if (!sds->power_savings_balance)
2206 return 0;
2207
2208 if (sds->this != sds->group_leader ||
2209 sds->group_leader == sds->group_min)
2210 return 0;
2211
2212 *imbalance = sds->min_load_per_task;
2213 sds->busiest = sds->group_min;
2214
2215 return 1;
2216
2217}
2218#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2219static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2220 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2221{
2222 return;
2223}
2224
2225static inline void update_sd_power_savings_stats(struct sched_group *group,
2226 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2227{
2228 return;
2229}
2230
2231static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2232 int this_cpu, unsigned long *imbalance)
2233{
2234 return 0;
2235}
2236#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2237
2238
2239unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2240{
2241 return SCHED_LOAD_SCALE;
2242}
2243
2244unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2245{
2246 return default_scale_freq_power(sd, cpu);
2247}
2248
2249unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2250{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02002251 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002252 unsigned long smt_gain = sd->smt_gain;
2253
2254 smt_gain /= weight;
2255
2256 return smt_gain;
2257}
2258
2259unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2260{
2261 return default_scale_smt_power(sd, cpu);
2262}
2263
2264unsigned long scale_rt_power(int cpu)
2265{
2266 struct rq *rq = cpu_rq(cpu);
2267 u64 total, available;
2268
2269 sched_avg_update(rq);
2270
2271 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2272 available = total - rq->rt_avg;
2273
2274 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2275 total = SCHED_LOAD_SCALE;
2276
2277 total >>= SCHED_LOAD_SHIFT;
2278
2279 return div_u64(available, total);
2280}
2281
2282static void update_cpu_power(struct sched_domain *sd, int cpu)
2283{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02002284 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002285 unsigned long power = SCHED_LOAD_SCALE;
2286 struct sched_group *sdg = sd->groups;
2287
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002288 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2289 if (sched_feat(ARCH_POWER))
2290 power *= arch_scale_smt_power(sd, cpu);
2291 else
2292 power *= default_scale_smt_power(sd, cpu);
2293
2294 power >>= SCHED_LOAD_SHIFT;
2295 }
2296
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10002297 sdg->cpu_power_orig = power;
2298
2299 if (sched_feat(ARCH_POWER))
2300 power *= arch_scale_freq_power(sd, cpu);
2301 else
2302 power *= default_scale_freq_power(sd, cpu);
2303
2304 power >>= SCHED_LOAD_SHIFT;
2305
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002306 power *= scale_rt_power(cpu);
2307 power >>= SCHED_LOAD_SHIFT;
2308
2309 if (!power)
2310 power = 1;
2311
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02002312 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002313 sdg->cpu_power = power;
2314}
2315
2316static void update_group_power(struct sched_domain *sd, int cpu)
2317{
2318 struct sched_domain *child = sd->child;
2319 struct sched_group *group, *sdg = sd->groups;
2320 unsigned long power;
2321
2322 if (!child) {
2323 update_cpu_power(sd, cpu);
2324 return;
2325 }
2326
2327 power = 0;
2328
2329 group = child->groups;
2330 do {
2331 power += group->cpu_power;
2332 group = group->next;
2333 } while (group != child->groups);
2334
2335 sdg->cpu_power = power;
2336}
2337
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10002338/*
2339 * Try and fix up capacity for tiny siblings, this is needed when
2340 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2341 * which on its own isn't powerful enough.
2342 *
2343 * See update_sd_pick_busiest() and check_asym_packing().
2344 */
2345static inline int
2346fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2347{
2348 /*
2349 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2350 */
2351 if (sd->level != SD_LV_SIBLING)
2352 return 0;
2353
2354 /*
2355 * If ~90% of the cpu_power is still there, we're good.
2356 */
2357 if (group->cpu_power * 32 < group->cpu_power_orig * 29)
2358 return 1;
2359
2360 return 0;
2361}
2362
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002363/**
2364 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2365 * @sd: The sched_domain whose statistics are to be updated.
2366 * @group: sched_group whose statistics are to be updated.
2367 * @this_cpu: Cpu for which load balance is currently performed.
2368 * @idle: Idle status of this_cpu
2369 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2370 * @sd_idle: Idle status of the sched_domain containing group.
2371 * @local_group: Does group contain this_cpu.
2372 * @cpus: Set of cpus considered for load balancing.
2373 * @balance: Should we balance.
2374 * @sgs: variable to hold the statistics for this group.
2375 */
2376static inline void update_sg_lb_stats(struct sched_domain *sd,
2377 struct sched_group *group, int this_cpu,
2378 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2379 int local_group, const struct cpumask *cpus,
2380 int *balance, struct sg_lb_stats *sgs)
2381{
2382 unsigned long load, max_cpu_load, min_cpu_load;
2383 int i;
2384 unsigned int balance_cpu = -1, first_idle_cpu = 0;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002385 unsigned long avg_load_per_task = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002386
Gautham R Shenoy871e35b2010-01-20 14:02:44 -06002387 if (local_group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002388 balance_cpu = group_first_cpu(group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002389
2390 /* Tally up the load of all CPUs in the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002391 max_cpu_load = 0;
2392 min_cpu_load = ~0UL;
2393
2394 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2395 struct rq *rq = cpu_rq(i);
2396
2397 if (*sd_idle && rq->nr_running)
2398 *sd_idle = 0;
2399
2400 /* Bias balancing toward cpus of our domain */
2401 if (local_group) {
2402 if (idle_cpu(i) && !first_idle_cpu) {
2403 first_idle_cpu = 1;
2404 balance_cpu = i;
2405 }
2406
2407 load = target_load(i, load_idx);
2408 } else {
2409 load = source_load(i, load_idx);
2410 if (load > max_cpu_load)
2411 max_cpu_load = load;
2412 if (min_cpu_load > load)
2413 min_cpu_load = load;
2414 }
2415
2416 sgs->group_load += load;
2417 sgs->sum_nr_running += rq->nr_running;
2418 sgs->sum_weighted_load += weighted_cpuload(i);
2419
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002420 }
2421
2422 /*
2423 * First idle cpu or the first cpu(busiest) in this sched group
2424 * is eligible for doing load balancing at this and above
2425 * domains. In the newly idle case, we will allow all the cpu's
2426 * to do the newly idle load balance.
