Jason Uhlenkott | 535c6a5 | 2007-07-19 01:49:48 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Intel 3000/3010 Memory Controller kernel module |
| 3 | * Copyright (C) 2007 Akamai Technologies, Inc. |
| 4 | * Shamelessly copied from: |
| 5 | * Intel D82875P Memory Controller kernel module |
| 6 | * (C) 2003 Linux Networx (http://lnxi.com) |
| 7 | * |
| 8 | * This file may be distributed under the terms of the |
| 9 | * GNU General Public License. |
| 10 | */ |
| 11 | |
| 12 | #include <linux/module.h> |
| 13 | #include <linux/init.h> |
| 14 | #include <linux/pci.h> |
| 15 | #include <linux/pci_ids.h> |
| 16 | #include <linux/slab.h> |
| 17 | #include "edac_core.h" |
| 18 | |
| 19 | #define I3000_REVISION "1.1" |
| 20 | |
| 21 | #define EDAC_MOD_STR "i3000_edac" |
| 22 | |
| 23 | #define I3000_RANKS 8 |
| 24 | #define I3000_RANKS_PER_CHANNEL 4 |
| 25 | #define I3000_CHANNELS 2 |
| 26 | |
| 27 | /* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */ |
| 28 | |
| 29 | #define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */ |
| 30 | #define I3000_MCHBAR_MASK 0xffffc000 |
| 31 | #define I3000_MMR_WINDOW_SIZE 16384 |
| 32 | |
| 33 | #define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b) |
| 34 | * |
| 35 | * 7:1 reserved |
| 36 | * 0 bit 32 of address |
| 37 | */ |
| 38 | #define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b) |
| 39 | * |
| 40 | * 31:7 address |
| 41 | * 6:1 reserved |
| 42 | * 0 Error channel 0/1 |
| 43 | */ |
| 44 | #define I3000_DEAP_GRAIN (1 << 7) |
| 45 | #define I3000_DEAP_PFN(edeap, deap) ((((edeap) & 1) << (32 - PAGE_SHIFT)) | \ |
| 46 | ((deap) >> PAGE_SHIFT)) |
| 47 | #define I3000_DEAP_OFFSET(deap) ((deap) & ~(I3000_DEAP_GRAIN-1) & ~PAGE_MASK) |
| 48 | #define I3000_DEAP_CHANNEL(deap) ((deap) & 1) |
| 49 | |
| 50 | #define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b) |
| 51 | * |
| 52 | * 7:0 DRAM ECC Syndrome |
| 53 | */ |
| 54 | |
| 55 | #define I3000_ERRSTS 0xc8 /* Error Status Register (16b) |
| 56 | * |
| 57 | * 15:12 reserved |
| 58 | * 11 MCH Thermal Sensor Event for SMI/SCI/SERR |
| 59 | * 10 reserved |
| 60 | * 9 LOCK to non-DRAM Memory Flag (LCKF) |
| 61 | * 8 Received Refresh Timeout Flag (RRTOF) |
| 62 | * 7:2 reserved |
| 63 | * 1 Multiple-bit DRAM ECC Error Flag (DMERR) |
| 64 | * 0 Single-bit DRAM ECC Error Flag (DSERR) |
| 65 | */ |
| 66 | #define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */ |
| 67 | #define I3000_ERRSTS_UE 0x0002 |
| 68 | #define I3000_ERRSTS_CE 0x0001 |
| 69 | |
| 70 | #define I3000_ERRCMD 0xca /* Error Command (16b) |
| 71 | * |
| 72 | * 15:12 reserved |
| 73 | * 11 SERR on MCH Thermal Sensor Event (TSESERR) |
| 74 | * 10 reserved |
| 75 | * 9 SERR on LOCK to non-DRAM Memory (LCKERR) |
| 76 | * 8 SERR on DRAM Refresh Timeout (DRTOERR) |
| 77 | * 7:2 reserved |
| 78 | * 1 SERR Multiple-Bit DRAM ECC Error (DMERR) |
| 79 | * 0 SERR on Single-Bit ECC Error (DSERR) |
| 80 | */ |
| 81 | |
| 82 | /* Intel MMIO register space - device 0 function 0 - MMR space */ |
| 83 | |
| 84 | #define I3000_DRB_SHIFT 25 /* 32MiB grain */ |
| 85 | |
| 86 | #define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4) |
| 87 | * |
| 88 | * 7:0 Channel 0 DRAM Rank Boundary Address |
| 89 | */ |
| 90 | #define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4) |
| 91 | * |
