DMAENGINE: Support for ST-Ericssons DMA40 block v3

This is a straightforward driver for the ST-Ericsson DMA40 DMA
controller found in U8500, implemented akin to the existing
COH 901 318 driver.

Signed-off-by: Linus Walleij <linus.walleij@stericsson.com>
Acked-by: Srinidh Kasagar <srinidhi.kasagar@stericsson.com>
Cc: STEricsson_nomadik_linux@list.st.com
Cc: Alessandro Rubini <rubini@unipv.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
diff --git a/drivers/dma/Kconfig b/drivers/dma/Kconfig
index a2fcb2e..1b88779 100644
--- a/drivers/dma/Kconfig
+++ b/drivers/dma/Kconfig
@@ -141,6 +141,13 @@
 	help
 	  Enable support for ST-Ericsson COH 901 318 DMA.
 
+config STE_DMA40
+	bool "ST-Ericsson DMA40 support"
+	depends on ARCH_U8500
+	select DMA_ENGINE
+	help
+	  Support for ST-Ericsson DMA40 controller
+
 config AMCC_PPC440SPE_ADMA
 	tristate "AMCC PPC440SPe ADMA support"
 	depends on 440SPe || 440SP
diff --git a/drivers/dma/Makefile b/drivers/dma/Makefile
index 40c627d8..2088142 100644
--- a/drivers/dma/Makefile
+++ b/drivers/dma/Makefile
@@ -21,3 +21,4 @@
 obj-$(CONFIG_COH901318) += coh901318.o coh901318_lli.o
 obj-$(CONFIG_AMCC_PPC440SPE_ADMA) += ppc4xx/
 obj-$(CONFIG_TIMB_DMA) += timb_dma.o
+obj-$(CONFIG_STE_DMA40) += ste_dma40.o ste_dma40_ll.o
diff --git a/drivers/dma/ste_dma40.c b/drivers/dma/ste_dma40.c
new file mode 100644
index 0000000..e4295a2
--- /dev/null
+++ b/drivers/dma/ste_dma40.c
@@ -0,0 +1,2596 @@
+/*
+ * driver/dma/ste_dma40.c
+ *
+ * Copyright (C) ST-Ericsson 2007-2010
+ * License terms: GNU General Public License (GPL) version 2
+ * Author: Per Friden <per.friden@stericsson.com>
+ * Author: Jonas Aaberg <jonas.aberg@stericsson.com>
+ *
+ */
+
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/dmaengine.h>
+#include <linux/platform_device.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+
+#include <plat/ste_dma40.h>
+
+#include "ste_dma40_ll.h"
+
+#define D40_NAME "dma40"
+
+#define D40_PHY_CHAN -1
+
+/* For masking out/in 2 bit channel positions */
+#define D40_CHAN_POS(chan)  (2 * (chan / 2))
+#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
+
+/* Maximum iterations taken before giving up suspending a channel */
+#define D40_SUSPEND_MAX_IT 500
+
+#define D40_ALLOC_FREE		(1 << 31)
+#define D40_ALLOC_PHY		(1 << 30)
+#define D40_ALLOC_LOG_FREE	0
+
+/* The number of free d40_desc to keep in memory before starting
+ * to kfree() them */
+#define D40_DESC_CACHE_SIZE 50
+
+/* Hardware designer of the block */
+#define D40_PERIPHID2_DESIGNER 0x8
+
+/**
+ * enum 40_command - The different commands and/or statuses.
+ *
+ * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
+ * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
+ * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
+ * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
+ */
+enum d40_command {
+	D40_DMA_STOP		= 0,
+	D40_DMA_RUN		= 1,
+	D40_DMA_SUSPEND_REQ	= 2,
+	D40_DMA_SUSPENDED	= 3
+};
+
+/**
+ * struct d40_lli_pool - Structure for keeping LLIs in memory
+ *
+ * @base: Pointer to memory area when the pre_alloc_lli's are not large
+ * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
+ * pre_alloc_lli is used.
+ * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
+ * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
+ * one buffer to one buffer.
+ */
+struct d40_lli_pool {
+	void	*base;
+	int	size;
+	/* Space for dst and src, plus an extra for padding */
+	u8	pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
+};
+
+/**
+ * struct d40_desc - A descriptor is one DMA job.
+ *
+ * @lli_phy: LLI settings for physical channel. Both src and dst=
+ * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
+ * lli_len equals one.
+ * @lli_log: Same as above but for logical channels.
+ * @lli_pool: The pool with two entries pre-allocated.
+ * @lli_len: Number of LLI's in lli_pool
+ * @lli_tcount: Number of LLIs processed in the transfer. When equals lli_len
+ * then this transfer job is done.
+ * @txd: DMA engine struct. Used for among other things for communication
+ * during a transfer.
+ * @node: List entry.
+ * @dir: The transfer direction of this job.
+ * @is_in_client_list: true if the client owns this descriptor.
+ *
+ * This descriptor is used for both logical and physical transfers.
+ */
+
+struct d40_desc {
+	/* LLI physical */
+	struct d40_phy_lli_bidir	 lli_phy;
+	/* LLI logical */
+	struct d40_log_lli_bidir	 lli_log;
+
+	struct d40_lli_pool		 lli_pool;
+	u32				 lli_len;
+	u32				 lli_tcount;
+
+	struct dma_async_tx_descriptor	 txd;
+	struct list_head		 node;
+
+	enum dma_data_direction		 dir;
+	bool				 is_in_client_list;
+};
+
+/**
+ * struct d40_lcla_pool - LCLA pool settings and data.
+ *
+ * @base: The virtual address of LCLA.
+ * @phy: Physical base address of LCLA.
+ * @base_size: size of lcla.
+ * @lock: Lock to protect the content in this struct.
+ * @alloc_map: Mapping between physical channel and LCLA entries.
+ * @num_blocks: The number of entries of alloc_map. Equals to the
+ * number of physical channels.
+ */
+struct d40_lcla_pool {
+	void		*base;
+	dma_addr_t	 phy;
+	resource_size_t  base_size;
+	spinlock_t	 lock;
+	u32		*alloc_map;
+	int		 num_blocks;
+};
+
+/**
+ * struct d40_phy_res - struct for handling eventlines mapped to physical
+ * channels.
+ *
+ * @lock: A lock protection this entity.
+ * @num: The physical channel number of this entity.
+ * @allocated_src: Bit mapped to show which src event line's are mapped to
+ * this physical channel. Can also be free or physically allocated.
+ * @allocated_dst: Same as for src but is dst.
+ * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
+ * event line number. Both allocated_src and allocated_dst can not be
+ * allocated to a physical channel, since the interrupt handler has then
+ * no way of figure out which one the interrupt belongs to.
+ */
+struct d40_phy_res {
+	spinlock_t lock;
+	int	   num;
+	u32	   allocated_src;
+	u32	   allocated_dst;
+};
+
+struct d40_base;
+
+/**
+ * struct d40_chan - Struct that describes a channel.
+ *
+ * @lock: A spinlock to protect this struct.
+ * @log_num: The logical number, if any of this channel.
+ * @completed: Starts with 1, after first interrupt it is set to dma engine's
+ * current cookie.
+ * @pending_tx: The number of pending transfers. Used between interrupt handler
+ * and tasklet.
+ * @busy: Set to true when transfer is ongoing on this channel.
+ * @phy_chan: Pointer to physical channel which this instance runs on.
+ * @chan: DMA engine handle.
+ * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
+ * transfer and call client callback.
+ * @client: Cliented owned descriptor list.
+ * @active: Active descriptor.
+ * @queue: Queued jobs.
+ * @free: List of free descripts, ready to be reused.
+ * @free_len: Number of descriptors in the free list.
