ath9k: Add new Atheros IEEE 802.11n driver

This adds the new mac80211 11n ath9k Atheros driver. Only STA support
is currently enabled and tested.

Signed-off-by: Senthil Balasubramanian <senthilkumar@atheros.com>
Signed-off-by: Felix Fietkau <nbd@openwrt.org>
Signed-off-by: Jack Howarth <howarth@bromo.msbb.uc.edu>
Signed-off-by: Jouni Malinen <jouni.malinen@atheros.com>
Signed-off-by: Sujith Manoharan <Sujith.Manoharan@atheros.com>
Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com>
Signed-off-by: Pavel Roskin <proski@gnu.org>
Signed-off-by: Vasanthakumar Thiagarajan <vasanth@atheros.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
diff --git a/drivers/net/wireless/ath9k/rc.c b/drivers/net/wireless/ath9k/rc.c
new file mode 100644
index 0000000..e0797af
--- /dev/null
+++ b/drivers/net/wireless/ath9k/rc.c
@@ -0,0 +1,2126 @@
+/*
+ * Copyright (c) 2004 Video54 Technologies, Inc.
+ * Copyright (c) 2004-2008 Atheros Communications, Inc.
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+/*
+ * Atheros rate control algorithm
+ */
+
+#include "core.h"
+#include "../net/mac80211/rate.h"
+
+static u32 tx_triglevel_max;
+
+static struct ath_rate_table ar5416_11na_ratetable = {
+	42,
+	{
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
+			5400, 0x0b, 0x00, 12,
+			0, 2, 1, 0, 0, 0, 0, 0 },
+		{ TRUE,	TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
+			7800,  0x0f, 0x00, 18,
+			0, 3, 1, 1, 1, 1, 1, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
+			10000, 0x0a, 0x00, 24,
+			2, 4, 2, 2, 2, 2, 2, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
+			13900, 0x0e, 0x00, 36,
+			2, 6,  2, 3, 3, 3, 3, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
+			17300, 0x09, 0x00, 48,
+			4, 10, 3, 4, 4, 4, 4, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
+			23000, 0x0d, 0x00, 72,
+			4, 14, 3, 5, 5, 5, 5, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
+			27400, 0x08, 0x00, 96,
+			4, 20, 3, 6, 6, 6, 6, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
+			29300, 0x0c, 0x00, 108,
+			4, 23, 3, 7, 7, 7, 7, 0 },
+		{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */
+			6400, 0x80, 0x00, 0,
+			0, 2, 3, 8, 24, 8, 24, 3216 },
+		{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */
+			12700, 0x81, 0x00, 1,
+			2, 4, 3, 9, 25, 9, 25, 6434 },
+		{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */
+			18800, 0x82, 0x00, 2,
+			2, 6, 3, 10, 26, 10, 26, 9650 },
+		{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */
+			25000, 0x83, 0x00, 3,
+			4, 10, 3, 11, 27, 11, 27, 12868 },
+		{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */
+			36700, 0x84, 0x00, 4,
+			4, 14, 3, 12, 28, 12, 28, 19304 },
+		{ FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */
+			48100, 0x85, 0x00, 5,
+			4, 20, 3, 13, 29, 13, 29, 25740 },
+		{ FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */
+			53500, 0x86, 0x00, 6,
+			4, 23, 3, 14, 30, 14, 30,  28956 },
+		{ FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */
+			59000, 0x87, 0x00, 7,
+			4, 25, 3, 15, 31, 15, 32, 32180 },
+		{ FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */
+			12700, 0x88, 0x00,
+			8, 0, 2, 3, 16, 33, 16, 33, 6430 },
+		{ FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */
+			24800, 0x89, 0x00, 9,
+			2, 4, 3, 17, 34, 17, 34, 12860 },
+		{ FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */
+			36600, 0x8a, 0x00, 10,
+			2, 6, 3, 18, 35, 18, 35, 19300 },
+		{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */
+			48100, 0x8b, 0x00, 11,
+			4, 10, 3, 19, 36, 19, 36, 25736 },
+		{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */
+			69500, 0x8c, 0x00, 12,
+			4, 14, 3, 20, 37, 20, 37, 38600 },
+		{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */
+			89500, 0x8d, 0x00, 13,
+			4, 20, 3, 21, 38, 21, 38, 51472 },
+		{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */
+			98900, 0x8e, 0x00, 14,
+			4, 23, 3, 22, 39, 22, 39, 57890 },
+		{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */
+			108300, 0x8f, 0x00, 15,
+			4, 25, 3, 23, 40, 23, 41, 64320 },
+		{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */
+			13200, 0x80, 0x00, 0,
+			0, 2, 3, 8, 24, 24, 24, 6684 },
+		{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */
+			25900, 0x81, 0x00, 1,
+			2, 4, 3, 9, 25, 25, 25, 13368 },
+		{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */
+			38600, 0x82, 0x00, 2,
+			2, 6, 3, 10, 26, 26, 26, 20052 },
+		{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */
+			49800, 0x83, 0x00, 3,
+			4, 10, 3, 11, 27, 27, 27, 26738 },
+		{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */
+			72200, 0x84, 0x00, 4,
+			4, 14, 3, 12, 28, 28, 28, 40104 },
+		{ FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */
+			92900, 0x85, 0x00, 5,
+			4, 20, 3, 13, 29, 29, 29, 53476 },
+		{ FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */
+			102700, 0x86, 0x00, 6,
+			4, 23, 3, 14, 30, 30, 30, 60156 },
+		{ FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */
+			112000, 0x87, 0x00, 7,
+			4, 25, 3, 15, 31, 32, 32, 66840 },
+		{ FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
+			122000, 0x87, 0x00, 7,
+			4, 25, 3, 15, 31, 32, 32, 74200 },
+		{ FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */
+			25800, 0x88, 0x00, 8,
+			0, 2, 3, 16, 33, 33, 33, 13360 },
+		{ FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */
+			49800, 0x89, 0x00, 9,
+			2, 4, 3, 17, 34, 34, 34, 26720 },
+		{ FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */
+			71900, 0x8a, 0x00, 10,
+			2, 6, 3, 18, 35, 35, 35, 40080 },
+		{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */
+			92500, 0x8b, 0x00, 11,
+			4, 10, 3, 19, 36, 36, 36, 53440 },
+		{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */
+			130300, 0x8c, 0x00, 12,
+			4, 14, 3, 20, 37, 37, 37, 80160 },
+		{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */
+			162800, 0x8d, 0x00, 13,
+			4, 20, 3, 21, 38, 38, 38, 106880 },
+		{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */
+			178200, 0x8e, 0x00, 14,
+			4, 23, 3, 22, 39, 39, 39, 120240 },
+		{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */
+			192100, 0x8f, 0x00, 15,
+			4, 25, 3, 23, 40, 41, 41, 133600 },
+		{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
+			207000, 0x8f, 0x00, 15,
+			4, 25, 3, 23, 40, 41, 41, 148400 },
+	},
+	50,  /* probe interval */
+	50,  /* rssi reduce interval */
+	WLAN_RC_HT_FLAG,  /* Phy rates allowed initially */
+};
+
+/* TRUE_ALL - valid for 20/40/Legacy,
+ * TRUE - Legacy only,
+ * TRUE_20 - HT 20 only,
+ * TRUE_40 - HT 40 only */
+
+/* 4ms frame limit not used for NG mode.  The values filled
+ * for HT are the 64K max aggregate limit */
+
+static struct ath_rate_table ar5416_11ng_ratetable = {
+	46,
+	{
+		{ TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 1000, /* 1 Mb */
+			900, 0x1b, 0x00, 2,
+			0, 0, 1, 0, 0, 0, 0, 0 },
+		{ TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 2000, /* 2 Mb */
+			1900, 0x1a, 0x04, 4,
+			1, 1, 1, 1, 1, 1, 1, 0 },
+		{ TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 5500, /* 5.5 Mb */
+			4900, 0x19, 0x04, 11,
+			2, 2, 2, 2, 2, 2, 2, 0 },
+		{ TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 11000, /* 11 Mb */
+			8100, 0x18, 0x04, 22,
+			3, 3, 2, 3, 3, 3, 3, 0 },
+		{ FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
+			5400, 0x0b, 0x00, 12,
+			4, 2, 1, 4, 4, 4, 4, 0 },
+		{ FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
+			7800, 0x0f, 0x00, 18,
+			4, 3, 1, 5, 5, 5, 5, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
+			10100, 0x0a, 0x00, 24,
+			6, 4, 1, 6, 6, 6, 6, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
+			14100,  0x0e, 0x00, 36,
+			6, 6, 2, 7, 7, 7, 7, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
+			17700, 0x09, 0x00, 48,
+			8, 10, 3, 8, 8, 8, 8, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
+			23700, 0x0d, 0x00, 72,
+			8, 14, 3, 9, 9, 9, 9, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
+			27400, 0x08, 0x00, 96,
+			8, 20, 3, 10, 10, 10, 10, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
+			30900, 0x0c, 0x00, 108,
+			8, 23, 3, 11, 11, 11, 11, 0 },
+		{ FALSE, FALSE, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */
+			6400, 0x80, 0x00, 0,
+			4, 2, 3, 12, 28, 12, 28, 3216 },
+		{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */
+			12700, 0x81, 0x00, 1,
+			6, 4, 3, 13, 29, 13, 29, 6434 },
+		{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */
+			18800, 0x82, 0x00, 2,
+			6, 6, 3, 14, 30, 14, 30, 9650 },
+		{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */
+			25000, 0x83, 0x00, 3,
+			8, 10, 3, 15, 31, 15, 31, 12868 },
+		{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */
+			36700, 0x84, 0x00, 4,
+			8, 14, 3, 16, 32, 16, 32, 19304 },
+		{ FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */
+			48100, 0x85, 0x00, 5,
+			8, 20, 3, 17, 33, 17, 33, 25740 },
