[PATCH] VFS: split dentry locking documentation

This patch splits dentry locking documentation from
Documentation/filesystems/vfs.txt to a separate file.  The dentry locking
bits are useful but do not fit into the VFS overview document as is.

Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
diff --git a/Documentation/filesystems/vfs.txt b/Documentation/filesystems/vfs.txt
index 8210909..ee4c0a8 100644
--- a/Documentation/filesystems/vfs.txt
+++ b/Documentation/filesystems/vfs.txt
@@ -721,181 +721,8 @@
 	and the dentry is returned. The caller must use d_put()
 	to free the dentry when it finishes using it.
 
-
-RCU-based dcache locking model
-------------------------------
-
-On many workloads, the most common operation on dcache is
-to look up a dentry, given a parent dentry and the name
-of the child. Typically, for every open(), stat() etc.,
-the dentry corresponding to the pathname will be looked
-up by walking the tree starting with the first component
-of the pathname and using that dentry along with the next
-component to look up the next level and so on. Since it
-is a frequent operation for workloads like multiuser
-environments and web servers, it is important to optimize
-this path.
-
-Prior to 2.5.10, dcache_lock was acquired in d_lookup and thus
-in every component during path look-up. Since 2.5.10 onwards,
-fast-walk algorithm changed this by holding the dcache_lock
-at the beginning and walking as many cached path component
-dentries as possible. This significantly decreases the number
-of acquisition of dcache_lock. However it also increases the
-lock hold time significantly and affects performance in large
-SMP machines. Since 2.5.62 kernel, dcache has been using
-a new locking model that uses RCU to make dcache look-up
-lock-free.
-
-The current dcache locking model is not very different from the existing
-dcache locking model. Prior to 2.5.62 kernel, dcache_lock
-protected the hash chain, d_child, d_alias, d_lru lists as well
-as d_inode and several other things like mount look-up. RCU-based
-changes affect only the way the hash chain is protected. For everything
-else the dcache_lock must be taken for both traversing as well as
-updating. The hash chain updates too take the dcache_lock.
-The significant change is the way d_lookup traverses the hash chain,
-it doesn't acquire the dcache_lock for this and rely on RCU to
-ensure that the dentry has not been *freed*.
-
-
-Dcache locking details
-----------------------
-
-For many multi-user workloads, open() and stat() on files are
-very frequently occurring operations. Both involve walking
-of path names to find the dentry corresponding to the
-concerned file. In 2.4 kernel, dcache_lock was held
-during look-up of each path component. Contention and
-cache-line bouncing of this global lock caused significant
-scalability problems. With the introduction of RCU
-in Linux kernel, this was worked around by making
-the look-up of path components during path walking lock-free.
-
-
-Safe lock-free look-up of dcache hash table
-===========================================
-
-Dcache is a complex data structure with the hash table entries
-also linked together in other lists. In 2.4 kernel, dcache_lock
-protected all the lists. We applied RCU only on hash chain
-walking. The rest of the lists are still protected by dcache_lock.
-Some of the important changes are :
-
-1. The deletion from hash chain is done using hlist_del_rcu() macro which
-   doesn't initialize next pointer of the deleted dentry and this
-   allows us to walk safely lock-free while a deletion is happening.
-
-2. Insertion of a dentry into the hash table is done using
-   hlist_add_head_rcu() which take care of ordering the writes -
-   the writes to the dentry must be visible before the dentry
-   is inserted. This works in conjunction with hlist_for_each_rcu()
-   while walking the hash chain. The only requirement is that
-   all initialization to the dentry must be done before hlist_add_head_rcu()
-   since we don't have dcache_lock protection while traversing
-   the hash chain. This isn't different from the existing code.
-
-3. The dentry looked up without holding dcache_lock by cannot be
-   returned for walking if it is unhashed. It then may have a NULL
-   d_inode or other bogosity since RCU doesn't protect the other
-   fields in the dentry. We therefore use a flag DCACHE_UNHASHED to
-   indicate unhashed  dentries and use this in conjunction with a
-   per-dentry lock (d_lock). Once looked up without the dcache_lock,
-   we acquire the per-dentry lock (d_lock) and check if the
-   dentry is unhashed. If so, the look-up is failed. If not, the