2427 */
2428 if (idle != CPU_NEWLY_IDLE && local_group &&
Peter Zijlstra8f190fb2009-12-24 14:18:21 +01002429 balance_cpu != this_cpu) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002430 *balance = 0;
2431 return;
2432 }
2433
Gautham R Shenoy871e35b2010-01-20 14:02:44 -06002434 update_group_power(sd, this_cpu);
2435
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002436 /* Adjust by relative CPU power of the group */
2437 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2438
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002439 /*
2440 * Consider the group unbalanced when the imbalance is larger
2441 * than the average weight of two tasks.
2442 *
2443 * APZ: with cgroup the avg task weight can vary wildly and
2444 * might not be a suitable number - should we keep a
2445 * normalized nr_running number somewhere that negates
2446 * the hierarchy?
2447 */
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002448 if (sgs->sum_nr_running)
2449 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002450
2451 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
2452 sgs->group_imb = 1;
2453
2454 sgs->group_capacity =
2455 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10002456 if (!sgs->group_capacity)
2457 sgs->group_capacity = fix_small_capacity(sd, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002458}
2459
2460/**
2461 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2462 * @sd: sched_domain whose statistics are to be updated.
2463 * @this_cpu: Cpu for which load balance is currently performed.
2464 * @idle: Idle status of this_cpu
2465 * @sd_idle: Idle status of the sched_domain containing group.
2466 * @cpus: Set of cpus considered for load balancing.
2467 * @balance: Should we balance.
2468 * @sds: variable to hold the statistics for this sched_domain.
2469 */
2470static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2471 enum cpu_idle_type idle, int *sd_idle,
2472 const struct cpumask *cpus, int *balance,
2473 struct sd_lb_stats *sds)
2474{
2475 struct sched_domain *child = sd->child;
2476 struct sched_group *group = sd->groups;
2477 struct sg_lb_stats sgs;
2478 int load_idx, prefer_sibling = 0;
2479
2480 if (child && child->flags & SD_PREFER_SIBLING)
2481 prefer_sibling = 1;
2482
2483 init_sd_power_savings_stats(sd, sds, idle);
2484 load_idx = get_sd_load_idx(sd, idle);
2485
2486 do {
2487 int local_group;
2488
2489 local_group = cpumask_test_cpu(this_cpu,
2490 sched_group_cpus(group));
2491 memset(&sgs, 0, sizeof(sgs));
2492 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
2493 local_group, cpus, balance, &sgs);
2494
Peter Zijlstra8f190fb2009-12-24 14:18:21 +01002495 if (local_group && !(*balance))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002496 return;
2497
2498 sds->total_load += sgs.group_load;
2499 sds->total_pwr += group->cpu_power;
2500
2501 /*
2502 * In case the child domain prefers tasks go to siblings
2503 * first, lower the group capacity to one so that we'll try
2504 * and move all the excess tasks away.
2505 */
2506 if (prefer_sibling)
2507 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2508
2509 if (local_group) {
2510 sds->this_load = sgs.avg_load;
2511 sds->this = group;
2512 sds->this_nr_running = sgs.sum_nr_running;
2513 sds->this_load_per_task = sgs.sum_weighted_load;
2514 } else if (sgs.avg_load > sds->max_load &&
2515 (sgs.sum_nr_running > sgs.group_capacity ||
2516 sgs.group_imb)) {
2517 sds->max_load = sgs.avg_load;
2518 sds->busiest = group;
2519 sds->busiest_nr_running = sgs.sum_nr_running;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002520 sds->busiest_group_capacity = sgs.group_capacity;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002521 sds->busiest_load_per_task = sgs.sum_weighted_load;
2522 sds->group_imb = sgs.group_imb;
2523 }
2524
2525 update_sd_power_savings_stats(group, sds, local_group, &sgs);
2526 group = group->next;
2527 } while (group != sd->groups);
2528}
2529
2530/**
2531 * fix_small_imbalance - Calculate the minor imbalance that exists
2532 * amongst the groups of a sched_domain, during
2533 * load balancing.
2534 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2535 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2536 * @imbalance: Variable to store the imbalance.
2537 */
2538static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2539 int this_cpu, unsigned long *imbalance)
2540{
2541 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2542 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002543 unsigned long scaled_busy_load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002544
2545 if (sds->this_nr_running) {
2546 sds->this_load_per_task /= sds->this_nr_running;
2547 if (sds->busiest_load_per_task >
2548 sds->this_load_per_task)
2549 imbn = 1;
2550 } else
2551 sds->this_load_per_task =
2552 cpu_avg_load_per_task(this_cpu);
2553
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002554 scaled_busy_load_per_task = sds->busiest_load_per_task
2555 * SCHED_LOAD_SCALE;
2556 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2557
2558 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2559 (scaled_busy_load_per_task * imbn)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002560 *imbalance = sds->busiest_load_per_task;
2561 return;
2562 }
2563
2564 /*
2565 * OK, we don't have enough imbalance to justify moving tasks,
2566 * however we may be able to increase total CPU power used by
2567 * moving them.
2568 */
2569
2570 pwr_now += sds->busiest->cpu_power *
2571 min(sds->busiest_load_per_task, sds->max_load);
2572 pwr_now += sds->this->cpu_power *
2573 min(sds->this_load_per_task, sds->this_load);
2574 pwr_now /= SCHED_LOAD_SCALE;
2575
2576 /* Amount of load we'd subtract */
2577 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2578 sds->busiest->cpu_power;
2579 if (sds->max_load > tmp)
2580 pwr_move += sds->busiest->cpu_power *
2581 min(sds->busiest_load_per_task, sds->max_load - tmp);
2582
2583 /* Amount of load we'd add */
2584 if (sds->max_load * sds->busiest->cpu_power <
2585 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2586 tmp = (sds->max_load * sds->busiest->cpu_power) /
2587 sds->this->cpu_power;
2588 else
2589 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2590 sds->this->cpu_power;
2591 pwr_move += sds->this->cpu_power *
2592 min(sds->this_load_per_task, sds->this_load + tmp);
2593 pwr_move /= SCHED_LOAD_SCALE;
2594
2595 /* Move if we gain throughput */
2596 if (pwr_move > pwr_now)
2597 *imbalance = sds->busiest_load_per_task;
2598}
2599
2600/**
2601 * calculate_imbalance - Calculate the amount of imbalance present within the
2602 * groups of a given sched_domain during load balance.