| 92 | * 7:0 Channel 1 DRAM Rank Boundary Address |
| 93 | */ |
| 94 | |
| 95 | #define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2) |
| 96 | * |
| 97 | * 7 reserved |
| 98 | * 6:4 DRAM odd Rank Attribute |
| 99 | * 3 reserved |
| 100 | * 2:0 DRAM even Rank Attribute |
| 101 | * |
| 102 | * Each attribute defines the page |
| 103 | * size of the corresponding rank: |
| 104 | * 000: unpopulated |
| 105 | * 001: reserved |
| 106 | * 010: 4 KB |
| 107 | * 011: 8 KB |
| 108 | * 100: 16 KB |
| 109 | * Others: reserved |
| 110 | */ |
| 111 | #define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */ |
| 112 | #define ODD_RANK_ATTRIB(dra) (((dra) & 0x70) >> 4) |
| 113 | #define EVEN_RANK_ATTRIB(dra) ((dra) & 0x07) |
| 114 | |
| 115 | #define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b) |
| 116 | * |
| 117 | * 31:30 reserved |
| 118 | * 29 Initialization Complete (IC) |
| 119 | * 28:11 reserved |
| 120 | * 10:8 Refresh Mode Select (RMS) |
| 121 | * 7 reserved |
| 122 | * 6:4 Mode Select (SMS) |
| 123 | * 3:2 reserved |
| 124 | * 1:0 DRAM Type (DT) |
| 125 | */ |
| 126 | |
| 127 | #define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b) |
| 128 | * |
| 129 | * 31 Enhanced Addressing Enable (ENHADE) |
| 130 | * 30:0 reserved |
| 131 | */ |
| 132 | |
| 133 | |
| 134 | enum i3000p_chips { |
| 135 | I3000 = 0, |
| 136 | }; |
| 137 | |
| 138 | struct i3000_dev_info { |
| 139 | const char *ctl_name; |
| 140 | }; |
| 141 | |
| 142 | struct i3000_error_info { |
| 143 | u16 errsts; |
| 144 | u8 derrsyn; |
| 145 | u8 edeap; |
| 146 | u32 deap; |
| 147 | u16 errsts2; |
| 148 | }; |
| 149 | |
| 150 | static const struct i3000_dev_info i3000_devs[] = { |
| 151 | [I3000] = { |
| 152 | .ctl_name = "i3000" |
| 153 | }, |
| 154 | }; |
| 155 | |
| 156 | static struct pci_dev *mci_pdev = NULL; |
| 157 | static int i3000_registered = 1; |
| 158 | |
| 159 | static void i3000_get_error_info(struct mem_ctl_info *mci, |
| 160 | struct i3000_error_info *info) |
| 161 | { |
| 162 | struct pci_dev *pdev; |
| 163 | |
| 164 | pdev = to_pci_dev(mci->dev); |
| 165 | |
| 166 | /* |
| 167 | * This is a mess because there is no atomic way to read all the |
| 168 | * registers at once and the registers can transition from CE being |
| 169 | * overwritten by UE. |
| 170 | */ |
| 171 | pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts); |
| 172 | if (!(info->errsts & I3000_ERRSTS_BITS)) |
| 173 | return; |
| 174 | pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap); |
| 175 | pci_read_config_dword(pdev, I3000_DEAP, &info->deap); |
| 176 | pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn); |
| 177 | pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2); |
| 178 | |
| 179 | /* |
| 180 | * If the error is the same for both reads then the first set |
| 181 | * of reads is valid. If there is a change then there is a CE |
| 182 | * with no info and the second set of reads is valid and |
| 183 | * should be UE info. |
| 184 | */ |
| 185 | if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) { |
| 186 | pci_read_config_byte(pdev, I3000_EDEAP, |
| 187 | &info->edeap); |
| 188 | pci_read_config_dword(pdev, I3000_DEAP, |
| 189 | &info->deap); |
| 190 | pci_read_config_byte(pdev, I3000_DERRSYN, |
| 191 | &info->derrsyn); |
| 192 | } |
| 193 | |
| 194 | /* Clear any error bits. |
