ext4: move ext4_ind_* functions from inode.c to indirect.c

This patch moves functions from inode.c to indirect.c.
The moved functions are ext4_ind_* functions and their helpers.
Functions called from inode.c are declared extern.

Signed-off-by: Amir Goldstein <amir73il@users.sf.net>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
diff --git a/fs/ext4/Makefile b/fs/ext4/Makefile
index 04109460..56fd8f86 100644
--- a/fs/ext4/Makefile
+++ b/fs/ext4/Makefile
@@ -7,7 +7,7 @@
 ext4-y	:= balloc.o bitmap.o dir.o file.o fsync.o ialloc.o inode.o page-io.o \
 		ioctl.o namei.o super.o symlink.o hash.o resize.o extents.o \
 		ext4_jbd2.o migrate.o mballoc.o block_validity.o move_extent.o \
-		mmp.o
+		mmp.o indirect.o
 
 ext4-$(CONFIG_EXT4_FS_XATTR)		+= xattr.o xattr_user.o xattr_trusted.o
 ext4-$(CONFIG_EXT4_FS_POSIX_ACL)	+= acl.o
diff --git a/fs/ext4/block_validity.c b/fs/ext4/block_validity.c
index af103be..8efb2f0 100644
--- a/fs/ext4/block_validity.c
+++ b/fs/ext4/block_validity.c
@@ -266,3 +266,4 @@
 	}
 	return 0;
 }
+
diff --git a/fs/ext4/ext4.h b/fs/ext4/ext4.h
index 82ba7eb..ddaf504 100644
--- a/fs/ext4/ext4.h
+++ b/fs/ext4/ext4.h
@@ -1834,6 +1834,15 @@
 extern qsize_t *ext4_get_reserved_space(struct inode *inode);
 extern void ext4_da_update_reserve_space(struct inode *inode,
 					int used, int quota_claim);
+
+/* indirect.c */
+extern int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
+				struct ext4_map_blocks *map, int flags);
+extern ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
+				const struct iovec *iov, loff_t offset,
+				unsigned long nr_segs);
+extern int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock);
+extern int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk);
 extern void ext4_ind_truncate(struct inode *inode);
 
 /* ioctl.c */
diff --git a/fs/ext4/indirect.c b/fs/ext4/indirect.c
new file mode 100644
index 0000000..c3e85a8
--- /dev/null
+++ b/fs/ext4/indirect.c
@@ -0,0 +1,1510 @@
+/*
+ *  linux/fs/ext4/indirect.c
+ *
+ *  from
+ *
+ *  linux/fs/ext4/inode.c
+ *
+ * Copyright (C) 1992, 1993, 1994, 1995
+ * Remy Card (card@masi.ibp.fr)
+ * Laboratoire MASI - Institut Blaise Pascal
+ * Universite Pierre et Marie Curie (Paris VI)
+ *
+ *  from
+ *
+ *  linux/fs/minix/inode.c
+ *
+ *  Copyright (C) 1991, 1992  Linus Torvalds
+ *
+ *  Goal-directed block allocation by Stephen Tweedie
+ *	(sct@redhat.com), 1993, 1998
+ */
+
+#include <linux/module.h>
+#include "ext4_jbd2.h"
+#include "truncate.h"
+
+#include <trace/events/ext4.h>
+
+typedef struct {
+	__le32	*p;
+	__le32	key;
+	struct buffer_head *bh;
+} Indirect;
+
+static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
+{
+	p->key = *(p->p = v);
+	p->bh = bh;
+}
+
+/**
+ *	ext4_block_to_path - parse the block number into array of offsets
+ *	@inode: inode in question (we are only interested in its superblock)
+ *	@i_block: block number to be parsed
+ *	@offsets: array to store the offsets in
+ *	@boundary: set this non-zero if the referred-to block is likely to be
+ *	       followed (on disk) by an indirect block.
+ *
+ *	To store the locations of file's data ext4 uses a data structure common
+ *	for UNIX filesystems - tree of pointers anchored in the inode, with
+ *	data blocks at leaves and indirect blocks in intermediate nodes.
+ *	This function translates the block number into path in that tree -
+ *	return value is the path length and @offsets[n] is the offset of
+ *	pointer to (n+1)th node in the nth one. If @block is out of range
+ *	(negative or too large) warning is printed and zero returned.
+ *
+ *	Note: function doesn't find node addresses, so no IO is needed. All
+ *	we need to know is the capacity of indirect blocks (taken from the
+ *	inode->i_sb).
+ */
+
+/*
+ * Portability note: the last comparison (check that we fit into triple
+ * indirect block) is spelled differently, because otherwise on an
+ * architecture with 32-bit longs and 8Kb pages we might get into trouble
+ * if our filesystem had 8Kb blocks. We might use long long, but that would
+ * kill us on x86. Oh, well, at least the sign propagation does not matter -
+ * i_block would have to be negative in the very beginning, so we would not
+ * get there at all.
+ */
+
+static int ext4_block_to_path(struct inode *inode,
+			      ext4_lblk_t i_block,
+			      ext4_lblk_t offsets[4], int *boundary)
+{
+	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
+	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
+	const long direct_blocks = EXT4_NDIR_BLOCKS,
+		indirect_blocks = ptrs,
+		double_blocks = (1 << (ptrs_bits * 2));
+	int n = 0;
+	int final = 0;
+
+	if (i_block < direct_blocks) {
+		offsets[n++] = i_block;
+		final = direct_blocks;
+	} else if ((i_block -= direct_blocks) < indirect_blocks) {
+		offsets[n++] = EXT4_IND_BLOCK;
+		offsets[n++] = i_block;
+		final = ptrs;
+	} else if ((i_block -= indirect_blocks) < double_blocks) {
+		offsets[n++] = EXT4_DIND_BLOCK;
+		offsets[n++] = i_block >> ptrs_bits;
+		offsets[n++] = i_block & (ptrs - 1);
+		final = ptrs;
+	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
+		offsets[n++] = EXT4_TIND_BLOCK;
+		offsets[n++] = i_block >> (ptrs_bits * 2);
+		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
+		offsets[n++] = i_block & (ptrs - 1);
+		final = ptrs;
+	} else {
+		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
+			     i_block + direct_blocks +
+			     indirect_blocks + double_blocks, inode->i_ino);
+	}
+	if (boundary)
+		*boundary = final - 1 - (i_block & (ptrs - 1));
+	return n;
+}
+
+/**
+ *	ext4_get_branch - read the chain of indirect blocks leading to data
+ *	@inode: inode in question
+ *	@depth: depth of the chain (1 - direct pointer, etc.)
+ *	@offsets: offsets of pointers in inode/indirect blocks
+ *	@chain: place to store the result
+ *	@err: here we store the error value
+ *
+ *	Function fills the array of triples <key, p, bh> and returns %NULL
+ *	if everything went OK or the pointer to the last filled triple
+ *	(incomplete one) otherwise. Upon the return chain[i].key contains
+ *	the number of (i+1)-th block in the chain (as it is stored in memory,
+ *	i.e. little-endian 32-bit), chain[i].p contains the address of that
+ *	number (it points into struct inode for i==0 and into the bh->b_data
+ *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
+ *	block for i>0 and NULL for i==0. In other words, it holds the block
+ *	numbers of the chain, addresses they were taken from (and where we can
+ *	verify that chain did not change) and buffer_heads hosting these
+ *	numbers.
+ *
+ *	Function stops when it stumbles upon zero pointer (absent block)
+ *		(pointer to last triple returned, *@err == 0)
+ *	or when it gets an IO error reading an indirect block
+ *		(ditto, *@err == -EIO)
+ *	or when it reads all @depth-1 indirect blocks successfully and finds
+ *	the whole chain, all way to the data (returns %NULL, *err == 0).
+ *
+ *      Need to be called with
+ *      down_read(&EXT4_I(inode)->i_data_sem)
+ */
+static Indirect *ext4_get_branch(struct inode *inode, int depth,
+				 ext4_lblk_t  *offsets,
+				 Indirect chain[4], int *err)
+{
+	struct super_block *sb = inode->i_sb;
+	Indirect *p = chain;
+	struct buffer_head *bh;
+
+	*err = 0;
+	/* i_data is not going away, no lock needed */
+	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
+	if (!p->key)
+		goto no_block;
+	while (--depth) {
+		bh = sb_getblk(sb, le32_to_cpu(p->key));
+		if (unlikely(!bh))
+			goto failure;
+
+		if (!bh_uptodate_or_lock(bh)) {
+			if (bh_submit_read(bh) < 0) {
+				put_bh(bh);
+				goto failure;
+			}
+			/* validate block references */
+			if (ext4_check_indirect_blockref(inode, bh)) {
+				put_bh(bh);
+				goto failure;
+			}
+		}
+
+		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
+		/* Reader: end */
+		if (!p->key)
+			goto no_block;
+	}
+	return NULL;
+
+failure:
+	*err = -EIO;
+no_block:
+	return p;
+}
+
+/**
+ *	ext4_find_near - find a place for allocation with sufficient locality
+ *	@inode: owner
+ *	@ind: descriptor of indirect block.
+ *
+ *	This function returns the preferred place for block allocation.
+ *	It is used when heuristic for sequential allocation fails.
+ *	Rules are:
+ *	  + if there is a block to the left of our position - allocate near it.
+ *	  + if pointer will live in indirect block - allocate near that block.
+ *	  + if pointer will live in inode - allocate in the same
+ *	    cylinder group.
+ *
+ * In the latter case we colour the starting block by the callers PID to
+ * prevent it from clashing with concurrent allocations for a different inode
+ * in the same block group.   The PID is used here so that functionally related
+ * files will be close-by on-disk.
+ *
+ *	Caller must make sure that @ind is valid and will stay that way.
+ */
+static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
+{
+	struct ext4_inode_info *ei = EXT4_I(inode);
+	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
+	__le32 *p;
+	ext4_fsblk_t bg_start;
+	ext4_fsblk_t last_block;
+	ext4_grpblk_t colour;
+	ext4_group_t block_group;
+	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
+
+	/* Try to find previous block */
+	for (p = ind->p - 1; p >= start; p--) {
+		if (*p)
+			return le32_to_cpu(*p);
+	}
+
+	/* No such thing, so let's try location of indirect block */
+	if (ind->bh)
+		return ind->bh->b_blocknr;
+
+	/*
+	 * It is going to be referred to from the inode itself? OK, just put it
+	 * into the same cylinder group then.
+	 */
+	block_group = ei->i_block_group;
+	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
+		block_group &= ~(flex_size-1);
+		if (S_ISREG(inode->i_mode))
+			block_group++;
+	}
+	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
+	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
+
+	/*
+	 * If we are doing delayed allocation, we don't need take
+	 * colour into account.
+	 */
+	if (test_opt(inode->i_sb, DELALLOC))
+		return bg_start;
+
+	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
+		colour = (current->pid % 16) *
+			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
+	else
+		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
+	return bg_start + colour;
+}
+
+/**
+ *	ext4_find_goal - find a preferred place for allocation.
+ *	@inode: owner
+ *	@block:  block we want
+ *	@partial: pointer to the last triple within a chain
+ *
+ *	Normally this function find the preferred place for block allocation,
+ *	returns it.
+ *	Because this is only used for non-extent files, we limit the block nr
+ *	to 32 bits.
+ */
+static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
+				   Indirect *partial)
+{
+	ext4_fsblk_t goal;
+
+	/*
+	 * XXX need to get goal block from mballoc's data structures
+	 */
+
+	goal = ext4_find_near(inode, partial);
+	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
+	return goal;
+}
+
+/**
+ *	ext4_blks_to_allocate - Look up the block map and count the number
+ *	of direct blocks need to be allocated for the given branch.
+ *
+ *	@branch: chain of indirect blocks
+ *	@k: number of blocks need for indirect blocks
+ *	@blks: number of data blocks to be mapped.
+ *	@blocks_to_boundary:  the offset in the indirect block
+ *
+ *	return the total number of blocks to be allocate, including the
+ *	direct and indirect blocks.