2603 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2604 * @this_cpu: Cpu for which currently load balance is being performed.
2605 * @imbalance: The variable to store the imbalance.
2606 */
2607static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2608 unsigned long *imbalance)
2609{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002610 unsigned long max_pull, load_above_capacity = ~0UL;
2611
2612 sds->busiest_load_per_task /= sds->busiest_nr_running;
2613 if (sds->group_imb) {
2614 sds->busiest_load_per_task =
2615 min(sds->busiest_load_per_task, sds->avg_load);
2616 }
2617
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002618 /*
2619 * In the presence of smp nice balancing, certain scenarios can have
2620 * max load less than avg load(as we skip the groups at or below
2621 * its cpu_power, while calculating max_load..)
2622 */
2623 if (sds->max_load < sds->avg_load) {
2624 *imbalance = 0;
2625 return fix_small_imbalance(sds, this_cpu, imbalance);
2626 }
2627
Suresh Siddhadd5feea2010-02-23 16:13:52 -08002628 if (!sds->group_imb) {
2629 /*
2630 * Don't want to pull so many tasks that a group would go idle.
2631 */
2632 load_above_capacity = (sds->busiest_nr_running -
2633 sds->busiest_group_capacity);
2634
2635 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2636
2637 load_above_capacity /= sds->busiest->cpu_power;
2638 }
2639
2640 /*
2641 * We're trying to get all the cpus to the average_load, so we don't
2642 * want to push ourselves above the average load, nor do we wish to
2643 * reduce the max loaded cpu below the average load. At the same time,
2644 * we also don't want to reduce the group load below the group capacity
2645 * (so that we can implement power-savings policies etc). Thus we look
2646 * for the minimum possible imbalance.
2647 * Be careful of negative numbers as they'll appear as very large values
2648 * with unsigned longs.
2649 */
2650 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002651
2652 /* How much load to actually move to equalise the imbalance */
2653 *imbalance = min(max_pull * sds->busiest->cpu_power,
2654 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2655 / SCHED_LOAD_SCALE;
2656
2657 /*
2658 * if *imbalance is less than the average load per runnable task
2659 * there is no gaurantee that any tasks will be moved so we'll have
2660 * a think about bumping its value to force at least one task to be
2661 * moved
2662 */
2663 if (*imbalance < sds->busiest_load_per_task)
2664 return fix_small_imbalance(sds, this_cpu, imbalance);
2665
2666}
2667/******* find_busiest_group() helpers end here *********************/
2668
2669/**
2670 * find_busiest_group - Returns the busiest group within the sched_domain
2671 * if there is an imbalance. If there isn't an imbalance, and
2672 * the user has opted for power-savings, it returns a group whose
2673 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2674 * such a group exists.
2675 *
2676 * Also calculates the amount of weighted load which should be moved
2677 * to restore balance.
2678 *
2679 * @sd: The sched_domain whose busiest group is to be returned.
2680 * @this_cpu: The cpu for which load balancing is currently being performed.
2681 * @imbalance: Variable which stores amount of weighted load which should
2682 * be moved to restore balance/put a group to idle.
2683 * @idle: The idle status of this_cpu.
2684 * @sd_idle: The idleness of sd
2685 * @cpus: The set of CPUs under consideration for load-balancing.
2686 * @balance: Pointer to a variable indicating if this_cpu
2687 * is the appropriate cpu to perform load balancing at this_level.
2688 *
2689 * Returns: - the busiest group if imbalance exists.
2690 * - If no imbalance and user has opted for power-savings balance,
2691 * return the least loaded group whose CPUs can be
2692 * put to idle by rebalancing its tasks onto our group.
2693 */
2694static struct sched_group *
2695find_busiest_group(struct sched_domain *sd, int this_cpu,
2696 unsigned long *imbalance, enum cpu_idle_type idle,
2697 int *sd_idle, const struct cpumask *cpus, int *balance)
2698{
2699 struct sd_lb_stats sds;
2700
2701 memset(&sds, 0, sizeof(sds));
2702
2703 /*
2704 * Compute the various statistics relavent for load balancing at
2705 * this level.
2706 */
2707 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2708 balance, &sds);
2709
2710 /* Cases where imbalance does not exist from POV of this_cpu */
2711 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2712 * at this level.
2713 * 2) There is no busy sibling group to pull from.
2714 * 3) This group is the busiest group.
2715 * 4) This group is more busy than the avg busieness at this
2716 * sched_domain.
2717 * 5) The imbalance is within the specified limit.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002718 */
Peter Zijlstra8f190fb2009-12-24 14:18:21 +01002719 if (!(*balance))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002720 goto ret;
2721
2722 if (!sds.busiest || sds.busiest_nr_running == 0)
2723 goto out_balanced;
2724
2725 if (sds.this_load >= sds.max_load)
2726 goto out_balanced;
2727
2728 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
2729
2730 if (sds.this_load >= sds.avg_load)
2731 goto out_balanced;
2732
2733 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
2734 goto out_balanced;
2735
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002736 /* Looks like there is an imbalance. Compute it */
2737 calculate_imbalance(&sds, this_cpu, imbalance);
2738 return sds.busiest;
2739
2740out_balanced:
2741 /*
2742 * There is no obvious imbalance. But check if we can do some balancing
2743 * to save power.
2744 */
2745 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
2746 return sds.busiest;
2747ret:
2748 *imbalance = 0;
2749 return NULL;
2750}
2751
2752/*
2753 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2754 */
2755static struct rq *
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10002756find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
2757 enum cpu_idle_type idle, unsigned long imbalance,
2758 const struct cpumask *cpus)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002759{
2760 struct rq *busiest = NULL, *rq;
2761 unsigned long max_load = 0;
2762 int i;
2763
2764 for_each_cpu(i, sched_group_cpus(group)) {
2765 unsigned long power = power_of(i);
2766 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
2767 unsigned long wl;
2768
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10002769 if (!capacity)
2770 capacity = fix_small_capacity(sd, group);
2771
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002772 if (!cpumask_test_cpu(i, cpus))
2773 continue;
2774
2775 rq = cpu_rq(i);
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01002776 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002777
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01002778 /*
2779 * When comparing with imbalance, use weighted_cpuload()
2780 * which is not scaled with the cpu power.