| 195 | * (Yes, we really clear bits by writing 1 to them.) |
| 196 | */ |
| 197 | pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS, I3000_ERRSTS_BITS); |
| 198 | } |
| 199 | |
| 200 | static int i3000_process_error_info(struct mem_ctl_info *mci, |
| 201 | struct i3000_error_info *info, int handle_errors) |
| 202 | { |
| 203 | int row, multi_chan; |
| 204 | int pfn, offset, channel; |
| 205 | |
| 206 | multi_chan = mci->csrows[0].nr_channels - 1; |
| 207 | |
| 208 | if (!(info->errsts & I3000_ERRSTS_BITS)) |
| 209 | return 0; |
| 210 | |
| 211 | if (!handle_errors) |
| 212 | return 1; |
| 213 | |
| 214 | if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) { |
| 215 | edac_mc_handle_ce_no_info(mci, "UE overwrote CE"); |
| 216 | info->errsts = info->errsts2; |
| 217 | } |
| 218 | |
| 219 | pfn = I3000_DEAP_PFN(info->edeap, info->deap); |
| 220 | offset = I3000_DEAP_OFFSET(info->deap); |
| 221 | channel = I3000_DEAP_CHANNEL(info->deap); |
| 222 | |
| 223 | row = edac_mc_find_csrow_by_page(mci, pfn); |
| 224 | |
| 225 | if (info->errsts & I3000_ERRSTS_UE) |
| 226 | edac_mc_handle_ue(mci, pfn, offset, row, "i3000 UE"); |
| 227 | else |
| 228 | edac_mc_handle_ce(mci, pfn, offset, info->derrsyn, row, |
| 229 | multi_chan ? channel : 0, |
| 230 | "i3000 CE"); |
| 231 | |
| 232 | return 1; |
| 233 | } |
| 234 | |
| 235 | static void i3000_check(struct mem_ctl_info *mci) |
| 236 | { |
| 237 | struct i3000_error_info info; |
| 238 | |
| 239 | debugf1("MC%d: %s()\n", mci->mc_idx, __func__); |
| 240 | i3000_get_error_info(mci, &info); |
| 241 | i3000_process_error_info(mci, &info, 1); |
| 242 | } |
| 243 | |
| 244 | static int i3000_is_interleaved(const unsigned char *c0dra, |
| 245 | const unsigned char *c1dra, |
| 246 | const unsigned char *c0drb, |
| 247 | const unsigned char *c1drb) |
| 248 | { |
| 249 | int i; |
| 250 | |
| 251 | /* If the channels aren't populated identically then |
| 252 | * we're not interleaved. |
| 253 | */ |
| 254 | for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++) |
| 255 | if (ODD_RANK_ATTRIB(c0dra[i]) != ODD_RANK_ATTRIB(c1dra[i]) || |
| 256 | EVEN_RANK_ATTRIB(c0dra[i]) != EVEN_RANK_ATTRIB(c1dra[i])) |
| 257 | return 0; |
| 258 | |
| 259 | /* If the rank boundaries for the two channels are different |
| 260 | * then we're not interleaved. |
| 261 | */ |
| 262 | for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) |
| 263 | if (c0drb[i] != c1drb[i]) |
| 264 | return 0; |
| 265 | |
| 266 | return 1; |
| 267 | } |
| 268 | |
| 269 | static int i3000_probe1(struct pci_dev *pdev, int dev_idx) |
| 270 | { |
| 271 | int rc; |
| 272 | int i; |
| 273 | struct mem_ctl_info *mci = NULL; |
| 274 | unsigned long last_cumul_size; |
| 275 | int interleaved, nr_channels; |
| 276 | unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS]; |
| 277 | unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2]; |
| 278 | unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL]; |
| 279 | unsigned long mchbar; |
| 280 | void *window; |
| 281 | |
| 282 | debugf0("MC: %s()\n", __func__); |
| 283 | |
| 284 | pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *)&mchbar); |
| 285 | mchbar &= I3000_MCHBAR_MASK; |
| 286 | window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE); |
| 287 | if (!window) { |
| 288 | printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n", mchbar); |