+ */
+static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
+				 int blocks_to_boundary)
+{
+	unsigned int count = 0;
+
+	/*
+	 * Simple case, [t,d]Indirect block(s) has not allocated yet
+	 * then it's clear blocks on that path have not allocated
+	 */
+	if (k > 0) {
+		/* right now we don't handle cross boundary allocation */
+		if (blks < blocks_to_boundary + 1)
+			count += blks;
+		else
+			count += blocks_to_boundary + 1;
+		return count;
+	}
+
+	count++;
+	while (count < blks && count <= blocks_to_boundary &&
+		le32_to_cpu(*(branch[0].p + count)) == 0) {
+		count++;
+	}
+	return count;
+}
+
+/**
+ *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
+ *	@handle: handle for this transaction
+ *	@inode: inode which needs allocated blocks
+ *	@iblock: the logical block to start allocated at
+ *	@goal: preferred physical block of allocation
+ *	@indirect_blks: the number of blocks need to allocate for indirect
+ *			blocks
+ *	@blks: number of desired blocks
+ *	@new_blocks: on return it will store the new block numbers for
+ *	the indirect blocks(if needed) and the first direct block,
+ *	@err: on return it will store the error code
+ *
+ *	This function will return the number of blocks allocated as
+ *	requested by the passed-in parameters.
+ */
+static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
+			     ext4_lblk_t iblock, ext4_fsblk_t goal,
+			     int indirect_blks, int blks,
+			     ext4_fsblk_t new_blocks[4], int *err)
+{
+	struct ext4_allocation_request ar;
+	int target, i;
+	unsigned long count = 0, blk_allocated = 0;
+	int index = 0;
+	ext4_fsblk_t current_block = 0;
+	int ret = 0;
+
+	/*
+	 * Here we try to allocate the requested multiple blocks at once,
+	 * on a best-effort basis.
+	 * To build a branch, we should allocate blocks for
+	 * the indirect blocks(if not allocated yet), and at least
+	 * the first direct block of this branch.  That's the
+	 * minimum number of blocks need to allocate(required)
+	 */
+	/* first we try to allocate the indirect blocks */
+	target = indirect_blks;
+	while (target > 0) {
+		count = target;
+		/* allocating blocks for indirect blocks and direct blocks */
+		current_block = ext4_new_meta_blocks(handle, inode, goal,
+						     0, &count, err);
+		if (*err)
+			goto failed_out;
+
+		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
+			EXT4_ERROR_INODE(inode,
+					 "current_block %llu + count %lu > %d!",
+					 current_block, count,
+					 EXT4_MAX_BLOCK_FILE_PHYS);
+			*err = -EIO;
+			goto failed_out;
+		}
+
+		target -= count;
+		/* allocate blocks for indirect blocks */
+		while (index < indirect_blks && count) {
+			new_blocks[index++] = current_block++;
+			count--;
+		}
+		if (count > 0) {
+			/*
+			 * save the new block number
+			 * for the first direct block
+			 */
+			new_blocks[index] = current_block;
+			printk(KERN_INFO "%s returned more blocks than "
+						"requested\n", __func__);
+			WARN_ON(1);
+			break;
+		}
+	}
+
+	target = blks - count ;
+	blk_allocated = count;
+	if (!target)
+		goto allocated;
+	/* Now allocate data blocks */
+	memset(&ar, 0, sizeof(ar));
+	ar.inode = inode;
+	ar.goal = goal;
+	ar.len = target;
+	ar.logical = iblock;
+	if (S_ISREG(inode->i_mode))
+		/* enable in-core preallocation only for regular files */
+		ar.flags = EXT4_MB_HINT_DATA;
+
+	current_block = ext4_mb_new_blocks(handle, &ar, err);
+	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
+		EXT4_ERROR_INODE(inode,
+				 "current_block %llu + ar.len %d > %d!",
+				 current_block, ar.len,
+				 EXT4_MAX_BLOCK_FILE_PHYS);
+		*err = -EIO;
+		goto failed_out;
+	}
+
+	if (*err && (target == blks)) {
+		/*
+		 * if the allocation failed and we didn't allocate
+		 * any blocks before
+		 */
+		goto failed_out;
+	}
+	if (!*err) {
+		if (target == blks) {
+			/*
+			 * save the new block number
+			 * for the first direct block
+			 */
+			new_blocks[index] = current_block;
+		}
+		blk_allocated += ar.len;
+	}
+allocated:
+	/* total number of blocks allocated for direct blocks */
+	ret = blk_allocated;
+	*err = 0;
+	return ret;
+failed_out:
+	for (i = 0; i < index; i++)
+		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
+	return ret;
+}
+
+/**
+ *	ext4_alloc_branch - allocate and set up a chain of blocks.
+ *	@handle: handle for this transaction
+ *	@inode: owner
+ *	@indirect_blks: number of allocated indirect blocks
+ *	@blks: number of allocated direct blocks
+ *	@goal: preferred place for allocation
+ *	@offsets: offsets (in the blocks) to store the pointers to next.
+ *	@branch: place to store the chain in.
+ *
+ *	This function allocates blocks, zeroes out all but the last one,
+ *	links them into chain and (if we are synchronous) writes them to disk.
+ *	In other words, it prepares a branch that can be spliced onto the
+ *	inode. It stores the information about that chain in the branch[], in
+ *	the same format as ext4_get_branch() would do. We are calling it after
+ *	we had read the existing part of chain and partial points to the last
+ *	triple of that (one with zero ->key). Upon the exit we have the same
+ *	picture as after the successful ext4_get_block(), except that in one
+ *	place chain is disconnected - *branch->p is still zero (we did not
+ *	set the last link), but branch->key contains the number that should
+ *	be placed into *branch->p to fill that gap.
+ *
+ *	If allocation fails we free all blocks we've allocated (and forget
+ *	their buffer_heads) and return the error value the from failed
+ *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
+ *	as described above and return 0.
+ */
+static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
+			     ext4_lblk_t iblock, int indirect_blks,
+			     int *blks, ext4_fsblk_t goal,
+			     ext4_lblk_t *offsets, Indirect *branch)
+{
+	int blocksize = inode->i_sb->s_blocksize;
+	int i, n = 0;
+	int err = 0;
+	struct buffer_head *bh;
+	int num;
+	ext4_fsblk_t new_blocks[4];
+	ext4_fsblk_t current_block;
+
+	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
+				*blks, new_blocks, &err);
+	if (err)
+		return err;
+
+	branch[0].key = cpu_to_le32(new_blocks[0]);
+	/*
+	 * metadata blocks and data blocks are allocated.
+	 */
+	for (n = 1; n <= indirect_blks;  n++) {
+		/*
+		 * Get buffer_head for parent block, zero it out
+		 * and set the pointer to new one, then send
+		 * parent to disk.
+		 */
+		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
+		if (unlikely(!bh)) {
+			err = -EIO;
+			goto failed;
+		}
+
+		branch[n].bh = bh;
+		lock_buffer(bh);
+		BUFFER_TRACE(bh, "call get_create_access");
+		err = ext4_journal_get_create_access(handle, bh);
+		if (err) {
+			/* Don't brelse(bh) here; it's done in
+			 * ext4_journal_forget() below */
+			unlock_buffer(bh);
+			goto failed;
+		}
+
+		memset(bh->b_data, 0, blocksize);
+		branch[n].p = (__le32 *) bh->b_data + offsets[n];
+		branch[n].key = cpu_to_le32(new_blocks[n]);
+		*branch[n].p = branch[n].key;
+		if (n == indirect_blks) {
+			current_block = new_blocks[n];
+			/*
+			 * End of chain, update the last new metablock of
+			 * the chain to point to the new allocated
+			 * data blocks numbers
+			 */
+			for (i = 1; i < num; i++)
+				*(branch[n].p + i) = cpu_to_le32(++current_block);
+		}
+		BUFFER_TRACE(bh, "marking uptodate");
+		set_buffer_uptodate(bh);
+		unlock_buffer(bh);
+
+		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
+		err = ext4_handle_dirty_metadata(handle, inode, bh);
+		if (err)
+			goto failed;
+	}
+	*blks = num;
+	return err;
+failed:
+	/* Allocation failed, free what we already allocated */
+	ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
+	for (i = 1; i <= n ; i++) {
+		/*
+		 * branch[i].bh is newly allocated, so there is no
+		 * need to revoke the block, which is why we don't
+		 * need to set EXT4_FREE_BLOCKS_METADATA.
+		 */
+		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
+				 EXT4_FREE_BLOCKS_FORGET);
+	}
+	for (i = n+1; i < indirect_blks; i++)
+		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
+
+	ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
+
+	return err;
+}
+
+/**
+ * ext4_splice_branch - splice the allocated branch onto inode.
+ * @handle: handle for this transaction
+ * @inode: owner
+ * @block: (logical) number of block we are adding
+ * @chain: chain of indirect blocks (with a missing link - see
+ *	ext4_alloc_branch)
+ * @where: location of missing link
+ * @num:   number of indirect blocks we are adding
+ * @blks:  number of direct blocks we are adding
+ *
+ * This function fills the missing link and does all housekeeping needed in
+ * inode (->i_blocks, etc.). In case of success we end up with the full
+ * chain to new block and return 0.
+ */
+static int ext4_splice_branch(handle_t *handle, struct inode *inode,
+			      ext4_lblk_t block, Indirect *where, int num,
+			      int blks)
+{
+	int i;
+	int err = 0;
+	ext4_fsblk_t current_block;
+
+	/*
+	 * If we're splicing into a [td]indirect block (as opposed to the
+	 * inode) then we need to get write access to the [td]indirect block
+	 * before the splice.
+	 */
+	if (where->bh) {
+		BUFFER_TRACE(where->bh, "get_write_access");
+		err = ext4_journal_get_write_access(handle, where->bh);
+		if (err)
+			goto err_out;
+	}
+	/* That's it */
+
+	*where->p = where->key;
+
+	/*
+	 * Update the host buffer_head or inode to point to more just allocated
+	 * direct blocks blocks
+	 */
+	if (num == 0 && blks > 1) {
+		current_block = le32_to_cpu(where->key) + 1;
+		for (i = 1; i < blks; i++)
+			*(where->p + i) = cpu_to_le32(current_block++);
+	}
+
+	/* We are done with atomic stuff, now do the rest of housekeeping */
+	/* had we spliced it onto indirect block? */
+	if (where->bh) {
+		/*
+		 * If we spliced it onto an indirect block, we haven't
+		 * altered the inode.  Note however that if it is being spliced
+		 * onto an indirect block at the very end of the file (the
+		 * file is growing) then we *will* alter the inode to reflect
+		 * the new i_size.  But that is not done here - it is done in
+		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
+		 */
+		jbd_debug(5, "splicing indirect only\n");
+		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
+		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
+		if (err)
+			goto err_out;
+	} else {
+		/*
+		 * OK, we spliced it into the inode itself on a direct block.
+		 */
+		ext4_mark_inode_dirty(handle, inode);
+		jbd_debug(5, "splicing direct\n");
+	}
+	return err;
+
+err_out:
+	for (i = 1; i <= num; i++) {
+		/*
+		 * branch[i].bh is newly allocated, so there is no
+		 * need to revoke the block, which is why we don't
+		 * need to set EXT4_FREE_BLOCKS_METADATA.
+		 */
+		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
+				 EXT4_FREE_BLOCKS_FORGET);
+	}
+	ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
+			 blks, 0);
+
+	return err;
+}
+
+/*
+ * The ext4_ind_map_blocks() function handles non-extents inodes
+ * (i.e., using the traditional indirect/double-indirect i_blocks
+ * scheme) for ext4_map_blocks().
+ *
+ * Allocation strategy is simple: if we have to allocate something, we will
+ * have to go the whole way to leaf. So let's do it before attaching anything
+ * to tree, set linkage between the newborn blocks, write them if sync is
+ * required, recheck the path, free and repeat if check fails, otherwise
+ * set the last missing link (that will protect us from any truncate-generated
+ * removals - all blocks on the path are immune now) and possibly force the
+ * write on the parent block.
+ * That has a nice additional property: no special recovery from the failed
+ * allocations is needed - we simply release blocks and do not touch anything
+ * reachable from inode.
+ *
+ * `handle' can be NULL if create == 0.
+ *
+ * return > 0, # of blocks mapped or allocated.
+ * return = 0, if plain lookup failed.
+ * return < 0, error case.
+ *
+ * The ext4_ind_get_blocks() function should be called with
+ * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
+ * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
+ * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
+ * blocks.
