blob: 095ffa56ed940283e75cb076e18472956b00fb2d [file] [log] [blame]
Auke Kokbc7f75f2007-09-17 12:30:59 -07001/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
Bruce Allanad680762008-03-28 09:15:03 -07004 Copyright(c) 1999 - 2008 Intel Corporation.
Auke Kokbc7f75f2007-09-17 12:30:59 -07005
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
Bruce Allan16059272008-11-21 16:51:06 -080030 * 82562G 10/100 Network Connection
Auke Kokbc7f75f2007-09-17 12:30:59 -070031 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
Bruce Allan97ac8ca2008-04-29 09:16:05 -070042 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
Bruce Allan16059272008-11-21 16:51:06 -080044 * 82567V Gigabit Network Connection
Bruce Allan97ac8ca2008-04-29 09:16:05 -070045 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
Bruce Allanf4187b52008-08-26 18:36:50 -070048 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
Bruce Allan2f15f9d2008-08-26 18:36:36 -070050 * 82567LM-4 Gigabit Network Connection
Bruce Allana4f58f52009-06-02 11:29:18 +000051 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
Auke Kokbc7f75f2007-09-17 12:30:59 -070055 */
56
57#include <linux/netdevice.h>
58#include <linux/ethtool.h>
59#include <linux/delay.h>
60#include <linux/pci.h>
61
62#include "e1000.h"
63
64#define ICH_FLASH_GFPREG 0x0000
65#define ICH_FLASH_HSFSTS 0x0004
66#define ICH_FLASH_HSFCTL 0x0006
67#define ICH_FLASH_FADDR 0x0008
68#define ICH_FLASH_FDATA0 0x0010
Bruce Allan4a770352008-10-01 17:18:35 -070069#define ICH_FLASH_PR0 0x0074
Auke Kokbc7f75f2007-09-17 12:30:59 -070070
71#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
72#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
73#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
74#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
75#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
76
77#define ICH_CYCLE_READ 0
78#define ICH_CYCLE_WRITE 2
79#define ICH_CYCLE_ERASE 3
80
81#define FLASH_GFPREG_BASE_MASK 0x1FFF
82#define FLASH_SECTOR_ADDR_SHIFT 12
83
84#define ICH_FLASH_SEG_SIZE_256 256
85#define ICH_FLASH_SEG_SIZE_4K 4096
86#define ICH_FLASH_SEG_SIZE_8K 8192
87#define ICH_FLASH_SEG_SIZE_64K 65536
88
89
90#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
91
92#define E1000_ICH_MNG_IAMT_MODE 0x2
93
94#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
95 (ID_LED_DEF1_OFF2 << 8) | \
96 (ID_LED_DEF1_ON2 << 4) | \
97 (ID_LED_DEF1_DEF2))
98
99#define E1000_ICH_NVM_SIG_WORD 0x13
100#define E1000_ICH_NVM_SIG_MASK 0xC000
Bruce Allane2434552008-11-21 17:02:41 -0800101#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
102#define E1000_ICH_NVM_SIG_VALUE 0x80
Auke Kokbc7f75f2007-09-17 12:30:59 -0700103
104#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
105
106#define E1000_FEXTNVM_SW_CONFIG 1
107#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
108
109#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
110
111#define E1000_ICH_RAR_ENTRIES 7
112
113#define PHY_PAGE_SHIFT 5
114#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
115 ((reg) & MAX_PHY_REG_ADDRESS))
116#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
117#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
118
119#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
120#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
121#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
122
Bruce Allana4f58f52009-06-02 11:29:18 +0000123#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
124
Bruce Allan53ac5a82009-10-26 11:23:06 +0000125#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
126
Bruce Allanf523d212009-10-29 13:45:45 +0000127/* SMBus Address Phy Register */
128#define HV_SMB_ADDR PHY_REG(768, 26)
129#define HV_SMB_ADDR_PEC_EN 0x0200
130#define HV_SMB_ADDR_VALID 0x0080
131
132/* Strapping Option Register - RO */
133#define E1000_STRAP 0x0000C
134#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
135#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
136
Bruce Allanfa2ce132009-10-26 11:23:25 +0000137/* OEM Bits Phy Register */
138#define HV_OEM_BITS PHY_REG(768, 25)
139#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
Bruce Allanf523d212009-10-29 13:45:45 +0000140#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
Bruce Allanfa2ce132009-10-26 11:23:25 +0000141#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
142
Auke Kokbc7f75f2007-09-17 12:30:59 -0700143/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
144/* Offset 04h HSFSTS */
145union ich8_hws_flash_status {
146 struct ich8_hsfsts {
147 u16 flcdone :1; /* bit 0 Flash Cycle Done */
148 u16 flcerr :1; /* bit 1 Flash Cycle Error */
149 u16 dael :1; /* bit 2 Direct Access error Log */
150 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
151 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
152 u16 reserved1 :2; /* bit 13:6 Reserved */
153 u16 reserved2 :6; /* bit 13:6 Reserved */
154 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
155 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
156 } hsf_status;
157 u16 regval;
158};
159
160/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
161/* Offset 06h FLCTL */
162union ich8_hws_flash_ctrl {
163 struct ich8_hsflctl {
164 u16 flcgo :1; /* 0 Flash Cycle Go */
165 u16 flcycle :2; /* 2:1 Flash Cycle */
166 u16 reserved :5; /* 7:3 Reserved */
167 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
168 u16 flockdn :6; /* 15:10 Reserved */
169 } hsf_ctrl;
170 u16 regval;
171};
172
173/* ICH Flash Region Access Permissions */
174union ich8_hws_flash_regacc {
175 struct ich8_flracc {
176 u32 grra :8; /* 0:7 GbE region Read Access */
177 u32 grwa :8; /* 8:15 GbE region Write Access */
178 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
179 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
180 } hsf_flregacc;
181 u16 regval;
182};
183
Bruce Allan4a770352008-10-01 17:18:35 -0700184/* ICH Flash Protected Region */
185union ich8_flash_protected_range {
186 struct ich8_pr {
187 u32 base:13; /* 0:12 Protected Range Base */
188 u32 reserved1:2; /* 13:14 Reserved */
189 u32 rpe:1; /* 15 Read Protection Enable */
190 u32 limit:13; /* 16:28 Protected Range Limit */
191 u32 reserved2:2; /* 29:30 Reserved */
192 u32 wpe:1; /* 31 Write Protection Enable */
193 } range;
194 u32 regval;
195};
196
Auke Kokbc7f75f2007-09-17 12:30:59 -0700197static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
198static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
199static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
200static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
201static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
202static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
203 u32 offset, u8 byte);
Bruce Allanf4187b52008-08-26 18:36:50 -0700204static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
205 u8 *data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700206static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
207 u16 *data);
208static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
209 u8 size, u16 *data);
210static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
211static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
Bruce Allanf4187b52008-08-26 18:36:50 -0700212static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
Bruce Allana4f58f52009-06-02 11:29:18 +0000213static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
214static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
215static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
216static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
217static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
218static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
219static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
220static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
Bruce Allanfa2ce132009-10-26 11:23:25 +0000221static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
Bruce Allanf523d212009-10-29 13:45:45 +0000222static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700223
224static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
225{
226 return readw(hw->flash_address + reg);
227}
228
229static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
230{
231 return readl(hw->flash_address + reg);
232}
233
234static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
235{
236 writew(val, hw->flash_address + reg);
237}
238
239static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
240{
241 writel(val, hw->flash_address + reg);
242}
243
244#define er16flash(reg) __er16flash(hw, (reg))
245#define er32flash(reg) __er32flash(hw, (reg))
246#define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
247#define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
248
249/**
Bruce Allana4f58f52009-06-02 11:29:18 +0000250 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
251 * @hw: pointer to the HW structure
252 *
253 * Initialize family-specific PHY parameters and function pointers.
254 **/
255static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
256{
257 struct e1000_phy_info *phy = &hw->phy;
258 s32 ret_val = 0;
259
260 phy->addr = 1;
261 phy->reset_delay_us = 100;
262
263 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
264 phy->ops.read_phy_reg = e1000_read_phy_reg_hv;
Bruce Allan5ccdcec2009-10-26 11:24:02 +0000265 phy->ops.read_phy_reg_locked = e1000_read_phy_reg_hv_locked;
Bruce Allanfa2ce132009-10-26 11:23:25 +0000266 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
267 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
Bruce Allana4f58f52009-06-02 11:29:18 +0000268 phy->ops.write_phy_reg = e1000_write_phy_reg_hv;
Bruce Allan5ccdcec2009-10-26 11:24:02 +0000269 phy->ops.write_phy_reg_locked = e1000_write_phy_reg_hv_locked;
Bruce Allana4f58f52009-06-02 11:29:18 +0000270 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
271
272 phy->id = e1000_phy_unknown;
273 e1000e_get_phy_id(hw);
274 phy->type = e1000e_get_phy_type_from_id(phy->id);
275
276 if (phy->type == e1000_phy_82577) {
277 phy->ops.check_polarity = e1000_check_polarity_82577;
278 phy->ops.force_speed_duplex =
279 e1000_phy_force_speed_duplex_82577;
280 phy->ops.get_cable_length = e1000_get_cable_length_82577;
281 phy->ops.get_phy_info = e1000_get_phy_info_82577;
282 phy->ops.commit_phy = e1000e_phy_sw_reset;
283 }
284
285 return ret_val;
286}
287
288/**
Auke Kokbc7f75f2007-09-17 12:30:59 -0700289 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
290 * @hw: pointer to the HW structure
291 *
292 * Initialize family-specific PHY parameters and function pointers.
293 **/
294static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
295{
296 struct e1000_phy_info *phy = &hw->phy;
297 s32 ret_val;
298 u16 i = 0;
299
300 phy->addr = 1;
301 phy->reset_delay_us = 100;
302
Bruce Allan97ac8ca2008-04-29 09:16:05 -0700303 /*
304 * We may need to do this twice - once for IGP and if that fails,
305 * we'll set BM func pointers and try again
306 */
307 ret_val = e1000e_determine_phy_address(hw);
308 if (ret_val) {
309 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
310 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
311 ret_val = e1000e_determine_phy_address(hw);
312 if (ret_val)
313 return ret_val;
314 }
315
Auke Kokbc7f75f2007-09-17 12:30:59 -0700316 phy->id = 0;
317 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
318 (i++ < 100)) {
319 msleep(1);
320 ret_val = e1000e_get_phy_id(hw);
321 if (ret_val)
322 return ret_val;
323 }
324
325 /* Verify phy id */
326 switch (phy->id) {
327 case IGP03E1000_E_PHY_ID:
328 phy->type = e1000_phy_igp_3;
329 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
Bruce Allan5ccdcec2009-10-26 11:24:02 +0000330 phy->ops.read_phy_reg_locked = e1000e_read_phy_reg_igp_locked;
331 phy->ops.write_phy_reg_locked = e1000e_write_phy_reg_igp_locked;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700332 break;
333 case IFE_E_PHY_ID:
334 case IFE_PLUS_E_PHY_ID:
335 case IFE_C_E_PHY_ID:
336 phy->type = e1000_phy_ife;
337 phy->autoneg_mask = E1000_ALL_NOT_GIG;
338 break;
Bruce Allan97ac8ca2008-04-29 09:16:05 -0700339 case BME1000_E_PHY_ID:
340 phy->type = e1000_phy_bm;
341 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
342 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
343 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
344 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
345 break;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700346 default:
347 return -E1000_ERR_PHY;
348 break;
349 }
350
Bruce Allana4f58f52009-06-02 11:29:18 +0000351 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
352
Auke Kokbc7f75f2007-09-17 12:30:59 -0700353 return 0;
354}
355
356/**
357 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
358 * @hw: pointer to the HW structure
359 *
360 * Initialize family-specific NVM parameters and function
361 * pointers.
362 **/
363static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
364{
365 struct e1000_nvm_info *nvm = &hw->nvm;
366 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
Bruce Allan148675a2009-08-07 07:41:56 +0000367 u32 gfpreg, sector_base_addr, sector_end_addr;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700368 u16 i;
369
Bruce Allanad680762008-03-28 09:15:03 -0700370 /* Can't read flash registers if the register set isn't mapped. */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700371 if (!hw->flash_address) {
372 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
373 return -E1000_ERR_CONFIG;
374 }
375
376 nvm->type = e1000_nvm_flash_sw;
377
378 gfpreg = er32flash(ICH_FLASH_GFPREG);
379
Bruce Allanad680762008-03-28 09:15:03 -0700380 /*
381 * sector_X_addr is a "sector"-aligned address (4096 bytes)
Auke Kokbc7f75f2007-09-17 12:30:59 -0700382 * Add 1 to sector_end_addr since this sector is included in
Bruce Allanad680762008-03-28 09:15:03 -0700383 * the overall size.
384 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700385 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
386 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
387
388 /* flash_base_addr is byte-aligned */
389 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
390
Bruce Allanad680762008-03-28 09:15:03 -0700391 /*
392 * find total size of the NVM, then cut in half since the total
393 * size represents two separate NVM banks.
394 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700395 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
396 << FLASH_SECTOR_ADDR_SHIFT;
397 nvm->flash_bank_size /= 2;
398 /* Adjust to word count */
399 nvm->flash_bank_size /= sizeof(u16);
400
401 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
402
403 /* Clear shadow ram */
404 for (i = 0; i < nvm->word_size; i++) {
405 dev_spec->shadow_ram[i].modified = 0;
406 dev_spec->shadow_ram[i].value = 0xFFFF;
407 }
408
409 return 0;
410}
411
412/**
413 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
414 * @hw: pointer to the HW structure
415 *
416 * Initialize family-specific MAC parameters and function
417 * pointers.
418 **/
419static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
420{
421 struct e1000_hw *hw = &adapter->hw;
422 struct e1000_mac_info *mac = &hw->mac;
423
424 /* Set media type function pointer */
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700425 hw->phy.media_type = e1000_media_type_copper;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700426
427 /* Set mta register count */
428 mac->mta_reg_count = 32;
429 /* Set rar entry count */
430 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
431 if (mac->type == e1000_ich8lan)
432 mac->rar_entry_count--;
433 /* Set if manageability features are enabled. */
434 mac->arc_subsystem_valid = 1;
435
Bruce Allana4f58f52009-06-02 11:29:18 +0000436 /* LED operations */
437 switch (mac->type) {
438 case e1000_ich8lan:
439 case e1000_ich9lan:
440 case e1000_ich10lan:
441 /* ID LED init */
442 mac->ops.id_led_init = e1000e_id_led_init;
443 /* setup LED */
444 mac->ops.setup_led = e1000e_setup_led_generic;
445 /* cleanup LED */
446 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
447 /* turn on/off LED */
448 mac->ops.led_on = e1000_led_on_ich8lan;
449 mac->ops.led_off = e1000_led_off_ich8lan;
450 break;
451 case e1000_pchlan:
452 /* ID LED init */
453 mac->ops.id_led_init = e1000_id_led_init_pchlan;
454 /* setup LED */
455 mac->ops.setup_led = e1000_setup_led_pchlan;
456 /* cleanup LED */
457 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
458 /* turn on/off LED */
459 mac->ops.led_on = e1000_led_on_pchlan;
460 mac->ops.led_off = e1000_led_off_pchlan;
461 break;
462 default:
463 break;
464 }
465
Auke Kokbc7f75f2007-09-17 12:30:59 -0700466 /* Enable PCS Lock-loss workaround for ICH8 */
467 if (mac->type == e1000_ich8lan)
468 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
469
470 return 0;
471}
472
Bruce Allan7d3cabb2009-07-01 13:29:08 +0000473/**
474 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
475 * @hw: pointer to the HW structure
476 *
477 * Checks to see of the link status of the hardware has changed. If a
478 * change in link status has been detected, then we read the PHY registers
479 * to get the current speed/duplex if link exists.