2781 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002782 if (capacity && rq->nr_running == 1 && wl > imbalance)
2783 continue;
2784
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01002785 /*
2786 * For the load comparisons with the other cpu's, consider
2787 * the weighted_cpuload() scaled with the cpu power, so that
2788 * the load can be moved away from the cpu that is potentially
2789 * running at a lower capacity.
2790 */
2791 wl = (wl * SCHED_LOAD_SCALE) / power;
2792
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002793 if (wl > max_load) {
2794 max_load = wl;
2795 busiest = rq;
2796 }
2797 }
2798
2799 return busiest;
2800}
2801
2802/*
2803 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2804 * so long as it is large enough.
2805 */
2806#define MAX_PINNED_INTERVAL 512
2807
2808/* Working cpumask for load_balance and load_balance_newidle. */
2809static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
2810
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01002811static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle)
2812{
2813 if (idle == CPU_NEWLY_IDLE) {
2814 /*
2815 * The only task running in a non-idle cpu can be moved to this
2816 * cpu in an attempt to completely freeup the other CPU
2817 * package.
2818 *
2819 * The package power saving logic comes from
2820 * find_busiest_group(). If there are no imbalance, then
2821 * f_b_g() will return NULL. However when sched_mc={1,2} then
2822 * f_b_g() will select a group from which a running task may be
2823 * pulled to this cpu in order to make the other package idle.
2824 * If there is no opportunity to make a package idle and if
2825 * there are no imbalance, then f_b_g() will return NULL and no
2826 * action will be taken in load_balance_newidle().
2827 *
2828 * Under normal task pull operation due to imbalance, there
2829 * will be more than one task in the source run queue and
2830 * move_tasks() will succeed. ld_moved will be true and this
2831 * active balance code will not be triggered.
2832 */
2833 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2834 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2835 return 0;
2836
2837 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
2838 return 0;
2839 }
2840
2841 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
2842}
2843
Tejun Heo969c7922010-05-06 18:49:21 +02002844static int active_load_balance_cpu_stop(void *data);
2845
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002846/*
2847 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2848 * tasks if there is an imbalance.
2849 */
2850static int load_balance(int this_cpu, struct rq *this_rq,
2851 struct sched_domain *sd, enum cpu_idle_type idle,
2852 int *balance)
2853{
2854 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2855 struct sched_group *group;
2856 unsigned long imbalance;
2857 struct rq *busiest;
2858 unsigned long flags;
2859 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
2860
2861 cpumask_copy(cpus, cpu_active_mask);
2862
2863 /*
2864 * When power savings policy is enabled for the parent domain, idle
2865 * sibling can pick up load irrespective of busy siblings. In this case,
2866 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2867 * portraying it as CPU_NOT_IDLE.
2868 */
2869 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2870 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2871 sd_idle = 1;
2872
2873 schedstat_inc(sd, lb_count[idle]);
2874
2875redo:
2876 update_shares(sd);
2877 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2878 cpus, balance);
2879
2880 if (*balance == 0)
2881 goto out_balanced;
2882
2883 if (!group) {
2884 schedstat_inc(sd, lb_nobusyg[idle]);
2885 goto out_balanced;
2886 }
2887
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10002888 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002889 if (!busiest) {
2890 schedstat_inc(sd, lb_nobusyq[idle]);
2891 goto out_balanced;
2892 }
2893
2894 BUG_ON(busiest == this_rq);
2895
2896 schedstat_add(sd, lb_imbalance[idle], imbalance);
2897
2898 ld_moved = 0;
2899 if (busiest->nr_running > 1) {
2900 /*
2901 * Attempt to move tasks. If find_busiest_group has found
2902 * an imbalance but busiest->nr_running <= 1, the group is
2903 * still unbalanced. ld_moved simply stays zero, so it is
2904 * correctly treated as an imbalance.
2905 */
2906 local_irq_save(flags);
2907 double_rq_lock(this_rq, busiest);
2908 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2909 imbalance, sd, idle, &all_pinned);
2910 double_rq_unlock(this_rq, busiest);
2911 local_irq_restore(flags);
2912
2913 /*
2914 * some other cpu did the load balance for us.
2915 */
2916 if (ld_moved && this_cpu != smp_processor_id())
2917 resched_cpu(this_cpu);
2918
2919 /* All tasks on this runqueue were pinned by CPU affinity */
2920 if (unlikely(all_pinned)) {
2921 cpumask_clear_cpu(cpu_of(busiest), cpus);
2922 if (!cpumask_empty(cpus))
2923 goto redo;
2924 goto out_balanced;
2925 }
2926 }
2927
2928 if (!ld_moved) {
2929 schedstat_inc(sd, lb_failed[idle]);
2930 sd->nr_balance_failed++;
2931
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01002932 if (need_active_balance(sd, sd_idle, idle)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002933 raw_spin_lock_irqsave(&busiest->lock, flags);
2934
Tejun Heo969c7922010-05-06 18:49:21 +02002935 /* don't kick the active_load_balance_cpu_stop,
2936 * if the curr task on busiest cpu can't be
2937 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002938 */
2939 if (!cpumask_test_cpu(this_cpu,
2940 &busiest->curr->cpus_allowed)) {
2941 raw_spin_unlock_irqrestore(&busiest->lock,
2942 flags);
2943 all_pinned = 1;
2944 goto out_one_pinned;
2945 }
2946
Tejun Heo969c7922010-05-06 18:49:21 +02002947 /*
2948 * ->active_balance synchronizes accesses to
2949 * ->active_balance_work. Once set, it's cleared
2950 * only after active load balance is finished.
