Documentation/litmus-tests/atomic: Add a test for smp_mb__after_atomic()

We already use a litmus test in atomic_t.txt to describe atomic RMW +
smp_mb__after_atomic() is stronger than acquire (both the read and the
write parts are ordered). So make it a litmus test in atomic-tests
directory, so that people can access the litmus easily.

Additionally, change the processor numbers "P1, P2" to "P0, P1" in
atomic_t.txt for the consistency with the processor numbers in the
litmus test, which herd can handle.

Acked-by: Alan Stern <stern@rowland.harvard.edu>
Acked-by: Andrea Parri <parri.andrea@gmail.com>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
diff --git a/Documentation/atomic_t.txt b/Documentation/atomic_t.txt
index 67d1d99f..0f1fded 100644
--- a/Documentation/atomic_t.txt
+++ b/Documentation/atomic_t.txt
@@ -233,19 +233,19 @@
 is an ACQUIRE pattern (though very much not typical), but again the barrier is
 strictly stronger than ACQUIRE. As illustrated:
 
-  C strong-acquire
+  C Atomic-RMW+mb__after_atomic-is-stronger-than-acquire
 
   {
   }
 
-  P1(int *x, atomic_t *y)
+  P0(int *x, atomic_t *y)
   {
     r0 = READ_ONCE(*x);
     smp_rmb();
     r1 = atomic_read(y);
   }
 
-  P2(int *x, atomic_t *y)
+  P1(int *x, atomic_t *y)
   {
     atomic_inc(y);
     smp_mb__after_atomic();
@@ -253,14 +253,14 @@
   }
 
   exists
-  (r0=1 /\ r1=0)
+  (0:r0=1 /\ 0:r1=0)
 
 This should not happen; but a hypothetical atomic_inc_acquire() --
 (void)atomic_fetch_inc_acquire() for instance -- would allow the outcome,
 because it would not order the W part of the RMW against the following
 WRITE_ONCE.  Thus:
 
-  P1			P2
+  P0			P1
 
 			t = LL.acq *y (0)
 			t++;