+		{ FALSE,  TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */
+			53500, 0x86, 0x00, 6,
+			8, 23, 3, 18, 34, 18, 34, 28956 },
+		{ FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */
+			59000, 0x87, 0x00, 7,
+			8, 25, 3, 19, 35, 19, 36, 32180 },
+		{ FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */
+			12700, 0x88, 0x00, 8,
+			4, 2, 3, 20, 37, 20, 37, 6430 },
+		{ FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */
+			24800, 0x89, 0x00, 9,
+			6, 4, 3, 21, 38, 21, 38, 12860 },
+		{ FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */
+			36600, 0x8a, 0x00, 10,
+			6, 6, 3, 22, 39, 22, 39, 19300 },
+		{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */
+			48100, 0x8b, 0x00, 11,
+			8, 10, 3, 23, 40, 23, 40, 25736 },
+		{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */
+			69500, 0x8c, 0x00, 12,
+			8, 14, 3, 24, 41, 24, 41, 38600 },
+		{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */
+			89500, 0x8d, 0x00, 13,
+			8, 20, 3, 25, 42, 25, 42, 51472 },
+		{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */
+			98900, 0x8e, 0x00, 14,
+			8, 23, 3, 26, 43, 26, 44, 57890 },
+		{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */
+			108300, 0x8f, 0x00, 15,
+			8, 25, 3, 27, 44, 27, 45, 64320 },
+		{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */
+			13200, 0x80, 0x00, 0,
+			8, 2, 3, 12, 28, 28, 28, 6684 },
+		{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */
+			25900, 0x81, 0x00, 1,
+			8, 4, 3, 13, 29, 29, 29, 13368 },
+		{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */
+			38600, 0x82, 0x00, 2,
+			8, 6, 3, 14, 30, 30, 30, 20052 },
+		{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */
+			49800, 0x83, 0x00, 3,
+			8, 10, 3, 15, 31, 31, 31, 26738 },
+		{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */
+			72200, 0x84, 0x00, 4,
+			8, 14, 3, 16, 32, 32, 32, 40104 },
+		{ FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */
+			92900, 0x85, 0x00, 5,
+			8, 20, 3, 17, 33, 33, 33, 53476 },
+		{ FALSE,  TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */
+			102700, 0x86, 0x00, 6,
+			8, 23, 3, 18, 34, 34, 34, 60156 },
+		{ FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */
+			112000, 0x87, 0x00, 7,
+			8, 23, 3, 19, 35, 36, 36, 66840 },
+		{ FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
+			122000, 0x87, 0x00, 7,
+			8, 25, 3, 19, 35, 36, 36, 74200 },
+		{ FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */
+			25800, 0x88, 0x00, 8,
+			8, 2, 3, 20, 37, 37, 37, 13360 },
+		{ FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */
+			49800, 0x89, 0x00, 9,
+			8, 4, 3, 21, 38, 38, 38, 26720 },
+		{ FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */
+			71900, 0x8a, 0x00, 10,
+			8, 6, 3, 22, 39, 39, 39, 40080 },
+		{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */
+			92500, 0x8b, 0x00, 11,
+			8, 10, 3, 23, 40, 40, 40, 53440 },
+		{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */
+			130300, 0x8c, 0x00, 12,
+			8, 14, 3, 24, 41, 41, 41, 80160 },
+		{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */
+			162800, 0x8d, 0x00, 13,
+			8, 20, 3, 25, 42, 42, 42, 106880 },
+		{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */
+			178200, 0x8e, 0x00, 14,
+			8, 23, 3, 26, 43, 43, 43, 120240 },
+		{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */
+			192100, 0x8f, 0x00, 15,
+			8, 23, 3, 27, 44, 45, 45, 133600 },
+		{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
+			207000, 0x8f, 0x00, 15,
+			8, 25, 3, 27, 44, 45, 45, 148400 },
+		},
+	50,  /* probe interval */
+	50,  /* rssi reduce interval */
+	WLAN_RC_HT_FLAG,  /* Phy rates allowed initially */
+};
+
+static struct ath_rate_table ar5416_11a_ratetable = {
+	8,
+	{
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
+			5400, 0x0b, 0x00, (0x80|12),
+			0, 2, 1, 0, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
+			7800, 0x0f, 0x00, 18,
+			0, 3, 1, 1, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
+			10000, 0x0a, 0x00, (0x80|24),
+			2, 4, 2, 2, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
+			13900, 0x0e, 0x00, 36,
+			2, 6, 2, 3, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
+			17300, 0x09, 0x00, (0x80|48),
+			4, 10, 3, 4, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
+			23000, 0x0d, 0x00, 72,
+			4, 14, 3, 5, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
+			27400, 0x08, 0x00, 96,
+			4, 19, 3, 6, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
+			29300, 0x0c, 0x00, 108,
+			4, 23, 3, 7, 0 },
+	},
+	50,  /* probe interval */
+	50,  /* rssi reduce interval */
+	0,   /* Phy rates allowed initially */
+};
+
+static struct ath_rate_table ar5416_11a_ratetable_Half = {
+	8,
+	{
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 3000, /* 6 Mb */
+			2700, 0x0b, 0x00, (0x80|6),
+			0, 2,  1, 0, 0},
+		{ TRUE, TRUE,  WLAN_PHY_OFDM, 4500, /* 9 Mb */
+			3900, 0x0f, 0x00, 9,
+			0, 3, 1, 1, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 12 Mb */
+			5000, 0x0a, 0x00, (0x80|12),
+			2, 4, 2, 2, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 18 Mb */
+			6950, 0x0e, 0x00, 18,
+			2, 6, 2, 3, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 24 Mb */
+			8650, 0x09, 0x00, (0x80|24),
+			4, 10, 3, 4, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 36 Mb */
+			11500, 0x0d, 0x00, 36,
+			4, 14, 3, 5, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 48 Mb */
+			13700, 0x08, 0x00, 48,
+			4, 19, 3, 6, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 27000, /* 54 Mb */
+			14650, 0x0c, 0x00, 54,
+			4, 23, 3, 7, 0 },
+	},
+	50,  /* probe interval */
+	50,  /* rssi reduce interval */
+	0,   /* Phy rates allowed initially */
+};
+
+static struct ath_rate_table ar5416_11a_ratetable_Quarter = {
+	8,
+	{
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 1500, /* 6 Mb */
+			1350, 0x0b, 0x00, (0x80|3),
+			0, 2, 1, 0, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 2250, /* 9 Mb */
+			1950, 0x0f, 0x00, 4,
+			0, 3, 1, 1, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 3000, /* 12 Mb */
+			2500, 0x0a, 0x00, (0x80|6),
+			2, 4, 2, 2, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 4500, /* 18 Mb */
+			3475, 0x0e, 0x00, 9,
+			2, 6, 2, 3, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 25 Mb */
+			4325, 0x09, 0x00, (0x80|12),
+			4, 10, 3, 4, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 36 Mb */
+			5750, 0x0d, 0x00, 18,
+			4, 14, 3, 5, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 48 Mb */
+			6850, 0x08, 0x00, 24,
+			4, 19, 3, 6, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 13500, /* 54 Mb */
+			7325, 0x0c, 0x00, 27,
+			4, 23, 3, 7, 0 },
+	},
+	50,  /* probe interval */
+	50,  /* rssi reduce interval */
+	0,   /* Phy rates allowed initially */
+};
+
+static struct ath_rate_table ar5416_11g_ratetable = {
+	12,
+	{
+		{ TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */
+			900, 0x1b, 0x00, 2,
+			0, 0, 1, 0, 0 },
+		{ TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */
+			1900, 0x1a, 0x04, 4,
+			1, 1, 1, 1, 0 },
+		{ TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */
+			4900, 0x19, 0x04, 11,
+			2, 2, 2, 2, 0 },
+		{ TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */
+			8100, 0x18, 0x04, 22,
+			3, 3, 2, 3, 0 },
+		{ FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
+			5400, 0x0b, 0x00, 12,
+			4, 2, 1, 4, 0 },
+		{ FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
+			7800, 0x0f, 0x00, 18,
+			4, 3, 1, 5, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
+			10000, 0x0a, 0x00, 24,
+			6, 4, 1, 6, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
+			13900, 0x0e, 0x00, 36,
+			6, 6, 2, 7, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
+			17300, 0x09, 0x00, 48,
+			8, 10, 3, 8, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
+			23000, 0x0d, 0x00, 72,
+			8, 14, 3, 9, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
+			27400, 0x08, 0x00, 96,
+			8, 19, 3, 10, 0 },
+		{ TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
+			29300, 0x0c, 0x00, 108,
+			8, 23, 3, 11, 0 },
+	},
+	50,  /* probe interval */
+	50,  /* rssi reduce interval */
+	0,   /* Phy rates allowed initially */
+};
+
+static struct ath_rate_table ar5416_11b_ratetable = {
+	4,
+	{
+		{ TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */
+			900, 0x1b,  0x00, (0x80|2),
+			0, 0, 1, 0, 0 },
+		{ TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */
+			1800, 0x1a, 0x04, (0x80|4),
+			1, 1, 1, 1, 0 },
+		{ TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */
+			4300, 0x19, 0x04, (0x80|11),
+			1, 2, 2, 2, 0 },
+		{ TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */
+			7100, 0x18, 0x04, (0x80|22),
+			1, 4, 100, 3, 0 },
+	},
+	100, /* probe interval */
+	100, /* rssi reduce interval */
+	0,   /* Phy rates allowed initially */
+};
+
+static void ar5416_attach_ratetables(struct ath_rate_softc *sc)
+{
+	/*
+	 * Attach rate tables.