+ */
+int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
+			struct ext4_map_blocks *map,
+			int flags)
+{
+	int err = -EIO;
+	ext4_lblk_t offsets[4];
+	Indirect chain[4];
+	Indirect *partial;
+	ext4_fsblk_t goal;
+	int indirect_blks;
+	int blocks_to_boundary = 0;
+	int depth;
+	int count = 0;
+	ext4_fsblk_t first_block = 0;
+
+	trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
+	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
+	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
+	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
+				   &blocks_to_boundary);
+
+	if (depth == 0)
+		goto out;
+
+	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
+
+	/* Simplest case - block found, no allocation needed */
+	if (!partial) {
+		first_block = le32_to_cpu(chain[depth - 1].key);
+		count++;
+		/*map more blocks*/
+		while (count < map->m_len && count <= blocks_to_boundary) {
+			ext4_fsblk_t blk;
+
+			blk = le32_to_cpu(*(chain[depth-1].p + count));
+
+			if (blk == first_block + count)
+				count++;
+			else
+				break;
+		}
+		goto got_it;
+	}
+
+	/* Next simple case - plain lookup or failed read of indirect block */
+	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
+		goto cleanup;
+
+	/*
+	 * Okay, we need to do block allocation.
+	*/
+	goal = ext4_find_goal(inode, map->m_lblk, partial);
+
+	/* the number of blocks need to allocate for [d,t]indirect blocks */
+	indirect_blks = (chain + depth) - partial - 1;
+
+	/*
+	 * Next look up the indirect map to count the totoal number of
+	 * direct blocks to allocate for this branch.
+	 */
+	count = ext4_blks_to_allocate(partial, indirect_blks,
+				      map->m_len, blocks_to_boundary);
+	/*
+	 * Block out ext4_truncate while we alter the tree
+	 */
+	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
+				&count, goal,
+				offsets + (partial - chain), partial);
+
+	/*
+	 * The ext4_splice_branch call will free and forget any buffers
+	 * on the new chain if there is a failure, but that risks using
+	 * up transaction credits, especially for bitmaps where the
+	 * credits cannot be returned.  Can we handle this somehow?  We
+	 * may need to return -EAGAIN upwards in the worst case.  --sct
+	 */
+	if (!err)
+		err = ext4_splice_branch(handle, inode, map->m_lblk,
+					 partial, indirect_blks, count);
+	if (err)
+		goto cleanup;
+
+	map->m_flags |= EXT4_MAP_NEW;
+
+	ext4_update_inode_fsync_trans(handle, inode, 1);
+got_it:
+	map->m_flags |= EXT4_MAP_MAPPED;
+	map->m_pblk = le32_to_cpu(chain[depth-1].key);
+	map->m_len = count;
+	if (count > blocks_to_boundary)
+		map->m_flags |= EXT4_MAP_BOUNDARY;
+	err = count;
+	/* Clean up and exit */
+	partial = chain + depth - 1;	/* the whole chain */
+cleanup:
+	while (partial > chain) {
+		BUFFER_TRACE(partial->bh, "call brelse");
+		brelse(partial->bh);
+		partial--;
+	}
+out:
+	trace_ext4_ind_map_blocks_exit(inode, map->m_lblk,
+				map->m_pblk, map->m_len, err);
+	return err;
+}
+
+/*
+ * O_DIRECT for ext3 (or indirect map) based files
+ *
+ * If the O_DIRECT write will extend the file then add this inode to the
+ * orphan list.  So recovery will truncate it back to the original size
+ * if the machine crashes during the write.
+ *
+ * If the O_DIRECT write is intantiating holes inside i_size and the machine
+ * crashes then stale disk data _may_ be exposed inside the file. But current
+ * VFS code falls back into buffered path in that case so we are safe.
+ */
+ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
+			   const struct iovec *iov, loff_t offset,
+			   unsigned long nr_segs)
+{
+	struct file *file = iocb->ki_filp;
+	struct inode *inode = file->f_mapping->host;
+	struct ext4_inode_info *ei = EXT4_I(inode);
+	handle_t *handle;
+	ssize_t ret;
+	int orphan = 0;
+	size_t count = iov_length(iov, nr_segs);
+	int retries = 0;
+
+	if (rw == WRITE) {
+		loff_t final_size = offset + count;
+
+		if (final_size > inode->i_size) {
+			/* Credits for sb + inode write */
+			handle = ext4_journal_start(inode, 2);
+			if (IS_ERR(handle)) {
+				ret = PTR_ERR(handle);
+				goto out;
+			}
+			ret = ext4_orphan_add(handle, inode);
+			if (ret) {
+				ext4_journal_stop(handle);
+				goto out;
+			}
+			orphan = 1;
+			ei->i_disksize = inode->i_size;
+			ext4_journal_stop(handle);
+		}
+	}
+
+retry:
+	if (rw == READ && ext4_should_dioread_nolock(inode))
+		ret = __blockdev_direct_IO(rw, iocb, inode,
+				 inode->i_sb->s_bdev, iov,
+				 offset, nr_segs,
+				 ext4_get_block, NULL, NULL, 0);
+	else {
+		ret = blockdev_direct_IO(rw, iocb, inode,
+				 inode->i_sb->s_bdev, iov,
+				 offset, nr_segs,
+				 ext4_get_block, NULL);
+
+		if (unlikely((rw & WRITE) && ret < 0)) {
+			loff_t isize = i_size_read(inode);
+			loff_t end = offset + iov_length(iov, nr_segs);
+
+			if (end > isize)
+				ext4_truncate_failed_write(inode);
+		}
+	}
+	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
+		goto retry;
+
+	if (orphan) {
+		int err;
+
+		/* Credits for sb + inode write */
+		handle = ext4_journal_start(inode, 2);
+		if (IS_ERR(handle)) {
+			/* This is really bad luck. We've written the data
+			 * but cannot extend i_size. Bail out and pretend
+			 * the write failed... */
+			ret = PTR_ERR(handle);
+			if (inode->i_nlink)
+				ext4_orphan_del(NULL, inode);
+
+			goto out;
+		}
+		if (inode->i_nlink)
+			ext4_orphan_del(handle, inode);
+		if (ret > 0) {
+			loff_t end = offset + ret;
+			if (end > inode->i_size) {
+				ei->i_disksize = end;
+				i_size_write(inode, end);
+				/*
+				 * We're going to return a positive `ret'
+				 * here due to non-zero-length I/O, so there's
+				 * no way of reporting error returns from
+				 * ext4_mark_inode_dirty() to userspace.  So
+				 * ignore it.
+				 */
+				ext4_mark_inode_dirty(handle, inode);
+			}
+		}
+		err = ext4_journal_stop(handle);
+		if (ret == 0)
+			ret = err;
+	}
+out:
+	return ret;
+}
+
+/*
+ * Calculate the number of metadata blocks need to reserve
+ * to allocate a new block at @lblocks for non extent file based file
+ */
+int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
+{
+	struct ext4_inode_info *ei = EXT4_I(inode);
+	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
+	int blk_bits;
+
+	if (lblock < EXT4_NDIR_BLOCKS)
+		return 0;
+
+	lblock -= EXT4_NDIR_BLOCKS;
+
+	if (ei->i_da_metadata_calc_len &&
+	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
+		ei->i_da_metadata_calc_len++;
+		return 0;
+	}
+	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
+	ei->i_da_metadata_calc_len = 1;
+	blk_bits = order_base_2(lblock);
+	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
+}
+
+int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk)
+{
+	int indirects;
+
+	/* if nrblocks are contiguous */
+	if (chunk) {
+		/*
+		 * With N contiguous data blocks, we need at most
+		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
+		 * 2 dindirect blocks, and 1 tindirect block
+		 */
+		return DIV_ROUND_UP(nrblocks,
+				    EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
+	}
+	/*
+	 * if nrblocks are not contiguous, worse case, each block touch
+	 * a indirect block, and each indirect block touch a double indirect
+	 * block, plus a triple indirect block
+	 */
+	indirects = nrblocks * 2 + 1;
+	return indirects;
+}
+
+/*
+ * Truncate transactions can be complex and absolutely huge.  So we need to
+ * be able to restart the transaction at a conventient checkpoint to make
+ * sure we don't overflow the journal.
+ *
+ * start_transaction gets us a new handle for a truncate transaction,
+ * and extend_transaction tries to extend the existing one a bit.  If
+ * extend fails, we need to propagate the failure up and restart the
+ * transaction in the top-level truncate loop. --sct
+ */
+static handle_t *start_transaction(struct inode *inode)
+{
+	handle_t *result;
+
+	result = ext4_journal_start(inode, ext4_blocks_for_truncate(inode));
+	if (!IS_ERR(result))
+		return result;
+
+	ext4_std_error(inode->i_sb, PTR_ERR(result));
+	return result;
+}
+
+/*
+ * Try to extend this transaction for the purposes of truncation.
+ *
+ * Returns 0 if we managed to create more room.  If we can't create more
+ * room, and the transaction must be restarted we return 1.
+ */
+static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
+{
+	if (!ext4_handle_valid(handle))
+		return 0;
+	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
+		return 0;
+	if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
+		return 0;
+	return 1;
+}
+
+/*
+ * Probably it should be a library function... search for first non-zero word
+ * or memcmp with zero_page, whatever is better for particular architecture.
+ * Linus?
+ */
+static inline int all_zeroes(__le32 *p, __le32 *q)
+{
+	while (p < q)
+		if (*p++)
+			return 0;
+	return 1;
+}
+
+/**
+ *	ext4_find_shared - find the indirect blocks for partial truncation.
+ *	@inode:	  inode in question
+ *	@depth:	  depth of the affected branch
+ *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
+ *	@chain:	  place to store the pointers to partial indirect blocks
+ *	@top:	  place to the (detached) top of branch
+ *
+ *	This is a helper function used by ext4_truncate().
+ *
+ *	When we do truncate() we may have to clean the ends of several
+ *	indirect blocks but leave the blocks themselves alive. Block is
+ *	partially truncated if some data below the new i_size is referred
+ *	from it (and it is on the path to the first completely truncated
+ *	data block, indeed).  We have to free the top of that path along
+ *	with everything to the right of the path. Since no allocation
+ *	past the truncation point is possible until ext4_truncate()
+ *	finishes, we may safely do the latter, but top of branch may
+ *	require special attention - pageout below the truncation point
+ *	might try to populate it.
+ *
+ *	We atomically detach the top of branch from the tree, store the
+ *	block number of its root in *@top, pointers to buffer_heads of
+ *	partially truncated blocks - in @chain[].bh and pointers to
+ *	their last elements that should not be removed - in
+ *	@chain[].p. Return value is the pointer to last filled element
+ *	of @chain.
+ *
+ *	The work left to caller to do the actual freeing of subtrees:
+ *		a) free the subtree starting from *@top
+ *		b) free the subtrees whose roots are stored in
+ *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
+ *		c) free the subtrees growing from the inode past the @chain[0].
+ *			(no partially truncated stuff there).  */
+
+static Indirect *ext4_find_shared(struct inode *inode, int depth,
+				  ext4_lblk_t offsets[4], Indirect chain[4],
+				  __le32 *top)
+{
+	Indirect *partial, *p;
+	int k, err;
+
+	*top = 0;
+	/* Make k index the deepest non-null offset + 1 */
+	for (k = depth; k > 1 && !offsets[k-1]; k--)
+		;
+	partial = ext4_get_branch(inode, k, offsets, chain, &err);
+	/* Writer: pointers */
+	if (!partial)
+		partial = chain + k-1;
+	/*
+	 * If the branch acquired continuation since we've looked at it -
+	 * fine, it should all survive and (new) top doesn't belong to us.
+	 */
+	if (!partial->key && *partial->p)
+		/* Writer: end */
+		goto no_top;
+	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
+		;
+	/*
+	 * OK, we've found the last block that must survive. The rest of our
+	 * branch should be detached before unlocking. However, if that rest
+	 * of branch is all ours and does not grow immediately from the inode
+	 * it's easier to cheat and just decrement partial->p.
+	 */
+	if (p == chain + k - 1 && p > chain) {
+		p->p--;
+	} else {
+		*top = *p->p;
+		/* Nope, don't do this in ext4.  Must leave the tree intact */
+#if 0
+		*p->p = 0;
+#endif
+	}
+	/* Writer: end */
+
+	while (partial > p) {
+		brelse(partial->bh);
+		partial--;
+	}
+no_top:
+	return partial;
+}
+
+/*
+ * Zero a number of block pointers in either an inode or an indirect block.
+ * If we restart the transaction we must again get write access to the
+ * indirect block for further modification.
+ *
+ * We release `count' blocks on disk, but (last - first) may be greater
+ * than `count' because there can be holes in there.
+ *
+ * Return 0 on success, 1 on invalid block range
+ * and < 0 on fatal error.