480 **/
481static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
482{
483 struct e1000_mac_info *mac = &hw->mac;
484 s32 ret_val;
485 bool link;
486
487 /*
488 * We only want to go out to the PHY registers to see if Auto-Neg
489 * has completed and/or if our link status has changed. The
490 * get_link_status flag is set upon receiving a Link Status
491 * Change or Rx Sequence Error interrupt.
492 */
493 if (!mac->get_link_status) {
494 ret_val = 0;
495 goto out;
496 }
497
498 if (hw->mac.type == e1000_pchlan) {
499 ret_val = e1000e_write_kmrn_reg(hw,
500 E1000_KMRNCTRLSTA_K1_CONFIG,
501 E1000_KMRNCTRLSTA_K1_ENABLE);
502 if (ret_val)
503 goto out;
504 }
505
506 /*
507 * First we want to see if the MII Status Register reports
508 * link. If so, then we want to get the current speed/duplex
509 * of the PHY.
510 */
511 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
512 if (ret_val)
513 goto out;
514
515 if (!link)
516 goto out; /* No link detected */
517
518 mac->get_link_status = false;
519
520 if (hw->phy.type == e1000_phy_82578) {
521 ret_val = e1000_link_stall_workaround_hv(hw);
522 if (ret_val)
523 goto out;
524 }
525
526 /*
527 * Check if there was DownShift, must be checked
528 * immediately after link-up
529 */
530 e1000e_check_downshift(hw);
531
532 /*
533 * If we are forcing speed/duplex, then we simply return since
534 * we have already determined whether we have link or not.
535 */
536 if (!mac->autoneg) {
537 ret_val = -E1000_ERR_CONFIG;
538 goto out;
539 }
540
541 /*
542 * Auto-Neg is enabled. Auto Speed Detection takes care
543 * of MAC speed/duplex configuration. So we only need to
544 * configure Collision Distance in the MAC.
545 */
546 e1000e_config_collision_dist(hw);
547
548 /*
549 * Configure Flow Control now that Auto-Neg has completed.
550 * First, we need to restore the desired flow control
551 * settings because we may have had to re-autoneg with a
552 * different link partner.
553 */
554 ret_val = e1000e_config_fc_after_link_up(hw);
555 if (ret_val)
556 hw_dbg(hw, "Error configuring flow control\n");
557
558out:
559 return ret_val;
560}
561
Jeff Kirsher69e3fd82008-04-02 13:48:18 -0700562static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
Auke Kokbc7f75f2007-09-17 12:30:59 -0700563{
564 struct e1000_hw *hw = &adapter->hw;
565 s32 rc;
566
567 rc = e1000_init_mac_params_ich8lan(adapter);
568 if (rc)
569 return rc;
570
571 rc = e1000_init_nvm_params_ich8lan(hw);
572 if (rc)
573 return rc;
574
Bruce Allana4f58f52009-06-02 11:29:18 +0000575 if (hw->mac.type == e1000_pchlan)
576 rc = e1000_init_phy_params_pchlan(hw);
577 else
578 rc = e1000_init_phy_params_ich8lan(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700579 if (rc)
580 return rc;
581
Bruce Allan2adc55c2009-06-02 11:28:58 +0000582 if (adapter->hw.phy.type == e1000_phy_ife) {
583 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
584 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
585 }
586
Auke Kokbc7f75f2007-09-17 12:30:59 -0700587 if ((adapter->hw.mac.type == e1000_ich8lan) &&
588 (adapter->hw.phy.type == e1000_phy_igp_3))
589 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
590
591 return 0;
592}
593
Thomas Gleixner717d4382008-10-02 16:33:40 -0700594static DEFINE_MUTEX(nvm_mutex);
Thomas Gleixner717d4382008-10-02 16:33:40 -0700595
Auke Kokbc7f75f2007-09-17 12:30:59 -0700596/**
Bruce Allanca15df52009-10-26 11:23:43 +0000597 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
598 * @hw: pointer to the HW structure
599 *
600 * Acquires the mutex for performing NVM operations.
601 **/
602static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
603{
604 mutex_lock(&nvm_mutex);
605
606 return 0;
607}
608
609/**
610 * e1000_release_nvm_ich8lan - Release NVM mutex
611 * @hw: pointer to the HW structure
612 *
613 * Releases the mutex used while performing NVM operations.
614 **/
615static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
616{
617 mutex_unlock(&nvm_mutex);
618
619 return;
620}
621
622static DEFINE_MUTEX(swflag_mutex);
623
624/**
Auke Kokbc7f75f2007-09-17 12:30:59 -0700625 * e1000_acquire_swflag_ich8lan - Acquire software control flag
626 * @hw: pointer to the HW structure
627 *
Bruce Allanca15df52009-10-26 11:23:43 +0000628 * Acquires the software control flag for performing PHY and select
629 * MAC CSR accesses.
Auke Kokbc7f75f2007-09-17 12:30:59 -0700630 **/
631static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
632{
Bruce Allan373a88d2009-08-07 07:41:37 +0000633 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
634 s32 ret_val = 0;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700635
Linus Torvalds95b866d2008-10-03 09:18:17 -0700636 might_sleep();
Thomas Gleixner717d4382008-10-02 16:33:40 -0700637
Bruce Allanca15df52009-10-26 11:23:43 +0000638 mutex_lock(&swflag_mutex);
Thomas Gleixner717d4382008-10-02 16:33:40 -0700639
Auke Kokbc7f75f2007-09-17 12:30:59 -0700640 while (timeout) {
641 extcnf_ctrl = er32(EXTCNF_CTRL);
Bruce Allan373a88d2009-08-07 07:41:37 +0000642 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
643 break;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700644
Auke Kokbc7f75f2007-09-17 12:30:59 -0700645 mdelay(1);
646 timeout--;
647 }
648
649 if (!timeout) {
Bruce Allan373a88d2009-08-07 07:41:37 +0000650 hw_dbg(hw, "SW/FW/HW has locked the resource for too long.\n");
651 ret_val = -E1000_ERR_CONFIG;
652 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700653 }
654
Bruce Allan53ac5a82009-10-26 11:23:06 +0000655 timeout = SW_FLAG_TIMEOUT;
Bruce Allan373a88d2009-08-07 07:41:37 +0000656
657 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
658 ew32(EXTCNF_CTRL, extcnf_ctrl);
659
660 while (timeout) {
661 extcnf_ctrl = er32(EXTCNF_CTRL);
662 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
663 break;
664
665 mdelay(1);
666 timeout--;
667 }
668
669 if (!timeout) {
670 hw_dbg(hw, "Failed to acquire the semaphore.\n");
671 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
672 ew32(EXTCNF_CTRL, extcnf_ctrl);
673 ret_val = -E1000_ERR_CONFIG;
674 goto out;
675 }
676
677out:
678 if (ret_val)
Bruce Allanca15df52009-10-26 11:23:43 +0000679 mutex_unlock(&swflag_mutex);
Bruce Allan373a88d2009-08-07 07:41:37 +0000680
681 return ret_val;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700682}
683
684/**
685 * e1000_release_swflag_ich8lan - Release software control flag
686 * @hw: pointer to the HW structure
687 *
Bruce Allanca15df52009-10-26 11:23:43 +0000688 * Releases the software control flag for performing PHY and select
689 * MAC CSR accesses.
Auke Kokbc7f75f2007-09-17 12:30:59 -0700690 **/
691static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
692{
693 u32 extcnf_ctrl;
694
695 extcnf_ctrl = er32(EXTCNF_CTRL);
696 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
697 ew32(EXTCNF_CTRL, extcnf_ctrl);
Thomas Gleixner717d4382008-10-02 16:33:40 -0700698
Bruce Allanca15df52009-10-26 11:23:43 +0000699 mutex_unlock(&swflag_mutex);
700
701 return;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700702}
703
704/**
Bruce Allan4662e822008-08-26 18:37:06 -0700705 * e1000_check_mng_mode_ich8lan - Checks management mode
706 * @hw: pointer to the HW structure
707 *
708 * This checks if the adapter has manageability enabled.
709 * This is a function pointer entry point only called by read/write
710 * routines for the PHY and NVM parts.
711 **/
712static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
713{
714 u32 fwsm = er32(FWSM);
715
716 return (fwsm & E1000_FWSM_MODE_MASK) ==
717 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
718}
719
720/**
Auke Kokbc7f75f2007-09-17 12:30:59 -0700721 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
722 * @hw: pointer to the HW structure
723 *
724 * Checks if firmware is blocking the reset of the PHY.
725 * This is a function pointer entry point only called by
726 * reset routines.
727 **/
728static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
729{
730 u32 fwsm;
731
732 fwsm = er32(FWSM);
733
734 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
735}
736
737/**
738 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
739 * @hw: pointer to the HW structure
740 *
741 * Forces the speed and duplex settings of the PHY.
742 * This is a function pointer entry point only called by
743 * PHY setup routines.
744 **/
745static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
746{
747 struct e1000_phy_info *phy = &hw->phy;
748 s32 ret_val;
749 u16 data;
750 bool link;
751
752 if (phy->type != e1000_phy_ife) {
753 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
754 return ret_val;
755 }
756
757 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
758 if (ret_val)
759 return ret_val;
760
761 e1000e_phy_force_speed_duplex_setup(hw, &data);
762
763 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
764 if (ret_val)
765 return ret_val;
766
767 /* Disable MDI-X support for 10/100 */
768 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
769 if (ret_val)
770 return ret_val;
771
772 data &= ~IFE_PMC_AUTO_MDIX;
773 data &= ~IFE_PMC_FORCE_MDIX;
774
775 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
776 if (ret_val)
777 return ret_val;
778
779 hw_dbg(hw, "IFE PMC: %X\n", data);
780
781 udelay(1);
782
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700783 if (phy->autoneg_wait_to_complete) {
Auke Kokbc7f75f2007-09-17 12:30:59 -0700784 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
785
786 ret_val = e1000e_phy_has_link_generic(hw,
787 PHY_FORCE_LIMIT,
788 100000,
789 &link);
790 if (ret_val)
791 return ret_val;
792
793 if (!link)
794 hw_dbg(hw, "Link taking longer than expected.\n");
795
796 /* Try once more */
797 ret_val = e1000e_phy_has_link_generic(hw,
798 PHY_FORCE_LIMIT,
799 100000,
800 &link);
801 if (ret_val)
802 return ret_val;
803 }
804
805 return 0;
806}
807
808/**
Bruce Allanf523d212009-10-29 13:45:45 +0000809 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
810 * @hw: pointer to the HW structure
811 *
812 * SW should configure the LCD from the NVM extended configuration region
813 * as a workaround for certain parts.
814 **/
815static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
816{
817 struct e1000_phy_info *phy = &hw->phy;
818 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
819 s32 ret_val;
820 u16 word_addr, reg_data, reg_addr, phy_page = 0;
821
822 ret_val = hw->phy.ops.acquire_phy(hw);
823 if (ret_val)
824 return ret_val;
825
826 /*
827 * Initialize the PHY from the NVM on ICH platforms. This
828 * is needed due to an issue where the NVM configuration is
829 * not properly autoloaded after power transitions.
830 * Therefore, after each PHY reset, we will load the
831 * configuration data out of the NVM manually.
832 */
833 if ((hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) ||
834 (hw->mac.type == e1000_pchlan)) {
835 struct e1000_adapter *adapter = hw->adapter;
836
837 /* Check if SW needs to configure the PHY */
838 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
839 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M) ||
840 (hw->mac.type == e1000_pchlan))
841 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
842 else
843 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
844
845 data = er32(FEXTNVM);
846 if (!(data & sw_cfg_mask))
847 goto out;
848
849 /* Wait for basic configuration completes before proceeding */
850 e1000_lan_init_done_ich8lan(hw);
851
852 /*
853 * Make sure HW does not configure LCD from PHY
854 * extended configuration before SW configuration
855 */
856 data = er32(EXTCNF_CTRL);
857 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
858 goto out;
859
860 cnf_size = er32(EXTCNF_SIZE);
861 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
862 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
863 if (!cnf_size)
864 goto out;
865
866 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
867 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
868
869 if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
870 (hw->mac.type == e1000_pchlan)) {
871 /*
872 * HW configures the SMBus address and LEDs when the
873 * OEM and LCD Write Enable bits are set in the NVM.
874 * When both NVM bits are cleared, SW will configure
875 * them instead.
876 */
877 data = er32(STRAP);
878 data &= E1000_STRAP_SMBUS_ADDRESS_MASK;
879 reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT;
880 reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
881 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR,
882 reg_data);
883 if (ret_val)
884 goto out;
885
886 data = er32(LEDCTL);
887 ret_val = e1000_write_phy_reg_hv_locked(hw,
888 HV_LED_CONFIG,
889 (u16)data);
890 if (ret_val)
891 goto out;
892 }
893 /* Configure LCD from extended configuration region. */
894
895 /* cnf_base_addr is in DWORD */
896 word_addr = (u16)(cnf_base_addr << 1);
897
898 for (i = 0; i < cnf_size; i++) {
899 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
900 &reg_data);
901 if (ret_val)
902 goto out;
903
904 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
905 1, &reg_addr);
906 if (ret_val)
907 goto out;
908
909 /* Save off the PHY page for future writes. */
910 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
911 phy_page = reg_data;
912 continue;
913 }
914
915 reg_addr &= PHY_REG_MASK;
916 reg_addr |= phy_page;
917
918 ret_val = phy->ops.write_phy_reg_locked(hw,
919 (u32)reg_addr,
920 reg_data);
921 if (ret_val)
922 goto out;
923 }
924 }
925
926out:
927 hw->phy.ops.release_phy(hw);
928 return ret_val;
929}
930
931/**
932 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
933 * @hw: pointer to the HW structure
934 * @d0_state: boolean if entering d0 or d3 device state
935 *
936 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
937 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
938 * in NVM determines whether HW should configure LPLU and Gbe Disable.
939 **/
940static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
941{
942 s32 ret_val = 0;
943 u32 mac_reg;
944 u16 oem_reg;
945
946 if (hw->mac.type != e1000_pchlan)
947 return ret_val;
948
949 ret_val = hw->phy.ops.acquire_phy(hw);
950 if (ret_val)
951 return ret_val;
952
953 mac_reg = er32(EXTCNF_CTRL);
954 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
955 goto out;
956
957 mac_reg = er32(FEXTNVM);
958 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
959 goto out;
960
961 mac_reg = er32(PHY_CTRL);
962
963 ret_val = hw->phy.ops.read_phy_reg_locked(hw, HV_OEM_BITS, &oem_reg);
964 if (ret_val)
965 goto out;
966
967 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
968
969 if (d0_state) {
970 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
971 oem_reg |= HV_OEM_BITS_GBE_DIS;
972
973 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
974 oem_reg |= HV_OEM_BITS_LPLU;
975 } else {
976 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
977 oem_reg |= HV_OEM_BITS_GBE_DIS;
978
979 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
980 oem_reg |= HV_OEM_BITS_LPLU;
981 }
982 /* Restart auto-neg to activate the bits */
983 oem_reg |= HV_OEM_BITS_RESTART_AN;
984 ret_val = hw->phy.ops.write_phy_reg_locked(hw, HV_OEM_BITS, oem_reg);
985
986out:
987 hw->phy.ops.release_phy(hw);
988
989 return ret_val;
990}
991
992
993/**
Bruce Allana4f58f52009-06-02 11:29:18 +0000994 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
995 * done after every PHY reset.
