RAID: add tilegx SIMD implementation of raid6

This change adds TILE-Gx SIMD instructions to the software raid
(md), modeling the Altivec implementation. This is only for Syndrome
generation; there is more that could be done to improve recovery,
as in the recent Intel SSE3 recovery implementation.

The code unrolls 8 times; this turns out to be the best on tilegx
hardware among the set 1, 2, 4, 8 or 16.  The code reads one
cache-line of data from each disk, stores P and Q then goes to the
next cache-line.

The test code in sys/linux/lib/raid6/test reports 2008 MB/s data
read rate for syndrome generation using 18 disks (16 data and 2
parity). It was 1512 MB/s before this SIMD optimizations. This is
running on 1 core with all the data in cache.

This is based on the paper The Mathematics of RAID-6.
(http://kernel.org/pub/linux/kernel/people/hpa/raid6.pdf).

Signed-off-by: Ken Steele <ken@tilera.com>
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: NeilBrown <neilb@suse.de>
diff --git a/lib/raid6/tilegx.uc b/lib/raid6/tilegx.uc
new file mode 100644
index 0000000..e7c2945
--- /dev/null
+++ b/lib/raid6/tilegx.uc
@@ -0,0 +1,86 @@
+/* -*- linux-c -*- ------------------------------------------------------- *
+ *
+ *   Copyright 2002 H. Peter Anvin - All Rights Reserved
+ *   Copyright 2012 Tilera Corporation - All Rights Reserved
+ *
+ *   This program is free software; you can redistribute it and/or modify
+ *   it under the terms of the GNU General Public License as published by
+ *   the Free Software Foundation, Inc., 53 Temple Place Ste 330,
+ *   Boston MA 02111-1307, USA; either version 2 of the License, or
+ *   (at your option) any later version; incorporated herein by reference.
+ *
+ * ----------------------------------------------------------------------- */
+
+/*
+ * tilegx$#.c
+ *
+ * $#-way unrolled TILE-Gx SIMD for RAID-6 math.
+ *
+ * This file is postprocessed using unroll.awk.
+ *
+ */
+
+#include <linux/raid/pq.h>
+
+/* Create 8 byte copies of constant byte */
+# define NBYTES(x) (__insn_v1addi(0, x))
+# define NSIZE  8
+
+/*
+ * The SHLBYTE() operation shifts each byte left by 1, *not*
+ * rolling over into the next byte
+ */
+static inline __attribute_const__ u64 SHLBYTE(u64 v)
+{
+	/* Vector One Byte Shift Left Immediate. */
+	return __insn_v1shli(v, 1);
+}
+
+/*
+ * The MASK() operation returns 0xFF in any byte for which the high
+ * bit is 1, 0x00 for any byte for which the high bit is 0.
+ */
+static inline __attribute_const__ u64 MASK(u64 v)
+{
+	/* Vector One Byte Shift Right Signed Immediate. */
+	return __insn_v1shrsi(v, 7);
+}
+
+
+void raid6_tilegx$#_gen_syndrome(int disks, size_t bytes, void **ptrs)
+{
+	u8 **dptr = (u8 **)ptrs;
+	u64 *p, *q;
+	int d, z, z0;
+
+	u64 wd$$, wq$$, wp$$, w1$$, w2$$;
+	u64 x1d = NBYTES(0x1d);
+	u64 * z0ptr;
+
+	z0 = disks - 3;			/* Highest data disk */
+	p = (u64 *)dptr[z0+1];	/* XOR parity */
+	q = (u64 *)dptr[z0+2];	/* RS syndrome */
+
+	z0ptr = (u64 *)&dptr[z0][0];
+	for ( d = 0 ; d < bytes ; d += NSIZE*$# ) {
+		wq$$ = wp$$ = *z0ptr++;
+		for ( z = z0-1 ; z >= 0 ; z-- ) {
+			wd$$ = *(u64 *)&dptr[z][d+$$*NSIZE];
+			wp$$ = wp$$ ^ wd$$;
+			w2$$ = MASK(wq$$);
+			w1$$ = SHLBYTE(wq$$);
+			w2$$ = w2$$ & x1d;
+			w1$$ = w1$$ ^ w2$$;
+			wq$$ = w1$$ ^ wd$$;
+		}
+		*p++ = wp$$;
+		*q++ = wq$$;
+	}
+}
+
+const struct raid6_calls raid6_tilegx$# = {
+	raid6_tilegx$#_gen_syndrome,
+	NULL,
+	"tilegx$#",
+	0
+};