2951 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002952 if (!busiest->active_balance) {
2953 busiest->active_balance = 1;
2954 busiest->push_cpu = this_cpu;
2955 active_balance = 1;
2956 }
2957 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02002958
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002959 if (active_balance)
Tejun Heo969c7922010-05-06 18:49:21 +02002960 stop_one_cpu_nowait(cpu_of(busiest),
2961 active_load_balance_cpu_stop, busiest,
2962 &busiest->active_balance_work);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01002963
2964 /*
2965 * We've kicked active balancing, reset the failure
2966 * counter.
2967 */
2968 sd->nr_balance_failed = sd->cache_nice_tries+1;
2969 }
2970 } else
2971 sd->nr_balance_failed = 0;
2972
2973 if (likely(!active_balance)) {
2974 /* We were unbalanced, so reset the balancing interval */
2975 sd->balance_interval = sd->min_interval;
2976 } else {
2977 /*
2978 * If we've begun active balancing, start to back off. This
2979 * case may not be covered by the all_pinned logic if there
2980 * is only 1 task on the busy runqueue (because we don't call
2981 * move_tasks).
2982 */
2983 if (sd->balance_interval < sd->max_interval)
2984 sd->balance_interval *= 2;
2985 }
2986
2987 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2988 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2989 ld_moved = -1;
2990
2991 goto out;
2992
2993out_balanced:
2994 schedstat_inc(sd, lb_balanced[idle]);
2995
2996 sd->nr_balance_failed = 0;
2997
2998out_one_pinned:
2999 /* tune up the balancing interval */
3000 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3001 (sd->balance_interval < sd->max_interval))
3002 sd->balance_interval *= 2;
3003
3004 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3005 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3006 ld_moved = -1;
3007 else
3008 ld_moved = 0;
3009out:
3010 if (ld_moved)
3011 update_shares(sd);
3012 return ld_moved;
3013}
3014
3015/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003016 * idle_balance is called by schedule() if this_cpu is about to become
3017 * idle. Attempts to pull tasks from other CPUs.
3018 */
3019static void idle_balance(int this_cpu, struct rq *this_rq)
3020{
3021 struct sched_domain *sd;
3022 int pulled_task = 0;
3023 unsigned long next_balance = jiffies + HZ;
3024
3025 this_rq->idle_stamp = this_rq->clock;
3026
3027 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3028 return;
3029
Peter Zijlstraf492e122009-12-23 15:29:42 +01003030 /*
3031 * Drop the rq->lock, but keep IRQ/preempt disabled.
3032 */
3033 raw_spin_unlock(&this_rq->lock);
3034
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003035 for_each_domain(this_cpu, sd) {
3036 unsigned long interval;
Peter Zijlstraf492e122009-12-23 15:29:42 +01003037 int balance = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003038
3039 if (!(sd->flags & SD_LOAD_BALANCE))
3040 continue;
3041
Peter Zijlstraf492e122009-12-23 15:29:42 +01003042 if (sd->flags & SD_BALANCE_NEWIDLE) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003043 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01003044 pulled_task = load_balance(this_cpu, this_rq,
3045 sd, CPU_NEWLY_IDLE, &balance);
3046 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003047
3048 interval = msecs_to_jiffies(sd->balance_interval);
3049 if (time_after(next_balance, sd->last_balance + interval))
3050 next_balance = sd->last_balance + interval;
3051 if (pulled_task) {
3052 this_rq->idle_stamp = 0;
3053 break;
3054 }
3055 }
Peter Zijlstraf492e122009-12-23 15:29:42 +01003056
3057 raw_spin_lock(&this_rq->lock);
3058
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003059 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3060 /*
3061 * We are going idle. next_balance may be set based on
3062 * a busy processor. So reset next_balance.
3063 */
3064 this_rq->next_balance = next_balance;
3065 }
3066}
3067
3068/*
Tejun Heo969c7922010-05-06 18:49:21 +02003069 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3070 * running tasks off the busiest CPU onto idle CPUs. It requires at
3071 * least 1 task to be running on each physical CPU where possible, and
3072 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003073 */
Tejun Heo969c7922010-05-06 18:49:21 +02003074static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003075{
Tejun Heo969c7922010-05-06 18:49:21 +02003076 struct rq *busiest_rq = data;
3077 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003078 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02003079 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003080 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02003081
3082 raw_spin_lock_irq(&busiest_rq->lock);
3083
3084 /* make sure the requested cpu hasn't gone down in the meantime */
3085 if (unlikely(busiest_cpu != smp_processor_id() ||
3086 !busiest_rq->active_balance))
3087 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003088
3089 /* Is there any task to move? */
3090 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02003091 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003092
3093 /*
3094 * This condition is "impossible", if it occurs
3095 * we need to fix it. Originally reported by
3096 * Bjorn Helgaas on a 128-cpu setup.
3097 */
3098 BUG_ON(busiest_rq == target_rq);
3099
3100 /* move a task from busiest_rq to target_rq */
3101 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003102
3103 /* Search for an sd spanning us and the target CPU. */
3104 for_each_domain(target_cpu, sd) {
3105 if ((sd->flags & SD_LOAD_BALANCE) &&
3106 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3107 break;
3108 }
3109
3110 if (likely(sd)) {
3111 schedstat_inc(sd, alb_count);
3112
3113 if (move_one_task(target_rq, target_cpu, busiest_rq,
3114 sd, CPU_IDLE))
3115 schedstat_inc(sd, alb_pushed);
3116 else
3117 schedstat_inc(sd, alb_failed);
3118 }
3119 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02003120out_unlock:
3121 busiest_rq->active_balance = 0;
3122 raw_spin_unlock_irq(&busiest_rq->lock);
3123 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003124}
3125
3126#ifdef CONFIG_NO_HZ
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003127
3128static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3129
3130static void trigger_sched_softirq(void *data)
3131{
3132 raise_softirq_irqoff(SCHED_SOFTIRQ);
3133}
3134
3135static inline void init_sched_softirq_csd(struct call_single_data *csd)
3136{
3137 csd->func = trigger_sched_softirq;
3138 csd->info = NULL;
3139 csd->flags = 0;
3140 csd->priv = 0;
3141}
3142
3143/*
3144 * idle load balancing details
3145 * - One of the idle CPUs nominates itself as idle load_balancer, while
3146 * entering idle.
