blob: 570925d410a77eba1c95502ba68a6f5e8e39efbe [file] [log] [blame]
Jason Uhlenkott535c6a52007-07-19 01:49:48 -07001/*
2 * Intel 3000/3010 Memory Controller kernel module
3 * Copyright (C) 2007 Akamai Technologies, Inc.
4 * Shamelessly copied from:
5 * Intel D82875P Memory Controller kernel module
6 * (C) 2003 Linux Networx (http://lnxi.com)
7 *
8 * This file may be distributed under the terms of the
9 * GNU General Public License.
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/pci.h>
15#include <linux/pci_ids.h>
16#include <linux/slab.h>
17#include "edac_core.h"
18
19#define I3000_REVISION "1.1"
20
21#define EDAC_MOD_STR "i3000_edac"
22
23#define I3000_RANKS 8
24#define I3000_RANKS_PER_CHANNEL 4
25#define I3000_CHANNELS 2
26
27/* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
28
29#define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */
30#define I3000_MCHBAR_MASK 0xffffc000
31#define I3000_MMR_WINDOW_SIZE 16384
32
33#define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b)
34 *
35 * 7:1 reserved
36 * 0 bit 32 of address
37 */
38#define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b)
39 *
40 * 31:7 address
41 * 6:1 reserved
42 * 0 Error channel 0/1
43 */
44#define I3000_DEAP_GRAIN (1 << 7)
45#define I3000_DEAP_PFN(edeap, deap) ((((edeap) & 1) << (32 - PAGE_SHIFT)) | \
46 ((deap) >> PAGE_SHIFT))
47#define I3000_DEAP_OFFSET(deap) ((deap) & ~(I3000_DEAP_GRAIN-1) & ~PAGE_MASK)
48#define I3000_DEAP_CHANNEL(deap) ((deap) & 1)
49
50#define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b)
51 *
52 * 7:0 DRAM ECC Syndrome
53 */
54
55#define I3000_ERRSTS 0xc8 /* Error Status Register (16b)
56 *
57 * 15:12 reserved
58 * 11 MCH Thermal Sensor Event for SMI/SCI/SERR
59 * 10 reserved
60 * 9 LOCK to non-DRAM Memory Flag (LCKF)
61 * 8 Received Refresh Timeout Flag (RRTOF)
62 * 7:2 reserved
63 * 1 Multiple-bit DRAM ECC Error Flag (DMERR)
64 * 0 Single-bit DRAM ECC Error Flag (DSERR)
65 */
66#define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */
67#define I3000_ERRSTS_UE 0x0002
68#define I3000_ERRSTS_CE 0x0001
69
70#define I3000_ERRCMD 0xca /* Error Command (16b)
71 *
72 * 15:12 reserved
73 * 11 SERR on MCH Thermal Sensor Event (TSESERR)
74 * 10 reserved
75 * 9 SERR on LOCK to non-DRAM Memory (LCKERR)
76 * 8 SERR on DRAM Refresh Timeout (DRTOERR)
77 * 7:2 reserved
78 * 1 SERR Multiple-Bit DRAM ECC Error (DMERR)
79 * 0 SERR on Single-Bit ECC Error (DSERR)
80 */
81
82/* Intel MMIO register space - device 0 function 0 - MMR space */
83
84#define I3000_DRB_SHIFT 25 /* 32MiB grain */
85
86#define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4)
87 *
88 * 7:0 Channel 0 DRAM Rank Boundary Address
89 */
90#define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4)
91 *
92 * 7:0 Channel 1 DRAM Rank Boundary Address
93 */
94
95#define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2)
96 *
97 * 7 reserved
98 * 6:4 DRAM odd Rank Attribute
99 * 3 reserved
100 * 2:0 DRAM even Rank Attribute
101 *
102 * Each attribute defines the page
103 * size of the corresponding rank:
104 * 000: unpopulated
105 * 001: reserved
106 * 010: 4 KB
107 * 011: 8 KB
108 * 100: 16 KB
109 * Others: reserved
110 */
111#define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */
112#define ODD_RANK_ATTRIB(dra) (((dra) & 0x70) >> 4)
113#define EVEN_RANK_ATTRIB(dra) ((dra) & 0x07)
114
115#define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b)
116 *
117 * 31:30 reserved
118 * 29 Initialization Complete (IC)
119 * 28:11 reserved
120 * 10:8 Refresh Mode Select (RMS)
121 * 7 reserved
122 * 6:4 Mode Select (SMS)
123 * 3:2 reserved
124 * 1:0 DRAM Type (DT)
125 */
126
127#define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b)
128 *
129 * 31 Enhanced Addressing Enable (ENHADE)
130 * 30:0 reserved
131 */
132
133
134enum i3000p_chips {
135 I3000 = 0,
136};
137
138struct i3000_dev_info {
139 const char *ctl_name;
140};
141
142struct i3000_error_info {
143 u16 errsts;
144 u8 derrsyn;
145 u8 edeap;
146 u32 deap;
147 u16 errsts2;
148};
149
150static const struct i3000_dev_info i3000_devs[] = {
151 [I3000] = {
152 .ctl_name = "i3000"
153 },
154};
155
156static struct pci_dev *mci_pdev = NULL;
157static int i3000_registered = 1;
158
159static void i3000_get_error_info(struct mem_ctl_info *mci,
160 struct i3000_error_info *info)
161{
162 struct pci_dev *pdev;
163
164 pdev = to_pci_dev(mci->dev);
165
166 /*
167 * This is a mess because there is no atomic way to read all the
168 * registers at once and the registers can transition from CE being
169 * overwritten by UE.