+ */
+static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
+			     struct buffer_head *bh,
+			     ext4_fsblk_t block_to_free,
+			     unsigned long count, __le32 *first,
+			     __le32 *last)
+{
+	__le32 *p;
+	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
+	int	err;
+
+	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
+		flags |= EXT4_FREE_BLOCKS_METADATA;
+
+	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
+				   count)) {
+		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
+				 "blocks %llu len %lu",
+				 (unsigned long long) block_to_free, count);
+		return 1;
+	}
+
+	if (try_to_extend_transaction(handle, inode)) {
+		if (bh) {
+			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
+			err = ext4_handle_dirty_metadata(handle, inode, bh);
+			if (unlikely(err))
+				goto out_err;
+		}
+		err = ext4_mark_inode_dirty(handle, inode);
+		if (unlikely(err))
+			goto out_err;
+		err = ext4_truncate_restart_trans(handle, inode,
+					ext4_blocks_for_truncate(inode));
+		if (unlikely(err))
+			goto out_err;
+		if (bh) {
+			BUFFER_TRACE(bh, "retaking write access");
+			err = ext4_journal_get_write_access(handle, bh);
+			if (unlikely(err))
+				goto out_err;
+		}
+	}
+
+	for (p = first; p < last; p++)
+		*p = 0;
+
+	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
+	return 0;
+out_err:
+	ext4_std_error(inode->i_sb, err);
+	return err;
+}
+
+/**
+ * ext4_free_data - free a list of data blocks
+ * @handle:	handle for this transaction
+ * @inode:	inode we are dealing with
+ * @this_bh:	indirect buffer_head which contains *@first and *@last
+ * @first:	array of block numbers
+ * @last:	points immediately past the end of array
+ *
+ * We are freeing all blocks referred from that array (numbers are stored as
+ * little-endian 32-bit) and updating @inode->i_blocks appropriately.
+ *
+ * We accumulate contiguous runs of blocks to free.  Conveniently, if these
+ * blocks are contiguous then releasing them at one time will only affect one
+ * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
+ * actually use a lot of journal space.
+ *
+ * @this_bh will be %NULL if @first and @last point into the inode's direct
+ * block pointers.
+ */
+static void ext4_free_data(handle_t *handle, struct inode *inode,
+			   struct buffer_head *this_bh,
+			   __le32 *first, __le32 *last)
+{
+	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
+	unsigned long count = 0;	    /* Number of blocks in the run */
+	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
+					       corresponding to
+					       block_to_free */
+	ext4_fsblk_t nr;		    /* Current block # */
+	__le32 *p;			    /* Pointer into inode/ind
+					       for current block */
+	int err = 0;
+
+	if (this_bh) {				/* For indirect block */
+		BUFFER_TRACE(this_bh, "get_write_access");
+		err = ext4_journal_get_write_access(handle, this_bh);
+		/* Important: if we can't update the indirect pointers
+		 * to the blocks, we can't free them. */
+		if (err)
+			return;
+	}
+
+	for (p = first; p < last; p++) {
+		nr = le32_to_cpu(*p);
+		if (nr) {
+			/* accumulate blocks to free if they're contiguous */
+			if (count == 0) {
+				block_to_free = nr;
+				block_to_free_p = p;
+				count = 1;
+			} else if (nr == block_to_free + count) {
+				count++;
+			} else {
+				err = ext4_clear_blocks(handle, inode, this_bh,
+						        block_to_free, count,
+						        block_to_free_p, p);
+				if (err)
+					break;
+				block_to_free = nr;
+				block_to_free_p = p;
+				count = 1;
+			}
+		}
+	}
+
+	if (!err && count > 0)
+		err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
+					count, block_to_free_p, p);
+	if (err < 0)
+		/* fatal error */
+		return;
+
+	if (this_bh) {
+		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
+
+		/*
+		 * The buffer head should have an attached journal head at this
+		 * point. However, if the data is corrupted and an indirect
+		 * block pointed to itself, it would have been detached when
+		 * the block was cleared. Check for this instead of OOPSing.
+		 */
+		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
+			ext4_handle_dirty_metadata(handle, inode, this_bh);
+		else
+			EXT4_ERROR_INODE(inode,
+					 "circular indirect block detected at "
+					 "block %llu",
+				(unsigned long long) this_bh->b_blocknr);
+	}
+}
+
+/**
+ *	ext4_free_branches - free an array of branches
+ *	@handle: JBD handle for this transaction
+ *	@inode:	inode we are dealing with
+ *	@parent_bh: the buffer_head which contains *@first and *@last
+ *	@first:	array of block numbers
+ *	@last:	pointer immediately past the end of array
+ *	@depth:	depth of the branches to free
+ *
+ *	We are freeing all blocks referred from these branches (numbers are
+ *	stored as little-endian 32-bit) and updating @inode->i_blocks
+ *	appropriately.
+ */
+static void ext4_free_branches(handle_t *handle, struct inode *inode,
+			       struct buffer_head *parent_bh,
+			       __le32 *first, __le32 *last, int depth)
+{
+	ext4_fsblk_t nr;
+	__le32 *p;
+
+	if (ext4_handle_is_aborted(handle))
+		return;
+
+	if (depth--) {
+		struct buffer_head *bh;
+		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
+		p = last;
+		while (--p >= first) {
+			nr = le32_to_cpu(*p);
+			if (!nr)
+				continue;		/* A hole */
+
+			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
+						   nr, 1)) {
+				EXT4_ERROR_INODE(inode,
+						 "invalid indirect mapped "
+						 "block %lu (level %d)",
+						 (unsigned long) nr, depth);
+				break;
+			}
+
+			/* Go read the buffer for the next level down */
+			bh = sb_bread(inode->i_sb, nr);
+
+			/*
+			 * A read failure? Report error and clear slot
+			 * (should be rare).
+			 */
+			if (!bh) {
+				EXT4_ERROR_INODE_BLOCK(inode, nr,
+						       "Read failure");
+				continue;
+			}
+
+			/* This zaps the entire block.  Bottom up. */
+			BUFFER_TRACE(bh, "free child branches");
+			ext4_free_branches(handle, inode, bh,
+					(__le32 *) bh->b_data,
+					(__le32 *) bh->b_data + addr_per_block,
+					depth);
+			brelse(bh);
+
+			/*
+			 * Everything below this this pointer has been
+			 * released.  Now let this top-of-subtree go.
+			 *
+			 * We want the freeing of this indirect block to be
+			 * atomic in the journal with the updating of the
+			 * bitmap block which owns it.  So make some room in
+			 * the journal.
+			 *
+			 * We zero the parent pointer *after* freeing its
+			 * pointee in the bitmaps, so if extend_transaction()
+			 * for some reason fails to put the bitmap changes and
+			 * the release into the same transaction, recovery
+			 * will merely complain about releasing a free block,
+			 * rather than leaking blocks.
+			 */
+			if (ext4_handle_is_aborted(handle))
+				return;
+			if (try_to_extend_transaction(handle, inode)) {
+				ext4_mark_inode_dirty(handle, inode);
+				ext4_truncate_restart_trans(handle, inode,
+					    ext4_blocks_for_truncate(inode));
+			}
+
+			/*
+			 * The forget flag here is critical because if
+			 * we are journaling (and not doing data
+			 * journaling), we have to make sure a revoke
+			 * record is written to prevent the journal
+			 * replay from overwriting the (former)
+			 * indirect block if it gets reallocated as a
+			 * data block.  This must happen in the same
+			 * transaction where the data blocks are
+			 * actually freed.
+			 */
+			ext4_free_blocks(handle, inode, NULL, nr, 1,
+					 EXT4_FREE_BLOCKS_METADATA|
+					 EXT4_FREE_BLOCKS_FORGET);
+
+			if (parent_bh) {
+				/*
+				 * The block which we have just freed is
+				 * pointed to by an indirect block: journal it
+				 */
+				BUFFER_TRACE(parent_bh, "get_write_access");
+				if (!ext4_journal_get_write_access(handle,
+								   parent_bh)){
+					*p = 0;
+					BUFFER_TRACE(parent_bh,
+					"call ext4_handle_dirty_metadata");
+					ext4_handle_dirty_metadata(handle,
+								   inode,
+								   parent_bh);
+				}
+			}
+		}
+	} else {
+		/* We have reached the bottom of the tree. */
+		BUFFER_TRACE(parent_bh, "free data blocks");
+		ext4_free_data(handle, inode, parent_bh, first, last);
+	}
+}
+
+void ext4_ind_truncate(struct inode *inode)
+{
+	handle_t *handle;
+	struct ext4_inode_info *ei = EXT4_I(inode);
+	__le32 *i_data = ei->i_data;
+	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
+	struct address_space *mapping = inode->i_mapping;
+	ext4_lblk_t offsets[4];
+	Indirect chain[4];
+	Indirect *partial;
+	__le32 nr = 0;
+	int n = 0;
+	ext4_lblk_t last_block, max_block;
+	unsigned blocksize = inode->i_sb->s_blocksize;
+
+	handle = start_transaction(inode);
+	if (IS_ERR(handle))
+		return;		/* AKPM: return what? */
+
+	last_block = (inode->i_size + blocksize-1)
+					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
+	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
+					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
+
+	if (inode->i_size & (blocksize - 1))
+		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
+			goto out_stop;
+
+	if (last_block != max_block) {
+		n = ext4_block_to_path(inode, last_block, offsets, NULL);
+		if (n == 0)
+			goto out_stop;	/* error */
+	}
+
+	/*
+	 * OK.  This truncate is going to happen.  We add the inode to the
+	 * orphan list, so that if this truncate spans multiple transactions,
+	 * and we crash, we will resume the truncate when the filesystem
+	 * recovers.  It also marks the inode dirty, to catch the new size.
+	 *
+	 * Implication: the file must always be in a sane, consistent
+	 * truncatable state while each transaction commits.
+	 */
+	if (ext4_orphan_add(handle, inode))
+		goto out_stop;
+
+	/*
+	 * From here we block out all ext4_get_block() callers who want to
+	 * modify the block allocation tree.
+	 */
+	down_write(&ei->i_data_sem);
+
+	ext4_discard_preallocations(inode);
+
+	/*
+	 * The orphan list entry will now protect us from any crash which
+	 * occurs before the truncate completes, so it is now safe to propagate
+	 * the new, shorter inode size (held for now in i_size) into the
+	 * on-disk inode. We do this via i_disksize, which is the value which
+	 * ext4 *really* writes onto the disk inode.
+	 */
+	ei->i_disksize = inode->i_size;
+
+	if (last_block == max_block) {
+		/*
+		 * It is unnecessary to free any data blocks if last_block is
+		 * equal to the indirect block limit.
+		 */
+		goto out_unlock;
+	} else if (n == 1) {		/* direct blocks */
+		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
+			       i_data + EXT4_NDIR_BLOCKS);
+		goto do_indirects;
+	}
+
+	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
+	/* Kill the top of shared branch (not detached) */
+	if (nr) {
+		if (partial == chain) {
+			/* Shared branch grows from the inode */
+			ext4_free_branches(handle, inode, NULL,
+					   &nr, &nr+1, (chain+n-1) - partial);
+			*partial->p = 0;
+			/*
+			 * We mark the inode dirty prior to restart,
+			 * and prior to stop.  No need for it here.
+			 */
+		} else {
+			/* Shared branch grows from an indirect block */
+			BUFFER_TRACE(partial->bh, "get_write_access");
+			ext4_free_branches(handle, inode, partial->bh,
+					partial->p,
+					partial->p+1, (chain+n-1) - partial);
+		}
+	}
+	/* Clear the ends of indirect blocks on the shared branch */
+	while (partial > chain) {
+		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
+				   (__le32*)partial->bh->b_data+addr_per_block,
+				   (chain+n-1) - partial);
+		BUFFER_TRACE(partial->bh, "call brelse");
+		brelse(partial->bh);
+		partial--;
+	}
+do_indirects:
+	/* Kill the remaining (whole) subtrees */
+	switch (offsets[0]) {
+	default:
+		nr = i_data[EXT4_IND_BLOCK];
+		if (nr) {
+			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
+			i_data[EXT4_IND_BLOCK] = 0;
+		}
+	case EXT4_IND_BLOCK:
+		nr = i_data[EXT4_DIND_BLOCK];
+		if (nr) {
+			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
+			i_data[EXT4_DIND_BLOCK] = 0;
+		}
+	case EXT4_DIND_BLOCK:
+		nr = i_data[EXT4_TIND_BLOCK];
+		if (nr) {
+			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
+			i_data[EXT4_TIND_BLOCK] = 0;
+		}
+	case EXT4_TIND_BLOCK:
+		;
+	}
+
+out_unlock:
+	up_write(&ei->i_data_sem);
+	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
+	ext4_mark_inode_dirty(handle, inode);
+
+	/*
+	 * In a multi-transaction truncate, we only make the final transaction
+	 * synchronous
+	 */
+	if (IS_SYNC(inode))
+		ext4_handle_sync(handle);
+out_stop:
+	/*
+	 * If this was a simple ftruncate(), and the file will remain alive
+	 * then we need to clear up the orphan record which we created above.
