net: dsa: bcm_sf2: Add support for IPv6 CFP rules
Inserting IPv6 CFP rules complicates the code a little bit in that we
need to insert two rules side by side and chain them to match a full
IPv6 tuple (src, dst IPv6 + port + protocol).
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
diff --git a/drivers/net/dsa/bcm_sf2.c b/drivers/net/dsa/bcm_sf2.c
index b43c063..2574a52 100644
--- a/drivers/net/dsa/bcm_sf2.c
+++ b/drivers/net/dsa/bcm_sf2.c
@@ -1067,6 +1067,7 @@ static int bcm_sf2_sw_probe(struct platform_device *pdev)
* permanently used
*/
set_bit(0, priv->cfp.used);
+ set_bit(0, priv->cfp.unique);
bcm_sf2_identify_ports(priv, dn->child);
diff --git a/drivers/net/dsa/bcm_sf2.h b/drivers/net/dsa/bcm_sf2.h
index 1922e02..cc31e98 100644
--- a/drivers/net/dsa/bcm_sf2.h
+++ b/drivers/net/dsa/bcm_sf2.h
@@ -54,6 +54,7 @@ struct bcm_sf2_cfp_priv {
/* Mutex protecting concurrent accesses to the CFP registers */
struct mutex lock;
DECLARE_BITMAP(used, CFP_NUM_RULES);
+ DECLARE_BITMAP(unique, CFP_NUM_RULES);
unsigned int rules_cnt;
};
diff --git a/drivers/net/dsa/bcm_sf2_cfp.c b/drivers/net/dsa/bcm_sf2_cfp.c
index 9c82995..0861f66 100644
--- a/drivers/net/dsa/bcm_sf2_cfp.c
+++ b/drivers/net/dsa/bcm_sf2_cfp.c
@@ -57,6 +57,60 @@ static const struct cfp_udf_layout udf_tcpip4_layout = {
},
};
+/* UDF slices layout for a TCPv6/UDPv6 specification */
+static const struct cfp_udf_layout udf_tcpip6_layout = {
+ .udfs = {
+ [0] = {
+ .slices = {
+ /* End of L2, byte offset 8, src IP[0:15] */
+ CFG_UDF_EOL2 | 4,
+ /* End of L2, byte offset 10, src IP[16:31] */
+ CFG_UDF_EOL2 | 5,
+ /* End of L2, byte offset 12, src IP[32:47] */
+ CFG_UDF_EOL2 | 6,
+ /* End of L2, byte offset 14, src IP[48:63] */
+ CFG_UDF_EOL2 | 7,
+ /* End of L2, byte offset 16, src IP[64:79] */
+ CFG_UDF_EOL2 | 8,
+ /* End of L2, byte offset 18, src IP[80:95] */
+ CFG_UDF_EOL2 | 9,
+ /* End of L2, byte offset 20, src IP[96:111] */
+ CFG_UDF_EOL2 | 10,
+ /* End of L2, byte offset 22, src IP[112:127] */
+ CFG_UDF_EOL2 | 11,
+ /* End of L3, byte offset 0, src port */
+ CFG_UDF_EOL3 | 0,
+ },
+ .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
+ .base_offset = CORE_UDF_0_B_0_8_PORT_0,
+ },
+ [3] = {
+ .slices = {
+ /* End of L2, byte offset 24, dst IP[0:15] */
+ CFG_UDF_EOL2 | 12,
+ /* End of L2, byte offset 26, dst IP[16:31] */
+ CFG_UDF_EOL2 | 13,
+ /* End of L2, byte offset 28, dst IP[32:47] */
+ CFG_UDF_EOL2 | 14,
+ /* End of L2, byte offset 30, dst IP[48:63] */
+ CFG_UDF_EOL2 | 15,
+ /* End of L2, byte offset 32, dst IP[64:79] */
+ CFG_UDF_EOL2 | 16,
+ /* End of L2, byte offset 34, dst IP[80:95] */
+ CFG_UDF_EOL2 | 17,
+ /* End of L2, byte offset 36, dst IP[96:111] */
+ CFG_UDF_EOL2 | 18,
+ /* End of L2, byte offset 38, dst IP[112:127] */
+ CFG_UDF_EOL2 | 19,
+ /* End of L3, byte offset 2, dst port */
+ CFG_UDF_EOL3 | 1,
+ },
+ .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
+ .base_offset = CORE_UDF_0_D_0_11_PORT_0,
+ },
+ },
+};
+
static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
{
unsigned int i, count = 0;
@@ -153,7 +207,8 @@ static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
unsigned int rule_index,
unsigned int port_num,
- unsigned int queue_num)
+ unsigned int queue_num,
+ bool fwd_map_change)
{
int ret;
u32 reg;
@@ -161,14 +216,17 @@ static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
/* Replace ARL derived destination with DST_MAP derived, define
* which port and queue this should be forwarded to.