170 */
171 pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
172 if (!(info->errsts & I3000_ERRSTS_BITS))
173 return;
174 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
175 pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
176 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
177 pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
178
179 /*
180 * If the error is the same for both reads then the first set
181 * of reads is valid. If there is a change then there is a CE
182 * with no info and the second set of reads is valid and
183 * should be UE info.
184 */
185 if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
186 pci_read_config_byte(pdev, I3000_EDEAP,
187 &info->edeap);
188 pci_read_config_dword(pdev, I3000_DEAP,
189 &info->deap);
190 pci_read_config_byte(pdev, I3000_DERRSYN,
191 &info->derrsyn);
192 }
193
194 /* Clear any error bits.
195 * (Yes, we really clear bits by writing 1 to them.)
196 */
197 pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS, I3000_ERRSTS_BITS);
198}
199
200static int i3000_process_error_info(struct mem_ctl_info *mci,
201 struct i3000_error_info *info, int handle_errors)
202{
203 int row, multi_chan;
204 int pfn, offset, channel;
205
206 multi_chan = mci->csrows[0].nr_channels - 1;
207
208 if (!(info->errsts & I3000_ERRSTS_BITS))
209 return 0;
210
211 if (!handle_errors)
212 return 1;
213
214 if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
215 edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
216 info->errsts = info->errsts2;
217 }
218
219 pfn = I3000_DEAP_PFN(info->edeap, info->deap);
220 offset = I3000_DEAP_OFFSET(info->deap);
221 channel = I3000_DEAP_CHANNEL(info->deap);
222
223 row = edac_mc_find_csrow_by_page(mci, pfn);
224
225 if (info->errsts & I3000_ERRSTS_UE)
226 edac_mc_handle_ue(mci, pfn, offset, row, "i3000 UE");
227 else
228 edac_mc_handle_ce(mci, pfn, offset, info->derrsyn, row,
229 multi_chan ? channel : 0,
230 "i3000 CE");
231
232 return 1;
233}
234
235static void i3000_check(struct mem_ctl_info *mci)
236{
237 struct i3000_error_info info;
238
239 debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
240 i3000_get_error_info(mci, &info);
241 i3000_process_error_info(mci, &info, 1);
242}
243
244static int i3000_is_interleaved(const unsigned char *c0dra,
245 const unsigned char *c1dra,
246 const unsigned char *c0drb,
247 const unsigned char *c1drb)
248{
249 int i;
250
251 /* If the channels aren't populated identically then
252 * we're not interleaved.
253 */
254 for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
255 if (ODD_RANK_ATTRIB(c0dra[i]) != ODD_RANK_ATTRIB(c1dra[i]) ||
256 EVEN_RANK_ATTRIB(c0dra[i]) != EVEN_RANK_ATTRIB(c1dra[i]))
257 return 0;
258
259 /* If the rank boundaries for the two channels are different
260 * then we're not interleaved.
261 */
262 for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
263 if (c0drb[i] != c1drb[i])
264 return 0;
265
266 return 1;
267}
268
269static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
270{
271 int rc;
272 int i;
273 struct mem_ctl_info *mci = NULL;
274 unsigned long last_cumul_size;
275 int interleaved, nr_channels;
276 unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
277 unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
278 unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
279 unsigned long mchbar;
280 void *window;
281
282 debugf0("MC: %s()\n", __func__);
283
284 pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *)&mchbar);
285 mchbar &= I3000_MCHBAR_MASK;
286 window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
287 if (!window) {
288 printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n", mchbar);
289 return -ENODEV;
290 }
291
292 c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */
293 c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */
294 c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */
295 c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */
296
297 for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
298 c0drb[i] = readb(window + I3000_C0DRB + i);
299 c1drb[i] = readb(window + I3000_C1DRB + i);
300 }
301
302 iounmap(window);
303
304 /* Figure out how many channels we have.
305 *
306 * If we have what the datasheet calls "asymmetric channels"
307 * (essentially the same as what was called "virtual single
308 * channel mode" in the i82875) then it's a single channel as
309 * far as EDAC is concerned.