+	 * However, if this was a real unlink then we were called by
+	 * ext4_delete_inode(), and we allow that function to clean up the
+	 * orphan info for us.
+	 */
+	if (inode->i_nlink)
+		ext4_orphan_del(handle, inode);
+
+	ext4_journal_stop(handle);
+	trace_ext4_truncate_exit(inode);
+}
+
diff --git a/fs/ext4/inode.c b/fs/ext4/inode.c
index 9b82ac7..de50b16 100644
--- a/fs/ext4/inode.c
+++ b/fs/ext4/inode.c
@@ -12,10 +12,6 @@
  *
  *  Copyright (C) 1991, 1992  Linus Torvalds
  *
- *  Goal-directed block allocation by Stephen Tweedie
- *	(sct@redhat.com), 1993, 1998
- *  Big-endian to little-endian byte-swapping/bitmaps by
- *        David S. Miller (davem@caip.rutgers.edu), 1995
  *  64-bit file support on 64-bit platforms by Jakub Jelinek
  *	(jj@sunsite.ms.mff.cuni.cz)
  *
@@ -90,45 +86,6 @@
 }
 
 /*
- * Truncate transactions can be complex and absolutely huge.  So we need to
- * be able to restart the transaction at a conventient checkpoint to make
- * sure we don't overflow the journal.
- *
- * start_transaction gets us a new handle for a truncate transaction,
- * and extend_transaction tries to extend the existing one a bit.  If
- * extend fails, we need to propagate the failure up and restart the
- * transaction in the top-level truncate loop. --sct
- */
-static handle_t *start_transaction(struct inode *inode)
-{
-	handle_t *result;
-
-	result = ext4_journal_start(inode, ext4_blocks_for_truncate(inode));
-	if (!IS_ERR(result))
-		return result;
-
-	ext4_std_error(inode->i_sb, PTR_ERR(result));
-	return result;
-}
-
-/*
- * Try to extend this transaction for the purposes of truncation.
- *
- * Returns 0 if we managed to create more room.  If we can't create more
- * room, and the transaction must be restarted we return 1.
- */
-static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
-{
-	if (!ext4_handle_valid(handle))
-		return 0;
-	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
-		return 0;
-	if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
-		return 0;
-	return 1;
-}
-
-/*
  * Restart the transaction associated with *handle.  This does a commit,
  * so before we call here everything must be consistently dirtied against
  * this transaction.
@@ -251,760 +208,6 @@
 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 }
 
-typedef struct {
-	__le32	*p;
-	__le32	key;
-	struct buffer_head *bh;
-} Indirect;
-
-static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
-{
-	p->key = *(p->p = v);
-	p->bh = bh;
-}
-
-/**
- *	ext4_block_to_path - parse the block number into array of offsets
- *	@inode: inode in question (we are only interested in its superblock)
- *	@i_block: block number to be parsed
- *	@offsets: array to store the offsets in
- *	@boundary: set this non-zero if the referred-to block is likely to be
- *	       followed (on disk) by an indirect block.
- *
- *	To store the locations of file's data ext4 uses a data structure common
- *	for UNIX filesystems - tree of pointers anchored in the inode, with
- *	data blocks at leaves and indirect blocks in intermediate nodes.
- *	This function translates the block number into path in that tree -
- *	return value is the path length and @offsets[n] is the offset of
- *	pointer to (n+1)th node in the nth one. If @block is out of range
- *	(negative or too large) warning is printed and zero returned.
- *
- *	Note: function doesn't find node addresses, so no IO is needed. All
- *	we need to know is the capacity of indirect blocks (taken from the
- *	inode->i_sb).
- */
-
-/*
- * Portability note: the last comparison (check that we fit into triple
- * indirect block) is spelled differently, because otherwise on an
- * architecture with 32-bit longs and 8Kb pages we might get into trouble
- * if our filesystem had 8Kb blocks. We might use long long, but that would
- * kill us on x86. Oh, well, at least the sign propagation does not matter -
- * i_block would have to be negative in the very beginning, so we would not
- * get there at all.
- */
-
-static int ext4_block_to_path(struct inode *inode,
-			      ext4_lblk_t i_block,
-			      ext4_lblk_t offsets[4], int *boundary)
-{
-	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
-	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
-	const long direct_blocks = EXT4_NDIR_BLOCKS,
-		indirect_blocks = ptrs,
-		double_blocks = (1 << (ptrs_bits * 2));
-	int n = 0;
-	int final = 0;
-
-	if (i_block < direct_blocks) {
-		offsets[n++] = i_block;
-		final = direct_blocks;
-	} else if ((i_block -= direct_blocks) < indirect_blocks) {
-		offsets[n++] = EXT4_IND_BLOCK;
-		offsets[n++] = i_block;
-		final = ptrs;
-	} else if ((i_block -= indirect_blocks) < double_blocks) {
-		offsets[n++] = EXT4_DIND_BLOCK;
-		offsets[n++] = i_block >> ptrs_bits;
-		offsets[n++] = i_block & (ptrs - 1);
-		final = ptrs;
-	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
-		offsets[n++] = EXT4_TIND_BLOCK;
-		offsets[n++] = i_block >> (ptrs_bits * 2);
-		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
-		offsets[n++] = i_block & (ptrs - 1);
-		final = ptrs;
-	} else {
-		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
-			     i_block + direct_blocks +
-			     indirect_blocks + double_blocks, inode->i_ino);
-	}
-	if (boundary)
-		*boundary = final - 1 - (i_block & (ptrs - 1));
-	return n;
-}
-
-/**
- *	ext4_get_branch - read the chain of indirect blocks leading to data
- *	@inode: inode in question
- *	@depth: depth of the chain (1 - direct pointer, etc.)
- *	@offsets: offsets of pointers in inode/indirect blocks
- *	@chain: place to store the result
- *	@err: here we store the error value
- *
- *	Function fills the array of triples <key, p, bh> and returns %NULL
- *	if everything went OK or the pointer to the last filled triple
- *	(incomplete one) otherwise. Upon the return chain[i].key contains
- *	the number of (i+1)-th block in the chain (as it is stored in memory,
- *	i.e. little-endian 32-bit), chain[i].p contains the address of that
- *	number (it points into struct inode for i==0 and into the bh->b_data
- *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
- *	block for i>0 and NULL for i==0. In other words, it holds the block
- *	numbers of the chain, addresses they were taken from (and where we can
- *	verify that chain did not change) and buffer_heads hosting these
- *	numbers.
- *
- *	Function stops when it stumbles upon zero pointer (absent block)
- *		(pointer to last triple returned, *@err == 0)
- *	or when it gets an IO error reading an indirect block
- *		(ditto, *@err == -EIO)
- *	or when it reads all @depth-1 indirect blocks successfully and finds
- *	the whole chain, all way to the data (returns %NULL, *err == 0).
- *
- *      Need to be called with
- *      down_read(&EXT4_I(inode)->i_data_sem)
- */
-static Indirect *ext4_get_branch(struct inode *inode, int depth,
-				 ext4_lblk_t  *offsets,
-				 Indirect chain[4], int *err)
-{
-	struct super_block *sb = inode->i_sb;
-	Indirect *p = chain;
-	struct buffer_head *bh;
-
-	*err = 0;
-	/* i_data is not going away, no lock needed */
-	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
-	if (!p->key)
-		goto no_block;
-	while (--depth) {
-		bh = sb_getblk(sb, le32_to_cpu(p->key));
-		if (unlikely(!bh))
-			goto failure;
-
-		if (!bh_uptodate_or_lock(bh)) {
-			if (bh_submit_read(bh) < 0) {
-				put_bh(bh);
-				goto failure;
-			}
-			/* validate block references */
-			if (ext4_check_indirect_blockref(inode, bh)) {
-				put_bh(bh);
-				goto failure;
-			}
-		}
-
-		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
-		/* Reader: end */
-		if (!p->key)
-			goto no_block;
-	}
-	return NULL;
-
-failure:
-	*err = -EIO;
-no_block:
-	return p;
-}
-
-/**
- *	ext4_find_near - find a place for allocation with sufficient locality
- *	@inode: owner
- *	@ind: descriptor of indirect block.
- *
- *	This function returns the preferred place for block allocation.
- *	It is used when heuristic for sequential allocation fails.
- *	Rules are:
- *	  + if there is a block to the left of our position - allocate near it.
- *	  + if pointer will live in indirect block - allocate near that block.
- *	  + if pointer will live in inode - allocate in the same
- *	    cylinder group.
- *
- * In the latter case we colour the starting block by the callers PID to
- * prevent it from clashing with concurrent allocations for a different inode
- * in the same block group.   The PID is used here so that functionally related
- * files will be close-by on-disk.
- *
- *	Caller must make sure that @ind is valid and will stay that way.
- */
-static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
-{
-	struct ext4_inode_info *ei = EXT4_I(inode);
-	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
-	__le32 *p;
-	ext4_fsblk_t bg_start;
-	ext4_fsblk_t last_block;
-	ext4_grpblk_t colour;
-	ext4_group_t block_group;
-	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
-
-	/* Try to find previous block */
-	for (p = ind->p - 1; p >= start; p--) {
-		if (*p)
-			return le32_to_cpu(*p);
-	}
-
-	/* No such thing, so let's try location of indirect block */
-	if (ind->bh)
-		return ind->bh->b_blocknr;
-
-	/*
-	 * It is going to be referred to from the inode itself? OK, just put it
-	 * into the same cylinder group then.
-	 */
-	block_group = ei->i_block_group;
-	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
-		block_group &= ~(flex_size-1);
-		if (S_ISREG(inode->i_mode))
-			block_group++;
-	}
-	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
-	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
-
-	/*
-	 * If we are doing delayed allocation, we don't need take
-	 * colour into account.
-	 */
-	if (test_opt(inode->i_sb, DELALLOC))
-		return bg_start;
-
-	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
-		colour = (current->pid % 16) *
-			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
-	else
-		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
-	return bg_start + colour;
-}
-
-/**
- *	ext4_find_goal - find a preferred place for allocation.
- *	@inode: owner
- *	@block:  block we want
- *	@partial: pointer to the last triple within a chain
- *
- *	Normally this function find the preferred place for block allocation,
- *	returns it.
- *	Because this is only used for non-extent files, we limit the block nr
- *	to 32 bits.
- */
-static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
-				   Indirect *partial)
-{
-	ext4_fsblk_t goal;
-
-	/*
-	 * XXX need to get goal block from mballoc's data structures
-	 */
-
-	goal = ext4_find_near(inode, partial);
-	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
-	return goal;
-}
-
-/**
- *	ext4_blks_to_allocate - Look up the block map and count the number
- *	of direct blocks need to be allocated for the given branch.
- *
- *	@branch: chain of indirect blocks
- *	@k: number of blocks need for indirect blocks
- *	@blks: number of data blocks to be mapped.
- *	@blocks_to_boundary:  the offset in the indirect block
- *
- *	return the total number of blocks to be allocate, including the
- *	direct and indirect blocks.
- */
-static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
-				 int blocks_to_boundary)
-{
-	unsigned int count = 0;
-
-	/*
-	 * Simple case, [t,d]Indirect block(s) has not allocated yet
-	 * then it's clear blocks on that path have not allocated
-	 */
-	if (k > 0) {
-		/* right now we don't handle cross boundary allocation */
-		if (blks < blocks_to_boundary + 1)
-			count += blks;
-		else
-			count += blocks_to_boundary + 1;
-		return count;
-	}
-
-	count++;
-	while (count < blks && count <= blocks_to_boundary &&
-		le32_to_cpu(*(branch[0].p + count)) == 0) {
-		count++;
-	}
-	return count;
-}
-
-/**
- *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
- *	@handle: handle for this transaction
- *	@inode: inode which needs allocated blocks
- *	@iblock: the logical block to start allocated at
- *	@goal: preferred physical block of allocation
- *	@indirect_blks: the number of blocks need to allocate for indirect
- *			blocks
- *	@blks: number of desired blocks
- *	@new_blocks: on return it will store the new block numbers for
- *	the indirect blocks(if needed) and the first direct block,
- *	@err: on return it will store the error code
- *
- *	This function will return the number of blocks allocated as
- *	requested by the passed-in parameters.