+	 */
+	sc->hw_rate_table[WIRELESS_MODE_11b] = &ar5416_11b_ratetable;
+	sc->hw_rate_table[WIRELESS_MODE_11a] = &ar5416_11a_ratetable;
+	sc->hw_rate_table[WIRELESS_MODE_11g] = &ar5416_11g_ratetable;
+
+	sc->hw_rate_table[WIRELESS_MODE_11NA_HT20] = &ar5416_11na_ratetable;
+	sc->hw_rate_table[WIRELESS_MODE_11NG_HT20] = &ar5416_11ng_ratetable;
+	sc->hw_rate_table[WIRELESS_MODE_11NA_HT40PLUS] =
+		&ar5416_11na_ratetable;
+	sc->hw_rate_table[WIRELESS_MODE_11NA_HT40MINUS] =
+		&ar5416_11na_ratetable;
+	sc->hw_rate_table[WIRELESS_MODE_11NG_HT40PLUS] =
+		&ar5416_11ng_ratetable;
+	sc->hw_rate_table[WIRELESS_MODE_11NG_HT40MINUS] =
+		&ar5416_11ng_ratetable;
+}
+
+static void ar5416_setquarter_ratetable(struct ath_rate_softc *sc)
+{
+	sc->hw_rate_table[WIRELESS_MODE_11a] = &ar5416_11a_ratetable_Quarter;
+	return;
+}
+
+static void ar5416_sethalf_ratetable(struct ath_rate_softc *sc)
+{
+	sc->hw_rate_table[WIRELESS_MODE_11a] = &ar5416_11a_ratetable_Half;
+	return;
+}
+
+static void ar5416_setfull_ratetable(struct ath_rate_softc *sc)
+{
+	sc->hw_rate_table[WIRELESS_MODE_11a]   = &ar5416_11a_ratetable;
+	return;
+}
+
+/*
+ * Return the median of three numbers
+ */
+static inline int8_t median(int8_t a, int8_t b, int8_t c)
+{
+	if (a >= b) {
+		if (b >= c)
+			return b;
+		else if (a > c)
+			return c;
+		else
+			return a;
+	} else {
+		if (a >= c)
+			return a;
+		else if (b >= c)
+			return c;
+		else
+			return b;
+	}
+}
+
+static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table,
+				   struct ath_tx_ratectrl *rate_ctrl)
+{
+	u8 i, j, idx, idx_next;
+
+	for (i = rate_ctrl->max_valid_rate - 1; i > 0; i--) {
+		for (j = 0; j <= i-1; j++) {
+			idx = rate_ctrl->valid_rate_index[j];
+			idx_next = rate_ctrl->valid_rate_index[j+1];
+
+			if (rate_table->info[idx].ratekbps >
+				rate_table->info[idx_next].ratekbps) {
+				rate_ctrl->valid_rate_index[j] = idx_next;
+				rate_ctrl->valid_rate_index[j+1] = idx;
+			}
+		}
+	}
+}
+
+/* Access functions for valid_txrate_mask */
+
+static void ath_rc_init_valid_txmask(struct ath_tx_ratectrl *rate_ctrl)
+{
+	u8 i;
+
+	for (i = 0; i < rate_ctrl->rate_table_size; i++)
+		rate_ctrl->valid_rate_index[i] = FALSE;
+}
+
+static inline void ath_rc_set_valid_txmask(struct ath_tx_ratectrl *rate_ctrl,
+					   u8 index, int valid_tx_rate)
+{
+	ASSERT(index <= rate_ctrl->rate_table_size);
+	rate_ctrl->valid_rate_index[index] = valid_tx_rate ? TRUE : FALSE;
+}
+
+static inline int ath_rc_isvalid_txmask(struct ath_tx_ratectrl *rate_ctrl,
+					u8 index)
+{
+	ASSERT(index <= rate_ctrl->rate_table_size);
+	return rate_ctrl->valid_rate_index[index];
+}
+
+/* Iterators for valid_txrate_mask */
+static inline int
+ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
+			    struct ath_tx_ratectrl *rate_ctrl,
+			    u8 cur_valid_txrate,
+			    u8 *next_idx)
+{
+	u8 i;
+
+	for (i = 0; i < rate_ctrl->max_valid_rate - 1; i++) {
+		if (rate_ctrl->valid_rate_index[i] == cur_valid_txrate) {
+			*next_idx = rate_ctrl->valid_rate_index[i+1];
+			return TRUE;
+		}
+	}
+
+	/* No more valid rates */
+	*next_idx = 0;
+	return FALSE;
+}
+
+/* Return true only for single stream */
+
+static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
+{
+	if (WLAN_RC_PHY_HT(phy) & !(capflag & WLAN_RC_HT_FLAG))
+		return FALSE;
+	if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
+		return FALSE;
+	if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
+		return FALSE;
+	if (!ignore_cw && WLAN_RC_PHY_HT(phy))
+		if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
+			return FALSE;
+		if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG))
+			return FALSE;
+	return TRUE;
+}
+
+static inline int
+ath_rc_get_nextlowervalid_txrate(const struct ath_rate_table *rate_table,
+				 struct ath_tx_ratectrl *rate_ctrl,
+				 u8 cur_valid_txrate, u8 *next_idx)
+{
+	int8_t i;
+
+	for (i = 1; i < rate_ctrl->max_valid_rate ; i++) {
+		if (rate_ctrl->valid_rate_index[i] == cur_valid_txrate) {
+			*next_idx = rate_ctrl->valid_rate_index[i-1];
+			return TRUE;
+		}
+	}
+	return FALSE;
+}
+
+/*
+ * Initialize the Valid Rate Index from valid entries in Rate Table
+ */
+static u8
+ath_rc_sib_init_validrates(struct ath_rate_node *ath_rc_priv,
+			   const struct ath_rate_table *rate_table,
+			   u32 capflag)
+{
+	struct ath_tx_ratectrl *rate_ctrl;
+	u8 i, hi = 0;
+	u32 valid;
+
+	rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv);
+	for (i = 0; i < rate_table->rate_cnt; i++) {
+		valid = (ath_rc_priv->single_stream ?
+				rate_table->info[i].valid_single_stream :
+				rate_table->info[i].valid);
+		if (valid == TRUE) {
+			u32 phy = rate_table->info[i].phy;
+			u8 valid_rate_count = 0;
+
+			if (!ath_rc_valid_phyrate(phy, capflag, FALSE))
+				continue;
+
+			valid_rate_count = rate_ctrl->valid_phy_ratecnt[phy];
+
+			rate_ctrl->valid_phy_rateidx[phy][valid_rate_count] = i;
+			rate_ctrl->valid_phy_ratecnt[phy] += 1;
+			ath_rc_set_valid_txmask(rate_ctrl, i, TRUE);
+			hi = A_MAX(hi, i);
+		}
+	}
+	return hi;
+}
+
+/*
+ * Initialize the Valid Rate Index from Rate Set
+ */
+static u8
+ath_rc_sib_setvalid_rates(struct ath_rate_node *ath_rc_priv,
+			  const struct ath_rate_table *rate_table,
+			  struct ath_rateset *rateset,
+			  u32 capflag)
+{
+	/* XXX: Clean me up and make identation friendly */
+	u8 i, j, hi = 0;
+	struct ath_tx_ratectrl *rate_ctrl =
+		(struct ath_tx_ratectrl *)(ath_rc_priv);
+
+	/* Use intersection of working rates and valid rates */
+	for (i = 0; i < rateset->rs_nrates; i++) {
+		for (j = 0; j < rate_table->rate_cnt; j++) {
+			u32 phy = rate_table->info[j].phy;
+			u32 valid = (ath_rc_priv->single_stream ?
+				rate_table->info[j].valid_single_stream :
+				rate_table->info[j].valid);
+
+			/* We allow a rate only if its valid and the
+			 * capflag matches one of the validity
+			 * (TRUE/TRUE_20/TRUE_40) flags */
+
+			/* XXX: catch the negative of this branch
+			 * first and then continue */
+			if (((rateset->rs_rates[i] & 0x7F) ==
+				(rate_table->info[j].dot11rate & 0x7F)) &&
+				((valid & WLAN_RC_CAP_MODE(capflag)) ==
+				WLAN_RC_CAP_MODE(capflag)) &&
+				!WLAN_RC_PHY_HT(phy)) {
+
+				u8 valid_rate_count = 0;
+
+				if (!ath_rc_valid_phyrate(phy, capflag, FALSE))
+					continue;
+
+				valid_rate_count =
+					rate_ctrl->valid_phy_ratecnt[phy];
+
+				rate_ctrl->valid_phy_rateidx[phy]
+					[valid_rate_count] = j;
+				rate_ctrl->valid_phy_ratecnt[phy] += 1;
+				ath_rc_set_valid_txmask(rate_ctrl, j, TRUE);
+				hi = A_MAX(hi, j);
+			}
+		}
+	}
+	return hi;
+}
+
+static u8
+ath_rc_sib_setvalid_htrates(struct ath_rate_node *ath_rc_priv,
+			    const struct ath_rate_table *rate_table,
+			    u8 *mcs_set, u32 capflag)
+{
+	u8 i, j, hi = 0;
+	struct ath_tx_ratectrl *rate_ctrl =
+		(struct ath_tx_ratectrl *)(ath_rc_priv);
+
+	/* Use intersection of working rates and valid rates */
+	for (i = 0; i <  ((struct ath_rateset *)mcs_set)->rs_nrates; i++) {
+		for (j = 0; j < rate_table->rate_cnt; j++) {
+			u32 phy = rate_table->info[j].phy;
+			u32 valid = (ath_rc_priv->single_stream ?
+				rate_table->info[j].valid_single_stream :
+				rate_table->info[j].valid);
+
+			if (((((struct ath_rateset *)
+				mcs_set)->rs_rates[i] & 0x7F) !=
+				(rate_table->info[j].dot11rate & 0x7F)) ||
+					!WLAN_RC_PHY_HT(phy) ||
+					!WLAN_RC_PHY_HT_VALID(valid, capflag))
+				continue;
+
+			if (!ath_rc_valid_phyrate(phy, capflag, FALSE))
+				continue;
+
+			rate_ctrl->valid_phy_rateidx[phy]
+				[rate_ctrl->valid_phy_ratecnt[phy]] = j;
+			rate_ctrl->valid_phy_ratecnt[phy] += 1;
+			ath_rc_set_valid_txmask(rate_ctrl, j, TRUE);
+			hi = A_MAX(hi, j);
+		}
+	}
+	return hi;
+}
+
+/*
+ * Attach to a device instance.  Setup the public definition
+ * of how much per-node space we need and setup the private
+ * phy tables that have rate control parameters.