| 289 | return -ENODEV; |
| 290 | } |
| 291 | |
| 292 | c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */ |
| 293 | c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */ |
| 294 | c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */ |
| 295 | c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */ |
| 296 | |
| 297 | for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) { |
| 298 | c0drb[i] = readb(window + I3000_C0DRB + i); |
| 299 | c1drb[i] = readb(window + I3000_C1DRB + i); |
| 300 | } |
| 301 | |
| 302 | iounmap(window); |
| 303 | |
| 304 | /* Figure out how many channels we have. |
| 305 | * |
| 306 | * If we have what the datasheet calls "asymmetric channels" |
| 307 | * (essentially the same as what was called "virtual single |
| 308 | * channel mode" in the i82875) then it's a single channel as |
| 309 | * far as EDAC is concerned. |
| 310 | */ |
| 311 | interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb); |
| 312 | nr_channels = interleaved ? 2 : 1; |
| 313 | mci = edac_mc_alloc(0, I3000_RANKS / nr_channels, nr_channels); |
| 314 | if (!mci) |
| 315 | return -ENOMEM; |
| 316 | |
| 317 | debugf3("MC: %s(): init mci\n", __func__); |
| 318 | |
| 319 | mci->dev = &pdev->dev; |
| 320 | mci->mtype_cap = MEM_FLAG_DDR2; |
| 321 | |
| 322 | mci->edac_ctl_cap = EDAC_FLAG_SECDED; |
| 323 | mci->edac_cap = EDAC_FLAG_SECDED; |
| 324 | |
| 325 | mci->mod_name = EDAC_MOD_STR; |
| 326 | mci->mod_ver = I3000_REVISION; |
| 327 | mci->ctl_name = i3000_devs[dev_idx].ctl_name; |
| 328 | mci->dev_name = pci_name(pdev); |
| 329 | mci->edac_check = i3000_check; |
| 330 | mci->ctl_page_to_phys = NULL; |
| 331 | |
| 332 | /* |
| 333 | * The dram rank boundary (DRB) reg values are boundary addresses |
| 334 | * for each DRAM rank with a granularity of 32MB. DRB regs are |
| 335 | * cumulative; the last one will contain the total memory |
| 336 | * contained in all ranks. |
| 337 | * |
| 338 | * If we're in interleaved mode then we're only walking through |
| 339 | * the ranks of controller 0, so we double all the values we see. |
| 340 | */ |
| 341 | for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) { |
| 342 | u8 value; |
| 343 | u32 cumul_size; |
| 344 | struct csrow_info *csrow = &mci->csrows[i]; |
| 345 | |
| 346 | value = drb[i]; |
| 347 | cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT); |
| 348 | if (interleaved) |
| 349 | cumul_size <<= 1; |
| 350 | debugf3("MC: %s(): (%d) cumul_size 0x%x\n", |
| 351 | __func__, i, cumul_size); |
| 352 | if (cumul_size == last_cumul_size) { |
| 353 | csrow->mtype = MEM_EMPTY; |
| 354 | continue; |
| 355 | } |
| 356 | |
| 357 | csrow->first_page = last_cumul_size; |
| 358 | csrow->last_page = cumul_size - 1; |
| 359 | csrow->nr_pages = cumul_size - last_cumul_size; |
| 360 | last_cumul_size = cumul_size; |
| 361 | csrow->grain = I3000_DEAP_GRAIN; |
| 362 | csrow->mtype = MEM_DDR2; |
| 363 | csrow->dtype = DEV_UNKNOWN; |
| 364 | csrow->edac_mode = EDAC_UNKNOWN; |
| 365 | } |
| 366 | |
| 367 | /* Clear any error bits. |
| 368 | * (Yes, we really clear bits by writing 1 to them.) |
| 369 | */ |
| 370 | pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS, I3000_ERRSTS_BITS); |
| 371 | |
| 372 | rc = -ENODEV; |
| 373 | if (edac_mc_add_mc(mci, 0)) { |