- */
-static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
-			     ext4_lblk_t iblock, ext4_fsblk_t goal,
-			     int indirect_blks, int blks,
-			     ext4_fsblk_t new_blocks[4], int *err)
-{
-	struct ext4_allocation_request ar;
-	int target, i;
-	unsigned long count = 0, blk_allocated = 0;
-	int index = 0;
-	ext4_fsblk_t current_block = 0;
-	int ret = 0;
-
-	/*
-	 * Here we try to allocate the requested multiple blocks at once,
-	 * on a best-effort basis.
-	 * To build a branch, we should allocate blocks for
-	 * the indirect blocks(if not allocated yet), and at least
-	 * the first direct block of this branch.  That's the
-	 * minimum number of blocks need to allocate(required)
-	 */
-	/* first we try to allocate the indirect blocks */
-	target = indirect_blks;
-	while (target > 0) {
-		count = target;
-		/* allocating blocks for indirect blocks and direct blocks */
-		current_block = ext4_new_meta_blocks(handle, inode, goal,
-						     0, &count, err);
-		if (*err)
-			goto failed_out;
-
-		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
-			EXT4_ERROR_INODE(inode,
-					 "current_block %llu + count %lu > %d!",
-					 current_block, count,
-					 EXT4_MAX_BLOCK_FILE_PHYS);
-			*err = -EIO;
-			goto failed_out;
-		}
-
-		target -= count;
-		/* allocate blocks for indirect blocks */
-		while (index < indirect_blks && count) {
-			new_blocks[index++] = current_block++;
-			count--;
-		}
-		if (count > 0) {
-			/*
-			 * save the new block number
-			 * for the first direct block
-			 */
-			new_blocks[index] = current_block;
-			printk(KERN_INFO "%s returned more blocks than "
-						"requested\n", __func__);
-			WARN_ON(1);
-			break;
-		}
-	}
-
-	target = blks - count ;
-	blk_allocated = count;
-	if (!target)
-		goto allocated;
-	/* Now allocate data blocks */
-	memset(&ar, 0, sizeof(ar));
-	ar.inode = inode;
-	ar.goal = goal;
-	ar.len = target;
-	ar.logical = iblock;
-	if (S_ISREG(inode->i_mode))
-		/* enable in-core preallocation only for regular files */
-		ar.flags = EXT4_MB_HINT_DATA;
-
-	current_block = ext4_mb_new_blocks(handle, &ar, err);
-	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
-		EXT4_ERROR_INODE(inode,
-				 "current_block %llu + ar.len %d > %d!",
-				 current_block, ar.len,
-				 EXT4_MAX_BLOCK_FILE_PHYS);
-		*err = -EIO;
-		goto failed_out;
-	}
-
-	if (*err && (target == blks)) {
-		/*
-		 * if the allocation failed and we didn't allocate
-		 * any blocks before
-		 */
-		goto failed_out;
-	}
-	if (!*err) {
-		if (target == blks) {
-			/*
-			 * save the new block number
-			 * for the first direct block
-			 */
-			new_blocks[index] = current_block;
-		}
-		blk_allocated += ar.len;
-	}
-allocated:
-	/* total number of blocks allocated for direct blocks */
-	ret = blk_allocated;
-	*err = 0;
-	return ret;
-failed_out:
-	for (i = 0; i < index; i++)
-		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
-	return ret;
-}
-
-/**
- *	ext4_alloc_branch - allocate and set up a chain of blocks.
- *	@handle: handle for this transaction
- *	@inode: owner
- *	@indirect_blks: number of allocated indirect blocks
- *	@blks: number of allocated direct blocks
- *	@goal: preferred place for allocation
- *	@offsets: offsets (in the blocks) to store the pointers to next.
- *	@branch: place to store the chain in.
- *
- *	This function allocates blocks, zeroes out all but the last one,
- *	links them into chain and (if we are synchronous) writes them to disk.
- *	In other words, it prepares a branch that can be spliced onto the
- *	inode. It stores the information about that chain in the branch[], in
- *	the same format as ext4_get_branch() would do. We are calling it after
- *	we had read the existing part of chain and partial points to the last
- *	triple of that (one with zero ->key). Upon the exit we have the same
- *	picture as after the successful ext4_get_block(), except that in one
- *	place chain is disconnected - *branch->p is still zero (we did not
- *	set the last link), but branch->key contains the number that should
- *	be placed into *branch->p to fill that gap.
- *
- *	If allocation fails we free all blocks we've allocated (and forget
- *	their buffer_heads) and return the error value the from failed
- *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
- *	as described above and return 0.
- */
-static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
-			     ext4_lblk_t iblock, int indirect_blks,
-			     int *blks, ext4_fsblk_t goal,
-			     ext4_lblk_t *offsets, Indirect *branch)
-{
-	int blocksize = inode->i_sb->s_blocksize;
-	int i, n = 0;
-	int err = 0;
-	struct buffer_head *bh;
-	int num;
-	ext4_fsblk_t new_blocks[4];
-	ext4_fsblk_t current_block;
-
-	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
-				*blks, new_blocks, &err);
-	if (err)
-		return err;
-
-	branch[0].key = cpu_to_le32(new_blocks[0]);
-	/*
-	 * metadata blocks and data blocks are allocated.
-	 */
-	for (n = 1; n <= indirect_blks;  n++) {
-		/*
-		 * Get buffer_head for parent block, zero it out
-		 * and set the pointer to new one, then send
-		 * parent to disk.
-		 */
-		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
-		if (unlikely(!bh)) {
-			err = -EIO;
-			goto failed;
-		}
-
-		branch[n].bh = bh;
-		lock_buffer(bh);
-		BUFFER_TRACE(bh, "call get_create_access");
-		err = ext4_journal_get_create_access(handle, bh);
-		if (err) {
-			/* Don't brelse(bh) here; it's done in
-			 * ext4_journal_forget() below */
-			unlock_buffer(bh);
-			goto failed;
-		}
-
-		memset(bh->b_data, 0, blocksize);
-		branch[n].p = (__le32 *) bh->b_data + offsets[n];
-		branch[n].key = cpu_to_le32(new_blocks[n]);
-		*branch[n].p = branch[n].key;
-		if (n == indirect_blks) {
-			current_block = new_blocks[n];
-			/*
-			 * End of chain, update the last new metablock of
-			 * the chain to point to the new allocated
-			 * data blocks numbers
-			 */
-			for (i = 1; i < num; i++)
-				*(branch[n].p + i) = cpu_to_le32(++current_block);
-		}
-		BUFFER_TRACE(bh, "marking uptodate");
-		set_buffer_uptodate(bh);
-		unlock_buffer(bh);
-
-		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
-		err = ext4_handle_dirty_metadata(handle, inode, bh);
-		if (err)
-			goto failed;
-	}
-	*blks = num;
-	return err;
-failed:
-	/* Allocation failed, free what we already allocated */
-	ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
-	for (i = 1; i <= n ; i++) {
-		/*
-		 * branch[i].bh is newly allocated, so there is no
-		 * need to revoke the block, which is why we don't
-		 * need to set EXT4_FREE_BLOCKS_METADATA.
-		 */
-		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
-				 EXT4_FREE_BLOCKS_FORGET);
-	}
-	for (i = n+1; i < indirect_blks; i++)
-		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
-
-	ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
-
-	return err;
-}
-
-/**
- * ext4_splice_branch - splice the allocated branch onto inode.
- * @handle: handle for this transaction
- * @inode: owner
- * @block: (logical) number of block we are adding
- * @chain: chain of indirect blocks (with a missing link - see
- *	ext4_alloc_branch)
- * @where: location of missing link
- * @num:   number of indirect blocks we are adding
- * @blks:  number of direct blocks we are adding
- *
- * This function fills the missing link and does all housekeeping needed in
- * inode (->i_blocks, etc.). In case of success we end up with the full
- * chain to new block and return 0.
- */
-static int ext4_splice_branch(handle_t *handle, struct inode *inode,
-			      ext4_lblk_t block, Indirect *where, int num,
-			      int blks)
-{
-	int i;
-	int err = 0;
-	ext4_fsblk_t current_block;
-
-	/*
-	 * If we're splicing into a [td]indirect block (as opposed to the
-	 * inode) then we need to get write access to the [td]indirect block
-	 * before the splice.
-	 */
-	if (where->bh) {
-		BUFFER_TRACE(where->bh, "get_write_access");
-		err = ext4_journal_get_write_access(handle, where->bh);
-		if (err)
-			goto err_out;
-	}
-	/* That's it */
-
-	*where->p = where->key;
-
-	/*
-	 * Update the host buffer_head or inode to point to more just allocated
-	 * direct blocks blocks
-	 */
-	if (num == 0 && blks > 1) {
-		current_block = le32_to_cpu(where->key) + 1;
-		for (i = 1; i < blks; i++)
-			*(where->p + i) = cpu_to_le32(current_block++);
-	}
-
-	/* We are done with atomic stuff, now do the rest of housekeeping */
-	/* had we spliced it onto indirect block? */
-	if (where->bh) {
-		/*
-		 * If we spliced it onto an indirect block, we haven't
-		 * altered the inode.  Note however that if it is being spliced
-		 * onto an indirect block at the very end of the file (the
-		 * file is growing) then we *will* alter the inode to reflect
-		 * the new i_size.  But that is not done here - it is done in
-		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
-		 */
-		jbd_debug(5, "splicing indirect only\n");
-		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
-		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
-		if (err)
-			goto err_out;
-	} else {
-		/*
-		 * OK, we spliced it into the inode itself on a direct block.
-		 */
-		ext4_mark_inode_dirty(handle, inode);
-		jbd_debug(5, "splicing direct\n");
-	}
-	return err;
-
-err_out:
-	for (i = 1; i <= num; i++) {
-		/*
-		 * branch[i].bh is newly allocated, so there is no
-		 * need to revoke the block, which is why we don't
-		 * need to set EXT4_FREE_BLOCKS_METADATA.
-		 */
-		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
-				 EXT4_FREE_BLOCKS_FORGET);
-	}
-	ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
-			 blks, 0);
-
-	return err;
-}
-
-/*
- * The ext4_ind_map_blocks() function handles non-extents inodes
- * (i.e., using the traditional indirect/double-indirect i_blocks
- * scheme) for ext4_map_blocks().
- *
- * Allocation strategy is simple: if we have to allocate something, we will
- * have to go the whole way to leaf. So let's do it before attaching anything
- * to tree, set linkage between the newborn blocks, write them if sync is
- * required, recheck the path, free and repeat if check fails, otherwise
- * set the last missing link (that will protect us from any truncate-generated
- * removals - all blocks on the path are immune now) and possibly force the
- * write on the parent block.
- * That has a nice additional property: no special recovery from the failed
- * allocations is needed - we simply release blocks and do not touch anything
- * reachable from inode.
- *
- * `handle' can be NULL if create == 0.
- *
- * return > 0, # of blocks mapped or allocated.
- * return = 0, if plain lookup failed.
- * return < 0, error case.
- *
- * The ext4_ind_get_blocks() function should be called with
- * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
- * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
- * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
- * blocks.
- */
-static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
-			       struct ext4_map_blocks *map,
-			       int flags)
-{
-	int err = -EIO;
-	ext4_lblk_t offsets[4];
-	Indirect chain[4];
-	Indirect *partial;
-	ext4_fsblk_t goal;
-	int indirect_blks;
-	int blocks_to_boundary = 0;
-	int depth;
-	int count = 0;
-	ext4_fsblk_t first_block = 0;
-
-	trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
-	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
-	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
-	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
-				   &blocks_to_boundary);
-
-	if (depth == 0)
-		goto out;
-
-	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
-
-	/* Simplest case - block found, no allocation needed */
-	if (!partial) {
-		first_block = le32_to_cpu(chain[depth - 1].key);
-		count++;
-		/*map more blocks*/
-		while (count < map->m_len && count <= blocks_to_boundary) {
-			ext4_fsblk_t blk;
-
-			blk = le32_to_cpu(*(chain[depth-1].p + count));
-
-			if (blk == first_block + count)
-				count++;
-			else
-				break;
-		}
-		goto got_it;
-	}
-
-	/* Next simple case - plain lookup or failed read of indirect block */
-	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
-		goto cleanup;
-
-	/*
-	 * Okay, we need to do block allocation.