+ */
+struct ath_rate_softc *ath_rate_attach(struct ath_hal *ah)
+{
+	struct ath_rate_softc *asc;
+
+	/* we are only in user context so we can sleep for memory */
+	asc = kzalloc(sizeof(struct ath_rate_softc), GFP_KERNEL);
+	if (asc == NULL)
+		return NULL;
+
+	ar5416_attach_ratetables(asc);
+
+	/* Save Maximum TX Trigger Level (used for 11n) */
+	tx_triglevel_max = ah->ah_caps.halTxTrigLevelMax;
+	/*  return alias for ath_rate_softc * */
+	return asc;
+}
+
+static struct ath_rate_node *ath_rate_node_alloc(struct ath_vap *avp,
+						 struct ath_rate_softc *rsc,
+						 gfp_t gfp)
+{
+	struct ath_rate_node *anode;
+
+	anode = kzalloc(sizeof(struct ath_rate_node), gfp);
+	if (anode == NULL)
+		return NULL;
+
+	anode->avp = avp;
+	anode->asc = rsc;
+	avp->rc_node = anode;
+
+	return anode;
+}
+
+static void ath_rate_node_free(struct ath_rate_node *anode)
+{
+	if (anode != NULL)
+		kfree(anode);
+}
+
+void ath_rate_detach(struct ath_rate_softc *asc)
+{
+	if (asc != NULL)
+		kfree(asc);
+}
+
+u8 ath_rate_findrateix(struct ath_softc *sc,
+			     u8 dot11rate)
+{
+	const struct ath_rate_table *ratetable;
+	struct ath_rate_softc *rsc = sc->sc_rc;
+	int i;
+
+	ratetable = rsc->hw_rate_table[sc->sc_curmode];
+
+	if (WARN_ON(!ratetable))
+		return 0;
+
+	for (i = 0; i < ratetable->rate_cnt; i++) {
+		if ((ratetable->info[i].dot11rate & 0x7f) == (dot11rate & 0x7f))
+			return i;
+	}
+
+	return 0;
+}
+
+/*
+ * Update rate-control state on a device state change.  When
+ * operating as a station this includes associate/reassociate
+ * with an AP.  Otherwise this gets called, for example, when
+ * the we transition to run state when operating as an AP.
+ */
+void ath_rate_newstate(struct ath_softc *sc, struct ath_vap *avp)
+{
+	struct ath_rate_softc *asc = sc->sc_rc;
+
+	/* For half and quarter rate channles use different
+	 * rate tables
+	 */
+	if (sc->sc_curchan.channelFlags & CHANNEL_HALF)
+		ar5416_sethalf_ratetable(asc);
+	else if (sc->sc_curchan.channelFlags & CHANNEL_QUARTER)
+		ar5416_setquarter_ratetable(asc);
+	else /* full rate */
+		ar5416_setfull_ratetable(asc);
+
+	if (avp->av_config.av_fixed_rateset != IEEE80211_FIXED_RATE_NONE) {
+		asc->fixedrix =
+			sc->sc_rixmap[avp->av_config.av_fixed_rateset & 0xff];
+		/* NB: check the fixed rate exists */
+		if (asc->fixedrix == 0xff)
+			asc->fixedrix = IEEE80211_FIXED_RATE_NONE;
+	} else {
+		asc->fixedrix = IEEE80211_FIXED_RATE_NONE;
+	}
+}
+
+static u8 ath_rc_ratefind_ht(struct ath_softc *sc,
+				   struct ath_rate_node *ath_rc_priv,
+				   const struct ath_rate_table *rate_table,
+				   int probe_allowed, int *is_probing,
+				   int is_retry)
+{
+	u32 dt, best_thruput, this_thruput, now_msec;
+	u8 rate, next_rate, best_rate, maxindex, minindex;
+	int8_t  rssi_last, rssi_reduce = 0, index = 0;
+	struct ath_tx_ratectrl  *rate_ctrl = NULL;
+
+	rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv ?
+					       (ath_rc_priv) : NULL);
+
+	*is_probing = FALSE;
+
+	rssi_last = median(rate_ctrl->rssi_last,
+			   rate_ctrl->rssi_last_prev,
+			   rate_ctrl->rssi_last_prev2);
+
+	/*
+	 * Age (reduce) last ack rssi based on how old it is.
+	 * The bizarre numbers are so the delta is 160msec,
+	 * meaning we divide by 16.
+	 *   0msec   <= dt <= 25msec:   don't derate
+	 *   25msec  <= dt <= 185msec:  derate linearly from 0 to 10dB
+	 *   185msec <= dt:             derate by 10dB
+	 */
+
+	now_msec = jiffies_to_msecs(jiffies);
+	dt = now_msec - rate_ctrl->rssi_time;
+
+	if (dt >= 185)
+		rssi_reduce = 10;
+	else if (dt >= 25)
+		rssi_reduce = (u8)((dt - 25) >> 4);
+
+	/* Now reduce rssi_last by rssi_reduce */
+	if (rssi_last < rssi_reduce)
+		rssi_last = 0;
+	else
+		rssi_last -= rssi_reduce;
+
+	/*
+	 * Now look up the rate in the rssi table and return it.
+	 * If no rates match then we return 0 (lowest rate)
+	 */
+
+	best_thruput = 0;
+	maxindex = rate_ctrl->max_valid_rate-1;
+
+	minindex = 0;
+	best_rate = minindex;
+
+	/*
+	 * Try the higher rate first. It will reduce memory moving time
+	 * if we have very good channel characteristics.
+	 */
+	for (index = maxindex; index >= minindex ; index--) {
+		u8 per_thres;
+
+		rate = rate_ctrl->valid_rate_index[index];
+		if (rate > rate_ctrl->rate_max_phy)
+			continue;
+
+		/*
+		 * For TCP the average collision rate is around 11%,
+		 * so we ignore PERs less than this.  This is to
+		 * prevent the rate we are currently using (whose
+		 * PER might be in the 10-15 range because of TCP
+		 * collisions) looking worse than the next lower
+		 * rate whose PER has decayed close to 0.  If we
+		 * used to next lower rate, its PER would grow to
+		 * 10-15 and we would be worse off then staying
+		 * at the current rate.
+		 */
+		per_thres = rate_ctrl->state[rate].per;
+		if (per_thres < 12)
+			per_thres = 12;
+
+		this_thruput = rate_table->info[rate].user_ratekbps *
+			(100 - per_thres);
+
+		if (best_thruput <= this_thruput) {
+			best_thruput = this_thruput;
+			best_rate    = rate;
+		}
+	}
+
+	rate = best_rate;
+
+	/* if we are retrying for more than half the number
+	 * of max retries, use the min rate for the next retry
+	 */
+	if (is_retry)
+		rate = rate_ctrl->valid_rate_index[minindex];
+
+	rate_ctrl->rssi_last_lookup = rssi_last;
+
+	/*
+	 * Must check the actual rate (ratekbps) to account for
+	 * non-monoticity of 11g's rate table
+	 */
+
+	if (rate >= rate_ctrl->rate_max_phy && probe_allowed) {
+		rate = rate_ctrl->rate_max_phy;
+
+		/* Probe the next allowed phy state */
+		/* FIXME:XXXX Check to make sure ratMax is checked properly */
+		if (ath_rc_get_nextvalid_txrate(rate_table,
+						rate_ctrl, rate, &next_rate) &&
+		    (now_msec - rate_ctrl->probe_time >
+		     rate_table->probe_interval) &&
+		    (rate_ctrl->hw_maxretry_pktcnt >= 1)) {
+			rate = next_rate;
+			rate_ctrl->probe_rate = rate;
+			rate_ctrl->probe_time = now_msec;
+			rate_ctrl->hw_maxretry_pktcnt = 0;
+			*is_probing = TRUE;
+		}
+	}
+
+	/*
+	 * Make sure rate is not higher than the allowed maximum.
+	 * We should also enforce the min, but I suspect the min is
+	 * normally 1 rather than 0 because of the rate 9 vs 6 issue
+	 * in the old code.
+	 */
+	if (rate > (rate_ctrl->rate_table_size - 1))
+		rate = rate_ctrl->rate_table_size - 1;
+
+	ASSERT((rate_table->info[rate].valid && !ath_rc_priv->single_stream) ||
+		(rate_table->info[rate].valid_single_stream &&
+			ath_rc_priv->single_stream));
+
+	return rate;
+}
+
+static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table ,
+				   struct ath_rc_series *series,
+				   u8 tries,
+				   u8 rix,
+				   int rtsctsenable)
+{
+	series->tries = tries;
+	series->flags = (rtsctsenable ? ATH_RC_RTSCTS_FLAG : 0) |
+		(WLAN_RC_PHY_DS(rate_table->info[rix].phy) ?
+		 ATH_RC_DS_FLAG : 0) |
+		(WLAN_RC_PHY_40(rate_table->info[rix].phy) ?
+		 ATH_RC_CW40_FLAG : 0) |
+		(WLAN_RC_PHY_SGI(rate_table->info[rix].phy) ?
+		 ATH_RC_SGI_FLAG : 0);
+
+	series->rix = rate_table->info[rix].base_index;
+	series->max_4ms_framelen = rate_table->info[rix].max_4ms_framelen;
+}
+
+static u8 ath_rc_rate_getidx(struct ath_softc *sc,
+				   struct ath_rate_node *ath_rc_priv,
+				   const struct ath_rate_table *rate_table,
+				   u8 rix, u16 stepdown,
+				   u16 min_rate)
+{
+	u32 j;
+	u8 nextindex;
+	struct ath_tx_ratectrl *rate_ctrl =
+		(struct ath_tx_ratectrl *)(ath_rc_priv);
+
+	if (min_rate) {
+		for (j = RATE_TABLE_SIZE; j > 0; j--) {
+			if (ath_rc_get_nextlowervalid_txrate(rate_table,
+						rate_ctrl, rix, &nextindex))
+				rix = nextindex;
+			else
+				break;
+		}
+	} else {
+		for (j = stepdown; j > 0; j--) {
+			if (ath_rc_get_nextlowervalid_txrate(rate_table,
+						rate_ctrl, rix, &nextindex))
+				rix = nextindex;
+			else
+				break;
+		}
+	}
+	return rix;
+}
+
+static void ath_rc_ratefind(struct ath_softc *sc,
+			    struct ath_rate_node *ath_rc_priv,
+			    int num_tries, int num_rates, unsigned int rcflag,
+			    struct ath_rc_series series[], int *is_probe,
+			    int is_retry)
+{
+	u8 try_per_rate = 0, i = 0, rix, nrix;
+	struct ath_rate_softc  *asc = (struct ath_rate_softc *)sc->sc_rc;
+	struct ath_rate_table *rate_table;
+
+	rate_table =
+		(struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode];
+	rix = ath_rc_ratefind_ht(sc, ath_rc_priv, rate_table,
+				(rcflag & ATH_RC_PROBE_ALLOWED) ? 1 : 0,
+				is_probe, is_retry);
+	nrix = rix;
+
+	if ((rcflag & ATH_RC_PROBE_ALLOWED) && (*is_probe)) {
+		/* set one try for probe rates. For the
+		 * probes don't enable rts */
+		ath_rc_rate_set_series(rate_table,
+			&series[i++], 1, nrix, FALSE);
+
+		try_per_rate = (num_tries/num_rates);
+		/* Get the next tried/allowed rate. No RTS for the next series
+		 * after the probe rate
+		 */
+		nrix = ath_rc_rate_getidx(sc,
+			ath_rc_priv, rate_table, nrix, 1, FALSE);
+		ath_rc_rate_set_series(rate_table,
+			&series[i++], try_per_rate, nrix, 0);
+	} else {
+		try_per_rate = (num_tries/num_rates);
+		/* Set the choosen rate. No RTS for first series entry. */
+		ath_rc_rate_set_series(rate_table,
+			&series[i++], try_per_rate, nrix, FALSE);
+	}
+
+	/* Fill in the other rates for multirate retry */
+	for ( ; i < num_rates; i++) {
+		u8 try_num;
+		u8 min_rate;
+
+		try_num = ((i + 1) == num_rates) ?