+ * @dma_cfg: The client configuration of this dma channel.
+ * @base: Pointer to the device instance struct.
+ * @src_def_cfg: Default cfg register setting for src.
+ * @dst_def_cfg: Default cfg register setting for dst.
+ * @log_def: Default logical channel settings.
+ * @lcla: Space for one dst src pair for logical channel transfers.
+ * @lcpa: Pointer to dst and src lcpa settings.
+ *
+ * This struct can either "be" a logical or a physical channel.
+ */
+struct d40_chan {
+	spinlock_t			 lock;
+	int				 log_num;
+	/* ID of the most recent completed transfer */
+	int				 completed;
+	int				 pending_tx;
+	bool				 busy;
+	struct d40_phy_res		*phy_chan;
+	struct dma_chan			 chan;
+	struct tasklet_struct		 tasklet;
+	struct list_head		 client;
+	struct list_head		 active;
+	struct list_head		 queue;
+	struct list_head		 free;
+	int				 free_len;
+	struct stedma40_chan_cfg	 dma_cfg;
+	struct d40_base			*base;
+	/* Default register configurations */
+	u32				 src_def_cfg;
+	u32				 dst_def_cfg;
+	struct d40_def_lcsp		 log_def;
+	struct d40_lcla_elem		 lcla;
+	struct d40_log_lli_full		*lcpa;
+};
+
+/**
+ * struct d40_base - The big global struct, one for each probe'd instance.
+ *
+ * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
+ * @execmd_lock: Lock for execute command usage since several channels share
+ * the same physical register.
+ * @dev: The device structure.
+ * @virtbase: The virtual base address of the DMA's register.
+ * @clk: Pointer to the DMA clock structure.
+ * @phy_start: Physical memory start of the DMA registers.
+ * @phy_size: Size of the DMA register map.
+ * @irq: The IRQ number.
+ * @num_phy_chans: The number of physical channels. Read from HW. This
+ * is the number of available channels for this driver, not counting "Secure
+ * mode" allocated physical channels.
+ * @num_log_chans: The number of logical channels. Calculated from
+ * num_phy_chans.
+ * @dma_both: dma_device channels that can do both memcpy and slave transfers.
+ * @dma_slave: dma_device channels that can do only do slave transfers.
+ * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
+ * @phy_chans: Room for all possible physical channels in system.
+ * @log_chans: Room for all possible logical channels in system.
+ * @lookup_log_chans: Used to map interrupt number to logical channel. Points
+ * to log_chans entries.
+ * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
+ * to phy_chans entries.
+ * @plat_data: Pointer to provided platform_data which is the driver
+ * configuration.
+ * @phy_res: Vector containing all physical channels.
+ * @lcla_pool: lcla pool settings and data.
+ * @lcpa_base: The virtual mapped address of LCPA.
+ * @phy_lcpa: The physical address of the LCPA.
+ * @lcpa_size: The size of the LCPA area.
+ */
+struct d40_base {
+	spinlock_t			 interrupt_lock;
+	spinlock_t			 execmd_lock;
+	struct device			 *dev;
+	void __iomem			 *virtbase;
+	struct clk			 *clk;
+	phys_addr_t			  phy_start;
+	resource_size_t			  phy_size;
+	int				  irq;
+	int				  num_phy_chans;
+	int				  num_log_chans;
+	struct dma_device		  dma_both;
+	struct dma_device		  dma_slave;
+	struct dma_device		  dma_memcpy;
+	struct d40_chan			 *phy_chans;
+	struct d40_chan			 *log_chans;
+	struct d40_chan			**lookup_log_chans;
+	struct d40_chan			**lookup_phy_chans;
+	struct stedma40_platform_data	 *plat_data;
+	/* Physical half channels */
+	struct d40_phy_res		 *phy_res;
+	struct d40_lcla_pool		  lcla_pool;
+	void				 *lcpa_base;
+	dma_addr_t			  phy_lcpa;
+	resource_size_t			  lcpa_size;
+};
+
+/**
+ * struct d40_interrupt_lookup - lookup table for interrupt handler
+ *
+ * @src: Interrupt mask register.