-	*/
-	goal = ext4_find_goal(inode, map->m_lblk, partial);
-
-	/* the number of blocks need to allocate for [d,t]indirect blocks */
-	indirect_blks = (chain + depth) - partial - 1;
-
-	/*
-	 * Next look up the indirect map to count the totoal number of
-	 * direct blocks to allocate for this branch.
-	 */
-	count = ext4_blks_to_allocate(partial, indirect_blks,
-				      map->m_len, blocks_to_boundary);
-	/*
-	 * Block out ext4_truncate while we alter the tree
-	 */
-	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
-				&count, goal,
-				offsets + (partial - chain), partial);
-
-	/*
-	 * The ext4_splice_branch call will free and forget any buffers
-	 * on the new chain if there is a failure, but that risks using
-	 * up transaction credits, especially for bitmaps where the
-	 * credits cannot be returned.  Can we handle this somehow?  We
-	 * may need to return -EAGAIN upwards in the worst case.  --sct
-	 */
-	if (!err)
-		err = ext4_splice_branch(handle, inode, map->m_lblk,
-					 partial, indirect_blks, count);
-	if (err)
-		goto cleanup;
-
-	map->m_flags |= EXT4_MAP_NEW;
-
-	ext4_update_inode_fsync_trans(handle, inode, 1);
-got_it:
-	map->m_flags |= EXT4_MAP_MAPPED;
-	map->m_pblk = le32_to_cpu(chain[depth-1].key);
-	map->m_len = count;
-	if (count > blocks_to_boundary)
-		map->m_flags |= EXT4_MAP_BOUNDARY;
-	err = count;
-	/* Clean up and exit */
-	partial = chain + depth - 1;	/* the whole chain */
-cleanup:
-	while (partial > chain) {
-		BUFFER_TRACE(partial->bh, "call brelse");
-		brelse(partial->bh);
-		partial--;
-	}
-out:
-	trace_ext4_ind_map_blocks_exit(inode, map->m_lblk,
-				map->m_pblk, map->m_len, err);
-	return err;
-}
-
 #ifdef CONFIG_QUOTA
 qsize_t *ext4_get_reserved_space(struct inode *inode)
 {
@@ -1014,32 +217,6 @@
 
 /*
  * Calculate the number of metadata blocks need to reserve
- * to allocate a new block at @lblocks for non extent file based file
- */
-static int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
-{
-	struct ext4_inode_info *ei = EXT4_I(inode);
-	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
-	int blk_bits;
-
-	if (lblock < EXT4_NDIR_BLOCKS)
-		return 0;
-
-	lblock -= EXT4_NDIR_BLOCKS;
-
-	if (ei->i_da_metadata_calc_len &&
-	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
-		ei->i_da_metadata_calc_len++;
-		return 0;
-	}
-	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
-	ei->i_da_metadata_calc_len = 1;
-	blk_bits = order_base_2(lblock);
-	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
-}
-
-/*
- * Calculate the number of metadata blocks need to reserve
  * to allocate a block located at @lblock
  */
 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
@@ -3380,114 +2557,6 @@
 }
 
 /*
- * O_DIRECT for ext3 (or indirect map) based files
- *
- * If the O_DIRECT write will extend the file then add this inode to the
- * orphan list.  So recovery will truncate it back to the original size
- * if the machine crashes during the write.
- *
- * If the O_DIRECT write is intantiating holes inside i_size and the machine
- * crashes then stale disk data _may_ be exposed inside the file. But current
- * VFS code falls back into buffered path in that case so we are safe.
- */
-static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
-			      const struct iovec *iov, loff_t offset,
-			      unsigned long nr_segs)
-{
-	struct file *file = iocb->ki_filp;
-	struct inode *inode = file->f_mapping->host;
-	struct ext4_inode_info *ei = EXT4_I(inode);
-	handle_t *handle;
-	ssize_t ret;
-	int orphan = 0;
-	size_t count = iov_length(iov, nr_segs);
-	int retries = 0;
-
-	if (rw == WRITE) {
-		loff_t final_size = offset + count;
-
-		if (final_size > inode->i_size) {
-			/* Credits for sb + inode write */
-			handle = ext4_journal_start(inode, 2);
-			if (IS_ERR(handle)) {
-				ret = PTR_ERR(handle);
-				goto out;
-			}
-			ret = ext4_orphan_add(handle, inode);
-			if (ret) {
-				ext4_journal_stop(handle);
-				goto out;
-			}
-			orphan = 1;
-			ei->i_disksize = inode->i_size;
-			ext4_journal_stop(handle);
-		}
-	}
-
-retry:
-	if (rw == READ && ext4_should_dioread_nolock(inode))
-		ret = __blockdev_direct_IO(rw, iocb, inode,
-				 inode->i_sb->s_bdev, iov,
-				 offset, nr_segs,
-				 ext4_get_block, NULL, NULL, 0);
-	else {
-		ret = blockdev_direct_IO(rw, iocb, inode,
-				 inode->i_sb->s_bdev, iov,
-				 offset, nr_segs,
-				 ext4_get_block, NULL);
-
-		if (unlikely((rw & WRITE) && ret < 0)) {
-			loff_t isize = i_size_read(inode);
-			loff_t end = offset + iov_length(iov, nr_segs);
-
-			if (end > isize)
-				ext4_truncate_failed_write(inode);
-		}
-	}
-	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
-		goto retry;
-
-	if (orphan) {
-		int err;
-
-		/* Credits for sb + inode write */
-		handle = ext4_journal_start(inode, 2);
-		if (IS_ERR(handle)) {
-			/* This is really bad luck. We've written the data
-			 * but cannot extend i_size. Bail out and pretend
-			 * the write failed... */
-			ret = PTR_ERR(handle);
-			if (inode->i_nlink)
-				ext4_orphan_del(NULL, inode);
-
-			goto out;
-		}
-		if (inode->i_nlink)
-			ext4_orphan_del(handle, inode);
-		if (ret > 0) {
-			loff_t end = offset + ret;
-			if (end > inode->i_size) {
-				ei->i_disksize = end;
-				i_size_write(inode, end);
-				/*
-				 * We're going to return a positive `ret'
-				 * here due to non-zero-length I/O, so there's
-				 * no way of reporting error returns from
-				 * ext4_mark_inode_dirty() to userspace.  So
-				 * ignore it.
-				 */
-				ext4_mark_inode_dirty(handle, inode);
-			}
-		}
-		err = ext4_journal_stop(handle);
-		if (ret == 0)
-			ret = err;
-	}
-out:
-	return ret;
-}
-
-/*
  * ext4_get_block used when preparing for a DIO write or buffer write.
  * We allocate an uinitialized extent if blocks haven't been allocated.
  * The extent will be converted to initialized after the IO is complete.
@@ -3958,383 +3027,6 @@
 	return err;
 }
 
-/*
- * Probably it should be a library function... search for first non-zero word
- * or memcmp with zero_page, whatever is better for particular architecture.
- * Linus?
- */
-static inline int all_zeroes(__le32 *p, __le32 *q)
-{
-	while (p < q)
-		if (*p++)
-			return 0;
-	return 1;
-}
-
-/**
- *	ext4_find_shared - find the indirect blocks for partial truncation.
- *	@inode:	  inode in question
- *	@depth:	  depth of the affected branch
- *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
- *	@chain:	  place to store the pointers to partial indirect blocks
- *	@top:	  place to the (detached) top of branch
- *
- *	This is a helper function used by ext4_truncate().
- *
- *	When we do truncate() we may have to clean the ends of several
- *	indirect blocks but leave the blocks themselves alive. Block is
- *	partially truncated if some data below the new i_size is referred
- *	from it (and it is on the path to the first completely truncated
- *	data block, indeed).  We have to free the top of that path along
- *	with everything to the right of the path. Since no allocation
- *	past the truncation point is possible until ext4_truncate()
- *	finishes, we may safely do the latter, but top of branch may
- *	require special attention - pageout below the truncation point
- *	might try to populate it.
- *
- *	We atomically detach the top of branch from the tree, store the
- *	block number of its root in *@top, pointers to buffer_heads of
- *	partially truncated blocks - in @chain[].bh and pointers to
- *	their last elements that should not be removed - in
- *	@chain[].p. Return value is the pointer to last filled element
- *	of @chain.
- *
- *	The work left to caller to do the actual freeing of subtrees:
- *		a) free the subtree starting from *@top
- *		b) free the subtrees whose roots are stored in
- *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
- *		c) free the subtrees growing from the inode past the @chain[0].
- *			(no partially truncated stuff there).  */
-
-static Indirect *ext4_find_shared(struct inode *inode, int depth,
-				  ext4_lblk_t offsets[4], Indirect chain[4],
-				  __le32 *top)
-{
-	Indirect *partial, *p;
-	int k, err;
-
-	*top = 0;
-	/* Make k index the deepest non-null offset + 1 */
-	for (k = depth; k > 1 && !offsets[k-1]; k--)
-		;
-	partial = ext4_get_branch(inode, k, offsets, chain, &err);
-	/* Writer: pointers */
-	if (!partial)
-		partial = chain + k-1;
-	/*
-	 * If the branch acquired continuation since we've looked at it -
-	 * fine, it should all survive and (new) top doesn't belong to us.
-	 */
-	if (!partial->key && *partial->p)
-		/* Writer: end */
-		goto no_top;
-	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
-		;
-	/*
-	 * OK, we've found the last block that must survive. The rest of our
-	 * branch should be detached before unlocking. However, if that rest
-	 * of branch is all ours and does not grow immediately from the inode
-	 * it's easier to cheat and just decrement partial->p.
-	 */
-	if (p == chain + k - 1 && p > chain) {
-		p->p--;
-	} else {
-		*top = *p->p;
-		/* Nope, don't do this in ext4.  Must leave the tree intact */
-#if 0
-		*p->p = 0;
-#endif
-	}
-	/* Writer: end */
-
-	while (partial > p) {
-		brelse(partial->bh);
-		partial--;
-	}
-no_top:
-	return partial;
-}
-
-/*
- * Zero a number of block pointers in either an inode or an indirect block.
- * If we restart the transaction we must again get write access to the
- * indirect block for further modification.
- *
- * We release `count' blocks on disk, but (last - first) may be greater
- * than `count' because there can be holes in there.
- *
- * Return 0 on success, 1 on invalid block range
- * and < 0 on fatal error.
- */
-static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
-			     struct buffer_head *bh,
-			     ext4_fsblk_t block_to_free,
-			     unsigned long count, __le32 *first,
-			     __le32 *last)
-{
-	__le32 *p;
-	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
-	int	err;
-
-	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
-		flags |= EXT4_FREE_BLOCKS_METADATA;
-
-	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
-				   count)) {
-		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
-				 "blocks %llu len %lu",
-				 (unsigned long long) block_to_free, count);
-		return 1;
-	}
-
-	if (try_to_extend_transaction(handle, inode)) {
-		if (bh) {
-			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
-			err = ext4_handle_dirty_metadata(handle, inode, bh);
-			if (unlikely(err))
-				goto out_err;
-		}
-		err = ext4_mark_inode_dirty(handle, inode);
-		if (unlikely(err))
-			goto out_err;
-		err = ext4_truncate_restart_trans(handle, inode,
-					ext4_blocks_for_truncate(inode));
-		if (unlikely(err))
-			goto out_err;
-		if (bh) {
-			BUFFER_TRACE(bh, "retaking write access");
-			err = ext4_journal_get_write_access(handle, bh);
-			if (unlikely(err))
-				goto out_err;
-		}
-	}
-
-	for (p = first; p < last; p++)
-		*p = 0;
-
-	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
-	return 0;
-out_err:
-	ext4_std_error(inode->i_sb, err);
-	return err;
-}
-
-/**
- * ext4_free_data - free a list of data blocks
- * @handle:	handle for this transaction
- * @inode:	inode we are dealing with
- * @this_bh:	indirect buffer_head which contains *@first and *@last
- * @first:	array of block numbers
- * @last:	points immediately past the end of array
- *
- * We are freeing all blocks referred from that array (numbers are stored as
- * little-endian 32-bit) and updating @inode->i_blocks appropriately.
- *
- * We accumulate contiguous runs of blocks to free.  Conveniently, if these
- * blocks are contiguous then releasing them at one time will only affect one
- * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
- * actually use a lot of journal space.