+			num_tries - (try_per_rate * i) : try_per_rate ;
+		min_rate = (((i + 1) == num_rates) &&
+			(rcflag & ATH_RC_MINRATE_LASTRATE)) ? 1 : 0;
+
+		nrix = ath_rc_rate_getidx(sc, ath_rc_priv,
+			rate_table, nrix, 1, min_rate);
+		/* All other rates in the series have RTS enabled */
+		ath_rc_rate_set_series(rate_table,
+			&series[i], try_num, nrix, TRUE);
+	}
+
+	/*
+	 * NB:Change rate series to enable aggregation when operating
+	 * at lower MCS rates. When first rate in series is MCS2
+	 * in HT40 @ 2.4GHz, series should look like:
+	 *
+	 * {MCS2, MCS1, MCS0, MCS0}.
+	 *
+	 * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
+	 * look like:
+	 *
+	 * {MCS3, MCS2, MCS1, MCS1}
+	 *
+	 * So, set fourth rate in series to be same as third one for
+	 * above conditions.
+	 */
+	if ((sc->sc_curmode == WIRELESS_MODE_11NG_HT20) ||
+			(sc->sc_curmode == WIRELESS_MODE_11NG_HT40PLUS) ||
+			(sc->sc_curmode == WIRELESS_MODE_11NG_HT40MINUS)) {
+		u8  dot11rate = rate_table->info[rix].dot11rate;
+		u8 phy = rate_table->info[rix].phy;
+		if (i == 4 &&
+		    ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
+		    (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
+			series[3].rix = series[2].rix;
+			series[3].flags = series[2].flags;
+			series[3].max_4ms_framelen = series[2].max_4ms_framelen;
+		}
+	}
+}
+
+/*
+ * Return the Tx rate series.
+ */
+void ath_rate_findrate(struct ath_softc *sc,
+		       struct ath_rate_node *ath_rc_priv,
+		       int num_tries,
+		       int num_rates,
+		       unsigned int rcflag,
+		       struct ath_rc_series series[],
+		       int *is_probe,
+		       int is_retry)
+{
+	struct ath_vap *avp = ath_rc_priv->avp;
+
+	DPRINTF(sc, ATH_DBG_RATE, "%s", __func__);
+	if (!num_rates || !num_tries)
+		return;
+
+	if (avp->av_config.av_fixed_rateset == IEEE80211_FIXED_RATE_NONE) {
+		ath_rc_ratefind(sc, ath_rc_priv, num_tries, num_rates,
+				rcflag, series, is_probe, is_retry);
+	} else {
+		/* Fixed rate */
+		int idx;
+		u8 flags;
+		u32 rix;
+		struct ath_rate_softc *asc = ath_rc_priv->asc;
+		struct ath_rate_table *rate_table;
+
+		rate_table = (struct ath_rate_table *)
+			asc->hw_rate_table[sc->sc_curmode];
+
+		for (idx = 0; idx < 4; idx++) {
+			unsigned int    mcs;
+			u8 series_rix = 0;
+
+			series[idx].tries =
+				IEEE80211_RATE_IDX_ENTRY(
+					avp->av_config.av_fixed_retryset, idx);
+
+			mcs = IEEE80211_RATE_IDX_ENTRY(
+				avp->av_config.av_fixed_rateset, idx);
+
+			if (idx == 3 && (mcs & 0xf0) == 0x70)
+				mcs = (mcs & ~0xf0)|0x80;
+
+			if (!(mcs & 0x80))
+				flags = 0;
+			else
+				flags = ((ath_rc_priv->ht_cap &
+						WLAN_RC_DS_FLAG) ?
+						ATH_RC_DS_FLAG : 0) |
+					((ath_rc_priv->ht_cap &
+						WLAN_RC_40_FLAG) ?
+						ATH_RC_CW40_FLAG : 0) |
+					((ath_rc_priv->ht_cap &
+						WLAN_RC_SGI_FLAG) ?
+					((ath_rc_priv->ht_cap &
+						WLAN_RC_40_FLAG) ?
+						ATH_RC_SGI_FLAG : 0) : 0);
+
+			series[idx].rix = sc->sc_rixmap[mcs];
+			series_rix  = series[idx].rix;
+
+			/* XXX: Give me some cleanup love */
+			if ((flags & ATH_RC_CW40_FLAG) &&
+				(flags & ATH_RC_SGI_FLAG))
+				rix = rate_table->info[series_rix].ht_index;
+			else if (flags & ATH_RC_SGI_FLAG)
+				rix = rate_table->info[series_rix].sgi_index;
+			else if (flags & ATH_RC_CW40_FLAG)
+				rix = rate_table->info[series_rix].cw40index;
+			else
+				rix = rate_table->info[series_rix].base_index;
+			series[idx].max_4ms_framelen =
+				rate_table->info[rix].max_4ms_framelen;
+			series[idx].flags = flags;
+		}
+	}
+}
+
+static void ath_rc_update_ht(struct ath_softc *sc,
+			     struct ath_rate_node *ath_rc_priv,
+			     struct ath_tx_info_priv *info_priv,
+			     int tx_rate, int xretries, int retries)
+{
+	struct ath_tx_ratectrl *rate_ctrl;
+	u32 now_msec = jiffies_to_msecs(jiffies);
+	int state_change = FALSE, rate, count;
+	u8 last_per;
+	struct ath_rate_softc  *asc = (struct ath_rate_softc *)sc->sc_rc;
+	struct ath_rate_table *rate_table =
+		(struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode];
+
+	static u32 nretry_to_per_lookup[10] = {
+		100 * 0 / 1,
+		100 * 1 / 4,
+		100 * 1 / 2,
+		100 * 3 / 4,
+		100 * 4 / 5,
+		100 * 5 / 6,
+		100 * 6 / 7,
+		100 * 7 / 8,
+		100 * 8 / 9,
+		100 * 9 / 10
+	};
+
+	if (!ath_rc_priv)
+		return;
+
+	rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv);
+
+	ASSERT(tx_rate >= 0);
+	if (tx_rate < 0)
+		return;
+
+	/* To compensate for some imbalance between ctrl and ext. channel */
+
+	if (WLAN_RC_PHY_40(rate_table->info[tx_rate].phy))
+		info_priv->tx.ts_rssi =
+			info_priv->tx.ts_rssi < 3 ? 0 :
+			info_priv->tx.ts_rssi - 3;
+
+	last_per = rate_ctrl->state[tx_rate].per;
+
+	if (xretries) {
+		/* Update the PER. */
+		if (xretries == 1) {
+			rate_ctrl->state[tx_rate].per += 30;
+			if (rate_ctrl->state[tx_rate].per > 100)
+				rate_ctrl->state[tx_rate].per = 100;
+		} else {
+			/* xretries == 2 */
+			count = sizeof(nretry_to_per_lookup) /
+					sizeof(nretry_to_per_lookup[0]);
+			if (retries >= count)
+				retries = count - 1;
+			/* new_PER = 7/8*old_PER + 1/8*(currentPER) */
+			rate_ctrl->state[tx_rate].per =
+				(u8)(rate_ctrl->state[tx_rate].per -
+				(rate_ctrl->state[tx_rate].per >> 3) +
+				((100) >> 3));
+		}
+
+		/* xretries == 1 or 2 */
+
+		if (rate_ctrl->probe_rate == tx_rate)
+			rate_ctrl->probe_rate = 0;
+
+	} else {	/* xretries == 0 */
+		/* Update the PER. */
+		/* Make sure it doesn't index out of array's bounds. */
+		count = sizeof(nretry_to_per_lookup) /
+			sizeof(nretry_to_per_lookup[0]);
+		if (retries >= count)
+			retries = count - 1;
+		if (info_priv->n_bad_frames) {
+			/* new_PER = 7/8*old_PER + 1/8*(currentPER)  */
+			/*
+			 * Assuming that n_frames is not 0.  The current PER
+			 * from the retries is 100 * retries / (retries+1),
+			 * since the first retries attempts failed, and the
+			 * next one worked.  For the one that worked,
+			 * n_bad_frames subframes out of n_frames wored,
+			 * so the PER for that part is
+			 * 100 * n_bad_frames / n_frames, and it contributes
+			 * 100 * n_bad_frames / (n_frames * (retries+1)) to
+			 * the above PER.  The expression below is a
+			 * simplified version of the sum of these two terms.
+			 */
+			if (info_priv->n_frames > 0)
+				rate_ctrl->state[tx_rate].per
+				      = (u8)
+					(rate_ctrl->state[tx_rate].per -
+					(rate_ctrl->state[tx_rate].per >> 3) +
+					((100*(retries*info_priv->n_frames +
+					info_priv->n_bad_frames) /
+					(info_priv->n_frames *
+						(retries+1))) >> 3));
+		} else {
+			/* new_PER = 7/8*old_PER + 1/8*(currentPER) */
+
+			rate_ctrl->state[tx_rate].per = (u8)
+				(rate_ctrl->state[tx_rate].per -
+				(rate_ctrl->state[tx_rate].per >> 3) +
+				(nretry_to_per_lookup[retries] >> 3));
+		}
+
+		rate_ctrl->rssi_last_prev2 = rate_ctrl->rssi_last_prev;
+		rate_ctrl->rssi_last_prev  = rate_ctrl->rssi_last;
+		rate_ctrl->rssi_last = info_priv->tx.ts_rssi;
+		rate_ctrl->rssi_time = now_msec;
+
+		/*
+		 * If we got at most one retry then increase the max rate if
+		 * this was a probe.  Otherwise, ignore the probe.