*/
- reg = CHANGE_FWRD_MAP_IB_REP_ARL | BIT(port_num + DST_MAP_IB_SHIFT) |
- CHANGE_TC | queue_num << NEW_TC_SHIFT;
+ if (fwd_map_change)
+ reg = CHANGE_FWRD_MAP_IB_REP_ARL |
+ BIT(port_num + DST_MAP_IB_SHIFT) |
+ CHANGE_TC | queue_num << NEW_TC_SHIFT;
+ else
+ reg = 0;
core_writel(priv, reg, CORE_ACT_POL_DATA0);
/* Set classification ID that needs to be put in Broadcom tag */
- core_writel(priv, rule_index << CHAIN_ID_SHIFT,
- CORE_ACT_POL_DATA1);
+ core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
core_writel(priv, 0, CORE_ACT_POL_DATA2);
@@ -337,7 +395,8 @@ static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
}
/* Insert into Action and policer RAMs now */
- ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num, queue_num);
+ ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num,
+ queue_num, true);
if (ret)
return ret;
@@ -348,17 +407,280 @@ static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
/* Flag the rule as being used and return it */
set_bit(rule_index, priv->cfp.used);
+ set_bit(rule_index, priv->cfp.unique);
fs->location = rule_index;
return 0;
}
+static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
+ const __be32 *ip6_addr, const __be16 port,
+ unsigned int slice_num)
+{
+ u32 reg, tmp, val;
+
+ /* C-Tag [31:24]
+ * UDF_n_B8 [23:8] (port)
+ * UDF_n_B7 (upper) [7:0] (addr[15:8])
+ */
+ reg = be32_to_cpu(ip6_addr[3]);
+ val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
+ core_writel(priv, val, CORE_CFP_DATA_PORT(4));
+
+ /* UDF_n_B7 (lower) [31:24] (addr[7:0])
+ * UDF_n_B6 [23:8] (addr[31:16])
+ * UDF_n_B5 (upper) [7:0] (addr[47:40])
+ */
+ tmp = be32_to_cpu(ip6_addr[2]);
+ val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
+ ((tmp >> 8) & 0xff);
+ core_writel(priv, val, CORE_CFP_DATA_PORT(3));
+
+ /* UDF_n_B5 (lower) [31:24] (addr[39:32])
+ * UDF_n_B4 [23:8] (addr[63:48])
+ * UDF_n_B3 (upper) [7:0] (addr[79:72])
+ */
+ reg = be32_to_cpu(ip6_addr[1]);
+ val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
+ ((reg >> 8) & 0xff);
+ core_writel(priv, val, CORE_CFP_DATA_PORT(2));
+
+ /* UDF_n_B3 (lower) [31:24] (addr[71:64])
+ * UDF_n_B2 [23:8] (addr[95:80])
+ * UDF_n_B1 (upper) [7:0] (addr[111:104])
+ */
+ tmp = be32_to_cpu(ip6_addr[0]);
+ val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
+ ((tmp >> 8) & 0xff);
+ core_writel(priv, val, CORE_CFP_DATA_PORT(1));
+
+ /* UDF_n_B1 (lower) [31:24] (addr[103:96])
+ * UDF_n_B0 [23:8] (addr[127:112])
+ * Reserved [7:4]
+ * Slice ID [3:2]
+ * Slice valid [1:0]
+ */
+ reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
+ SLICE_NUM(slice_num) | SLICE_VALID;
+ core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
+
+ /* All other UDFs should be matched with the filter */
+ core_writel(priv, 0x00ffffff, CORE_CFP_MASK_PORT(4));
+ core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(3));
+ core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(2));
+ core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(1));
+ core_writel(priv, 0xffffff0f, CORE_CFP_MASK_PORT(0));
+}
+
+static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
+ unsigned int port_num,
+ unsigned int queue_num,
+ struct ethtool_rx_flow_spec *fs)
+{
+ unsigned int slice_num, rule_index[2];
+ struct ethtool_tcpip6_spec *v6_spec;
+ const struct cfp_udf_layout *layout;
+ u8 ip_proto, ip_frag;
+ int ret = 0;
+ u8 num_udf;
+ u32 reg;
+
+ switch (fs->flow_type & ~FLOW_EXT) {
+ case TCP_V6_FLOW:
+ ip_proto = IPPROTO_TCP;
+ v6_spec = &fs->h_u.tcp_ip6_spec;
+ break;
+ case UDP_V6_FLOW:
+ ip_proto = IPPROTO_UDP;
+ v6_spec = &fs->h_u.udp_ip6_spec;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ ip_frag = be32_to_cpu(fs->m_ext.data[0]);