996 **/
997static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
998{
999 s32 ret_val = 0;
1000
1001 if (hw->mac.type != e1000_pchlan)
1002 return ret_val;
1003
1004 if (((hw->phy.type == e1000_phy_82577) &&
1005 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1006 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1007 /* Disable generation of early preamble */
1008 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1009 if (ret_val)
1010 return ret_val;
1011
1012 /* Preamble tuning for SSC */
1013 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
1014 if (ret_val)
1015 return ret_val;
1016 }
1017
1018 if (hw->phy.type == e1000_phy_82578) {
1019 /*
1020 * Return registers to default by doing a soft reset then
1021 * writing 0x3140 to the control register.
1022 */
1023 if (hw->phy.revision < 2) {
1024 e1000e_phy_sw_reset(hw);
1025 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1026 }
1027 }
1028
1029 /* Select page 0 */
1030 ret_val = hw->phy.ops.acquire_phy(hw);
1031 if (ret_val)
1032 return ret_val;
1033 hw->phy.addr = 1;
1034 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1035 hw->phy.ops.release_phy(hw);
1036
1037 return ret_val;
1038}
1039
1040/**
Bruce Allanfc0c7762009-07-01 13:27:55 +00001041 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1042 * @hw: pointer to the HW structure
1043 *
1044 * Check the appropriate indication the MAC has finished configuring the
1045 * PHY after a software reset.
1046 **/
1047static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1048{
1049 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1050
1051 /* Wait for basic configuration completes before proceeding */
1052 do {
1053 data = er32(STATUS);
1054 data &= E1000_STATUS_LAN_INIT_DONE;
1055 udelay(100);
1056 } while ((!data) && --loop);
1057
1058 /*
1059 * If basic configuration is incomplete before the above loop
1060 * count reaches 0, loading the configuration from NVM will
1061 * leave the PHY in a bad state possibly resulting in no link.
1062 */
1063 if (loop == 0)
1064 hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
1065
1066 /* Clear the Init Done bit for the next init event */
1067 data = er32(STATUS);
1068 data &= ~E1000_STATUS_LAN_INIT_DONE;
1069 ew32(STATUS, data);
1070}
1071
1072/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07001073 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1074 * @hw: pointer to the HW structure
1075 *
1076 * Resets the PHY
1077 * This is a function pointer entry point called by drivers
1078 * or other shared routines.
1079 **/
1080static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1081{
Bruce Allanf523d212009-10-29 13:45:45 +00001082 s32 ret_val = 0;
1083 u16 reg;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001084
1085 ret_val = e1000e_phy_hw_reset_generic(hw);
1086 if (ret_val)
1087 return ret_val;
1088
Bruce Allanfc0c7762009-07-01 13:27:55 +00001089 /* Allow time for h/w to get to a quiescent state after reset */
1090 mdelay(10);
1091
Bruce Allana4f58f52009-06-02 11:29:18 +00001092 if (hw->mac.type == e1000_pchlan) {
1093 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1094 if (ret_val)
1095 return ret_val;
1096 }
1097
Bruce Allandb2932e2009-10-26 11:22:47 +00001098 /* Dummy read to clear the phy wakeup bit after lcd reset */
1099 if (hw->mac.type == e1000_pchlan)
1100 e1e_rphy(hw, BM_WUC, &reg);
1101
Bruce Allanf523d212009-10-29 13:45:45 +00001102 /* Configure the LCD with the extended configuration region in NVM */
1103 ret_val = e1000_sw_lcd_config_ich8lan(hw);
1104 if (ret_val)
1105 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001106
Bruce Allanf523d212009-10-29 13:45:45 +00001107 /* Configure the LCD with the OEM bits in NVM */
1108 if (hw->mac.type == e1000_pchlan)
1109 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001110
Bruce Allanf523d212009-10-29 13:45:45 +00001111out:
Auke Kokbc7f75f2007-09-17 12:30:59 -07001112 return 0;
1113}
1114
1115/**
1116 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
1117 * @hw: pointer to the HW structure
1118 *
1119 * Populates "phy" structure with various feature states.
1120 * This function is only called by other family-specific
1121 * routines.
1122 **/
1123static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
1124{
1125 struct e1000_phy_info *phy = &hw->phy;
1126 s32 ret_val;
1127 u16 data;
1128 bool link;
1129
1130 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1131 if (ret_val)
1132 return ret_val;
1133
1134 if (!link) {
1135 hw_dbg(hw, "Phy info is only valid if link is up\n");
1136 return -E1000_ERR_CONFIG;
1137 }
1138
1139 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
1140 if (ret_val)
1141 return ret_val;
1142 phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
1143
1144 if (phy->polarity_correction) {
Bruce Allana4f58f52009-06-02 11:29:18 +00001145 ret_val = phy->ops.check_polarity(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001146 if (ret_val)
1147 return ret_val;
1148 } else {
1149 /* Polarity is forced */
1150 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
1151 ? e1000_rev_polarity_reversed
1152 : e1000_rev_polarity_normal;
1153 }
1154
1155 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1156 if (ret_val)
1157 return ret_val;
1158
1159 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
1160
1161 /* The following parameters are undefined for 10/100 operation. */
1162 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1163 phy->local_rx = e1000_1000t_rx_status_undefined;
1164 phy->remote_rx = e1000_1000t_rx_status_undefined;
1165
1166 return 0;
1167}
1168
1169/**
1170 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
1171 * @hw: pointer to the HW structure
1172 *
1173 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
1174 * This is a function pointer entry point called by drivers
1175 * or other shared routines.
1176 **/
1177static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
1178{
1179 switch (hw->phy.type) {
1180 case e1000_phy_ife:
1181 return e1000_get_phy_info_ife_ich8lan(hw);
1182 break;
1183 case e1000_phy_igp_3:
Bruce Allan97ac8ca2008-04-29 09:16:05 -07001184 case e1000_phy_bm:
Bruce Allana4f58f52009-06-02 11:29:18 +00001185 case e1000_phy_82578:
1186 case e1000_phy_82577:
Auke Kokbc7f75f2007-09-17 12:30:59 -07001187 return e1000e_get_phy_info_igp(hw);
1188 break;
1189 default:
1190 break;
1191 }
1192
1193 return -E1000_ERR_PHY_TYPE;
1194}
1195
1196/**
1197 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
1198 * @hw: pointer to the HW structure
1199 *
Auke Kok489815c2008-02-21 15:11:07 -08001200 * Polarity is determined on the polarity reversal feature being enabled.
Auke Kokbc7f75f2007-09-17 12:30:59 -07001201 * This function is only called by other family-specific
1202 * routines.
1203 **/
1204static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
1205{
1206 struct e1000_phy_info *phy = &hw->phy;
1207 s32 ret_val;
1208 u16 phy_data, offset, mask;
1209
Bruce Allanad680762008-03-28 09:15:03 -07001210 /*
1211 * Polarity is determined based on the reversal feature being enabled.
Auke Kokbc7f75f2007-09-17 12:30:59 -07001212 */
1213 if (phy->polarity_correction) {
1214 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1215 mask = IFE_PESC_POLARITY_REVERSED;
1216 } else {
1217 offset = IFE_PHY_SPECIAL_CONTROL;
1218 mask = IFE_PSC_FORCE_POLARITY;
1219 }
1220
1221 ret_val = e1e_rphy(hw, offset, &phy_data);
1222
1223 if (!ret_val)
1224 phy->cable_polarity = (phy_data & mask)
1225 ? e1000_rev_polarity_reversed
1226 : e1000_rev_polarity_normal;
1227
1228 return ret_val;
1229}
1230
1231/**
Bruce Allanfa2ce132009-10-26 11:23:25 +00001232 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1233 * @hw: pointer to the HW structure
1234 * @active: true to enable LPLU, false to disable
1235 *
1236 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1237 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1238 * the phy speed. This function will manually set the LPLU bit and restart
1239 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1240 * since it configures the same bit.
1241 **/
1242static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1243{
1244 s32 ret_val = 0;
1245 u16 oem_reg;
1246
1247 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1248 if (ret_val)
1249 goto out;
1250
1251 if (active)
1252 oem_reg |= HV_OEM_BITS_LPLU;
1253 else
1254 oem_reg &= ~HV_OEM_BITS_LPLU;
1255
1256 oem_reg |= HV_OEM_BITS_RESTART_AN;
1257 ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1258
1259out:
1260 return ret_val;
1261}
1262
1263/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07001264 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1265 * @hw: pointer to the HW structure
1266 * @active: TRUE to enable LPLU, FALSE to disable
1267 *
1268 * Sets the LPLU D0 state according to the active flag. When
1269 * activating LPLU this function also disables smart speed
1270 * and vice versa. LPLU will not be activated unless the
1271 * device autonegotiation advertisement meets standards of
1272 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1273 * This is a function pointer entry point only called by
1274 * PHY setup routines.
1275 **/
1276static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1277{
1278 struct e1000_phy_info *phy = &hw->phy;
1279 u32 phy_ctrl;
1280 s32 ret_val = 0;
1281 u16 data;
1282
Bruce Allan97ac8ca2008-04-29 09:16:05 -07001283 if (phy->type == e1000_phy_ife)
Auke Kokbc7f75f2007-09-17 12:30:59 -07001284 return ret_val;
1285
1286 phy_ctrl = er32(PHY_CTRL);
1287
1288 if (active) {
1289 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1290 ew32(PHY_CTRL, phy_ctrl);
1291
Bruce Allan60f12922009-07-01 13:28:14 +00001292 if (phy->type != e1000_phy_igp_3)
1293 return 0;
1294
Bruce Allanad680762008-03-28 09:15:03 -07001295 /*
1296 * Call gig speed drop workaround on LPLU before accessing
1297 * any PHY registers
1298 */
Bruce Allan60f12922009-07-01 13:28:14 +00001299 if (hw->mac.type == e1000_ich8lan)
Auke Kokbc7f75f2007-09-17 12:30:59 -07001300 e1000e_gig_downshift_workaround_ich8lan(hw);
1301
1302 /* When LPLU is enabled, we should disable SmartSpeed */
1303 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1304 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1305 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1306 if (ret_val)
1307 return ret_val;
1308 } else {
1309 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1310 ew32(PHY_CTRL, phy_ctrl);
1311
Bruce Allan60f12922009-07-01 13:28:14 +00001312 if (phy->type != e1000_phy_igp_3)
1313 return 0;
1314
Bruce Allanad680762008-03-28 09:15:03 -07001315 /*
1316 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
Auke Kokbc7f75f2007-09-17 12:30:59 -07001317 * during Dx states where the power conservation is most
1318 * important. During driver activity we should enable
Bruce Allanad680762008-03-28 09:15:03 -07001319 * SmartSpeed, so performance is maintained.
1320 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001321 if (phy->smart_speed == e1000_smart_speed_on) {
1322 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -07001323 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001324 if (ret_val)
1325 return ret_val;
1326
1327 data |= IGP01E1000_PSCFR_SMART_SPEED;
1328 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -07001329 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001330 if (ret_val)
1331 return ret_val;
1332 } else if (phy->smart_speed == e1000_smart_speed_off) {
1333 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -07001334 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001335 if (ret_val)
1336 return ret_val;
1337
1338 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1339 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -07001340 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001341 if (ret_val)
1342 return ret_val;
1343 }
1344 }
1345
1346 return 0;
1347}
1348
1349/**
1350 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1351 * @hw: pointer to the HW structure
1352 * @active: TRUE to enable LPLU, FALSE to disable
1353 *
1354 * Sets the LPLU D3 state according to the active flag. When
1355 * activating LPLU this function also disables smart speed
1356 * and vice versa. LPLU will not be activated unless the
1357 * device autonegotiation advertisement meets standards of
1358 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1359 * This is a function pointer entry point only called by
1360 * PHY setup routines.
1361 **/
1362static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1363{
1364 struct e1000_phy_info *phy = &hw->phy;
1365 u32 phy_ctrl;
1366 s32 ret_val;
1367 u16 data;
1368
1369 phy_ctrl = er32(PHY_CTRL);
1370
1371 if (!active) {
1372 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1373 ew32(PHY_CTRL, phy_ctrl);
Bruce Allan60f12922009-07-01 13:28:14 +00001374
1375 if (phy->type != e1000_phy_igp_3)
1376 return 0;
1377
Bruce Allanad680762008-03-28 09:15:03 -07001378 /*
1379 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
Auke Kokbc7f75f2007-09-17 12:30:59 -07001380 * during Dx states where the power conservation is most
1381 * important. During driver activity we should enable
Bruce Allanad680762008-03-28 09:15:03 -07001382 * SmartSpeed, so performance is maintained.
1383 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001384 if (phy->smart_speed == e1000_smart_speed_on) {
Bruce Allanad680762008-03-28 09:15:03 -07001385 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1386 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001387 if (ret_val)
1388 return ret_val;
1389
1390 data |= IGP01E1000_PSCFR_SMART_SPEED;
Bruce Allanad680762008-03-28 09:15:03 -07001391 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1392 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001393 if (ret_val)
1394 return ret_val;
1395 } else if (phy->smart_speed == e1000_smart_speed_off) {
Bruce Allanad680762008-03-28 09:15:03 -07001396 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1397 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001398 if (ret_val)
1399 return ret_val;
1400
1401 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
Bruce Allanad680762008-03-28 09:15:03 -07001402 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1403 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001404 if (ret_val)
1405 return ret_val;
1406 }
1407 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1408 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1409 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1410 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1411 ew32(PHY_CTRL, phy_ctrl);
1412
Bruce Allan60f12922009-07-01 13:28:14 +00001413 if (phy->type != e1000_phy_igp_3)
1414 return 0;
1415
Bruce Allanad680762008-03-28 09:15:03 -07001416 /*
1417 * Call gig speed drop workaround on LPLU before accessing
1418 * any PHY registers
1419 */
Bruce Allan60f12922009-07-01 13:28:14 +00001420 if (hw->mac.type == e1000_ich8lan)
Auke Kokbc7f75f2007-09-17 12:30:59 -07001421 e1000e_gig_downshift_workaround_ich8lan(hw);
1422
1423 /* When LPLU is enabled, we should disable SmartSpeed */
Bruce Allanad680762008-03-28 09:15:03 -07001424 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001425 if (ret_val)
1426 return ret_val;
1427
1428 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
Bruce Allanad680762008-03-28 09:15:03 -07001429 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001430 }
1431
1432 return 0;
1433}
1434
1435/**
Bruce Allanf4187b52008-08-26 18:36:50 -07001436 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1437 * @hw: pointer to the HW structure
1438 * @bank: pointer to the variable that returns the active bank
1439 *
1440 * Reads signature byte from the NVM using the flash access registers.