+		 */
+
+		if (rate_ctrl->probe_rate && rate_ctrl->probe_rate == tx_rate) {
+			if (retries > 0 || 2 * info_priv->n_bad_frames >
+				info_priv->n_frames) {
+				/*
+				 * Since we probed with just a single attempt,
+				 * any retries means the probe failed.  Also,
+				 * if the attempt worked, but more than half
+				 * the subframes were bad then also consider
+				 * the probe a failure.
+				 */
+				rate_ctrl->probe_rate = 0;
+			} else {
+				u8 probe_rate = 0;
+
+				rate_ctrl->rate_max_phy = rate_ctrl->probe_rate;
+				probe_rate = rate_ctrl->probe_rate;
+
+				if (rate_ctrl->state[probe_rate].per > 30)
+					rate_ctrl->state[probe_rate].per = 20;
+
+				rate_ctrl->probe_rate = 0;
+
+				/*
+				 * Since this probe succeeded, we allow the next
+				 * probe twice as soon.  This allows the maxRate
+				 * to move up faster if the probes are
+				 * succesful.
+				 */
+				rate_ctrl->probe_time = now_msec -
+					rate_table->probe_interval / 2;
+			}
+		}
+
+		if (retries > 0) {
+			/*
+			 * Don't update anything.  We don't know if
+			 * this was because of collisions or poor signal.
+			 *
+			 * Later: if rssi_ack is close to
+			 * rate_ctrl->state[txRate].rssi_thres and we see lots
+			 * of retries, then we could increase
+			 * rate_ctrl->state[txRate].rssi_thres.
+			 */
+			rate_ctrl->hw_maxretry_pktcnt = 0;
+		} else {
+			/*
+			 * It worked with no retries. First ignore bogus (small)
+			 * rssi_ack values.
+			 */
+			if (tx_rate == rate_ctrl->rate_max_phy &&
+					rate_ctrl->hw_maxretry_pktcnt < 255) {
+				rate_ctrl->hw_maxretry_pktcnt++;
+			}
+
+			if (info_priv->tx.ts_rssi >=
+				rate_table->info[tx_rate].rssi_ack_validmin) {
+				/* Average the rssi */
+				if (tx_rate != rate_ctrl->rssi_sum_rate) {
+					rate_ctrl->rssi_sum_rate = tx_rate;
+					rate_ctrl->rssi_sum =
+						rate_ctrl->rssi_sum_cnt = 0;
+				}
+
+				rate_ctrl->rssi_sum += info_priv->tx.ts_rssi;
+				rate_ctrl->rssi_sum_cnt++;
+
+				if (rate_ctrl->rssi_sum_cnt > 4) {
+					int32_t rssi_ackAvg =
+						(rate_ctrl->rssi_sum + 2) / 4;
+					int8_t rssi_thres =
+						rate_ctrl->state[tx_rate].
+						rssi_thres;
+					int8_t rssi_ack_vmin =
+						rate_table->info[tx_rate].
+						rssi_ack_validmin;
+
+					rate_ctrl->rssi_sum =
+						rate_ctrl->rssi_sum_cnt = 0;
+
+					/* Now reduce the current
+					 * rssi threshold. */
+					if ((rssi_ackAvg < rssi_thres + 2) &&
+						(rssi_thres > rssi_ack_vmin)) {
+						rate_ctrl->state[tx_rate].
+							rssi_thres--;
+					}
+
+					state_change = TRUE;
+				}
+			}
+		}
+	}
+
+	/* For all cases */
+
+	/*
+	 * If this rate looks bad (high PER) then stop using it for
+	 * a while (except if we are probing).
+	 */
+	if (rate_ctrl->state[tx_rate].per >= 55 && tx_rate > 0 &&
+			rate_table->info[tx_rate].ratekbps <=
+			rate_table->info[rate_ctrl->rate_max_phy].ratekbps) {
+		ath_rc_get_nextlowervalid_txrate(rate_table, rate_ctrl,
+				(u8) tx_rate, &rate_ctrl->rate_max_phy);
+
+		/* Don't probe for a little while. */
+		rate_ctrl->probe_time = now_msec;
+	}
+
+	if (state_change) {
+		/*
+		 * Make sure the rates above this have higher rssi thresholds.
+		 * (Note:  Monotonicity is kept within the OFDM rates and
+		 *         within the CCK rates. However, no adjustment is
+		 *         made to keep the rssi thresholds monotonically
+		 *         increasing between the CCK and OFDM rates.)
+		 */
+		for (rate = tx_rate; rate <
+				rate_ctrl->rate_table_size - 1; rate++) {
+			if (rate_table->info[rate+1].phy !=
+				rate_table->info[tx_rate].phy)
+				break;
+
+			if (rate_ctrl->state[rate].rssi_thres +
+				rate_table->info[rate].rssi_ack_deltamin >
+					rate_ctrl->state[rate+1].rssi_thres) {
+				rate_ctrl->state[rate+1].rssi_thres =
+					rate_ctrl->state[rate].
+						rssi_thres +
+					rate_table->info[rate].
+						rssi_ack_deltamin;
+			}
+		}
+
+		/* Make sure the rates below this have lower rssi thresholds. */
+		for (rate = tx_rate - 1; rate >= 0; rate--) {
+			if (rate_table->info[rate].phy !=
+				rate_table->info[tx_rate].phy)
+				break;
+
+			if (rate_ctrl->state[rate].rssi_thres +
+				rate_table->info[rate].rssi_ack_deltamin >
+					rate_ctrl->state[rate+1].rssi_thres) {
+				if (rate_ctrl->state[rate+1].rssi_thres <
+					rate_table->info[rate].
+					rssi_ack_deltamin)
+					rate_ctrl->state[rate].rssi_thres = 0;
+				else {
+					rate_ctrl->state[rate].rssi_thres =
+						rate_ctrl->state[rate+1].
+							rssi_thres -
+							rate_table->info[rate].
+							rssi_ack_deltamin;
+				}
+
+				if (rate_ctrl->state[rate].rssi_thres <
+					rate_table->info[rate].
+						rssi_ack_validmin) {
+					rate_ctrl->state[rate].rssi_thres =
+						rate_table->info[rate].
+							rssi_ack_validmin;
+				}
+			}
+		}
+	}
+
+	/* Make sure the rates below this have lower PER */
+	/* Monotonicity is kept only for rates below the current rate. */
+	if (rate_ctrl->state[tx_rate].per < last_per) {
+		for (rate = tx_rate - 1; rate >= 0; rate--) {
+			if (rate_table->info[rate].phy !=
+				rate_table->info[tx_rate].phy)
+				break;
+
+			if (rate_ctrl->state[rate].per >
+					rate_ctrl->state[rate+1].per) {
+				rate_ctrl->state[rate].per =
+					rate_ctrl->state[rate+1].per;
+			}
+		}
+	}
+
+	/* Maintain monotonicity for rates above the current rate */
+	for (rate = tx_rate; rate < rate_ctrl->rate_table_size - 1; rate++) {
+		if (rate_ctrl->state[rate+1].per < rate_ctrl->state[rate].per)
+			rate_ctrl->state[rate+1].per =
+				rate_ctrl->state[rate].per;
+	}
+
+	/* Every so often, we reduce the thresholds and
+	 * PER (different for CCK and OFDM). */
+	if (now_msec - rate_ctrl->rssi_down_time >=
+		rate_table->rssi_reduce_interval) {
+
+		for (rate = 0; rate < rate_ctrl->rate_table_size; rate++) {
+			if (rate_ctrl->state[rate].rssi_thres >
+				rate_table->info[rate].rssi_ack_validmin)
+				rate_ctrl->state[rate].rssi_thres -= 1;
+		}
+		rate_ctrl->rssi_down_time = now_msec;
+	}
+
+	/* Every so often, we reduce the thresholds
+	 * and PER (different for CCK and OFDM). */
+	if (now_msec - rate_ctrl->per_down_time >=
+		rate_table->rssi_reduce_interval) {
+		for (rate = 0; rate < rate_ctrl->rate_table_size; rate++) {
+			rate_ctrl->state[rate].per =
+				7 * rate_ctrl->state[rate].per / 8;
+		}
+
+		rate_ctrl->per_down_time = now_msec;
+	}
+}
+
+/*
+ * This routine is called in rate control callback tx_status() to give
+ * the status of previous frames.
+ */
+static void ath_rc_update(struct ath_softc *sc,
+			  struct ath_rate_node *ath_rc_priv,
+			  struct ath_tx_info_priv *info_priv, int final_ts_idx,
+			  int xretries, int long_retry)
+{
+	struct ath_rate_softc  *asc = (struct ath_rate_softc *)sc->sc_rc;
+	struct ath_rate_table *rate_table;
+	struct ath_tx_ratectrl *rate_ctrl;
+	struct ath_rc_series rcs[4];
+	u8 flags;
+	u32 series = 0, rix;
+
+	memcpy(rcs, info_priv->rcs, 4 * sizeof(rcs[0]));
+	rate_table = (struct ath_rate_table *)
+		asc->hw_rate_table[sc->sc_curmode];
+	rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv);
+	ASSERT(rcs[0].tries != 0);
+
+	/*
+	 * If the first rate is not the final index, there
+	 * are intermediate rate failures to be processed.
+	 */
+	if (final_ts_idx != 0) {
+		/* Process intermediate rates that failed.*/
+		for (series = 0; series < final_ts_idx ; series++) {
+			if (rcs[series].tries != 0) {
+				flags = rcs[series].flags;
+				/* If HT40 and we have switched mode from
+				 * 40 to 20 => don't update */
+				if ((flags & ATH_RC_CW40_FLAG) &&
+					(rate_ctrl->rc_phy_mode !=
+					(flags & ATH_RC_CW40_FLAG)))
+					return;
+				if ((flags & ATH_RC_CW40_FLAG) &&
+					(flags & ATH_RC_SGI_FLAG))
+					rix = rate_table->info[
+						rcs[series].rix].ht_index;
+				else if (flags & ATH_RC_SGI_FLAG)
+					rix = rate_table->info[
+						rcs[series].rix].sgi_index;
+				else if (flags & ATH_RC_CW40_FLAG)
+					rix = rate_table->info[
+						rcs[series].rix].cw40index;
+				else
+					rix = rate_table->info[
+						rcs[series].rix].base_index;
+				ath_rc_update_ht(sc, ath_rc_priv,
+						info_priv, rix,
+						xretries ? 1 : 2,
+						rcs[series].tries);
+			}
+		}
+	} else {
+		/*
+		 * Handle the special case of MIMO PS burst, where the second
+		 * aggregate is sent out with only one rate and one try.