| 374 | debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__); |
| 375 | goto fail; |
| 376 | } |
| 377 | |
| 378 | /* get this far and it's successful */ |
| 379 | debugf3("MC: %s(): success\n", __func__); |
| 380 | return 0; |
| 381 | |
| 382 | fail: |
| 383 | if (mci) |
| 384 | edac_mc_free(mci); |
| 385 | |
| 386 | return rc; |
| 387 | } |
| 388 | |
| 389 | /* returns count (>= 0), or negative on error */ |
| 390 | static int __devinit i3000_init_one(struct pci_dev *pdev, |
| 391 | const struct pci_device_id *ent) |
| 392 | { |
| 393 | int rc; |
| 394 | |
| 395 | debugf0("MC: %s()\n", __func__); |
| 396 | |
| 397 | if (pci_enable_device(pdev) < 0) |
| 398 | return -EIO; |
| 399 | |
| 400 | rc = i3000_probe1(pdev, ent->driver_data); |
| 401 | if (mci_pdev == NULL) |
| 402 | mci_pdev = pci_dev_get(pdev); |
| 403 | |
| 404 | return rc; |
| 405 | } |
| 406 | |
| 407 | static void __devexit i3000_remove_one(struct pci_dev *pdev) |
| 408 | { |
| 409 | struct mem_ctl_info *mci; |
| 410 | |
| 411 | debugf0("%s()\n", __func__); |
| 412 | |
| 413 | if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL) |
| 414 | return; |
| 415 | |
| 416 | edac_mc_free(mci); |
| 417 | } |
| 418 | |
| 419 | static const struct pci_device_id i3000_pci_tbl[] __devinitdata = { |
| 420 | { |
| 421 | PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0, |
| 422 | I3000 |
| 423 | }, |
| 424 | { |
| 425 | 0, |
| 426 | } /* 0 terminated list. */ |
| 427 | }; |
| 428 | |
| 429 | MODULE_DEVICE_TABLE(pci, i3000_pci_tbl); |
| 430 | |
| 431 | static struct pci_driver i3000_driver = { |
| 432 | .name = EDAC_MOD_STR, |
| 433 | .probe = i3000_init_one, |
| 434 | .remove = __devexit_p(i3000_remove_one), |
| 435 | .id_table = i3000_pci_tbl, |
| 436 | }; |
| 437 | |
| 438 | static int __init i3000_init(void) |
| 439 | { |
| 440 | int pci_rc; |
| 441 | |
| 442 | debugf3("MC: %s()\n", __func__); |
| 443 | pci_rc = pci_register_driver(&i3000_driver); |
| 444 | if (pci_rc < 0) |
| 445 | goto fail0; |
| 446 | |
| 447 | if (mci_pdev == NULL) { |
| 448 | i3000_registered = 0; |
| 449 | mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL, |
| 450 | PCI_DEVICE_ID_INTEL_3000_HB, NULL); |
| 451 | if (!mci_pdev) { |
| 452 | debugf0("i3000 pci_get_device fail\n"); |
| 453 | pci_rc = -ENODEV; |
| 454 | goto fail1; |
| 455 | } |
| 456 | |
| 457 | pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl); |
| 458 | if (pci_rc < 0) { |
| 459 | debugf0("i3000 init fail\n"); |
| 460 | pci_rc = -ENODEV; |
| 461 | goto fail1; |
| 462 | } |
| 463 | } |
| 464 | |
| 465 | return 0; |
| 466 | |
| 467 | fail1: |
| 468 | pci_unregister_driver(&i3000_driver); |
| 469 | |
| 470 | fail0: |
| 471 | if (mci_pdev) |
| 472 | pci_dev_put(mci_pdev); |
| 473 | |
| 474 | return pci_rc; |
| 475 | } |
| 476 | |
| 477 | static void __exit i3000_exit(void) |
| 478 | { |
| 479 | debugf3("MC: %s()\n", __func__); |
| 480 | |
| 481 | pci_unregister_driver(&i3000_driver); |
| 482 | if (!i3000_registered) { |
| 483 | i3000_remove_one(mci_pdev); |
| 484 | pci_dev_put(mci_pdev); |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | module_init(i3000_init); |
| 489 | module_exit(i3000_exit); |
| 490 | |
| 491 | MODULE_LICENSE("GPL"); |
| 492 | MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott"); |
| 493 | MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers"); |