+ * @clr: Interrupt clear register.
+ * @is_error: true if this is an error interrupt.
+ * @offset: start delta in the lookup_log_chans in d40_base. If equals to
+ * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
+ */
+struct d40_interrupt_lookup {
+	u32 src;
+	u32 clr;
+	bool is_error;
+	int offset;
+};
+
+/**
+ * struct d40_reg_val - simple lookup struct
+ *
+ * @reg: The register.
+ * @val: The value that belongs to the register in reg.
+ */
+struct d40_reg_val {
+	unsigned int reg;
+	unsigned int val;
+};
+
+static int d40_pool_lli_alloc(struct d40_desc *d40d,
+			      int lli_len, bool is_log)
+{
+	u32 align;
+	void *base;
+
+	if (is_log)
+		align = sizeof(struct d40_log_lli);
+	else
+		align = sizeof(struct d40_phy_lli);
+
+	if (lli_len == 1) {
+		base = d40d->lli_pool.pre_alloc_lli;
+		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
+		d40d->lli_pool.base = NULL;
+	} else {
+		d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
+
+		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
+		d40d->lli_pool.base = base;
+
+		if (d40d->lli_pool.base == NULL)
+			return -ENOMEM;
+	}
+
+	if (is_log) {
+		d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
+					      align);
+		d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
+					      align);
+	} else {
+		d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
+					      align);
+		d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
+					      align);
+
+		d40d->lli_phy.src_addr = virt_to_phys(d40d->lli_phy.src);
+		d40d->lli_phy.dst_addr = virt_to_phys(d40d->lli_phy.dst);
+	}
+
+	return 0;
+}
+
+static void d40_pool_lli_free(struct d40_desc *d40d)
+{
+	kfree(d40d->lli_pool.base);
+	d40d->lli_pool.base = NULL;
+	d40d->lli_pool.size = 0;
+	d40d->lli_log.src = NULL;
+	d40d->lli_log.dst = NULL;
+	d40d->lli_phy.src = NULL;
+	d40d->lli_phy.dst = NULL;
+	d40d->lli_phy.src_addr = 0;
+	d40d->lli_phy.dst_addr = 0;
+}
+
+static dma_cookie_t d40_assign_cookie(struct d40_chan *d40c,
+				      struct d40_desc *desc)
+{
+	dma_cookie_t cookie = d40c->chan.cookie;
+
+	if (++cookie < 0)
+		cookie = 1;
+
+	d40c->chan.cookie = cookie;
+	desc->txd.cookie = cookie;
+
+	return cookie;
+}
+
+static void d40_desc_reset(struct d40_desc *d40d)
+{
+	d40d->lli_tcount = 0;
+}
+
+static void d40_desc_remove(struct d40_desc *d40d)
+{
+	list_del(&d40d->node);
+}
+
+static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
+{
+	struct d40_desc *desc;
+	struct d40_desc *d;
+	struct d40_desc *_d;
+
+	if (!list_empty(&d40c->client)) {
+		list_for_each_entry_safe(d, _d, &d40c->client, node)
+			if (async_tx_test_ack(&d->txd)) {
+				d40_pool_lli_free(d);
+				d40_desc_remove(d);
+				desc = d;
+				goto out;
+			}
+	}
+
+	if (list_empty(&d40c->free)) {
+		/* Alloc new desc because we're out of used ones */
+		desc = kzalloc(sizeof(struct d40_desc), GFP_NOWAIT);
+		if (desc == NULL)
+			goto out;
+		INIT_LIST_HEAD(&desc->node);
+	} else {
+		/* Reuse an old desc. */
+		desc = list_first_entry(&d40c->free,
+					struct d40_desc,
+					node);
+		list_del(&desc->node);
+		d40c->free_len--;
+	}
+out:
+	return desc;
+}
+
+static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
+{
+	if (d40c->free_len < D40_DESC_CACHE_SIZE) {
+		list_add_tail(&d40d->node, &d40c->free);
+		d40c->free_len++;
+	} else
+		kfree(d40d);