+		 * Treating it as an excessive retry penalizes the rate
+		 * inordinately.
+		 */
+		if (rcs[0].tries == 1 && xretries == 1)
+			xretries = 2;
+	}
+
+	flags = rcs[series].flags;
+	/* If HT40 and we have switched mode from 40 to 20 => don't update */
+	if ((flags & ATH_RC_CW40_FLAG) &&
+		(rate_ctrl->rc_phy_mode != (flags & ATH_RC_CW40_FLAG)))
+		return;
+
+	if ((flags & ATH_RC_CW40_FLAG) && (flags & ATH_RC_SGI_FLAG))
+		rix = rate_table->info[rcs[series].rix].ht_index;
+	else if (flags & ATH_RC_SGI_FLAG)
+		rix = rate_table->info[rcs[series].rix].sgi_index;
+	else if (flags & ATH_RC_CW40_FLAG)
+		rix = rate_table->info[rcs[series].rix].cw40index;
+	else
+		rix = rate_table->info[rcs[series].rix].base_index;
+
+	ath_rc_update_ht(sc, ath_rc_priv, info_priv, rix,
+		xretries, long_retry);
+}
+
+
+/*
+ * Process a tx descriptor for a completed transmit (success or failure).
+ */
+static void ath_rate_tx_complete(struct ath_softc *sc,
+				 struct ath_node *an,
+				 struct ath_rate_node *rc_priv,
+				 struct ath_tx_info_priv *info_priv)
+{
+	int final_ts_idx = info_priv->tx.ts_rateindex;
+	int tx_status = 0, is_underrun = 0;
+	struct ath_vap *avp;
+
+	avp = rc_priv->avp;
+	if ((avp->av_config.av_fixed_rateset != IEEE80211_FIXED_RATE_NONE)
+			|| info_priv->tx.ts_status & ATH9K_TXERR_FILT)
+		return;
+
+	if (info_priv->tx.ts_rssi > 0) {
+		ATH_RSSI_LPF(an->an_chainmask_sel.tx_avgrssi,
+				info_priv->tx.ts_rssi);
+	}
+
+	/*
+	 * If underrun error is seen assume it as an excessive retry only
+	 * if prefetch trigger level have reached the max (0x3f for 5416)
+	 * Adjust the long retry as if the frame was tried ATH_11N_TXMAXTRY
+	 * times. This affects how ratectrl updates PER for the failed rate.
+	 */
+	if (info_priv->tx.ts_flags &
+		(ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) &&
+		((sc->sc_ah->ah_txTrigLevel) >= tx_triglevel_max)) {
+		tx_status = 1;
+		is_underrun = 1;
+	}
+
+	if ((info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) ||
+			(info_priv->tx.ts_status & ATH9K_TXERR_FIFO))
+		tx_status = 1;
+
+	ath_rc_update(sc, rc_priv, info_priv, final_ts_idx, tx_status,
+		      (is_underrun) ? ATH_11N_TXMAXTRY :
+		      info_priv->tx.ts_longretry);
+}
+
+
+/*
+ *  Update the SIB's rate control information
+ *
+ *  This should be called when the supported rates change
+ *  (e.g. SME operation, wireless mode change)
+ *
+ *  It will determine which rates are valid for use.
+ */
+static void ath_rc_sib_update(struct ath_softc *sc,
+			      struct ath_rate_node *ath_rc_priv,
+			      u32 capflag, int keep_state,
+			      struct ath_rateset *negotiated_rates,
+			      struct ath_rateset *negotiated_htrates)
+{
+	struct ath_rate_table *rate_table = NULL;
+	struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
+	struct ath_rateset *rateset = negotiated_rates;
+	u8 *ht_mcs = (u8 *)negotiated_htrates;
+	struct ath_tx_ratectrl *rate_ctrl  = (struct ath_tx_ratectrl *)
+		(ath_rc_priv);
+	u8 i, j, k, hi = 0, hthi = 0;
+
+	rate_table = (struct ath_rate_table *)
+		asc->hw_rate_table[sc->sc_curmode];
+
+	/* Initial rate table size. Will change depending
+	 * on the working rate set */
+	rate_ctrl->rate_table_size = MAX_TX_RATE_TBL;
+
+	/* Initialize thresholds according to the global rate table */
+	for (i = 0 ; (i < rate_ctrl->rate_table_size) && (!keep_state); i++) {
+		rate_ctrl->state[i].rssi_thres =
+			rate_table->info[i].rssi_ack_validmin;
+		rate_ctrl->state[i].per = 0;
+	}
+
+	/* Determine the valid rates */
+	ath_rc_init_valid_txmask(rate_ctrl);
+
+	for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
+		for (j = 0; j < MAX_TX_RATE_PHY; j++)
+			rate_ctrl->valid_phy_rateidx[i][j] = 0;
+		rate_ctrl->valid_phy_ratecnt[i] = 0;
+	}
+	rate_ctrl->rc_phy_mode = (capflag & WLAN_RC_40_FLAG);
+
+	/* Set stream capability */
+	ath_rc_priv->single_stream = (capflag & WLAN_RC_DS_FLAG) ? 0 : 1;
+
+	if (!rateset->rs_nrates) {
+		/* No working rate, just initialize valid rates */
+		hi = ath_rc_sib_init_validrates(ath_rc_priv, rate_table,
+						capflag);
+	} else {
+		/* Use intersection of working rates and valid rates */
+		hi = ath_rc_sib_setvalid_rates(ath_rc_priv, rate_table,
+					       rateset, capflag);
+		if (capflag & WLAN_RC_HT_FLAG) {
+			hthi = ath_rc_sib_setvalid_htrates(ath_rc_priv,
+							   rate_table,
+							   ht_mcs,
+							   capflag);
+		}
+		hi = A_MAX(hi, hthi);
+	}
+
+	rate_ctrl->rate_table_size = hi + 1;
+	rate_ctrl->rate_max_phy = 0;
+	ASSERT(rate_ctrl->rate_table_size <= MAX_TX_RATE_TBL);
+
+	for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
+		for (j = 0; j < rate_ctrl->valid_phy_ratecnt[i]; j++) {
+			rate_ctrl->valid_rate_index[k++] =
+				rate_ctrl->valid_phy_rateidx[i][j];
+		}
+
+		if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, TRUE)
+		    || !rate_ctrl->valid_phy_ratecnt[i])
+			continue;
+
+		rate_ctrl->rate_max_phy = rate_ctrl->valid_phy_rateidx[i][j-1];
+	}
+	ASSERT(rate_ctrl->rate_table_size <= MAX_TX_RATE_TBL);
+	ASSERT(k <= MAX_TX_RATE_TBL);
+
+	rate_ctrl->max_valid_rate = k;
+	/*
+	 * Some third party vendors don't send the supported rate series in
+	 * order. So sorting to make sure its in order, otherwise our RateFind
+	 * Algo will select wrong rates
+	 */
+	ath_rc_sort_validrates(rate_table, rate_ctrl);
+	rate_ctrl->rate_max_phy = rate_ctrl->valid_rate_index[k-4];
+}
+
+/*
+ * Update rate-control state on station associate/reassociate.
+ */
+static int ath_rate_newassoc(struct ath_softc *sc,
+			     struct ath_rate_node *ath_rc_priv,
+			     unsigned int capflag,
+			     struct ath_rateset *negotiated_rates,
+			     struct ath_rateset *negotiated_htrates)
+{
+
+
+	ath_rc_priv->ht_cap =
+		((capflag & ATH_RC_DS_FLAG) ? WLAN_RC_DS_FLAG : 0) |
+		((capflag & ATH_RC_SGI_FLAG) ? WLAN_RC_SGI_FLAG : 0) |
+		((capflag & ATH_RC_HT_FLAG)  ? WLAN_RC_HT_FLAG : 0) |
+		((capflag & ATH_RC_CW40_FLAG) ? WLAN_RC_40_FLAG : 0);
+
+	ath_rc_sib_update(sc, ath_rc_priv, ath_rc_priv->ht_cap, 0,
+			  negotiated_rates, negotiated_htrates);
+
+	return 0;
+}
+
+/*
+ *  This routine is called to initialize the rate control parameters
+ *  in the SIB. It is called initially during system initialization
+ *  or when a station is associated with the AP.