Bruce Allane2434552008-11-21 17:02:41 -08001441 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
Bruce Allanf4187b52008-08-26 18:36:50 -07001442 **/
1443static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1444{
Bruce Allane2434552008-11-21 17:02:41 -08001445 u32 eecd;
Bruce Allanf4187b52008-08-26 18:36:50 -07001446 struct e1000_nvm_info *nvm = &hw->nvm;
Bruce Allanf4187b52008-08-26 18:36:50 -07001447 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1448 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
Bruce Allane2434552008-11-21 17:02:41 -08001449 u8 sig_byte = 0;
1450 s32 ret_val = 0;
Bruce Allanf4187b52008-08-26 18:36:50 -07001451
Bruce Allane2434552008-11-21 17:02:41 -08001452 switch (hw->mac.type) {
1453 case e1000_ich8lan:
1454 case e1000_ich9lan:
1455 eecd = er32(EECD);
1456 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1457 E1000_EECD_SEC1VAL_VALID_MASK) {
1458 if (eecd & E1000_EECD_SEC1VAL)
Bruce Allanf4187b52008-08-26 18:36:50 -07001459 *bank = 1;
Bruce Allane2434552008-11-21 17:02:41 -08001460 else
1461 *bank = 0;
1462
1463 return 0;
Bruce Allanf4187b52008-08-26 18:36:50 -07001464 }
Bruce Allane2434552008-11-21 17:02:41 -08001465 hw_dbg(hw, "Unable to determine valid NVM bank via EEC - "
1466 "reading flash signature\n");
1467 /* fall-thru */
1468 default:
1469 /* set bank to 0 in case flash read fails */
1470 *bank = 0;
1471
1472 /* Check bank 0 */
1473 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1474 &sig_byte);
1475 if (ret_val)
1476 return ret_val;
1477 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1478 E1000_ICH_NVM_SIG_VALUE) {
1479 *bank = 0;
1480 return 0;
1481 }
1482
1483 /* Check bank 1 */
1484 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1485 bank1_offset,
1486 &sig_byte);
1487 if (ret_val)
1488 return ret_val;
1489 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1490 E1000_ICH_NVM_SIG_VALUE) {
1491 *bank = 1;
1492 return 0;
1493 }
1494
1495 hw_dbg(hw, "ERROR: No valid NVM bank present\n");
1496 return -E1000_ERR_NVM;
Bruce Allanf4187b52008-08-26 18:36:50 -07001497 }
1498
1499 return 0;
1500}
1501
1502/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07001503 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1504 * @hw: pointer to the HW structure
1505 * @offset: The offset (in bytes) of the word(s) to read.
1506 * @words: Size of data to read in words
1507 * @data: Pointer to the word(s) to read at offset.
1508 *
1509 * Reads a word(s) from the NVM using the flash access registers.
1510 **/
1511static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1512 u16 *data)
1513{
1514 struct e1000_nvm_info *nvm = &hw->nvm;
1515 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1516 u32 act_offset;
Bruce Allan148675a2009-08-07 07:41:56 +00001517 s32 ret_val = 0;
Bruce Allanf4187b52008-08-26 18:36:50 -07001518 u32 bank = 0;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001519 u16 i, word;
1520
1521 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1522 (words == 0)) {
1523 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
Bruce Allanca15df52009-10-26 11:23:43 +00001524 ret_val = -E1000_ERR_NVM;
1525 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001526 }
1527
Bruce Allanca15df52009-10-26 11:23:43 +00001528 nvm->ops.acquire_nvm(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001529
Bruce Allanf4187b52008-08-26 18:36:50 -07001530 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
Bruce Allan148675a2009-08-07 07:41:56 +00001531 if (ret_val) {
1532 hw_dbg(hw, "Could not detect valid bank, assuming bank 0\n");
1533 bank = 0;
1534 }
Bruce Allanf4187b52008-08-26 18:36:50 -07001535
1536 act_offset = (bank) ? nvm->flash_bank_size : 0;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001537 act_offset += offset;
1538
Bruce Allan148675a2009-08-07 07:41:56 +00001539 ret_val = 0;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001540 for (i = 0; i < words; i++) {
1541 if ((dev_spec->shadow_ram) &&
1542 (dev_spec->shadow_ram[offset+i].modified)) {
1543 data[i] = dev_spec->shadow_ram[offset+i].value;
1544 } else {
1545 ret_val = e1000_read_flash_word_ich8lan(hw,
1546 act_offset + i,
1547 &word);
1548 if (ret_val)
1549 break;
1550 data[i] = word;
1551 }
1552 }
1553
Bruce Allanca15df52009-10-26 11:23:43 +00001554 nvm->ops.release_nvm(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001555
Bruce Allane2434552008-11-21 17:02:41 -08001556out:
1557 if (ret_val)
1558 hw_dbg(hw, "NVM read error: %d\n", ret_val);
1559
Auke Kokbc7f75f2007-09-17 12:30:59 -07001560 return ret_val;
1561}
1562
1563/**
1564 * e1000_flash_cycle_init_ich8lan - Initialize flash
1565 * @hw: pointer to the HW structure
1566 *
1567 * This function does initial flash setup so that a new read/write/erase cycle
1568 * can be started.
1569 **/
1570static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1571{
1572 union ich8_hws_flash_status hsfsts;
1573 s32 ret_val = -E1000_ERR_NVM;
1574 s32 i = 0;
1575
1576 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1577
1578 /* Check if the flash descriptor is valid */
1579 if (hsfsts.hsf_status.fldesvalid == 0) {
1580 hw_dbg(hw, "Flash descriptor invalid. "
1581 "SW Sequencing must be used.");
1582 return -E1000_ERR_NVM;
1583 }
1584
1585 /* Clear FCERR and DAEL in hw status by writing 1 */
1586 hsfsts.hsf_status.flcerr = 1;
1587 hsfsts.hsf_status.dael = 1;
1588
1589 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1590
Bruce Allanad680762008-03-28 09:15:03 -07001591 /*
1592 * Either we should have a hardware SPI cycle in progress
Auke Kokbc7f75f2007-09-17 12:30:59 -07001593 * bit to check against, in order to start a new cycle or
1594 * FDONE bit should be changed in the hardware so that it
Auke Kok489815c2008-02-21 15:11:07 -08001595 * is 1 after hardware reset, which can then be used as an
Auke Kokbc7f75f2007-09-17 12:30:59 -07001596 * indication whether a cycle is in progress or has been
1597 * completed.
1598 */
1599
1600 if (hsfsts.hsf_status.flcinprog == 0) {
Bruce Allanad680762008-03-28 09:15:03 -07001601 /*
1602 * There is no cycle running at present,
1603 * so we can start a cycle
1604 * Begin by setting Flash Cycle Done.
1605 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001606 hsfsts.hsf_status.flcdone = 1;
1607 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1608 ret_val = 0;
1609 } else {
Bruce Allanad680762008-03-28 09:15:03 -07001610 /*
1611 * otherwise poll for sometime so the current
1612 * cycle has a chance to end before giving up.
1613 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001614 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1615 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1616 if (hsfsts.hsf_status.flcinprog == 0) {
1617 ret_val = 0;
1618 break;
1619 }
1620 udelay(1);
1621 }
1622 if (ret_val == 0) {
Bruce Allanad680762008-03-28 09:15:03 -07001623 /*
1624 * Successful in waiting for previous cycle to timeout,
1625 * now set the Flash Cycle Done.
1626 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001627 hsfsts.hsf_status.flcdone = 1;
1628 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1629 } else {
1630 hw_dbg(hw, "Flash controller busy, cannot get access");
1631 }
1632 }
1633
1634 return ret_val;
1635}
1636
1637/**
1638 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1639 * @hw: pointer to the HW structure
1640 * @timeout: maximum time to wait for completion
1641 *
1642 * This function starts a flash cycle and waits for its completion.
1643 **/
1644static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1645{
1646 union ich8_hws_flash_ctrl hsflctl;
1647 union ich8_hws_flash_status hsfsts;
1648 s32 ret_val = -E1000_ERR_NVM;
1649 u32 i = 0;
1650
1651 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1652 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1653 hsflctl.hsf_ctrl.flcgo = 1;
1654 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1655
1656 /* wait till FDONE bit is set to 1 */
1657 do {
1658 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1659 if (hsfsts.hsf_status.flcdone == 1)
1660 break;
1661 udelay(1);
1662 } while (i++ < timeout);
1663
1664 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1665 return 0;
1666
1667 return ret_val;
1668}
1669
1670/**
1671 * e1000_read_flash_word_ich8lan - Read word from flash
1672 * @hw: pointer to the HW structure
1673 * @offset: offset to data location
1674 * @data: pointer to the location for storing the data
1675 *
1676 * Reads the flash word at offset into data. Offset is converted
1677 * to bytes before read.
1678 **/
1679static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1680 u16 *data)
1681{
1682 /* Must convert offset into bytes. */
1683 offset <<= 1;
1684
1685 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1686}
1687
1688/**
Bruce Allanf4187b52008-08-26 18:36:50 -07001689 * e1000_read_flash_byte_ich8lan - Read byte from flash
1690 * @hw: pointer to the HW structure
1691 * @offset: The offset of the byte to read.
1692 * @data: Pointer to a byte to store the value read.
1693 *
1694 * Reads a single byte from the NVM using the flash access registers.
1695 **/
1696static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1697 u8 *data)
1698{
1699 s32 ret_val;
1700 u16 word = 0;
1701
1702 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1703 if (ret_val)
1704 return ret_val;
1705
1706 *data = (u8)word;
1707
1708 return 0;
1709}
1710
1711/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07001712 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1713 * @hw: pointer to the HW structure
1714 * @offset: The offset (in bytes) of the byte or word to read.
1715 * @size: Size of data to read, 1=byte 2=word
1716 * @data: Pointer to the word to store the value read.
1717 *
1718 * Reads a byte or word from the NVM using the flash access registers.
1719 **/
1720static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1721 u8 size, u16 *data)
1722{
1723 union ich8_hws_flash_status hsfsts;
1724 union ich8_hws_flash_ctrl hsflctl;
1725 u32 flash_linear_addr;
1726 u32 flash_data = 0;
1727 s32 ret_val = -E1000_ERR_NVM;
1728 u8 count = 0;
1729
1730 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1731 return -E1000_ERR_NVM;
1732
1733 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1734 hw->nvm.flash_base_addr;
1735
1736 do {
1737 udelay(1);
1738 /* Steps */
1739 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1740 if (ret_val != 0)
1741 break;
1742
1743 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1744 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1745 hsflctl.hsf_ctrl.fldbcount = size - 1;
1746 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1747 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1748
1749 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1750
1751 ret_val = e1000_flash_cycle_ich8lan(hw,
1752 ICH_FLASH_READ_COMMAND_TIMEOUT);
1753
Bruce Allanad680762008-03-28 09:15:03 -07001754 /*
1755 * Check if FCERR is set to 1, if set to 1, clear it
Auke Kokbc7f75f2007-09-17 12:30:59 -07001756 * and try the whole sequence a few more times, else
1757 * read in (shift in) the Flash Data0, the order is
Bruce Allanad680762008-03-28 09:15:03 -07001758 * least significant byte first msb to lsb
1759 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001760 if (ret_val == 0) {
1761 flash_data = er32flash(ICH_FLASH_FDATA0);
1762 if (size == 1) {
1763 *data = (u8)(flash_data & 0x000000FF);
1764 } else if (size == 2) {
1765 *data = (u16)(flash_data & 0x0000FFFF);
1766 }
1767 break;
1768 } else {
Bruce Allanad680762008-03-28 09:15:03 -07001769 /*
1770 * If we've gotten here, then things are probably
Auke Kokbc7f75f2007-09-17 12:30:59 -07001771 * completely hosed, but if the error condition is
1772 * detected, it won't hurt to give it another try...
1773 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1774 */
1775 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1776 if (hsfsts.hsf_status.flcerr == 1) {
1777 /* Repeat for some time before giving up. */
1778 continue;
1779 } else if (hsfsts.hsf_status.flcdone == 0) {
1780 hw_dbg(hw, "Timeout error - flash cycle "
1781 "did not complete.");
1782 break;
1783 }
1784 }
1785 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1786
1787 return ret_val;
1788}
1789
1790/**
1791 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1792 * @hw: pointer to the HW structure
1793 * @offset: The offset (in bytes) of the word(s) to write.
1794 * @words: Size of data to write in words
1795 * @data: Pointer to the word(s) to write at offset.
1796 *
1797 * Writes a byte or word to the NVM using the flash access registers.
1798 **/
1799static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1800 u16 *data)
1801{
1802 struct e1000_nvm_info *nvm = &hw->nvm;
1803 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001804 u16 i;
1805
1806 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1807 (words == 0)) {
1808 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1809 return -E1000_ERR_NVM;
1810 }
1811
Bruce Allanca15df52009-10-26 11:23:43 +00001812 nvm->ops.acquire_nvm(hw);
1813
Auke Kokbc7f75f2007-09-17 12:30:59 -07001814 for (i = 0; i < words; i++) {
1815 dev_spec->shadow_ram[offset+i].modified = 1;
1816 dev_spec->shadow_ram[offset+i].value = data[i];
1817 }
1818
Bruce Allanca15df52009-10-26 11:23:43 +00001819 nvm->ops.release_nvm(hw);
1820
Auke Kokbc7f75f2007-09-17 12:30:59 -07001821 return 0;
1822}
1823
1824/**
1825 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1826 * @hw: pointer to the HW structure
1827 *
1828 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1829 * which writes the checksum to the shadow ram. The changes in the shadow
1830 * ram are then committed to the EEPROM by processing each bank at a time
1831 * checking for the modified bit and writing only the pending changes.
Auke Kok489815c2008-02-21 15:11:07 -08001832 * After a successful commit, the shadow ram is cleared and is ready for
Auke Kokbc7f75f2007-09-17 12:30:59 -07001833 * future writes.