3147 * - This idle load balancer CPU will also go into tickless mode when
3148 * it is idle, just like all other idle CPUs
3149 * - When one of the busy CPUs notice that there may be an idle rebalancing
3150 * needed, they will kick the idle load balancer, which then does idle
3151 * load balancing for all the idle CPUs.
3152 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003153static struct {
3154 atomic_t load_balancer;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003155 atomic_t first_pick_cpu;
3156 atomic_t second_pick_cpu;
3157 cpumask_var_t idle_cpus_mask;
3158 cpumask_var_t grp_idle_mask;
3159 unsigned long next_balance; /* in jiffy units */
3160} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003161
3162int get_nohz_load_balancer(void)
3163{
3164 return atomic_read(&nohz.load_balancer);
3165}
3166
3167#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3168/**
3169 * lowest_flag_domain - Return lowest sched_domain containing flag.
3170 * @cpu: The cpu whose lowest level of sched domain is to
3171 * be returned.
3172 * @flag: The flag to check for the lowest sched_domain
3173 * for the given cpu.
3174 *
3175 * Returns the lowest sched_domain of a cpu which contains the given flag.
3176 */
3177static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3178{
3179 struct sched_domain *sd;
3180
3181 for_each_domain(cpu, sd)
3182 if (sd && (sd->flags & flag))
3183 break;
3184
3185 return sd;
3186}
3187
3188/**
3189 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3190 * @cpu: The cpu whose domains we're iterating over.
3191 * @sd: variable holding the value of the power_savings_sd
3192 * for cpu.
3193 * @flag: The flag to filter the sched_domains to be iterated.
3194 *
3195 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3196 * set, starting from the lowest sched_domain to the highest.
3197 */
3198#define for_each_flag_domain(cpu, sd, flag) \
3199 for (sd = lowest_flag_domain(cpu, flag); \
3200 (sd && (sd->flags & flag)); sd = sd->parent)
3201
3202/**
3203 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3204 * @ilb_group: group to be checked for semi-idleness
3205 *
3206 * Returns: 1 if the group is semi-idle. 0 otherwise.
3207 *
3208 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3209 * and atleast one non-idle CPU. This helper function checks if the given
3210 * sched_group is semi-idle or not.
3211 */
3212static inline int is_semi_idle_group(struct sched_group *ilb_group)
3213{
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003214 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003215 sched_group_cpus(ilb_group));
3216
3217 /*
3218 * A sched_group is semi-idle when it has atleast one busy cpu
3219 * and atleast one idle cpu.
3220 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003221 if (cpumask_empty(nohz.grp_idle_mask))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003222 return 0;
3223
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003224 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003225 return 0;
3226
3227 return 1;
3228}
3229/**
3230 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3231 * @cpu: The cpu which is nominating a new idle_load_balancer.
3232 *
3233 * Returns: Returns the id of the idle load balancer if it exists,
3234 * Else, returns >= nr_cpu_ids.
3235 *
3236 * This algorithm picks the idle load balancer such that it belongs to a
3237 * semi-idle powersavings sched_domain. The idea is to try and avoid
3238 * completely idle packages/cores just for the purpose of idle load balancing
3239 * when there are other idle cpu's which are better suited for that job.
3240 */
3241static int find_new_ilb(int cpu)
3242{
3243 struct sched_domain *sd;
3244 struct sched_group *ilb_group;
3245
3246 /*
3247 * Have idle load balancer selection from semi-idle packages only
3248 * when power-aware load balancing is enabled
3249 */
3250 if (!(sched_smt_power_savings || sched_mc_power_savings))
3251 goto out_done;
3252
3253 /*
3254 * Optimize for the case when we have no idle CPUs or only one
3255 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3256 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003257 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003258 goto out_done;
3259
3260 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3261 ilb_group = sd->groups;
3262
3263 do {
3264 if (is_semi_idle_group(ilb_group))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003265 return cpumask_first(nohz.grp_idle_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003266
3267 ilb_group = ilb_group->next;
3268
3269 } while (ilb_group != sd->groups);
3270 }
3271
3272out_done:
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003273 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003274}
3275#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3276static inline int find_new_ilb(int call_cpu)
3277{
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003278 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003279}
3280#endif
3281
3282/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003283 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3284 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3285 * CPU (if there is one).
3286 */
3287static void nohz_balancer_kick(int cpu)
3288{
3289 int ilb_cpu;
3290
3291 nohz.next_balance++;
3292
3293 ilb_cpu = get_nohz_load_balancer();
3294
3295 if (ilb_cpu >= nr_cpu_ids) {
3296 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3297 if (ilb_cpu >= nr_cpu_ids)
3298 return;
3299 }
3300
3301 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3302 struct call_single_data *cp;
3303
3304 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3305 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3306 __smp_call_function_single(ilb_cpu, cp, 0);
3307 }
3308 return;
3309}
3310
3311/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003312 * This routine will try to nominate the ilb (idle load balancing)
3313 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003314 * load balancing on behalf of all those cpus.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003315 *
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003316 * When the ilb owner becomes busy, we will not have new ilb owner until some
3317 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3318 * idle load balancing by kicking one of the idle CPUs.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003319 *
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003320 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3321 * ilb owner CPU in future (when there is a need for idle load balancing on
3322 * behalf of all idle CPUs).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003323 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003324void select_nohz_load_balancer(int stop_tick)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003325{
3326 int cpu = smp_processor_id();
3327
3328 if (stop_tick) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003329 if (!cpu_active(cpu)) {
3330 if (atomic_read(&nohz.load_balancer) != cpu)
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003331 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003332
3333 /*
3334 * If we are going offline and still the leader,
3335 * give up!
3336 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003337 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3338 nr_cpu_ids) != cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003339 BUG();
3340
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003341 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003342 }
3343
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003344 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003345
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003346 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3347 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3348 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3349 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003350
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003351 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003352 int new_ilb;
3353
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003354 /* make me the ilb owner */
3355 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3356 cpu) != nr_cpu_ids)
3357 return;
3358
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003359 /*
3360 * Check to see if there is a more power-efficient
3361 * ilb.