+}
+
+static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
+{
+	list_add_tail(&desc->node, &d40c->active);
+}
+
+static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
+{
+	struct d40_desc *d;
+
+	if (list_empty(&d40c->active))
+		return NULL;
+
+	d = list_first_entry(&d40c->active,
+			     struct d40_desc,
+			     node);
+	return d;
+}
+
+static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
+{
+	list_add_tail(&desc->node, &d40c->queue);
+}
+
+static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
+{
+	struct d40_desc *d;
+
+	if (list_empty(&d40c->queue))
+		return NULL;
+
+	d = list_first_entry(&d40c->queue,
+			     struct d40_desc,
+			     node);
+	return d;
+}
+
+/* Support functions for logical channels */
+
+static int d40_lcla_id_get(struct d40_chan *d40c,
+			   struct d40_lcla_pool *pool)
+{
+	int src_id = 0;
+	int dst_id = 0;
+	struct d40_log_lli *lcla_lidx_base =
+		pool->base + d40c->phy_chan->num * 1024;
+	int i;
+	int lli_per_log = d40c->base->plat_data->llis_per_log;
+
+	if (d40c->lcla.src_id >= 0 && d40c->lcla.dst_id >= 0)
+		return 0;
+
+	if (pool->num_blocks > 32)
+		return -EINVAL;
+
+	spin_lock(&pool->lock);
+
+	for (i = 0; i < pool->num_blocks; i++) {
+		if (!(pool->alloc_map[d40c->phy_chan->num] & (0x1 << i))) {
+			pool->alloc_map[d40c->phy_chan->num] |= (0x1 << i);
+			break;
+		}
+	}
+	src_id = i;
+	if (src_id >= pool->num_blocks)
+		goto err;
+
+	for (; i < pool->num_blocks; i++) {
+		if (!(pool->alloc_map[d40c->phy_chan->num] & (0x1 << i))) {
+			pool->alloc_map[d40c->phy_chan->num] |= (0x1 << i);
+			break;
+		}
+	}
+
+	dst_id = i;
+	if (dst_id == src_id)
+		goto err;
+
+	d40c->lcla.src_id = src_id;
+	d40c->lcla.dst_id = dst_id;
+	d40c->lcla.dst = lcla_lidx_base + dst_id * lli_per_log + 1;
+	d40c->lcla.src = lcla_lidx_base + src_id * lli_per_log + 1;
+
+
+	spin_unlock(&pool->lock);
+	return 0;
+err:
+	spin_unlock(&pool->lock);
+	return -EINVAL;
+}
+
+static void d40_lcla_id_put(struct d40_chan *d40c,
+			    struct d40_lcla_pool *pool,
+			    int id)
+{
+	if (id < 0)
+		return;
+
+	d40c->lcla.src_id = -1;
+	d40c->lcla.dst_id = -1;
+
+	spin_lock(&pool->lock);
+	pool->alloc_map[d40c->phy_chan->num] &= (~(0x1 << id));
+	spin_unlock(&pool->lock);
+}
+
+static int d40_channel_execute_command(struct d40_chan *d40c,
+				       enum d40_command command)
+{
+	int status, i;
+	void __iomem *active_reg;
+	int ret = 0;
+	unsigned long flags;
+
+	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
+
+	if (d40c->phy_chan->num % 2 == 0)
+		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
+	else
+		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
+
+	if (command == D40_DMA_SUSPEND_REQ) {
+		status = (readl(active_reg) &
+			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
+			D40_CHAN_POS(d40c->phy_chan->num);
+
+		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
+			goto done;
+	}
+
+	writel(command << D40_CHAN_POS(d40c->phy_chan->num), active_reg);
+
+	if (command == D40_DMA_SUSPEND_REQ) {
+
+		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
+			status = (readl(active_reg) &
+				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
+				D40_CHAN_POS(d40c->phy_chan->num);
+
+			cpu_relax();
+			/*
+			 * Reduce the number of bus accesses while
+			 * waiting for the DMA to suspend.