1834 **/
1835static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1836{
1837 struct e1000_nvm_info *nvm = &hw->nvm;
1838 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
Bruce Allanf4187b52008-08-26 18:36:50 -07001839 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001840 s32 ret_val;
1841 u16 data;
1842
1843 ret_val = e1000e_update_nvm_checksum_generic(hw);
1844 if (ret_val)
Bruce Allane2434552008-11-21 17:02:41 -08001845 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001846
1847 if (nvm->type != e1000_nvm_flash_sw)
Bruce Allane2434552008-11-21 17:02:41 -08001848 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001849
Bruce Allanca15df52009-10-26 11:23:43 +00001850 nvm->ops.acquire_nvm(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001851
Bruce Allanad680762008-03-28 09:15:03 -07001852 /*
1853 * We're writing to the opposite bank so if we're on bank 1,
Auke Kokbc7f75f2007-09-17 12:30:59 -07001854 * write to bank 0 etc. We also need to erase the segment that
Bruce Allanad680762008-03-28 09:15:03 -07001855 * is going to be written
1856 */
Bruce Allanf4187b52008-08-26 18:36:50 -07001857 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
Bruce Allane2434552008-11-21 17:02:41 -08001858 if (ret_val) {
Bruce Allan148675a2009-08-07 07:41:56 +00001859 hw_dbg(hw, "Could not detect valid bank, assuming bank 0\n");
1860 bank = 0;
Bruce Allane2434552008-11-21 17:02:41 -08001861 }
Bruce Allanf4187b52008-08-26 18:36:50 -07001862
1863 if (bank == 0) {
Auke Kokbc7f75f2007-09-17 12:30:59 -07001864 new_bank_offset = nvm->flash_bank_size;
1865 old_bank_offset = 0;
Bruce Allane2434552008-11-21 17:02:41 -08001866 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
1867 if (ret_val) {
Bruce Allanca15df52009-10-26 11:23:43 +00001868 nvm->ops.release_nvm(hw);
Bruce Allane2434552008-11-21 17:02:41 -08001869 goto out;
1870 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07001871 } else {
1872 old_bank_offset = nvm->flash_bank_size;
1873 new_bank_offset = 0;
Bruce Allane2434552008-11-21 17:02:41 -08001874 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
1875 if (ret_val) {
Bruce Allanca15df52009-10-26 11:23:43 +00001876 nvm->ops.release_nvm(hw);
Bruce Allane2434552008-11-21 17:02:41 -08001877 goto out;
1878 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07001879 }
1880
1881 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
Bruce Allanad680762008-03-28 09:15:03 -07001882 /*
1883 * Determine whether to write the value stored
Auke Kokbc7f75f2007-09-17 12:30:59 -07001884 * in the other NVM bank or a modified value stored
Bruce Allanad680762008-03-28 09:15:03 -07001885 * in the shadow RAM
1886 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001887 if (dev_spec->shadow_ram[i].modified) {
1888 data = dev_spec->shadow_ram[i].value;
1889 } else {
Bruce Allane2434552008-11-21 17:02:41 -08001890 ret_val = e1000_read_flash_word_ich8lan(hw, i +
1891 old_bank_offset,
1892 &data);
1893 if (ret_val)
1894 break;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001895 }
1896
Bruce Allanad680762008-03-28 09:15:03 -07001897 /*
1898 * If the word is 0x13, then make sure the signature bits
Auke Kokbc7f75f2007-09-17 12:30:59 -07001899 * (15:14) are 11b until the commit has completed.
1900 * This will allow us to write 10b which indicates the
1901 * signature is valid. We want to do this after the write
1902 * has completed so that we don't mark the segment valid
Bruce Allanad680762008-03-28 09:15:03 -07001903 * while the write is still in progress
1904 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001905 if (i == E1000_ICH_NVM_SIG_WORD)
1906 data |= E1000_ICH_NVM_SIG_MASK;
1907
1908 /* Convert offset to bytes. */
1909 act_offset = (i + new_bank_offset) << 1;
1910
1911 udelay(100);
1912 /* Write the bytes to the new bank. */
1913 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1914 act_offset,
1915 (u8)data);
1916 if (ret_val)
1917 break;
1918
1919 udelay(100);
1920 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1921 act_offset + 1,
1922 (u8)(data >> 8));
1923 if (ret_val)
1924 break;
1925 }
1926
Bruce Allanad680762008-03-28 09:15:03 -07001927 /*
1928 * Don't bother writing the segment valid bits if sector
1929 * programming failed.
1930 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001931 if (ret_val) {
Bruce Allan4a770352008-10-01 17:18:35 -07001932 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001933 hw_dbg(hw, "Flash commit failed.\n");
Bruce Allanca15df52009-10-26 11:23:43 +00001934 nvm->ops.release_nvm(hw);
Bruce Allane2434552008-11-21 17:02:41 -08001935 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001936 }
1937
Bruce Allanad680762008-03-28 09:15:03 -07001938 /*
1939 * Finally validate the new segment by setting bit 15:14
Auke Kokbc7f75f2007-09-17 12:30:59 -07001940 * to 10b in word 0x13 , this can be done without an
1941 * erase as well since these bits are 11 to start with
Bruce Allanad680762008-03-28 09:15:03 -07001942 * and we need to change bit 14 to 0b
1943 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001944 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
Bruce Allane2434552008-11-21 17:02:41 -08001945 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1946 if (ret_val) {
Bruce Allanca15df52009-10-26 11:23:43 +00001947 nvm->ops.release_nvm(hw);
Bruce Allane2434552008-11-21 17:02:41 -08001948 goto out;
1949 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07001950 data &= 0xBFFF;
1951 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1952 act_offset * 2 + 1,
1953 (u8)(data >> 8));
1954 if (ret_val) {
Bruce Allanca15df52009-10-26 11:23:43 +00001955 nvm->ops.release_nvm(hw);
Bruce Allane2434552008-11-21 17:02:41 -08001956 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001957 }
1958
Bruce Allanad680762008-03-28 09:15:03 -07001959 /*
1960 * And invalidate the previously valid segment by setting
Auke Kokbc7f75f2007-09-17 12:30:59 -07001961 * its signature word (0x13) high_byte to 0b. This can be
1962 * done without an erase because flash erase sets all bits
Bruce Allanad680762008-03-28 09:15:03 -07001963 * to 1's. We can write 1's to 0's without an erase
1964 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001965 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1966 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1967 if (ret_val) {
Bruce Allanca15df52009-10-26 11:23:43 +00001968 nvm->ops.release_nvm(hw);
Bruce Allane2434552008-11-21 17:02:41 -08001969 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001970 }
1971
1972 /* Great! Everything worked, we can now clear the cached entries. */
1973 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1974 dev_spec->shadow_ram[i].modified = 0;
1975 dev_spec->shadow_ram[i].value = 0xFFFF;
1976 }
1977
Bruce Allanca15df52009-10-26 11:23:43 +00001978 nvm->ops.release_nvm(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001979
Bruce Allanad680762008-03-28 09:15:03 -07001980 /*
1981 * Reload the EEPROM, or else modifications will not appear
Auke Kokbc7f75f2007-09-17 12:30:59 -07001982 * until after the next adapter reset.
1983 */
1984 e1000e_reload_nvm(hw);
1985 msleep(10);
1986
Bruce Allane2434552008-11-21 17:02:41 -08001987out:
1988 if (ret_val)
1989 hw_dbg(hw, "NVM update error: %d\n", ret_val);
1990
Auke Kokbc7f75f2007-09-17 12:30:59 -07001991 return ret_val;
1992}
1993
1994/**
1995 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1996 * @hw: pointer to the HW structure
1997 *
1998 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1999 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2000 * calculated, in which case we need to calculate the checksum and set bit 6.
2001 **/
2002static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2003{
2004 s32 ret_val;
2005 u16 data;
2006
Bruce Allanad680762008-03-28 09:15:03 -07002007 /*
2008 * Read 0x19 and check bit 6. If this bit is 0, the checksum
Auke Kokbc7f75f2007-09-17 12:30:59 -07002009 * needs to be fixed. This bit is an indication that the NVM
2010 * was prepared by OEM software and did not calculate the
2011 * checksum...a likely scenario.
2012 */
2013 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2014 if (ret_val)
2015 return ret_val;
2016
2017 if ((data & 0x40) == 0) {
2018 data |= 0x40;
2019 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2020 if (ret_val)
2021 return ret_val;
2022 ret_val = e1000e_update_nvm_checksum(hw);
2023 if (ret_val)
2024 return ret_val;
2025 }
2026
2027 return e1000e_validate_nvm_checksum_generic(hw);
2028}
2029
2030/**
Bruce Allan4a770352008-10-01 17:18:35 -07002031 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2032 * @hw: pointer to the HW structure
2033 *
2034 * To prevent malicious write/erase of the NVM, set it to be read-only
2035 * so that the hardware ignores all write/erase cycles of the NVM via
2036 * the flash control registers. The shadow-ram copy of the NVM will
2037 * still be updated, however any updates to this copy will not stick
2038 * across driver reloads.
2039 **/
2040void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2041{
Bruce Allanca15df52009-10-26 11:23:43 +00002042 struct e1000_nvm_info *nvm = &hw->nvm;
Bruce Allan4a770352008-10-01 17:18:35 -07002043 union ich8_flash_protected_range pr0;
2044 union ich8_hws_flash_status hsfsts;
2045 u32 gfpreg;
Bruce Allan4a770352008-10-01 17:18:35 -07002046
Bruce Allanca15df52009-10-26 11:23:43 +00002047 nvm->ops.acquire_nvm(hw);
Bruce Allan4a770352008-10-01 17:18:35 -07002048
2049 gfpreg = er32flash(ICH_FLASH_GFPREG);
2050
2051 /* Write-protect GbE Sector of NVM */
2052 pr0.regval = er32flash(ICH_FLASH_PR0);
2053 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2054 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2055 pr0.range.wpe = true;
2056 ew32flash(ICH_FLASH_PR0, pr0.regval);
2057
2058 /*
2059 * Lock down a subset of GbE Flash Control Registers, e.g.
2060 * PR0 to prevent the write-protection from being lifted.
2061 * Once FLOCKDN is set, the registers protected by it cannot
2062 * be written until FLOCKDN is cleared by a hardware reset.
2063 */
2064 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2065 hsfsts.hsf_status.flockdn = true;
2066 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2067
Bruce Allanca15df52009-10-26 11:23:43 +00002068 nvm->ops.release_nvm(hw);
Bruce Allan4a770352008-10-01 17:18:35 -07002069}
2070
2071/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07002072 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2073 * @hw: pointer to the HW structure
2074 * @offset: The offset (in bytes) of the byte/word to read.
2075 * @size: Size of data to read, 1=byte 2=word
2076 * @data: The byte(s) to write to the NVM.
2077 *
2078 * Writes one/two bytes to the NVM using the flash access registers.
2079 **/
2080static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2081 u8 size, u16 data)
2082{
2083 union ich8_hws_flash_status hsfsts;
2084 union ich8_hws_flash_ctrl hsflctl;
2085 u32 flash_linear_addr;
2086 u32 flash_data = 0;
2087 s32 ret_val;
2088 u8 count = 0;
2089
2090 if (size < 1 || size > 2 || data > size * 0xff ||
2091 offset > ICH_FLASH_LINEAR_ADDR_MASK)
2092 return -E1000_ERR_NVM;
2093
2094 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2095 hw->nvm.flash_base_addr;
2096
2097 do {
2098 udelay(1);
2099 /* Steps */
2100 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2101 if (ret_val)
2102 break;
2103
2104 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2105 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2106 hsflctl.hsf_ctrl.fldbcount = size -1;
2107 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2108 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2109
2110 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2111
2112 if (size == 1)
2113 flash_data = (u32)data & 0x00FF;
2114 else
2115 flash_data = (u32)data;
2116
2117 ew32flash(ICH_FLASH_FDATA0, flash_data);
2118
Bruce Allanad680762008-03-28 09:15:03 -07002119 /*
2120 * check if FCERR is set to 1 , if set to 1, clear it
2121 * and try the whole sequence a few more times else done
2122 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002123 ret_val = e1000_flash_cycle_ich8lan(hw,
2124 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2125 if (!ret_val)
2126 break;
2127
Bruce Allanad680762008-03-28 09:15:03 -07002128 /*
2129 * If we're here, then things are most likely
Auke Kokbc7f75f2007-09-17 12:30:59 -07002130 * completely hosed, but if the error condition
2131 * is detected, it won't hurt to give it another
2132 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2133 */
2134 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2135 if (hsfsts.hsf_status.flcerr == 1)
2136 /* Repeat for some time before giving up. */
2137 continue;
2138 if (hsfsts.hsf_status.flcdone == 0) {
2139 hw_dbg(hw, "Timeout error - flash cycle "
2140 "did not complete.");
2141 break;
2142 }
2143 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2144
2145 return ret_val;
2146}
2147
2148/**
2149 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2150 * @hw: pointer to the HW structure
2151 * @offset: The index of the byte to read.
2152 * @data: The byte to write to the NVM.
2153 *
2154 * Writes a single byte to the NVM using the flash access registers.
2155 **/
2156static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2157 u8 data)
2158{
2159 u16 word = (u16)data;
2160
2161 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2162}
2163
2164/**
2165 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2166 * @hw: pointer to the HW structure
2167 * @offset: The offset of the byte to write.
2168 * @byte: The byte to write to the NVM.
2169 *
2170 * Writes a single byte to the NVM using the flash access registers.
2171 * Goes through a retry algorithm before giving up.
2172 **/
2173static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2174 u32 offset, u8 byte)
2175{
2176 s32 ret_val;
2177 u16 program_retries;
2178
2179 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2180 if (!ret_val)
2181 return ret_val;
2182
2183 for (program_retries = 0; program_retries < 100; program_retries++) {
2184 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
2185 udelay(100);
2186 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2187 if (!ret_val)
2188 break;
2189 }
2190 if (program_retries == 100)
2191 return -E1000_ERR_NVM;
2192
2193 return 0;
2194}
2195
2196/**
2197 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2198 * @hw: pointer to the HW structure
2199 * @bank: 0 for first bank, 1 for second bank, etc.
2200 *
2201 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2202 * bank N is 4096 * N + flash_reg_addr.
2203 **/
2204static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2205{
2206 struct e1000_nvm_info *nvm = &hw->nvm;
2207 union ich8_hws_flash_status hsfsts;
2208 union ich8_hws_flash_ctrl hsflctl;
2209 u32 flash_linear_addr;
2210 /* bank size is in 16bit words - adjust to bytes */
2211 u32 flash_bank_size = nvm->flash_bank_size * 2;
2212 s32 ret_val;
2213 s32 count = 0;
2214 s32 iteration;
2215 s32 sector_size;
2216 s32 j;
2217
2218 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2219
Bruce Allanad680762008-03-28 09:15:03 -07002220 /*
2221 * Determine HW Sector size: Read BERASE bits of hw flash status
2222 * register
2223 * 00: The Hw sector is 256 bytes, hence we need to erase 16
Auke Kokbc7f75f2007-09-17 12:30:59 -07002224 * consecutive sectors. The start index for the nth Hw sector
2225 * can be calculated as = bank * 4096 + n * 256
2226 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2227 * The start index for the nth Hw sector can be calculated
2228 * as = bank * 4096
2229 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2230 * (ich9 only, otherwise error condition)
2231 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2232 */
2233 switch (hsfsts.hsf_status.berasesz) {
2234 case 0:
2235 /* Hw sector size 256 */
2236 sector_size = ICH_FLASH_SEG_SIZE_256;
2237 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2238 break;
2239 case 1:
2240 sector_size = ICH_FLASH_SEG_SIZE_4K;
Bruce Allan28c91952009-07-01 13:28:32 +00002241 iteration = 1;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002242 break;
2243 case 2:
Bruce Allan148675a2009-08-07 07:41:56 +00002244 sector_size = ICH_FLASH_SEG_SIZE_8K;
2245 iteration = 1;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002246 break;
2247 case 3:
2248 sector_size = ICH_FLASH_SEG_SIZE_64K;
Bruce Allan28c91952009-07-01 13:28:32 +00002249 iteration = 1;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002250 break;
2251 default:
2252 return -E1000_ERR_NVM;
2253 }
2254
2255 /* Start with the base address, then add the sector offset. */
2256 flash_linear_addr = hw->nvm.flash_base_addr;
Bruce Allan148675a2009-08-07 07:41:56 +00002257 flash_linear_addr += (bank) ? flash_bank_size : 0;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002258
2259 for (j = 0; j < iteration ; j++) {
2260 do {
2261 /* Steps */
2262 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2263 if (ret_val)
2264 return ret_val;
2265
Bruce Allanad680762008-03-28 09:15:03 -07002266 /*
2267 * Write a value 11 (block Erase) in Flash
2268 * Cycle field in hw flash control
2269 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002270 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2271 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2272 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2273
Bruce Allanad680762008-03-28 09:15:03 -07002274 /*
2275 * Write the last 24 bits of an index within the
Auke Kokbc7f75f2007-09-17 12:30:59 -07002276 * block into Flash Linear address field in Flash
2277 * Address.