3362 */
3363 new_ilb = find_new_ilb(cpu);
3364 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003365 atomic_set(&nohz.load_balancer, nr_cpu_ids);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003366 resched_cpu(new_ilb);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003367 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003368 }
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003369 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003370 }
3371 } else {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003372 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3373 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003374
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003375 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003376
3377 if (atomic_read(&nohz.load_balancer) == cpu)
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003378 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3379 nr_cpu_ids) != cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003380 BUG();
3381 }
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003382 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003383}
3384#endif
3385
3386static DEFINE_SPINLOCK(balancing);
3387
3388/*
3389 * It checks each scheduling domain to see if it is due to be balanced,
3390 * and initiates a balancing operation if so.
3391 *
3392 * Balancing parameters are set up in arch_init_sched_domains.
3393 */
3394static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3395{
3396 int balance = 1;
3397 struct rq *rq = cpu_rq(cpu);
3398 unsigned long interval;
3399 struct sched_domain *sd;
3400 /* Earliest time when we have to do rebalance again */
3401 unsigned long next_balance = jiffies + 60*HZ;
3402 int update_next_balance = 0;
3403 int need_serialize;
3404
3405 for_each_domain(cpu, sd) {
3406 if (!(sd->flags & SD_LOAD_BALANCE))
3407 continue;
3408
3409 interval = sd->balance_interval;
3410 if (idle != CPU_IDLE)
3411 interval *= sd->busy_factor;
3412
3413 /* scale ms to jiffies */
3414 interval = msecs_to_jiffies(interval);
3415 if (unlikely(!interval))
3416 interval = 1;
3417 if (interval > HZ*NR_CPUS/10)
3418 interval = HZ*NR_CPUS/10;
3419
3420 need_serialize = sd->flags & SD_SERIALIZE;
3421
3422 if (need_serialize) {
3423 if (!spin_trylock(&balancing))
3424 goto out;
3425 }
3426
3427 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3428 if (load_balance(cpu, rq, sd, idle, &balance)) {
3429 /*
3430 * We've pulled tasks over so either we're no
3431 * longer idle, or one of our SMT siblings is
3432 * not idle.
3433 */
3434 idle = CPU_NOT_IDLE;
3435 }
3436 sd->last_balance = jiffies;
3437 }
3438 if (need_serialize)
3439 spin_unlock(&balancing);
3440out:
3441 if (time_after(next_balance, sd->last_balance + interval)) {
3442 next_balance = sd->last_balance + interval;
3443 update_next_balance = 1;
3444 }
3445
3446 /*
3447 * Stop the load balance at this level. There is another
3448 * CPU in our sched group which is doing load balancing more
3449 * actively.
3450 */
3451 if (!balance)
3452 break;
3453 }
3454
3455 /*
3456 * next_balance will be updated only when there is a need.
3457 * When the cpu is attached to null domain for ex, it will not be
3458 * updated.
3459 */
3460 if (likely(update_next_balance))
3461 rq->next_balance = next_balance;
3462}
3463
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003464#ifdef CONFIG_NO_HZ
3465/*
3466 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3467 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3468 */
3469static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3470{
3471 struct rq *this_rq = cpu_rq(this_cpu);
3472 struct rq *rq;
3473 int balance_cpu;
3474
3475 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3476 return;
3477
3478 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3479 if (balance_cpu == this_cpu)
3480 continue;
3481
3482 /*
3483 * If this cpu gets work to do, stop the load balancing
3484 * work being done for other cpus. Next load
3485 * balancing owner will pick it up.
3486 */
3487 if (need_resched()) {
3488 this_rq->nohz_balance_kick = 0;
3489 break;
3490 }
3491
3492 raw_spin_lock_irq(&this_rq->lock);
3493 update_cpu_load(this_rq);
3494 raw_spin_unlock_irq(&this_rq->lock);
3495
3496 rebalance_domains(balance_cpu, CPU_IDLE);
3497
3498 rq = cpu_rq(balance_cpu);
3499 if (time_after(this_rq->next_balance, rq->next_balance))
3500 this_rq->next_balance = rq->next_balance;
3501 }
3502 nohz.next_balance = this_rq->next_balance;
3503 this_rq->nohz_balance_kick = 0;
3504}
3505
3506/*
3507 * Current heuristic for kicking the idle load balancer
3508 * - first_pick_cpu is the one of the busy CPUs. It will kick
3509 * idle load balancer when it has more than one process active. This
3510 * eliminates the need for idle load balancing altogether when we have
3511 * only one running process in the system (common case).
3512 * - If there are more than one busy CPU, idle load balancer may have
3513 * to run for active_load_balance to happen (i.e., two busy CPUs are
3514 * SMT or core siblings and can run better if they move to different
3515 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3516 * which will kick idle load balancer as soon as it has any load.
3517 */
3518static inline int nohz_kick_needed(struct rq *rq, int cpu)
3519{
3520 unsigned long now = jiffies;
3521 int ret;
3522 int first_pick_cpu, second_pick_cpu;
3523
3524 if (time_before(now, nohz.next_balance))
3525 return 0;
3526
3527 if (!rq->nr_running)
3528 return 0;
3529
3530 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3531 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3532
3533 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3534 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3535 return 0;
3536
3537 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3538 if (ret == nr_cpu_ids || ret == cpu) {
3539 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3540 if (rq->nr_running > 1)
3541 return 1;
3542 } else {
3543 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3544 if (ret == nr_cpu_ids || ret == cpu) {
3545 if (rq->nr_running)
3546 return 1;
3547 }
3548 }
3549 return 0;
3550}
3551#else
3552static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3553#endif
3554
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003555/*
3556 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003557 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003558 */
3559static void run_rebalance_domains(struct softirq_action *h)
3560{
3561 int this_cpu = smp_processor_id();
3562 struct rq *this_rq = cpu_rq(this_cpu);
3563 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3564 CPU_IDLE : CPU_NOT_IDLE;
3565
3566 rebalance_domains(this_cpu, idle);
3567
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003568 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003569 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003570 * balancing on behalf of the other idle cpus whose ticks are
3571 * stopped.