-   reference count of the dentry is increased and the dentry is returned.
-
-4. Once a dentry is looked up, it must be ensured during the path
-   walk for that component it doesn't go away. In pre-2.5.10 code,
-   this was done holding a reference to the dentry. dcache_rcu does
-   the same.  In some sense, dcache_rcu path walking looks like
-   the pre-2.5.10 version.
-
-5. All dentry hash chain updates must take the dcache_lock as well as
-   the per-dentry lock in that order. dput() does this to ensure
-   that a dentry that has just been looked up in another CPU
-   doesn't get deleted before dget() can be done on it.
-
-6. There are several ways to do reference counting of RCU protected
-   objects. One such example is in ipv4 route cache where
-   deferred freeing (using call_rcu()) is done as soon as
-   the reference count goes to zero. This cannot be done in
-   the case of dentries because tearing down of dentries
-   require blocking (dentry_iput()) which isn't supported from
-   RCU callbacks. Instead, tearing down of dentries happen
-   synchronously in dput(), but actual freeing happens later
-   when RCU grace period is over. This allows safe lock-free
-   walking of the hash chains, but a matched dentry may have
-   been partially torn down. The checking of DCACHE_UNHASHED
-   flag with d_lock held detects such dentries and prevents
-   them from being returned from look-up.
-
-
-Maintaining POSIX rename semantics
-==================================
-
-Since look-up of dentries is lock-free, it can race against
-a concurrent rename operation. For example, during rename
-of file A to B, look-up of either A or B must succeed.
-So, if look-up of B happens after A has been removed from the
-hash chain but not added to the new hash chain, it may fail.
-Also, a comparison while the name is being written concurrently
-by a rename may result in false positive matches violating
-rename semantics.  Issues related to race with rename are
-handled as described below :
-
-1. Look-up can be done in two ways - d_lookup() which is safe
-   from simultaneous renames and __d_lookup() which is not.
-   If __d_lookup() fails, it must be followed up by a d_lookup()
-   to correctly determine whether a dentry is in the hash table
-   or not. d_lookup() protects look-ups using a sequence
-   lock (rename_lock).
-
-2. The name associated with a dentry (d_name) may be changed if
-   a rename is allowed to happen simultaneously. To avoid memcmp()
-   in __d_lookup() go out of bounds due to a rename and false
-   positive comparison, the name comparison is done while holding the
-   per-dentry lock. This prevents concurrent renames during this
-   operation.
-
-3. Hash table walking during look-up may move to a different bucket as
-   the current dentry is moved to a different bucket due to rename.
-   But we use hlists in dcache hash table and they are null-terminated.
-   So, even if a dentry moves to a different bucket, hash chain
-   walk will terminate. [with a list_head list, it may not since
-   termination is when the list_head in the original bucket is reached].
-   Since we redo the d_parent check and compare name while holding
-   d_lock, lock-free look-up will not race against d_move().
-
-4. There can be a theoretical race when a dentry keeps coming back
-   to original bucket due to double moves. Due to this look-up may
-   consider that it has never moved and can end up in a infinite loop.
-   But this is not any worse that theoretical livelocks we already
-   have in the kernel.
-
-
-Important guidelines for filesystem developers related to dcache_rcu
-====================================================================
-
-1. Existing dcache interfaces (pre-2.5.62) exported to filesystem
-   don't change. Only dcache internal implementation changes. However
-   filesystems *must not* delete from the dentry hash chains directly
-   using the list macros like allowed earlier. They must use dcache
-   APIs like d_drop() or __d_drop() depending on the situation.
-
-2. d_flags is now protected by a per-dentry lock (d_lock). All
-   access to d_flags must be protected by it.
-
-3. For a hashed dentry, checking of d_count needs to be protected
-   by d_lock.
-
-
-Papers and other documentation on dcache locking
-================================================
-
-1. Scaling dcache with RCU (http://linuxjournal.com/article.php?sid=7124).
-
-2. http://lse.sourceforge.net/locking/dcache/dcache.html
+For further information on dentry locking, please refer to the document
+Documentation/filesystems/dentry-locking.txt.
 
 
 Resources