2278 */
2279 flash_linear_addr += (j * sector_size);
2280 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2281
2282 ret_val = e1000_flash_cycle_ich8lan(hw,
2283 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2284 if (ret_val == 0)
2285 break;
2286
Bruce Allanad680762008-03-28 09:15:03 -07002287 /*
2288 * Check if FCERR is set to 1. If 1,
Auke Kokbc7f75f2007-09-17 12:30:59 -07002289 * clear it and try the whole sequence
Bruce Allanad680762008-03-28 09:15:03 -07002290 * a few more times else Done
2291 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002292 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2293 if (hsfsts.hsf_status.flcerr == 1)
Bruce Allanad680762008-03-28 09:15:03 -07002294 /* repeat for some time before giving up */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002295 continue;
2296 else if (hsfsts.hsf_status.flcdone == 0)
2297 return ret_val;
2298 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2299 }
2300
2301 return 0;
2302}
2303
2304/**
2305 * e1000_valid_led_default_ich8lan - Set the default LED settings
2306 * @hw: pointer to the HW structure
2307 * @data: Pointer to the LED settings
2308 *
2309 * Reads the LED default settings from the NVM to data. If the NVM LED
2310 * settings is all 0's or F's, set the LED default to a valid LED default
2311 * setting.
2312 **/
2313static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2314{
2315 s32 ret_val;
2316
2317 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2318 if (ret_val) {
2319 hw_dbg(hw, "NVM Read Error\n");
2320 return ret_val;
2321 }
2322
2323 if (*data == ID_LED_RESERVED_0000 ||
2324 *data == ID_LED_RESERVED_FFFF)
2325 *data = ID_LED_DEFAULT_ICH8LAN;
2326
2327 return 0;
2328}
2329
2330/**
Bruce Allana4f58f52009-06-02 11:29:18 +00002331 * e1000_id_led_init_pchlan - store LED configurations
2332 * @hw: pointer to the HW structure
2333 *
2334 * PCH does not control LEDs via the LEDCTL register, rather it uses
2335 * the PHY LED configuration register.
2336 *
2337 * PCH also does not have an "always on" or "always off" mode which
2338 * complicates the ID feature. Instead of using the "on" mode to indicate
2339 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2340 * use "link_up" mode. The LEDs will still ID on request if there is no
2341 * link based on logic in e1000_led_[on|off]_pchlan().
2342 **/
2343static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2344{
2345 struct e1000_mac_info *mac = &hw->mac;
2346 s32 ret_val;
2347 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2348 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2349 u16 data, i, temp, shift;
2350
2351 /* Get default ID LED modes */
2352 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2353 if (ret_val)
2354 goto out;
2355
2356 mac->ledctl_default = er32(LEDCTL);
2357 mac->ledctl_mode1 = mac->ledctl_default;
2358 mac->ledctl_mode2 = mac->ledctl_default;
2359
2360 for (i = 0; i < 4; i++) {
2361 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2362 shift = (i * 5);
2363 switch (temp) {
2364 case ID_LED_ON1_DEF2:
2365 case ID_LED_ON1_ON2:
2366 case ID_LED_ON1_OFF2:
2367 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2368 mac->ledctl_mode1 |= (ledctl_on << shift);
2369 break;
2370 case ID_LED_OFF1_DEF2:
2371 case ID_LED_OFF1_ON2:
2372 case ID_LED_OFF1_OFF2:
2373 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2374 mac->ledctl_mode1 |= (ledctl_off << shift);
2375 break;
2376 default:
2377 /* Do nothing */
2378 break;
2379 }
2380 switch (temp) {
2381 case ID_LED_DEF1_ON2:
2382 case ID_LED_ON1_ON2:
2383 case ID_LED_OFF1_ON2:
2384 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2385 mac->ledctl_mode2 |= (ledctl_on << shift);
2386 break;
2387 case ID_LED_DEF1_OFF2:
2388 case ID_LED_ON1_OFF2:
2389 case ID_LED_OFF1_OFF2:
2390 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2391 mac->ledctl_mode2 |= (ledctl_off << shift);
2392 break;
2393 default:
2394 /* Do nothing */
2395 break;
2396 }
2397 }
2398
2399out:
2400 return ret_val;
2401}
2402
2403/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07002404 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2405 * @hw: pointer to the HW structure
2406 *
2407 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2408 * register, so the the bus width is hard coded.
2409 **/
2410static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2411{
2412 struct e1000_bus_info *bus = &hw->bus;
2413 s32 ret_val;
2414
2415 ret_val = e1000e_get_bus_info_pcie(hw);
2416
Bruce Allanad680762008-03-28 09:15:03 -07002417 /*
2418 * ICH devices are "PCI Express"-ish. They have
Auke Kokbc7f75f2007-09-17 12:30:59 -07002419 * a configuration space, but do not contain
2420 * PCI Express Capability registers, so bus width
2421 * must be hardcoded.
2422 */
2423 if (bus->width == e1000_bus_width_unknown)
2424 bus->width = e1000_bus_width_pcie_x1;
2425
2426 return ret_val;
2427}
2428
2429/**
2430 * e1000_reset_hw_ich8lan - Reset the hardware
2431 * @hw: pointer to the HW structure
2432 *
2433 * Does a full reset of the hardware which includes a reset of the PHY and
2434 * MAC.
2435 **/
2436static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2437{
Bruce Allandb2932e2009-10-26 11:22:47 +00002438 u16 reg;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002439 u32 ctrl, icr, kab;
2440 s32 ret_val;
2441
Bruce Allanad680762008-03-28 09:15:03 -07002442 /*
2443 * Prevent the PCI-E bus from sticking if there is no TLP connection
Auke Kokbc7f75f2007-09-17 12:30:59 -07002444 * on the last TLP read/write transaction when MAC is reset.
2445 */
2446 ret_val = e1000e_disable_pcie_master(hw);
2447 if (ret_val) {
2448 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
2449 }
2450
2451 hw_dbg(hw, "Masking off all interrupts\n");
2452 ew32(IMC, 0xffffffff);
2453
Bruce Allanad680762008-03-28 09:15:03 -07002454 /*
2455 * Disable the Transmit and Receive units. Then delay to allow
Auke Kokbc7f75f2007-09-17 12:30:59 -07002456 * any pending transactions to complete before we hit the MAC
2457 * with the global reset.
2458 */
2459 ew32(RCTL, 0);
2460 ew32(TCTL, E1000_TCTL_PSP);
2461 e1e_flush();
2462
2463 msleep(10);
2464
2465 /* Workaround for ICH8 bit corruption issue in FIFO memory */
2466 if (hw->mac.type == e1000_ich8lan) {
2467 /* Set Tx and Rx buffer allocation to 8k apiece. */
2468 ew32(PBA, E1000_PBA_8K);
2469 /* Set Packet Buffer Size to 16k. */
2470 ew32(PBS, E1000_PBS_16K);
2471 }
2472
2473 ctrl = er32(CTRL);
2474
2475 if (!e1000_check_reset_block(hw)) {
Bruce Allanfc0c7762009-07-01 13:27:55 +00002476 /* Clear PHY Reset Asserted bit */
2477 if (hw->mac.type >= e1000_pchlan) {
2478 u32 status = er32(STATUS);
2479 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
2480 }
2481
Bruce Allanad680762008-03-28 09:15:03 -07002482 /*
2483 * PHY HW reset requires MAC CORE reset at the same
Auke Kokbc7f75f2007-09-17 12:30:59 -07002484 * time to make sure the interface between MAC and the
2485 * external PHY is reset.
2486 */
2487 ctrl |= E1000_CTRL_PHY_RST;
2488 }
2489 ret_val = e1000_acquire_swflag_ich8lan(hw);
Jeff Kirsher30bb0e02008-12-11 21:28:11 -08002490 /* Whether or not the swflag was acquired, we need to reset the part */
Bruce Allan0285c8d2008-11-21 16:59:54 -08002491 hw_dbg(hw, "Issuing a global reset to ich8lan\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07002492 ew32(CTRL, (ctrl | E1000_CTRL_RST));
2493 msleep(20);
2494
Bruce Allanfc0c7762009-07-01 13:27:55 +00002495 if (!ret_val)
Jeff Kirsher30bb0e02008-12-11 21:28:11 -08002496 e1000_release_swflag_ich8lan(hw);
Jesse Brandeburg37f40232008-10-02 16:33:20 -07002497
Bruce Allanfc0c7762009-07-01 13:27:55 +00002498 if (ctrl & E1000_CTRL_PHY_RST)
2499 ret_val = hw->phy.ops.get_cfg_done(hw);
2500
2501 if (hw->mac.type >= e1000_ich10lan) {
2502 e1000_lan_init_done_ich8lan(hw);
2503 } else {
2504 ret_val = e1000e_get_auto_rd_done(hw);
2505 if (ret_val) {
2506 /*
2507 * When auto config read does not complete, do not
2508 * return with an error. This can happen in situations
2509 * where there is no eeprom and prevents getting link.
2510 */
2511 hw_dbg(hw, "Auto Read Done did not complete\n");
2512 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002513 }
Bruce Allandb2932e2009-10-26 11:22:47 +00002514 /* Dummy read to clear the phy wakeup bit after lcd reset */
2515 if (hw->mac.type == e1000_pchlan)
2516 e1e_rphy(hw, BM_WUC, &reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002517
Bruce Allanf523d212009-10-29 13:45:45 +00002518 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2519 if (ret_val)
2520 goto out;
2521
2522 if (hw->mac.type == e1000_pchlan) {
2523 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2524 if (ret_val)
2525 goto out;
2526 }
Bruce Allan7d3cabb2009-07-01 13:29:08 +00002527 /*
2528 * For PCH, this write will make sure that any noise
2529 * will be detected as a CRC error and be dropped rather than show up
2530 * as a bad packet to the DMA engine.
2531 */
2532 if (hw->mac.type == e1000_pchlan)
2533 ew32(CRC_OFFSET, 0x65656565);
2534
Auke Kokbc7f75f2007-09-17 12:30:59 -07002535 ew32(IMC, 0xffffffff);
2536 icr = er32(ICR);
2537
2538 kab = er32(KABGTXD);
2539 kab |= E1000_KABGTXD_BGSQLBIAS;
2540 ew32(KABGTXD, kab);
2541
Bruce Allana4f58f52009-06-02 11:29:18 +00002542 if (hw->mac.type == e1000_pchlan)
2543 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2544
Bruce Allanf523d212009-10-29 13:45:45 +00002545out:
Auke Kokbc7f75f2007-09-17 12:30:59 -07002546 return ret_val;
2547}
2548
2549/**
2550 * e1000_init_hw_ich8lan - Initialize the hardware
2551 * @hw: pointer to the HW structure
2552 *
2553 * Prepares the hardware for transmit and receive by doing the following:
2554 * - initialize hardware bits
2555 * - initialize LED identification
2556 * - setup receive address registers
2557 * - setup flow control
Auke Kok489815c2008-02-21 15:11:07 -08002558 * - setup transmit descriptors
Auke Kokbc7f75f2007-09-17 12:30:59 -07002559 * - clear statistics
2560 **/
2561static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
2562{
2563 struct e1000_mac_info *mac = &hw->mac;
2564 u32 ctrl_ext, txdctl, snoop;
2565 s32 ret_val;
2566 u16 i;
2567
2568 e1000_initialize_hw_bits_ich8lan(hw);
2569
2570 /* Initialize identification LED */
Bruce Allana4f58f52009-06-02 11:29:18 +00002571 ret_val = mac->ops.id_led_init(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002572 if (ret_val) {
2573 hw_dbg(hw, "Error initializing identification LED\n");
2574 return ret_val;
2575 }
2576
2577 /* Setup the receive address. */
2578 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2579
2580 /* Zero out the Multicast HASH table */
2581 hw_dbg(hw, "Zeroing the MTA\n");
2582 for (i = 0; i < mac->mta_reg_count; i++)
2583 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2584
Bruce Allanfc0c7762009-07-01 13:27:55 +00002585 /*
2586 * The 82578 Rx buffer will stall if wakeup is enabled in host and
2587 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
2588 * Reset the phy after disabling host wakeup to reset the Rx buffer.
2589 */
2590 if (hw->phy.type == e1000_phy_82578) {
2591 hw->phy.ops.read_phy_reg(hw, BM_WUC, &i);
2592 ret_val = e1000_phy_hw_reset_ich8lan(hw);
2593 if (ret_val)
2594 return ret_val;
2595 }
2596
Auke Kokbc7f75f2007-09-17 12:30:59 -07002597 /* Setup link and flow control */
2598 ret_val = e1000_setup_link_ich8lan(hw);
2599
2600 /* Set the transmit descriptor write-back policy for both queues */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002601 txdctl = er32(TXDCTL(0));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002602 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2603 E1000_TXDCTL_FULL_TX_DESC_WB;
2604 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2605 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002606 ew32(TXDCTL(0), txdctl);
2607 txdctl = er32(TXDCTL(1));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002608 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2609 E1000_TXDCTL_FULL_TX_DESC_WB;
2610 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2611 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002612 ew32(TXDCTL(1), txdctl);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002613
Bruce Allanad680762008-03-28 09:15:03 -07002614 /*
2615 * ICH8 has opposite polarity of no_snoop bits.
2616 * By default, we should use snoop behavior.
2617 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002618 if (mac->type == e1000_ich8lan)
2619 snoop = PCIE_ICH8_SNOOP_ALL;
2620 else
2621 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2622 e1000e_set_pcie_no_snoop(hw, snoop);
2623
2624 ctrl_ext = er32(CTRL_EXT);
2625 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2626 ew32(CTRL_EXT, ctrl_ext);
2627
Bruce Allanad680762008-03-28 09:15:03 -07002628 /*
2629 * Clear all of the statistics registers (clear on read). It is
Auke Kokbc7f75f2007-09-17 12:30:59 -07002630 * important that we do this after we have tried to establish link
2631 * because the symbol error count will increment wildly if there
2632 * is no link.
2633 */
2634 e1000_clear_hw_cntrs_ich8lan(hw);
2635
2636 return 0;
2637}
2638/**
2639 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2640 * @hw: pointer to the HW structure
2641 *
2642 * Sets/Clears required hardware bits necessary for correctly setting up the
2643 * hardware for transmit and receive.