+ */
+static void ath_rc_sib_init(struct ath_rate_node *ath_rc_priv)
+{
+	struct ath_tx_ratectrl *rate_ctrl;
+
+	rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv);
+	rate_ctrl->rssi_down_time = jiffies_to_msecs(jiffies);
+}
+
+
+static void ath_setup_rates(struct ieee80211_local *local, struct sta_info *sta)
+
+{
+	struct ieee80211_supported_band *sband;
+	struct ieee80211_hw *hw = local_to_hw(local);
+	struct ath_softc *sc = hw->priv;
+	struct ath_rate_node *rc_priv = sta->rate_ctrl_priv;
+	int i, j = 0;
+
+	DPRINTF(sc, ATH_DBG_RATE, "%s", __func__);
+	sband =  local->hw.wiphy->bands[local->hw.conf.channel->band];
+	for (i = 0; i < sband->n_bitrates; i++) {
+		if (sta->supp_rates[local->hw.conf.channel->band] & BIT(i)) {
+			rc_priv->neg_rates.rs_rates[j]
+				= (sband->bitrates[i].bitrate * 2) / 10;
+			j++;
+		}
+	}
+	rc_priv->neg_rates.rs_nrates = j;
+}
+
+void ath_rc_node_update(struct ieee80211_hw *hw, struct ath_rate_node *rc_priv)
+{
+	struct ath_softc *sc = hw->priv;
+	u32 capflag = 0;
+
+	if (hw->conf.ht_conf.ht_supported) {
+		capflag |= ATH_RC_HT_FLAG | ATH_RC_DS_FLAG;
+		if (sc->sc_ht_info.tx_chan_width == ATH9K_HT_MACMODE_2040)
+			capflag |= ATH_RC_CW40_FLAG;
+	}
+
+	ath_rate_newassoc(sc, rc_priv, capflag,
+			  &rc_priv->neg_rates,
+			  &rc_priv->neg_ht_rates);
+
+}
+
+/* Rate Control callbacks */
+static void ath_tx_status(void *priv, struct net_device *dev,
+			  struct sk_buff *skb)
+{
+	struct ath_softc *sc = priv;
+	struct ath_tx_info_priv *tx_info_priv;
+	struct ath_node *an;
+	struct sta_info *sta;
+	struct ieee80211_local *local;
+	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
+	struct ieee80211_hdr *hdr;
+	__le16 fc;
+
+	local = hw_to_local(sc->hw);
+	hdr = (struct ieee80211_hdr *)skb->data;
+	fc = hdr->frame_control;
+	tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
+
+	spin_lock_bh(&sc->node_lock);
+	an = ath_node_find(sc, hdr->addr1);
+	spin_unlock_bh(&sc->node_lock);
+
+	sta = sta_info_get(local, hdr->addr1);
+	if (!an || !sta || !ieee80211_is_data(fc)) {
+		if (tx_info->driver_data[0] != NULL) {
+			kfree(tx_info->driver_data[0]);
+			tx_info->driver_data[0] = NULL;
+		}
+		return;
+	}
+	if (tx_info->driver_data[0] != NULL) {
+		ath_rate_tx_complete(sc, an, sta->rate_ctrl_priv, tx_info_priv);
+		kfree(tx_info->driver_data[0]);
+		tx_info->driver_data[0] = NULL;
+	}
+}
+
+static void ath_tx_aggr_resp(struct ath_softc *sc,
+			     struct sta_info *sta,
+			     struct ath_node *an,
+			     u8 tidno)
+{
+	struct ieee80211_hw *hw = sc->hw;
+	struct ieee80211_local *local;
+	struct ath_atx_tid *txtid;
+	struct ieee80211_supported_band *sband;
+	u16 buffersize = 0;
+	int state;
+	DECLARE_MAC_BUF(mac);
+
+	if (!sc->sc_txaggr)
+		return;
+
+	txtid = ATH_AN_2_TID(an, tidno);
+	if (!txtid->paused)
+		return;
+
+	local = hw_to_local(sc->hw);
+	sband = hw->wiphy->bands[hw->conf.channel->band];
+	buffersize = IEEE80211_MIN_AMPDU_BUF <<
+		sband->ht_info.ampdu_factor; /* FIXME */
+	state = sta->ampdu_mlme.tid_state_tx[tidno];
+
+	if (state & HT_ADDBA_RECEIVED_MSK) {
+		txtid->addba_exchangecomplete = 1;
+		txtid->addba_exchangeinprogress = 0;
+		txtid->baw_size = buffersize;
+
+		DPRINTF(sc, ATH_DBG_AGGR,
+			"%s: Resuming tid, buffersize: %d\n",
+			__func__,
+			buffersize);
+
+		ath_tx_resume_tid(sc, txtid);
+	}
+}
+
+static void ath_get_rate(void *priv, struct net_device *dev,
+			 struct ieee80211_supported_band *sband,
+			 struct sk_buff *skb,
+			 struct rate_selection *sel)
+{
+	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
+	struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
+	struct sta_info *sta;
+	struct ath_softc *sc = (struct ath_softc *)priv;
+	struct ieee80211_hw *hw = sc->hw;
+	struct ath_tx_info_priv *tx_info_priv;
+	struct ath_rate_node *ath_rc_priv;
+	struct ath_node *an;
+	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
+	int is_probe, chk, ret;
+	s8 lowest_idx;
+	__le16 fc = hdr->frame_control;
+	u8 *qc, tid;
+	DECLARE_MAC_BUF(mac);
+
+	DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
+
+	/* allocate driver private area of tx_info */
+	tx_info->driver_data[0] = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC);
+	ASSERT(tx_info->driver_data[0] != NULL);
+	tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
+
+	sta = sta_info_get(local, hdr->addr1);
+	lowest_idx = rate_lowest_index(local, sband, sta);
+	tx_info_priv->min_rate = (sband->bitrates[lowest_idx].bitrate * 2) / 10;
+	/* lowest rate for management and multicast/broadcast frames */
+	if (!ieee80211_is_data(fc) ||
+			is_multicast_ether_addr(hdr->addr1) || !sta) {
+		sel->rate_idx = lowest_idx;
+		return;
+	}
+
+	ath_rc_priv = sta->rate_ctrl_priv;
+
+	/* Find tx rate for unicast frames */
+	ath_rate_findrate(sc, ath_rc_priv,
+			  ATH_11N_TXMAXTRY, 4,
+			  ATH_RC_PROBE_ALLOWED,
+			  tx_info_priv->rcs,
+			  &is_probe,
+			  false);
+	if (is_probe)
+		sel->probe_idx = ((struct ath_tx_ratectrl *)
+			sta->rate_ctrl_priv)->probe_rate;
+
+	/* Ratecontrol sometimes returns invalid rate index */
+	if (tx_info_priv->rcs[0].rix != 0xff)
+		ath_rc_priv->prev_data_rix = tx_info_priv->rcs[0].rix;
+	else
+		tx_info_priv->rcs[0].rix = ath_rc_priv->prev_data_rix;
+
+	sel->rate_idx = tx_info_priv->rcs[0].rix;
+
+	/* Check if aggregation has to be enabled for this tid */
+
+	if (hw->conf.ht_conf.ht_supported) {
+		if (ieee80211_is_data_qos(fc)) {
+			qc = ieee80211_get_qos_ctl(hdr);
+			tid = qc[0] & 0xf;
+
+			spin_lock_bh(&sc->node_lock);
+			an = ath_node_find(sc, hdr->addr1);
+			spin_unlock_bh(&sc->node_lock);
+
+			if (!an) {
+				DPRINTF(sc, ATH_DBG_AGGR,
+					"%s: Node not found to "
+					"init/chk TX aggr\n", __func__);
+				return;
+			}
+
+			chk = ath_tx_aggr_check(sc, an, tid);
+			if (chk == AGGR_REQUIRED) {
+				ret = ieee80211_start_tx_ba_session(hw,
+					hdr->addr1, tid);
+				if (ret)
+					DPRINTF(sc, ATH_DBG_AGGR,
+						"%s: Unable to start tx "
+						"aggr for: %s\n",
+						__func__,
+						print_mac(mac, hdr->addr1));
+				else
+					DPRINTF(sc, ATH_DBG_AGGR,
+						"%s: Started tx aggr for: %s\n",
+						__func__,
+						print_mac(mac, hdr->addr1));
+			} else if (chk == AGGR_EXCHANGE_PROGRESS)
+				ath_tx_aggr_resp(sc, sta, an, tid);
+		}
+	}
+}
+
+static void ath_rate_init(void *priv, void *priv_sta,
+			  struct ieee80211_local *local,
+			  struct sta_info *sta)
+{
+	struct ieee80211_supported_band *sband;
+	struct ieee80211_hw *hw = local_to_hw(local);
+	struct ieee80211_conf *conf = &local->hw.conf;
+	struct ath_softc *sc = hw->priv;
+	int i, j = 0;
+
+	DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
+
+	sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
+	sta->txrate_idx = rate_lowest_index(local, sband, sta);
+
+	ath_setup_rates(local, sta);
+	if (conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
+		for (i = 0; i < MCS_SET_SIZE; i++) {
+			if (conf->ht_conf.supp_mcs_set[i/8] & (1<<(i%8)))
+				((struct ath_rate_node *)
+				priv_sta)->neg_ht_rates.rs_rates[j++] = i;
+			if (j == ATH_RATE_MAX)
+				break;
+		}
+		((struct ath_rate_node *)priv_sta)->neg_ht_rates.rs_nrates = j;
+	}
+	ath_rc_node_update(hw, priv_sta);
+}
+
+static void ath_rate_clear(void *priv)
+{
+	return;
+}
+
+static void *ath_rate_alloc(struct ieee80211_local *local)
+{
+	struct ieee80211_hw *hw = local_to_hw(local);
+	struct ath_softc *sc = hw->priv;
+
+	DPRINTF(sc, ATH_DBG_RATE, "%s", __func__);
+	return local->hw.priv;
+}
+
+static void ath_rate_free(void *priv)
+{
+	return;
+}
+
+static void *ath_rate_alloc_sta(void *priv, gfp_t gfp)
+{
+	struct ath_softc *sc = priv;
+	struct ath_vap *avp = sc->sc_vaps[0];
+	struct ath_rate_node *rate_priv;
+
+	DPRINTF(sc, ATH_DBG_RATE, "%s", __func__);
+	rate_priv = ath_rate_node_alloc(avp, sc->sc_rc, gfp);
+	if (!rate_priv) {
+		DPRINTF(sc, ATH_DBG_FATAL, "%s:Unable to allocate"
+				"private rate control structure", __func__);
+		return NULL;
+	}
+	ath_rc_sib_init(rate_priv);
+	return rate_priv;
+}
+
+static void ath_rate_free_sta(void *priv, void *priv_sta)
+{
+	struct ath_rate_node *rate_priv = priv_sta;
+	struct ath_softc *sc = priv;
+
+	DPRINTF(sc, ATH_DBG_RATE, "%s", __func__);
+	ath_rate_node_free(rate_priv);
+}
+
+static struct rate_control_ops ath_rate_ops = {
+	.module = NULL,
+	.name = "ath9k_rate_control",
+	.tx_status = ath_tx_status,
+	.get_rate = ath_get_rate,
+	.rate_init = ath_rate_init,
+	.clear = ath_rate_clear,
+	.alloc = ath_rate_alloc,
+	.free = ath_rate_free,
+	.alloc_sta = ath_rate_alloc_sta,
+	.free_sta = ath_rate_free_sta
+};
+
+int ath_rate_control_register(void)
+{
+	return ieee80211_rate_control_register(&ath_rate_ops);
+}
+
+void ath_rate_control_unregister(void)
+{
+	ieee80211_rate_control_unregister(&ath_rate_ops);
+}
+