- *
- * @this_bh will be %NULL if @first and @last point into the inode's direct
- * block pointers.
- */
-static void ext4_free_data(handle_t *handle, struct inode *inode,
-			   struct buffer_head *this_bh,
-			   __le32 *first, __le32 *last)
-{
-	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
-	unsigned long count = 0;	    /* Number of blocks in the run */
-	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
-					       corresponding to
-					       block_to_free */
-	ext4_fsblk_t nr;		    /* Current block # */
-	__le32 *p;			    /* Pointer into inode/ind
-					       for current block */
-	int err = 0;
-
-	if (this_bh) {				/* For indirect block */
-		BUFFER_TRACE(this_bh, "get_write_access");
-		err = ext4_journal_get_write_access(handle, this_bh);
-		/* Important: if we can't update the indirect pointers
-		 * to the blocks, we can't free them. */
-		if (err)
-			return;
-	}
-
-	for (p = first; p < last; p++) {
-		nr = le32_to_cpu(*p);
-		if (nr) {
-			/* accumulate blocks to free if they're contiguous */
-			if (count == 0) {
-				block_to_free = nr;
-				block_to_free_p = p;
-				count = 1;
-			} else if (nr == block_to_free + count) {
-				count++;
-			} else {
-				err = ext4_clear_blocks(handle, inode, this_bh,
-						        block_to_free, count,
-						        block_to_free_p, p);
-				if (err)
-					break;
-				block_to_free = nr;
-				block_to_free_p = p;
-				count = 1;
-			}
-		}
-	}
-
-	if (!err && count > 0)
-		err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
-					count, block_to_free_p, p);
-	if (err < 0)
-		/* fatal error */
-		return;
-
-	if (this_bh) {
-		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
-
-		/*
-		 * The buffer head should have an attached journal head at this
-		 * point. However, if the data is corrupted and an indirect
-		 * block pointed to itself, it would have been detached when
-		 * the block was cleared. Check for this instead of OOPSing.
-		 */
-		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
-			ext4_handle_dirty_metadata(handle, inode, this_bh);
-		else
-			EXT4_ERROR_INODE(inode,
-					 "circular indirect block detected at "
-					 "block %llu",
-				(unsigned long long) this_bh->b_blocknr);
-	}
-}
-
-/**
- *	ext4_free_branches - free an array of branches
- *	@handle: JBD handle for this transaction
- *	@inode:	inode we are dealing with
- *	@parent_bh: the buffer_head which contains *@first and *@last
- *	@first:	array of block numbers
- *	@last:	pointer immediately past the end of array
- *	@depth:	depth of the branches to free
- *
- *	We are freeing all blocks referred from these branches (numbers are
- *	stored as little-endian 32-bit) and updating @inode->i_blocks
- *	appropriately.
- */
-static void ext4_free_branches(handle_t *handle, struct inode *inode,
-			       struct buffer_head *parent_bh,
-			       __le32 *first, __le32 *last, int depth)
-{
-	ext4_fsblk_t nr;
-	__le32 *p;
-
-	if (ext4_handle_is_aborted(handle))
-		return;
-
-	if (depth--) {
-		struct buffer_head *bh;
-		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
-		p = last;
-		while (--p >= first) {
-			nr = le32_to_cpu(*p);
-			if (!nr)
-				continue;		/* A hole */
-
-			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
-						   nr, 1)) {
-				EXT4_ERROR_INODE(inode,
-						 "invalid indirect mapped "
-						 "block %lu (level %d)",
-						 (unsigned long) nr, depth);
-				break;
-			}
-
-			/* Go read the buffer for the next level down */
-			bh = sb_bread(inode->i_sb, nr);
-
-			/*
-			 * A read failure? Report error and clear slot
-			 * (should be rare).
-			 */
-			if (!bh) {
-				EXT4_ERROR_INODE_BLOCK(inode, nr,
-						       "Read failure");
-				continue;
-			}
-
-			/* This zaps the entire block.  Bottom up. */
-			BUFFER_TRACE(bh, "free child branches");
-			ext4_free_branches(handle, inode, bh,
-					(__le32 *) bh->b_data,
-					(__le32 *) bh->b_data + addr_per_block,
-					depth);
-			brelse(bh);
-
-			/*
-			 * Everything below this this pointer has been
-			 * released.  Now let this top-of-subtree go.
-			 *
-			 * We want the freeing of this indirect block to be
-			 * atomic in the journal with the updating of the
-			 * bitmap block which owns it.  So make some room in
-			 * the journal.
-			 *
-			 * We zero the parent pointer *after* freeing its
-			 * pointee in the bitmaps, so if extend_transaction()
-			 * for some reason fails to put the bitmap changes and
-			 * the release into the same transaction, recovery
-			 * will merely complain about releasing a free block,
-			 * rather than leaking blocks.
-			 */
-			if (ext4_handle_is_aborted(handle))
-				return;
-			if (try_to_extend_transaction(handle, inode)) {
-				ext4_mark_inode_dirty(handle, inode);
-				ext4_truncate_restart_trans(handle, inode,
-					    ext4_blocks_for_truncate(inode));
-			}
-
-			/*
-			 * The forget flag here is critical because if
-			 * we are journaling (and not doing data
-			 * journaling), we have to make sure a revoke
-			 * record is written to prevent the journal
-			 * replay from overwriting the (former)
-			 * indirect block if it gets reallocated as a
-			 * data block.  This must happen in the same
-			 * transaction where the data blocks are
-			 * actually freed.
-			 */
-			ext4_free_blocks(handle, inode, NULL, nr, 1,
-					 EXT4_FREE_BLOCKS_METADATA|
-					 EXT4_FREE_BLOCKS_FORGET);
-
-			if (parent_bh) {
-				/*
-				 * The block which we have just freed is
-				 * pointed to by an indirect block: journal it
-				 */
-				BUFFER_TRACE(parent_bh, "get_write_access");
-				if (!ext4_journal_get_write_access(handle,
-								   parent_bh)){
-					*p = 0;
-					BUFFER_TRACE(parent_bh,
-					"call ext4_handle_dirty_metadata");
-					ext4_handle_dirty_metadata(handle,
-								   inode,
-								   parent_bh);
-				}
-			}
-		}
-	} else {
-		/* We have reached the bottom of the tree. */
-		BUFFER_TRACE(parent_bh, "free data blocks");
-		ext4_free_data(handle, inode, parent_bh, first, last);
-	}
-}
-
 int ext4_can_truncate(struct inode *inode)
 {
 	if (S_ISREG(inode->i_mode))
@@ -4419,161 +3111,6 @@
 	trace_ext4_truncate_exit(inode);
 }
 
-void ext4_ind_truncate(struct inode *inode)
-{
-	handle_t *handle;
-	struct ext4_inode_info *ei = EXT4_I(inode);
-	__le32 *i_data = ei->i_data;
-	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
-	struct address_space *mapping = inode->i_mapping;
-	ext4_lblk_t offsets[4];
-	Indirect chain[4];
-	Indirect *partial;
-	__le32 nr = 0;
-	int n = 0;
-	ext4_lblk_t last_block, max_block;
-	unsigned blocksize = inode->i_sb->s_blocksize;
-
-	handle = start_transaction(inode);
-	if (IS_ERR(handle))
-		return;		/* AKPM: return what? */
-
-	last_block = (inode->i_size + blocksize-1)
-					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
-	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
-					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
-
-	if (inode->i_size & (blocksize - 1))
-		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
-			goto out_stop;
-
-	if (last_block != max_block) {
-		n = ext4_block_to_path(inode, last_block, offsets, NULL);
-		if (n == 0)
-			goto out_stop;	/* error */
-	}
-
-	/*
-	 * OK.  This truncate is going to happen.  We add the inode to the
-	 * orphan list, so that if this truncate spans multiple transactions,
-	 * and we crash, we will resume the truncate when the filesystem
-	 * recovers.  It also marks the inode dirty, to catch the new size.
-	 *
-	 * Implication: the file must always be in a sane, consistent
-	 * truncatable state while each transaction commits.
-	 */
-	if (ext4_orphan_add(handle, inode))
-		goto out_stop;
-
-	/*
-	 * From here we block out all ext4_get_block() callers who want to
-	 * modify the block allocation tree.
-	 */
-	down_write(&ei->i_data_sem);
-
-	ext4_discard_preallocations(inode);
-
-	/*
-	 * The orphan list entry will now protect us from any crash which
-	 * occurs before the truncate completes, so it is now safe to propagate
-	 * the new, shorter inode size (held for now in i_size) into the
-	 * on-disk inode. We do this via i_disksize, which is the value which
-	 * ext4 *really* writes onto the disk inode.
-	 */
-	ei->i_disksize = inode->i_size;
-
-	if (last_block == max_block) {
-		/*
-		 * It is unnecessary to free any data blocks if last_block is
-		 * equal to the indirect block limit.
-		 */
-		goto out_unlock;
-	} else if (n == 1) {		/* direct blocks */
-		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
-			       i_data + EXT4_NDIR_BLOCKS);
-		goto do_indirects;
-	}
-
-	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
-	/* Kill the top of shared branch (not detached) */
-	if (nr) {
-		if (partial == chain) {
-			/* Shared branch grows from the inode */
-			ext4_free_branches(handle, inode, NULL,
-					   &nr, &nr+1, (chain+n-1) - partial);
-			*partial->p = 0;
-			/*
-			 * We mark the inode dirty prior to restart,
-			 * and prior to stop.  No need for it here.
-			 */
-		} else {
-			/* Shared branch grows from an indirect block */
-			BUFFER_TRACE(partial->bh, "get_write_access");
-			ext4_free_branches(handle, inode, partial->bh,
-					partial->p,
-					partial->p+1, (chain+n-1) - partial);
-		}
-	}
-	/* Clear the ends of indirect blocks on the shared branch */
-	while (partial > chain) {
-		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
-				   (__le32*)partial->bh->b_data+addr_per_block,
-				   (chain+n-1) - partial);
-		BUFFER_TRACE(partial->bh, "call brelse");
-		brelse(partial->bh);
-		partial--;
-	}
-do_indirects:
-	/* Kill the remaining (whole) subtrees */
-	switch (offsets[0]) {
-	default:
-		nr = i_data[EXT4_IND_BLOCK];
-		if (nr) {
-			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
-			i_data[EXT4_IND_BLOCK] = 0;
-		}
-	case EXT4_IND_BLOCK:
-		nr = i_data[EXT4_DIND_BLOCK];
-		if (nr) {
-			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
-			i_data[EXT4_DIND_BLOCK] = 0;
-		}
-	case EXT4_DIND_BLOCK:
-		nr = i_data[EXT4_TIND_BLOCK];
-		if (nr) {
-			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
-			i_data[EXT4_TIND_BLOCK] = 0;
-		}
-	case EXT4_TIND_BLOCK:
-		;
-	}
-
-out_unlock:
-	up_write(&ei->i_data_sem);
-	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
-	ext4_mark_inode_dirty(handle, inode);
-
-	/*
-	 * In a multi-transaction truncate, we only make the final transaction
-	 * synchronous
-	 */
-	if (IS_SYNC(inode))
-		ext4_handle_sync(handle);
-out_stop:
-	/*
-	 * If this was a simple ftruncate(), and the file will remain alive
-	 * then we need to clear up the orphan record which we created above.
-	 * However, if this was a real unlink then we were called by
-	 * ext4_delete_inode(), and we allow that function to clean up the
-	 * orphan info for us.
-	 */
-	if (inode->i_nlink)
-		ext4_orphan_del(handle, inode);
-
-	ext4_journal_stop(handle);
-	trace_ext4_truncate_exit(inode);
-}
-
 /*
  * ext4_get_inode_loc returns with an extra refcount against the inode's
  * underlying buffer_head on success. If 'in_mem' is true, we have all
@@ -5386,29 +3923,6 @@
 	return 0;
 }
 
-static int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk)
-{
-	int indirects;
-
-	/* if nrblocks are contiguous */
-	if (chunk) {
-		/*
-		 * With N contiguous data blocks, we need at most
-		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
-		 * 2 dindirect blocks, and 1 tindirect block
-		 */
-		return DIV_ROUND_UP(nrblocks,
-				    EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
-	}
-	/*
-	 * if nrblocks are not contiguous, worse case, each block touch
-	 * a indirect block, and each indirect block touch a double indirect
-	 * block, plus a triple indirect block
-	 */
-	indirects = nrblocks * 2 + 1;
-	return indirects;
-}
-
 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
 {
 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))