2644 **/
2645static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2646{
2647 u32 reg;
2648
2649 /* Extended Device Control */
2650 reg = er32(CTRL_EXT);
2651 reg |= (1 << 22);
Bruce Allana4f58f52009-06-02 11:29:18 +00002652 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2653 if (hw->mac.type >= e1000_pchlan)
2654 reg |= E1000_CTRL_EXT_PHYPDEN;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002655 ew32(CTRL_EXT, reg);
2656
2657 /* Transmit Descriptor Control 0 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002658 reg = er32(TXDCTL(0));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002659 reg |= (1 << 22);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002660 ew32(TXDCTL(0), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002661
2662 /* Transmit Descriptor Control 1 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002663 reg = er32(TXDCTL(1));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002664 reg |= (1 << 22);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002665 ew32(TXDCTL(1), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002666
2667 /* Transmit Arbitration Control 0 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002668 reg = er32(TARC(0));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002669 if (hw->mac.type == e1000_ich8lan)
2670 reg |= (1 << 28) | (1 << 29);
2671 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002672 ew32(TARC(0), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002673
2674 /* Transmit Arbitration Control 1 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002675 reg = er32(TARC(1));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002676 if (er32(TCTL) & E1000_TCTL_MULR)
2677 reg &= ~(1 << 28);
2678 else
2679 reg |= (1 << 28);
2680 reg |= (1 << 24) | (1 << 26) | (1 << 30);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002681 ew32(TARC(1), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002682
2683 /* Device Status */
2684 if (hw->mac.type == e1000_ich8lan) {
2685 reg = er32(STATUS);
2686 reg &= ~(1 << 31);
2687 ew32(STATUS, reg);
2688 }
2689}
2690
2691/**
2692 * e1000_setup_link_ich8lan - Setup flow control and link settings
2693 * @hw: pointer to the HW structure
2694 *
2695 * Determines which flow control settings to use, then configures flow
2696 * control. Calls the appropriate media-specific link configuration
2697 * function. Assuming the adapter has a valid link partner, a valid link
2698 * should be established. Assumes the hardware has previously been reset
2699 * and the transmitter and receiver are not enabled.
2700 **/
2701static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2702{
Auke Kokbc7f75f2007-09-17 12:30:59 -07002703 s32 ret_val;
2704
2705 if (e1000_check_reset_block(hw))
2706 return 0;
2707
Bruce Allanad680762008-03-28 09:15:03 -07002708 /*
2709 * ICH parts do not have a word in the NVM to determine
Auke Kokbc7f75f2007-09-17 12:30:59 -07002710 * the default flow control setting, so we explicitly
2711 * set it to full.
2712 */
Bruce Allan37289d92009-06-02 11:29:37 +00002713 if (hw->fc.requested_mode == e1000_fc_default) {
2714 /* Workaround h/w hang when Tx flow control enabled */
2715 if (hw->mac.type == e1000_pchlan)
2716 hw->fc.requested_mode = e1000_fc_rx_pause;
2717 else
2718 hw->fc.requested_mode = e1000_fc_full;
2719 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002720
Bruce Allan5c48ef3e22008-11-21 16:57:36 -08002721 /*
2722 * Save off the requested flow control mode for use later. Depending
2723 * on the link partner's capabilities, we may or may not use this mode.
2724 */
2725 hw->fc.current_mode = hw->fc.requested_mode;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002726
Bruce Allan5c48ef3e22008-11-21 16:57:36 -08002727 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n",
2728 hw->fc.current_mode);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002729
2730 /* Continue to configure the copper link. */
2731 ret_val = e1000_setup_copper_link_ich8lan(hw);
2732 if (ret_val)
2733 return ret_val;
2734
Jeff Kirsher318a94d2008-03-28 09:15:16 -07002735 ew32(FCTTV, hw->fc.pause_time);
Bruce Allana4f58f52009-06-02 11:29:18 +00002736 if ((hw->phy.type == e1000_phy_82578) ||
2737 (hw->phy.type == e1000_phy_82577)) {
2738 ret_val = hw->phy.ops.write_phy_reg(hw,
2739 PHY_REG(BM_PORT_CTRL_PAGE, 27),
2740 hw->fc.pause_time);
2741 if (ret_val)
2742 return ret_val;
2743 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002744
2745 return e1000e_set_fc_watermarks(hw);
2746}
2747
2748/**
2749 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2750 * @hw: pointer to the HW structure
2751 *
2752 * Configures the kumeran interface to the PHY to wait the appropriate time
2753 * when polling the PHY, then call the generic setup_copper_link to finish
2754 * configuring the copper link.
2755 **/
2756static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2757{
2758 u32 ctrl;
2759 s32 ret_val;
2760 u16 reg_data;
2761
2762 ctrl = er32(CTRL);
2763 ctrl |= E1000_CTRL_SLU;
2764 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2765 ew32(CTRL, ctrl);
2766
Bruce Allanad680762008-03-28 09:15:03 -07002767 /*
2768 * Set the mac to wait the maximum time between each iteration
Auke Kokbc7f75f2007-09-17 12:30:59 -07002769 * and increase the max iterations when polling the phy;
Bruce Allanad680762008-03-28 09:15:03 -07002770 * this fixes erroneous timeouts at 10Mbps.
2771 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002772 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2773 if (ret_val)
2774 return ret_val;
2775 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2776 if (ret_val)
2777 return ret_val;
2778 reg_data |= 0x3F;
2779 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2780 if (ret_val)
2781 return ret_val;
2782
Bruce Allana4f58f52009-06-02 11:29:18 +00002783 switch (hw->phy.type) {
2784 case e1000_phy_igp_3:
Auke Kokbc7f75f2007-09-17 12:30:59 -07002785 ret_val = e1000e_copper_link_setup_igp(hw);
2786 if (ret_val)
2787 return ret_val;
Bruce Allana4f58f52009-06-02 11:29:18 +00002788 break;
2789 case e1000_phy_bm:
2790 case e1000_phy_82578:
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002791 ret_val = e1000e_copper_link_setup_m88(hw);
2792 if (ret_val)
2793 return ret_val;
Bruce Allana4f58f52009-06-02 11:29:18 +00002794 break;
2795 case e1000_phy_82577:
2796 ret_val = e1000_copper_link_setup_82577(hw);
2797 if (ret_val)
2798 return ret_val;
2799 break;
2800 case e1000_phy_ife:
2801 ret_val = hw->phy.ops.read_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2802 &reg_data);
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002803 if (ret_val)
2804 return ret_val;
2805
2806 reg_data &= ~IFE_PMC_AUTO_MDIX;
2807
2808 switch (hw->phy.mdix) {
2809 case 1:
2810 reg_data &= ~IFE_PMC_FORCE_MDIX;
2811 break;
2812 case 2:
2813 reg_data |= IFE_PMC_FORCE_MDIX;
2814 break;
2815 case 0:
2816 default:
2817 reg_data |= IFE_PMC_AUTO_MDIX;
2818 break;
2819 }
Bruce Allana4f58f52009-06-02 11:29:18 +00002820 ret_val = hw->phy.ops.write_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2821 reg_data);
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002822 if (ret_val)
2823 return ret_val;
Bruce Allana4f58f52009-06-02 11:29:18 +00002824 break;
2825 default:
2826 break;
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002827 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002828 return e1000e_setup_copper_link(hw);
2829}
2830
2831/**
2832 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2833 * @hw: pointer to the HW structure
2834 * @speed: pointer to store current link speed
2835 * @duplex: pointer to store the current link duplex
2836 *
Bruce Allanad680762008-03-28 09:15:03 -07002837 * Calls the generic get_speed_and_duplex to retrieve the current link
Auke Kokbc7f75f2007-09-17 12:30:59 -07002838 * information and then calls the Kumeran lock loss workaround for links at
2839 * gigabit speeds.
2840 **/
2841static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2842 u16 *duplex)
2843{
2844 s32 ret_val;
2845
2846 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2847 if (ret_val)
2848 return ret_val;
2849
Bruce Allan7d3cabb2009-07-01 13:29:08 +00002850 if ((hw->mac.type == e1000_pchlan) && (*speed == SPEED_1000)) {
2851 ret_val = e1000e_write_kmrn_reg(hw,
2852 E1000_KMRNCTRLSTA_K1_CONFIG,
2853 E1000_KMRNCTRLSTA_K1_DISABLE);
2854 if (ret_val)
2855 return ret_val;
2856 }
2857
Auke Kokbc7f75f2007-09-17 12:30:59 -07002858 if ((hw->mac.type == e1000_ich8lan) &&
2859 (hw->phy.type == e1000_phy_igp_3) &&
2860 (*speed == SPEED_1000)) {
2861 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2862 }
2863
2864 return ret_val;
2865}
2866
2867/**
2868 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2869 * @hw: pointer to the HW structure
2870 *
2871 * Work-around for 82566 Kumeran PCS lock loss:
2872 * On link status change (i.e. PCI reset, speed change) and link is up and
2873 * speed is gigabit-
2874 * 0) if workaround is optionally disabled do nothing
2875 * 1) wait 1ms for Kumeran link to come up
2876 * 2) check Kumeran Diagnostic register PCS lock loss bit
2877 * 3) if not set the link is locked (all is good), otherwise...
2878 * 4) reset the PHY
2879 * 5) repeat up to 10 times
2880 * Note: this is only called for IGP3 copper when speed is 1gb.
2881 **/
2882static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2883{
2884 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2885 u32 phy_ctrl;
2886 s32 ret_val;
2887 u16 i, data;
2888 bool link;
2889
2890 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2891 return 0;
2892
Bruce Allanad680762008-03-28 09:15:03 -07002893 /*
2894 * Make sure link is up before proceeding. If not just return.
Auke Kokbc7f75f2007-09-17 12:30:59 -07002895 * Attempting this while link is negotiating fouled up link
Bruce Allanad680762008-03-28 09:15:03 -07002896 * stability
2897 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002898 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2899 if (!link)
2900 return 0;
2901
2902 for (i = 0; i < 10; i++) {
2903 /* read once to clear */
2904 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2905 if (ret_val)
2906 return ret_val;
2907 /* and again to get new status */
2908 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2909 if (ret_val)
2910 return ret_val;
2911
2912 /* check for PCS lock */
2913 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2914 return 0;
2915
2916 /* Issue PHY reset */
2917 e1000_phy_hw_reset(hw);
2918 mdelay(5);
2919 }
2920 /* Disable GigE link negotiation */
2921 phy_ctrl = er32(PHY_CTRL);
2922 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2923 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2924 ew32(PHY_CTRL, phy_ctrl);
2925
Bruce Allanad680762008-03-28 09:15:03 -07002926 /*
2927 * Call gig speed drop workaround on Gig disable before accessing
2928 * any PHY registers
2929 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002930 e1000e_gig_downshift_workaround_ich8lan(hw);
2931
2932 /* unable to acquire PCS lock */
2933 return -E1000_ERR_PHY;
2934}
2935
2936/**
Bruce Allanad680762008-03-28 09:15:03 -07002937 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
Auke Kokbc7f75f2007-09-17 12:30:59 -07002938 * @hw: pointer to the HW structure
Auke Kok489815c2008-02-21 15:11:07 -08002939 * @state: boolean value used to set the current Kumeran workaround state
Auke Kokbc7f75f2007-09-17 12:30:59 -07002940 *
2941 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
2942 * /disabled - FALSE).
2943 **/
2944void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2945 bool state)
2946{
2947 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2948
2949 if (hw->mac.type != e1000_ich8lan) {
2950 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
2951 return;
2952 }
2953
2954 dev_spec->kmrn_lock_loss_workaround_enabled = state;
2955}
2956
2957/**
2958 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2959 * @hw: pointer to the HW structure
2960 *
2961 * Workaround for 82566 power-down on D3 entry:
2962 * 1) disable gigabit link
2963 * 2) write VR power-down enable
2964 * 3) read it back
2965 * Continue if successful, else issue LCD reset and repeat
2966 **/
2967void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2968{
2969 u32 reg;
2970 u16 data;
2971 u8 retry = 0;
2972
2973 if (hw->phy.type != e1000_phy_igp_3)
2974 return;
2975
2976 /* Try the workaround twice (if needed) */
2977 do {
2978 /* Disable link */
2979 reg = er32(PHY_CTRL);
2980 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2981 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2982 ew32(PHY_CTRL, reg);
2983
Bruce Allanad680762008-03-28 09:15:03 -07002984 /*
2985 * Call gig speed drop workaround on Gig disable before
2986 * accessing any PHY registers
2987 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002988 if (hw->mac.type == e1000_ich8lan)
2989 e1000e_gig_downshift_workaround_ich8lan(hw);
2990
2991 /* Write VR power-down enable */
2992 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2993 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2994 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2995
2996 /* Read it back and test */
2997 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2998 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2999 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3000 break;
3001
3002 /* Issue PHY reset and repeat at most one more time */
3003 reg = er32(CTRL);
3004 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3005 retry++;
3006 } while (retry);
3007}
3008
3009/**
3010 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3011 * @hw: pointer to the HW structure
3012 *
3013 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
Auke Kok489815c2008-02-21 15:11:07 -08003014 * LPLU, Gig disable, MDIC PHY reset):
Auke Kokbc7f75f2007-09-17 12:30:59 -07003015 * 1) Set Kumeran Near-end loopback
3016 * 2) Clear Kumeran Near-end loopback
3017 * Should only be called for ICH8[m] devices with IGP_3 Phy.
3018 **/
3019void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3020{
3021 s32 ret_val;
3022 u16 reg_data;
3023
3024 if ((hw->mac.type != e1000_ich8lan) ||
3025 (hw->phy.type != e1000_phy_igp_3))
3026 return;
3027
3028 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3029 &reg_data);
3030 if (ret_val)
3031 return;
3032 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3033 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3034 reg_data);
3035 if (ret_val)
3036 return;
3037 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3038 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3039 reg_data);
3040}
3041
3042/**
Bruce Allan97ac8ca2008-04-29 09:16:05 -07003043 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3044 * @hw: pointer to the HW structure
3045 *
3046 * During S0 to Sx transition, it is possible the link remains at gig
3047 * instead of negotiating to a lower speed. Before going to Sx, set
3048 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3049 * to a lower speed.
3050 *
Bruce Allana4f58f52009-06-02 11:29:18 +00003051 * Should only be called for applicable parts.
Bruce Allan97ac8ca2008-04-29 09:16:05 -07003052 **/
3053void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
3054{
3055 u32 phy_ctrl;
3056
Bruce Allana4f58f52009-06-02 11:29:18 +00003057 switch (hw->mac.type) {
3058 case e1000_ich9lan:
3059 case e1000_ich10lan:
3060 case e1000_pchlan:
Bruce Allan97ac8ca2008-04-29 09:16:05 -07003061 phy_ctrl = er32(PHY_CTRL);
3062 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
3063 E1000_PHY_CTRL_GBE_DISABLE;
3064 ew32(PHY_CTRL, phy_ctrl);
Bruce Allana4f58f52009-06-02 11:29:18 +00003065
Bruce Allana4f58f52009-06-02 11:29:18 +00003066 if (hw->mac.type == e1000_pchlan)
Bruce Allan74eee2e2009-10-22 21:22:18 -07003067 e1000_phy_hw_reset_ich8lan(hw);
Bruce Allana4f58f52009-06-02 11:29:18 +00003068 default:
3069 break;
Bruce Allan97ac8ca2008-04-29 09:16:05 -07003070 }
3071
3072 return;
3073}
3074
3075/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07003076 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3077 * @hw: pointer to the HW structure
3078 *
3079 * Return the LED back to the default configuration.