+
+ layout = &udf_tcpip6_layout;
+ slice_num = bcm_sf2_get_slice_number(layout, 0);
+ if (slice_num == UDF_NUM_SLICES)
+ return -EINVAL;
+
+ num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
+
+ /* Negotiate two indexes, one for the second half which we are chained
+ * from, which is what we will return to user-space, and a second one
+ * which is used to store its first half. That first half does not
+ * allow any choice of placement, so it just needs to find the next
+ * available bit. We return the second half as fs->location because
+ * that helps with the rule lookup later on since the second half is
+ * chained from its first half, we can easily identify IPv6 CFP rules
+ * by looking whether they carry a CHAIN_ID.
+ *
+ * We also want the second half to have a lower rule_index than its
+ * first half because the HW search is by incrementing addresses.
+ */
+ if (fs->location == RX_CLS_LOC_ANY)
+ rule_index[0] = find_first_zero_bit(priv->cfp.used,
+ bcm_sf2_cfp_rule_size(priv));
+ else
+ rule_index[0] = fs->location;
+
+ /* Flag it as used (cleared on error path) such that we can immediately
+ * obtain a second one to chain from.
+ */
+ set_bit(rule_index[0], priv->cfp.used);
+
+ rule_index[1] = find_first_zero_bit(priv->cfp.used,
+ bcm_sf2_cfp_rule_size(priv));
+ if (rule_index[1] > bcm_sf2_cfp_rule_size(priv)) {
+ ret = -ENOSPC;
+ goto out_err;
+ }
+
+ /* Apply the UDF layout for this filter */
+ bcm_sf2_cfp_udf_set(priv, layout, slice_num);
+
+ /* Apply to all packets received through this port */
+ core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
+
+ /* Source port map match */
+ core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
+
+ /* S-Tag status [31:30]
+ * C-Tag status [29:28]
+ * L2 framing [27:26]
+ * L3 framing [25:24]
+ * IP ToS [23:16]
+ * IP proto [15:08]
+ * IP Fragm [7]
+ * Non 1st frag [6]
+ * IP Authen [5]
+ * TTL range [4:3]
+ * PPPoE session [2]
+ * Reserved [1]
+ * UDF_Valid[8] [0]
+ */
+ reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
+ ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
+ core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
+
+ /* Mask with the specific layout for IPv6 packets including
+ * UDF_Valid[8]
+ */
+ reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
+ core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
+
+ /* UDF_Valid[7:0] [31:24]
+ * S-Tag [23:8]
+ * C-Tag [7:0]
+ */
+ core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
+
+ /* Mask all but valid UDFs */
+ core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
+
+ /* Slice the IPv6 source address and port */
+ bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc, slice_num);
+
+ /* Insert into TCAM now because we need to insert a second rule */
+ bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
+
+ ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
+ if (ret) {
+ pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
+ goto out_err;
+ }
+
+ /* Insert into Action and policer RAMs now */
+ ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
+ queue_num, false);
+ if (ret)
+ goto out_err;
+
+ /* Now deal with the second slice to chain this rule */
+ slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
+ if (slice_num == UDF_NUM_SLICES) {
+ ret = -EINVAL;
+ goto out_err;
+ }
+
+ num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
+
+ /* Apply the UDF layout for this filter */
+ bcm_sf2_cfp_udf_set(priv, layout, slice_num);
+
+ /* Chained rule, source port match is coming from the rule we are
+ * chained from.