3572 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003573 nohz_idle_balance(this_cpu, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003574}
3575
3576static inline int on_null_domain(int cpu)
3577{
Paul E. McKenney90a65012010-02-28 08:32:18 -08003578 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003579}
3580
3581/*
3582 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003583 */
3584static inline void trigger_load_balance(struct rq *rq, int cpu)
3585{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003586 /* Don't need to rebalance while attached to NULL domain */
3587 if (time_after_eq(jiffies, rq->next_balance) &&
3588 likely(!on_null_domain(cpu)))
3589 raise_softirq(SCHED_SOFTIRQ);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07003590#ifdef CONFIG_NO_HZ
3591 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
3592 nohz_balancer_kick(cpu);
3593#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003594}
3595
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01003596static void rq_online_fair(struct rq *rq)
3597{
3598 update_sysctl();
3599}
3600
3601static void rq_offline_fair(struct rq *rq)
3602{
3603 update_sysctl();
3604}
3605
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01003606#else /* CONFIG_SMP */
3607
3608/*
3609 * on UP we do not need to balance between CPUs:
3610 */
3611static inline void idle_balance(int cpu, struct rq *rq)
3612{
3613}
3614
Dhaval Giani55e12e52008-06-24 23:39:43 +05303615#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02003616
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003617/*
3618 * scheduler tick hitting a task of our scheduling class:
3619 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003620static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003621{
3622 struct cfs_rq *cfs_rq;
3623 struct sched_entity *se = &curr->se;
3624
3625 for_each_sched_entity(se) {
3626 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003627 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003628 }
3629}
3630
3631/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003632 * called on fork with the child task as argument from the parent's context
3633 * - child not yet on the tasklist
3634 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003635 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003636static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003637{
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003638 struct cfs_rq *cfs_rq = task_cfs_rq(current);
Ingo Molnar429d43b2007-10-15 17:00:03 +02003639 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02003640 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003641 struct rq *rq = this_rq();
3642 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003643
Thomas Gleixner05fa7852009-11-17 14:28:38 +01003644 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003645
3646 if (unlikely(task_cpu(p) != this_cpu))
3647 __set_task_cpu(p, this_cpu);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003648
Ting Yang7109c4422007-08-28 12:53:24 +02003649 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003650
Mike Galbraithb5d9d732009-09-08 11:12:28 +02003651 if (curr)
3652 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02003653 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02003654
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003655 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02003656 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02003657 * Upon rescheduling, sched_class::put_prev_task() will place
3658 * 'current' within the tree based on its new key value.
3659 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02003660 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05303661 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02003662 }
3663
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003664 se->vruntime -= cfs_rq->min_vruntime;
3665
Thomas Gleixner05fa7852009-11-17 14:28:38 +01003666 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003667}
3668
Steven Rostedtcb469842008-01-25 21:08:22 +01003669/*
3670 * Priority of the task has changed. Check to see if we preempt
3671 * the current task.
3672 */
3673static void prio_changed_fair(struct rq *rq, struct task_struct *p,
3674 int oldprio, int running)
3675{
3676 /*
3677 * Reschedule if we are currently running on this runqueue and
3678 * our priority decreased, or if we are not currently running on
3679 * this runqueue and our priority is higher than the current's
3680 */
3681 if (running) {
3682 if (p->prio > oldprio)
3683 resched_task(rq->curr);
3684 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02003685 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01003686}
3687
3688/*
3689 * We switched to the sched_fair class.
3690 */
3691static void switched_to_fair(struct rq *rq, struct task_struct *p,
3692 int running)
3693{
3694 /*
3695 * We were most likely switched from sched_rt, so
3696 * kick off the schedule if running, otherwise just see
3697 * if we can still preempt the current task.
3698 */
3699 if (running)
3700 resched_task(rq->curr);
3701 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02003702 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01003703}
3704
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02003705/* Account for a task changing its policy or group.
3706 *
3707 * This routine is mostly called to set cfs_rq->curr field when a task
3708 * migrates between groups/classes.
3709 */
3710static void set_curr_task_fair(struct rq *rq)
3711{
3712 struct sched_entity *se = &rq->curr->se;
3713
3714 for_each_sched_entity(se)
3715 set_next_entity(cfs_rq_of(se), se);
3716}
3717
Peter Zijlstra810b3812008-02-29 15:21:01 -05003718#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003719static void moved_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05003720{
3721 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3722
3723 update_curr(cfs_rq);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003724 if (!on_rq)
3725 place_entity(cfs_rq, &p->se, 1);
Peter Zijlstra810b3812008-02-29 15:21:01 -05003726}
3727#endif
3728
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07003729static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00003730{
3731 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00003732 unsigned int rr_interval = 0;
3733
3734 /*
3735 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
3736 * idle runqueue:
3737 */
Peter Williams0d721ce2009-09-21 01:31:53 +00003738 if (rq->cfs.load.weight)
3739 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
Peter Williams0d721ce2009-09-21 01:31:53 +00003740
3741 return rr_interval;
3742}
3743
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003744/*
3745 * All the scheduling class methods:
3746 */
Ingo Molnar5522d5d2007-10-15 17:00:12 +02003747static const struct sched_class fair_sched_class = {
3748 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003749 .enqueue_task = enqueue_task_fair,
3750 .dequeue_task = dequeue_task_fair,
3751 .yield_task = yield_task_fair,
3752
Ingo Molnar2e09bf52007-10-15 17:00:05 +02003753 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003754
3755 .pick_next_task = pick_next_task_fair,
3756 .put_prev_task = put_prev_task_fair,
3757
Peter Williams681f3e62007-10-24 18:23:51 +02003758#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08003759 .select_task_rq = select_task_rq_fair,
3760
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01003761 .rq_online = rq_online_fair,
3762 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003763
3764 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02003765#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003766
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02003767 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003768 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01003769 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01003770
3771 .prio_changed = prio_changed_fair,
3772 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05003773
Peter Williams0d721ce2009-09-21 01:31:53 +00003774 .get_rr_interval = get_rr_interval_fair,
3775
Peter Zijlstra810b3812008-02-29 15:21:01 -05003776#ifdef CONFIG_FAIR_GROUP_SCHED
3777 .moved_group = moved_group_fair,
3778#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003779};
3780
3781#ifdef CONFIG_SCHED_DEBUG
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02003782static void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003783{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003784 struct cfs_rq *cfs_rq;
3785
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01003786 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02003787 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02003788 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01003789 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003790}
3791#endif