3080 **/
3081static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3082{
3083 if (hw->phy.type == e1000_phy_ife)
3084 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3085
3086 ew32(LEDCTL, hw->mac.ledctl_default);
3087 return 0;
3088}
3089
3090/**
Auke Kok489815c2008-02-21 15:11:07 -08003091 * e1000_led_on_ich8lan - Turn LEDs on
Auke Kokbc7f75f2007-09-17 12:30:59 -07003092 * @hw: pointer to the HW structure
3093 *
Auke Kok489815c2008-02-21 15:11:07 -08003094 * Turn on the LEDs.
Auke Kokbc7f75f2007-09-17 12:30:59 -07003095 **/
3096static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3097{
3098 if (hw->phy.type == e1000_phy_ife)
3099 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3100 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3101
3102 ew32(LEDCTL, hw->mac.ledctl_mode2);
3103 return 0;
3104}
3105
3106/**
Auke Kok489815c2008-02-21 15:11:07 -08003107 * e1000_led_off_ich8lan - Turn LEDs off
Auke Kokbc7f75f2007-09-17 12:30:59 -07003108 * @hw: pointer to the HW structure
3109 *
Auke Kok489815c2008-02-21 15:11:07 -08003110 * Turn off the LEDs.
Auke Kokbc7f75f2007-09-17 12:30:59 -07003111 **/
3112static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3113{
3114 if (hw->phy.type == e1000_phy_ife)
3115 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3116 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
3117
3118 ew32(LEDCTL, hw->mac.ledctl_mode1);
3119 return 0;
3120}
3121
3122/**
Bruce Allana4f58f52009-06-02 11:29:18 +00003123 * e1000_setup_led_pchlan - Configures SW controllable LED
3124 * @hw: pointer to the HW structure
3125 *
3126 * This prepares the SW controllable LED for use.
3127 **/
3128static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3129{
3130 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
3131 (u16)hw->mac.ledctl_mode1);
3132}
3133
3134/**
3135 * e1000_cleanup_led_pchlan - Restore the default LED operation
3136 * @hw: pointer to the HW structure
3137 *
3138 * Return the LED back to the default configuration.
3139 **/
3140static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3141{
3142 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
3143 (u16)hw->mac.ledctl_default);
3144}
3145
3146/**
3147 * e1000_led_on_pchlan - Turn LEDs on
3148 * @hw: pointer to the HW structure
3149 *
3150 * Turn on the LEDs.
3151 **/
3152static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3153{
3154 u16 data = (u16)hw->mac.ledctl_mode2;
3155 u32 i, led;
3156
3157 /*
3158 * If no link, then turn LED on by setting the invert bit
3159 * for each LED that's mode is "link_up" in ledctl_mode2.
3160 */
3161 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3162 for (i = 0; i < 3; i++) {
3163 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3164 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3165 E1000_LEDCTL_MODE_LINK_UP)
3166 continue;
3167 if (led & E1000_PHY_LED0_IVRT)
3168 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3169 else
3170 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3171 }
3172 }
3173
3174 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
3175}
3176
3177/**
3178 * e1000_led_off_pchlan - Turn LEDs off
3179 * @hw: pointer to the HW structure
3180 *
3181 * Turn off the LEDs.
3182 **/
3183static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3184{
3185 u16 data = (u16)hw->mac.ledctl_mode1;
3186 u32 i, led;
3187
3188 /*
3189 * If no link, then turn LED off by clearing the invert bit
3190 * for each LED that's mode is "link_up" in ledctl_mode1.
3191 */
3192 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3193 for (i = 0; i < 3; i++) {
3194 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3195 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3196 E1000_LEDCTL_MODE_LINK_UP)
3197 continue;
3198 if (led & E1000_PHY_LED0_IVRT)
3199 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3200 else
3201 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3202 }
3203 }
3204
3205 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
3206}
3207
3208/**
Bruce Allanf4187b52008-08-26 18:36:50 -07003209 * e1000_get_cfg_done_ich8lan - Read config done bit
3210 * @hw: pointer to the HW structure
3211 *
3212 * Read the management control register for the config done bit for
3213 * completion status. NOTE: silicon which is EEPROM-less will fail trying
3214 * to read the config done bit, so an error is *ONLY* logged and returns
Bruce Allana4f58f52009-06-02 11:29:18 +00003215 * 0. If we were to return with error, EEPROM-less silicon
Bruce Allanf4187b52008-08-26 18:36:50 -07003216 * would not be able to be reset or change link.
3217 **/
3218static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3219{
3220 u32 bank = 0;
3221
Bruce Allanfc0c7762009-07-01 13:27:55 +00003222 if (hw->mac.type >= e1000_pchlan) {
3223 u32 status = er32(STATUS);
3224
3225 if (status & E1000_STATUS_PHYRA)
3226 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3227 else
3228 hw_dbg(hw,
3229 "PHY Reset Asserted not set - needs delay\n");
3230 }
3231
Bruce Allanf4187b52008-08-26 18:36:50 -07003232 e1000e_get_cfg_done(hw);
3233
3234 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
Bruce Allana4f58f52009-06-02 11:29:18 +00003235 if ((hw->mac.type != e1000_ich10lan) &&
3236 (hw->mac.type != e1000_pchlan)) {
Bruce Allanf4187b52008-08-26 18:36:50 -07003237 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3238 (hw->phy.type == e1000_phy_igp_3)) {
3239 e1000e_phy_init_script_igp3(hw);
3240 }
3241 } else {
3242 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3243 /* Maybe we should do a basic PHY config */
3244 hw_dbg(hw, "EEPROM not present\n");
3245 return -E1000_ERR_CONFIG;
3246 }
3247 }
3248
3249 return 0;
3250}
3251
3252/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07003253 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3254 * @hw: pointer to the HW structure
3255 *
3256 * Clears hardware counters specific to the silicon family and calls
3257 * clear_hw_cntrs_generic to clear all general purpose counters.
3258 **/
3259static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3260{
3261 u32 temp;
Bruce Allana4f58f52009-06-02 11:29:18 +00003262 u16 phy_data;
Auke Kokbc7f75f2007-09-17 12:30:59 -07003263
3264 e1000e_clear_hw_cntrs_base(hw);
3265
3266 temp = er32(ALGNERRC);
3267 temp = er32(RXERRC);
3268 temp = er32(TNCRS);
3269 temp = er32(CEXTERR);
3270 temp = er32(TSCTC);
3271 temp = er32(TSCTFC);
3272
3273 temp = er32(MGTPRC);
3274 temp = er32(MGTPDC);
3275 temp = er32(MGTPTC);
3276
3277 temp = er32(IAC);
3278 temp = er32(ICRXOC);
3279
Bruce Allana4f58f52009-06-02 11:29:18 +00003280 /* Clear PHY statistics registers */
3281 if ((hw->phy.type == e1000_phy_82578) ||
3282 (hw->phy.type == e1000_phy_82577)) {
3283 hw->phy.ops.read_phy_reg(hw, HV_SCC_UPPER, &phy_data);
3284 hw->phy.ops.read_phy_reg(hw, HV_SCC_LOWER, &phy_data);
3285 hw->phy.ops.read_phy_reg(hw, HV_ECOL_UPPER, &phy_data);
3286 hw->phy.ops.read_phy_reg(hw, HV_ECOL_LOWER, &phy_data);
3287 hw->phy.ops.read_phy_reg(hw, HV_MCC_UPPER, &phy_data);
3288 hw->phy.ops.read_phy_reg(hw, HV_MCC_LOWER, &phy_data);
3289 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_UPPER, &phy_data);
3290 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_LOWER, &phy_data);
3291 hw->phy.ops.read_phy_reg(hw, HV_COLC_UPPER, &phy_data);
3292 hw->phy.ops.read_phy_reg(hw, HV_COLC_LOWER, &phy_data);
3293 hw->phy.ops.read_phy_reg(hw, HV_DC_UPPER, &phy_data);
3294 hw->phy.ops.read_phy_reg(hw, HV_DC_LOWER, &phy_data);
3295 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_UPPER, &phy_data);
3296 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_LOWER, &phy_data);
3297 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07003298}
3299
3300static struct e1000_mac_operations ich8_mac_ops = {
Bruce Allana4f58f52009-06-02 11:29:18 +00003301 .id_led_init = e1000e_id_led_init,
Bruce Allan4662e822008-08-26 18:37:06 -07003302 .check_mng_mode = e1000_check_mng_mode_ich8lan,
Bruce Allan7d3cabb2009-07-01 13:29:08 +00003303 .check_for_link = e1000_check_for_copper_link_ich8lan,
Bruce Allana4f58f52009-06-02 11:29:18 +00003304 /* cleanup_led dependent on mac type */
Auke Kokbc7f75f2007-09-17 12:30:59 -07003305 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
3306 .get_bus_info = e1000_get_bus_info_ich8lan,
3307 .get_link_up_info = e1000_get_link_up_info_ich8lan,
Bruce Allana4f58f52009-06-02 11:29:18 +00003308 /* led_on dependent on mac type */
3309 /* led_off dependent on mac type */
Jeff Kirshere2de3eb2008-03-28 09:15:11 -07003310 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
Auke Kokbc7f75f2007-09-17 12:30:59 -07003311 .reset_hw = e1000_reset_hw_ich8lan,
3312 .init_hw = e1000_init_hw_ich8lan,
3313 .setup_link = e1000_setup_link_ich8lan,
3314 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
Bruce Allana4f58f52009-06-02 11:29:18 +00003315 /* id_led_init dependent on mac type */
Auke Kokbc7f75f2007-09-17 12:30:59 -07003316};
3317
3318static struct e1000_phy_operations ich8_phy_ops = {
3319 .acquire_phy = e1000_acquire_swflag_ich8lan,
3320 .check_reset_block = e1000_check_reset_block_ich8lan,
3321 .commit_phy = NULL,
3322 .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
Bruce Allanf4187b52008-08-26 18:36:50 -07003323 .get_cfg_done = e1000_get_cfg_done_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07003324 .get_cable_length = e1000e_get_cable_length_igp_2,
3325 .get_phy_info = e1000_get_phy_info_ich8lan,
3326 .read_phy_reg = e1000e_read_phy_reg_igp,
3327 .release_phy = e1000_release_swflag_ich8lan,
3328 .reset_phy = e1000_phy_hw_reset_ich8lan,
3329 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
3330 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
3331 .write_phy_reg = e1000e_write_phy_reg_igp,
3332};
3333
3334static struct e1000_nvm_operations ich8_nvm_ops = {
Bruce Allanca15df52009-10-26 11:23:43 +00003335 .acquire_nvm = e1000_acquire_nvm_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07003336 .read_nvm = e1000_read_nvm_ich8lan,
Bruce Allanca15df52009-10-26 11:23:43 +00003337 .release_nvm = e1000_release_nvm_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07003338 .update_nvm = e1000_update_nvm_checksum_ich8lan,
3339 .valid_led_default = e1000_valid_led_default_ich8lan,
3340 .validate_nvm = e1000_validate_nvm_checksum_ich8lan,
3341 .write_nvm = e1000_write_nvm_ich8lan,
3342};
3343
3344struct e1000_info e1000_ich8_info = {
3345 .mac = e1000_ich8lan,
3346 .flags = FLAG_HAS_WOL
Bruce Allan97ac8ca2008-04-29 09:16:05 -07003347 | FLAG_IS_ICH
Auke Kokbc7f75f2007-09-17 12:30:59 -07003348 | FLAG_RX_CSUM_ENABLED
3349 | FLAG_HAS_CTRLEXT_ON_LOAD
3350 | FLAG_HAS_AMT
3351 | FLAG_HAS_FLASH
3352 | FLAG_APME_IN_WUC,
3353 .pba = 8,
Bruce Allan2adc55c2009-06-02 11:28:58 +00003354 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
Jeff Kirsher69e3fd82008-04-02 13:48:18 -07003355 .get_variants = e1000_get_variants_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07003356 .mac_ops = &ich8_mac_ops,
3357 .phy_ops = &ich8_phy_ops,
3358 .nvm_ops = &ich8_nvm_ops,
3359};
3360
3361struct e1000_info e1000_ich9_info = {
3362 .mac = e1000_ich9lan,
3363 .flags = FLAG_HAS_JUMBO_FRAMES
Bruce Allan97ac8ca2008-04-29 09:16:05 -07003364 | FLAG_IS_ICH
Auke Kokbc7f75f2007-09-17 12:30:59 -07003365 | FLAG_HAS_WOL
3366 | FLAG_RX_CSUM_ENABLED
3367 | FLAG_HAS_CTRLEXT_ON_LOAD
3368 | FLAG_HAS_AMT
3369 | FLAG_HAS_ERT
3370 | FLAG_HAS_FLASH
3371 | FLAG_APME_IN_WUC,
3372 .pba = 10,
Bruce Allan2adc55c2009-06-02 11:28:58 +00003373 .max_hw_frame_size = DEFAULT_JUMBO,
Jeff Kirsher69e3fd82008-04-02 13:48:18 -07003374 .get_variants = e1000_get_variants_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07003375 .mac_ops = &ich8_mac_ops,
3376 .phy_ops = &ich8_phy_ops,
3377 .nvm_ops = &ich8_nvm_ops,
3378};
3379
Bruce Allanf4187b52008-08-26 18:36:50 -07003380struct e1000_info e1000_ich10_info = {
3381 .mac = e1000_ich10lan,
3382 .flags = FLAG_HAS_JUMBO_FRAMES
3383 | FLAG_IS_ICH
3384 | FLAG_HAS_WOL
3385 | FLAG_RX_CSUM_ENABLED
3386 | FLAG_HAS_CTRLEXT_ON_LOAD
3387 | FLAG_HAS_AMT
3388 | FLAG_HAS_ERT
3389 | FLAG_HAS_FLASH
3390 | FLAG_APME_IN_WUC,
3391 .pba = 10,
Bruce Allan2adc55c2009-06-02 11:28:58 +00003392 .max_hw_frame_size = DEFAULT_JUMBO,
Bruce Allanf4187b52008-08-26 18:36:50 -07003393 .get_variants = e1000_get_variants_ich8lan,
3394 .mac_ops = &ich8_mac_ops,
3395 .phy_ops = &ich8_phy_ops,
3396 .nvm_ops = &ich8_nvm_ops,
3397};
Bruce Allana4f58f52009-06-02 11:29:18 +00003398
3399struct e1000_info e1000_pch_info = {
3400 .mac = e1000_pchlan,
3401 .flags = FLAG_IS_ICH
3402 | FLAG_HAS_WOL
3403 | FLAG_RX_CSUM_ENABLED
3404 | FLAG_HAS_CTRLEXT_ON_LOAD
3405 | FLAG_HAS_AMT
3406 | FLAG_HAS_FLASH
3407 | FLAG_HAS_JUMBO_FRAMES
3408 | FLAG_APME_IN_WUC,
3409 .pba = 26,
3410 .max_hw_frame_size = 4096,
3411 .get_variants = e1000_get_variants_ich8lan,
3412 .mac_ops = &ich8_mac_ops,
3413 .phy_ops = &ich8_phy_ops,
3414 .nvm_ops = &ich8_nvm_ops,
3415};