+ */
+ core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
+ core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
+
+ /*
+ * CHAIN ID [31:24] chain to previous slice
+ * Reserved [23:20]
+ * UDF_Valid[11:8] [19:16]
+ * UDF_Valid[7:0] [15:8]
+ * UDF_n_D11 [7:0]
+ */
+ reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
+ udf_lower_bits(num_udf) << 8;
+ core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
+
+ /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
+ reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
+ udf_lower_bits(num_udf) << 8;
+ core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
+
+ /* Don't care */
+ core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
+
+ /* Mask all */
+ core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
+
+ bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num);
+
+ /* Insert into TCAM now */
+ bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
+
+ ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
+ if (ret) {
+ pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
+ goto out_err;
+ }
+
+ /* Insert into Action and policer RAMs now, set chain ID to
+ * the one we are chained to
+ */
+ ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
+ queue_num, true);
+ if (ret)
+ goto out_err;
+
+ /* Turn on CFP for this rule now */
+ reg = core_readl(priv, CORE_CFP_CTL_REG);
+ reg |= BIT(port);
+ core_writel(priv, reg, CORE_CFP_CTL_REG);
+
+ /* Flag the second half rule as being used now, return it as the
+ * location, and flag it as unique while dumping rules
+ */
+ set_bit(rule_index[1], priv->cfp.used);
+ set_bit(rule_index[1], priv->cfp.unique);
+ fs->location = rule_index[1];
+
+ return ret;
+
+out_err:
+ clear_bit(rule_index[0], priv->cfp.used);
+ return ret;
+}
+
static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
struct ethtool_rx_flow_spec *fs)
{
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
unsigned int queue_num, port_num;
- int ret;
+ int ret = -EINVAL;
/* Check for unsupported extensions */
if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
@@ -391,15 +713,26 @@ static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
if (port_num >= 7)
port_num -= 1;
- ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num, queue_num, fs);
- if (ret)
- return ret;
+ switch (fs->flow_type & ~FLOW_EXT) {
+ case TCP_V4_FLOW:
+ case UDP_V4_FLOW:
+ ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
+ queue_num, fs);
+ break;
+ case TCP_V6_FLOW:
+ case UDP_V6_FLOW:
+ ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
+ queue_num, fs);
+ break;
+ default:
+ break;
+ }
- return 0;
+ return ret;
}
-static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
- u32 loc)
+static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
+ u32 loc, u32 *next_loc)
{
int ret;
u32 reg;
@@ -415,6 +748,14 @@ static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
if (ret)
return ret;
+ /* Check if this is possibly an IPv6 rule that would
+ * indicate we need to delete its companion rule
+ * as well
+ */
+ reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
+ if (next_loc)
+ *next_loc = (reg >> 24) & CHAIN_ID_MASK;
+
/* Clear its valid bits */
reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
reg &= ~SLICE_VALID;
@@ -426,10 +767,28 @@ static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
return ret;
clear_bit(loc, priv->cfp.used);
+ clear_bit(loc, priv->cfp.unique);
return 0;
}
+static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
+ u32 loc)
+{
+ u32 next_loc = 0;
+ int ret;
+
+ ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
+ if (ret)
+ return ret;
+
+ /* If this was an IPv6 rule, delete is companion rule too */
+ if (next_loc)
+ ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
+
+ return ret;
+}
+
static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
{
unsigned int i;
@@ -444,12 +803,32 @@ static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
}
static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
- struct ethtool_tcpip4_spec *v4_spec,
- struct ethtool_tcpip4_spec *v4_m_spec)
+ struct ethtool_rx_flow_spec *fs)
{
+ struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL;
u16 src_dst_port;
u32 reg, ipv4;
+ reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
+
+ switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
+ case IPPROTO_TCP:
+ fs->flow_type = TCP_V4_FLOW;
+ v4_spec = &fs->h_u.tcp_ip4_spec;
+ v4_m_spec = &fs->m_u.tcp_ip4_spec;
+ break;
+ case IPPROTO_UDP:
+ fs->flow_type = UDP_V4_FLOW;
+ v4_spec = &fs->h_u.udp_ip4_spec;
+ v4_m_spec = &fs->m_u.udp_ip4_spec;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
+ v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;
+
reg = core_readl(priv, CORE_CFP_DATA_PORT(3));
/* src port [15:8] */
src_dst_port = reg << 8;
@@ -490,12 +869,128 @@ static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
return 0;
}
+static int bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv,
+ __be32 *ip6_addr, __be16 *port,
+ __be32 *ip6_mask, __be16 *port_mask)
+{
+ u32 reg, tmp;
+
+ /* C-Tag [31:24]
+ * UDF_n_B8 [23:8] (port)
+ * UDF_n_B7 (upper) [7:0] (addr[15:8])
+ */
+ reg = core_readl(priv, CORE_CFP_DATA_PORT(4));
+ *port = cpu_to_be32(reg) >> 8;
+ *port_mask = cpu_to_be16(~0);
+ tmp = (u32)(reg & 0xff) << 8;
+
+ /* UDF_n_B7 (lower) [31:24] (addr[7:0])
+ * UDF_n_B6 [23:8] (addr[31:16])
+ * UDF_n_B5 (upper) [7:0] (addr[47:40])
+ */
+ reg = core_readl(priv, CORE_CFP_DATA_PORT(3));
+ tmp |= (reg >> 24) & 0xff;
+ tmp |= (u32)((reg >> 8) << 16);
+ ip6_mask[3] = cpu_to_be32(~0);
+ ip6_addr[3] = cpu_to_be32(tmp);
+ tmp = (u32)(reg & 0xff) << 8;
+
+ /* UDF_n_B5 (lower) [31:24] (addr[39:32])
+ * UDF_n_B4 [23:8] (addr[63:48])
+ * UDF_n_B3 (upper) [7:0] (addr[79:72])
+ */
+ reg = core_readl(priv, CORE_CFP_DATA_PORT(2));
+ tmp |= (reg >> 24) & 0xff;
+ tmp |= (u32)((reg >> 8) << 16);
+ ip6_mask[2] = cpu_to_be32(~0);
+ ip6_addr[2] = cpu_to_be32(tmp);
+ tmp = (u32)(reg & 0xff) << 8;
+
+ /* UDF_n_B3 (lower) [31:24] (addr[71:64])
+ * UDF_n_B2 [23:8] (addr[95:80])
+ * UDF_n_B1 (upper) [7:0] (addr[111:104])
+ */
+ reg = core_readl(priv, CORE_CFP_DATA_PORT(1));
+ tmp |= (reg >> 24) & 0xff;
+ tmp |= (u32)((reg >> 8) << 16);
+ ip6_mask[1] = cpu_to_be32(~0);
+ ip6_addr[1] = cpu_to_be32(tmp);
+ tmp = (u32)(reg & 0xff) << 8;
+
+ /* UDF_n_B1 (lower) [31:24] (addr[103:96])
+ * UDF_n_B0 [23:8] (addr[127:112])
+ * Reserved [7:4]
+ * Slice ID [3:2]
+ * Slice valid [1:0]
+ */
+ reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
+ tmp |= (reg >> 24) & 0xff;
+ tmp |= (u32)((reg >> 8) << 16);
+ ip6_mask[0] = cpu_to_be32(~0);
+ ip6_addr[0] = cpu_to_be32(tmp);
+
+ if (!(reg & SLICE_VALID))
+ return -EINVAL;
+
+ return 0;
+}
+
+static int bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv, int port,
+ struct ethtool_rx_flow_spec *fs,
+ u32 next_loc)
+{
+ struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL;
+ u32 reg;
+ int ret;
+
+ /* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine
+ * assuming tcp_ip6_spec here being an union.
+ */
+ v6_spec = &fs->h_u.tcp_ip6_spec;
+ v6_m_spec = &fs->m_u.tcp_ip6_spec;
+
+ /* Read the second half first */
+ ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst,
+ v6_m_spec->ip6dst, &v6_m_spec->pdst);
+ if (ret)
+ return ret;
+
+ /* Read last to avoid next entry clobbering the results during search
+ * operations. We would not have the port enabled for this rule, so
+ * don't bother checking it.