310 */
311 interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
312 nr_channels = interleaved ? 2 : 1;
313 mci = edac_mc_alloc(0, I3000_RANKS / nr_channels, nr_channels);
314 if (!mci)
315 return -ENOMEM;
316
317 debugf3("MC: %s(): init mci\n", __func__);
318
319 mci->dev = &pdev->dev;
320 mci->mtype_cap = MEM_FLAG_DDR2;
321
322 mci->edac_ctl_cap = EDAC_FLAG_SECDED;
323 mci->edac_cap = EDAC_FLAG_SECDED;
324
325 mci->mod_name = EDAC_MOD_STR;
326 mci->mod_ver = I3000_REVISION;
327 mci->ctl_name = i3000_devs[dev_idx].ctl_name;
328 mci->dev_name = pci_name(pdev);
329 mci->edac_check = i3000_check;
330 mci->ctl_page_to_phys = NULL;
331
332 /*
333 * The dram rank boundary (DRB) reg values are boundary addresses
334 * for each DRAM rank with a granularity of 32MB. DRB regs are
335 * cumulative; the last one will contain the total memory
336 * contained in all ranks.
337 *
338 * If we're in interleaved mode then we're only walking through
339 * the ranks of controller 0, so we double all the values we see.
340 */
341 for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
342 u8 value;
343 u32 cumul_size;
344 struct csrow_info *csrow = &mci->csrows[i];
345
346 value = drb[i];
347 cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
348 if (interleaved)
349 cumul_size <<= 1;
350 debugf3("MC: %s(): (%d) cumul_size 0x%x\n",
351 __func__, i, cumul_size);
352 if (cumul_size == last_cumul_size) {
353 csrow->mtype = MEM_EMPTY;
354 continue;
355 }
356
357 csrow->first_page = last_cumul_size;
358 csrow->last_page = cumul_size - 1;
359 csrow->nr_pages = cumul_size - last_cumul_size;
360 last_cumul_size = cumul_size;
361 csrow->grain = I3000_DEAP_GRAIN;
362 csrow->mtype = MEM_DDR2;
363 csrow->dtype = DEV_UNKNOWN;
364 csrow->edac_mode = EDAC_UNKNOWN;
365 }
366
367 /* Clear any error bits.
368 * (Yes, we really clear bits by writing 1 to them.)
369 */
370 pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS, I3000_ERRSTS_BITS);
371
372 rc = -ENODEV;
373 if (edac_mc_add_mc(mci, 0)) {
374 debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
375 goto fail;
376 }
377
378 /* get this far and it's successful */
379 debugf3("MC: %s(): success\n", __func__);
380 return 0;
381
382 fail:
383 if (mci)
384 edac_mc_free(mci);
385
386 return rc;
387}
388
389/* returns count (>= 0), or negative on error */
390static int __devinit i3000_init_one(struct pci_dev *pdev,
391 const struct pci_device_id *ent)
392{
393 int rc;
394
395 debugf0("MC: %s()\n", __func__);
396
397 if (pci_enable_device(pdev) < 0)
398 return -EIO;
399
400 rc = i3000_probe1(pdev, ent->driver_data);
401 if (mci_pdev == NULL)
402 mci_pdev = pci_dev_get(pdev);
403
404 return rc;
405}
406
407static void __devexit i3000_remove_one(struct pci_dev *pdev)
408{
409 struct mem_ctl_info *mci;
410
411 debugf0("%s()\n", __func__);
412
413 if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
414 return;
415
416 edac_mc_free(mci);
417}
418
419static const struct pci_device_id i3000_pci_tbl[] __devinitdata = {
420 {
421 PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
422 I3000
423 },
424 {
425 0,
426 } /* 0 terminated list. */
427};
428
429MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
430
431static struct pci_driver i3000_driver = {
432 .name = EDAC_MOD_STR,
433 .probe = i3000_init_one,
434 .remove = __devexit_p(i3000_remove_one),
435 .id_table = i3000_pci_tbl,
436};
437
438static int __init i3000_init(void)
439{
440 int pci_rc;
441
442 debugf3("MC: %s()\n", __func__);
443 pci_rc = pci_register_driver(&i3000_driver);
444 if (pci_rc < 0)
445 goto fail0;
446
447 if (mci_pdev == NULL) {
448 i3000_registered = 0;
449 mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
450 PCI_DEVICE_ID_INTEL_3000_HB, NULL);
451 if (!mci_pdev) {
452 debugf0("i3000 pci_get_device fail\n");
453 pci_rc = -ENODEV;
454 goto fail1;
455 }
456
457 pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
458 if (pci_rc < 0) {
459 debugf0("i3000 init fail\n");
460 pci_rc = -ENODEV;
461 goto fail1;
462 }
463 }
464
465 return 0;
466
467fail1:
468 pci_unregister_driver(&i3000_driver);
469
470fail0:
471 if (mci_pdev)
472 pci_dev_put(mci_pdev);
473
474 return pci_rc;
475}
476
477static void __exit i3000_exit(void)
478{
479 debugf3("MC: %s()\n", __func__);
480
481 pci_unregister_driver(&i3000_driver);
482 if (!i3000_registered) {
483 i3000_remove_one(mci_pdev);
484 pci_dev_put(mci_pdev);
485 }
486}
487
488module_init(i3000_init);
489module_exit(i3000_exit);
490
491MODULE_LICENSE("GPL");
492MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
493MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");