+ */
+ (void)core_readl(priv, CORE_CFP_DATA_PORT(7));
+
+ /* The slice number is valid, so read the rule we are chained from now
+ * which is our first half.
+ */
+ bcm_sf2_cfp_rule_addr_set(priv, next_loc);
+ ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
+ if (ret)
+ return ret;
+
+ reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
+
+ switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
+ case IPPROTO_TCP:
+ fs->flow_type = TCP_V6_FLOW;
+ break;
+ case IPPROTO_UDP:
+ fs->flow_type = UDP_V6_FLOW;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ return bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc,
+ v6_m_spec->ip6src, &v6_m_spec->psrc);
+}
+
static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
struct ethtool_rxnfc *nfc)
{
- struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec;
+ u32 reg, ipv4_or_chain_id;
unsigned int queue_num;
- u32 reg;
int ret;
bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);
@@ -523,29 +1018,19 @@ static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
nfc->fs.ring_cookie += queue_num;
- /* Extract the IP protocol */
+ /* Extract the L3_FRAMING or CHAIN_ID */
reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
- switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
- case IPPROTO_TCP:
- nfc->fs.flow_type = TCP_V4_FLOW;
- v4_spec = &nfc->fs.h_u.tcp_ip4_spec;
- v4_m_spec = &nfc->fs.m_u.tcp_ip4_spec;
- break;
- case IPPROTO_UDP:
- nfc->fs.flow_type = UDP_V4_FLOW;
- v4_spec = &nfc->fs.h_u.udp_ip4_spec;
- v4_m_spec = &nfc->fs.m_u.udp_ip4_spec;
- break;
- default:
- return -EINVAL;
- }
- nfc->fs.m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
- if (v4_spec) {
- v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;
- ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, v4_spec, v4_m_spec);
- }
-
+ /* With IPv6 rules this would contain a non-zero chain ID since
+ * we reserve entry 0 and it cannot be used. So if we read 0 here
+ * this means an IPv4 rule.
+ */
+ ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff;
+ if (ipv4_or_chain_id == 0)
+ ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs);
+ else
+ ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs,
+ ipv4_or_chain_id);
if (ret)
return ret;
@@ -571,7 +1056,7 @@ static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
{
unsigned int index = 1, rules_cnt = 0;
- for_each_set_bit_from(index, priv->cfp.used, priv->num_cfp_rules) {
+ for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
rule_locs[rules_cnt] = index;
rules_cnt++;
}
@@ -594,7 +1079,7 @@ int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
switch (nfc->cmd) {
case ETHTOOL_GRXCLSRLCNT:
/* Subtract the default, unusable rule */
- nfc->rule_cnt = bitmap_weight(priv->cfp.used,
+ nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
priv->num_cfp_rules) - 1;
/* We support specifying rule locations */
nfc->data |= RX_CLS_LOC_SPECIAL;
diff --git a/drivers/net/dsa/bcm_sf2_regs.h b/drivers/net/dsa/bcm_sf2_regs.h
index 263e4c7..93c600d 100644
--- a/drivers/net/dsa/bcm_sf2_regs.h
+++ b/drivers/net/dsa/bcm_sf2_regs.h
@@ -313,6 +313,7 @@ enum bcm_sf2_reg_offs {
#define SLICE_VALID 3
#define SLICE_NUM_SHIFT 2
#define SLICE_NUM(x) ((x) << SLICE_NUM_SHIFT)
+#define SLICE_NUM_MASK 0xff
#define CORE_CFP_MASK_PORT_0 0x280c0
@@ -408,6 +409,12 @@ enum bcm_sf2_reg_offs {
#define CFG_UDF_EOL2 (2 << CFG_UDF_OFFSET_BASE_SHIFT)
#define CFG_UDF_EOL3 (3 << CFG_UDF_OFFSET_BASE_SHIFT)
+/* IPv6 slices */
+#define CORE_UDF_0_B_0_8_PORT_0 0x28500
+
+/* IPv6 chained slices */
+#define CORE_UDF_0_D_0_11_PORT_0 0x28680
+
/* Number of slices for IPv4, IPv6 and non-IP */
#define UDF_NUM_SLICES 4
#define UDFS_PER_SLICE 9