+			 */
+			udelay(3);
+
+			if (status == D40_DMA_STOP ||
+			    status == D40_DMA_SUSPENDED)
+				break;
+		}
+
+		if (i == D40_SUSPEND_MAX_IT) {
+			dev_err(&d40c->chan.dev->device,
+				"[%s]: unable to suspend the chl %d (log: %d) status %x\n",
+				__func__, d40c->phy_chan->num, d40c->log_num,
+				status);
+			dump_stack();
+			ret = -EBUSY;
+		}
+
+	}
+done:
+	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
+	return ret;
+}
+
+static void d40_term_all(struct d40_chan *d40c)
+{
+	struct d40_desc *d40d;
+	struct d40_desc *d;
+	struct d40_desc *_d;
+
+	/* Release active descriptors */
+	while ((d40d = d40_first_active_get(d40c))) {
+		d40_desc_remove(d40d);
+
+		/* Return desc to free-list */
+		d40_desc_free(d40c, d40d);
+	}
+
+	/* Release queued descriptors waiting for transfer */
+	while ((d40d = d40_first_queued(d40c))) {
+		d40_desc_remove(d40d);
+
+		/* Return desc to free-list */
+		d40_desc_free(d40c, d40d);
+	}
+
+	/* Release client owned descriptors */
+	if (!list_empty(&d40c->client))
+		list_for_each_entry_safe(d, _d, &d40c->client, node) {
+			d40_pool_lli_free(d);
+			d40_desc_remove(d);
+			/* Return desc to free-list */
+			d40_desc_free(d40c, d40d);
+		}
+
+	d40_lcla_id_put(d40c, &d40c->base->lcla_pool,
+			d40c->lcla.src_id);
+	d40_lcla_id_put(d40c, &d40c->base->lcla_pool,
+			d40c->lcla.dst_id);
+
+	d40c->pending_tx = 0;
+	d40c->busy = false;
+}
+
+static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
+{
+	u32 val;
+	unsigned long flags;
+
+	if (do_enable)
+		val = D40_ACTIVATE_EVENTLINE;
+	else
+		val = D40_DEACTIVATE_EVENTLINE;
+
+	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
+
+	/* Enable event line connected to device (or memcpy) */
+	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
+	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
+		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
+
+		writel((val << D40_EVENTLINE_POS(event)) |
+		       ~D40_EVENTLINE_MASK(event),
+		       d40c->base->virtbase + D40_DREG_PCBASE +
+		       d40c->phy_chan->num * D40_DREG_PCDELTA +
+		       D40_CHAN_REG_SSLNK);
+	}
+	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
+		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
+
+		writel((val << D40_EVENTLINE_POS(event)) |
+		       ~D40_EVENTLINE_MASK(event),
+		       d40c->base->virtbase + D40_DREG_PCBASE +
+		       d40c->phy_chan->num * D40_DREG_PCDELTA +
+		       D40_CHAN_REG_SDLNK);
+	}
+
+	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
+}
+
+static bool d40_chan_has_events(struct d40_chan *d40c)
+{
+	u32 val = 0;
+
+	/* If SSLNK or SDLNK is zero all events are disabled */
+	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
+	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
+		val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
+			    d40c->phy_chan->num * D40_DREG_PCDELTA +
+			    D40_CHAN_REG_SSLNK);
+
+	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM)
+		val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
+			    d40c->phy_chan->num * D40_DREG_PCDELTA +
+			    D40_CHAN_REG_SDLNK);
+	return (bool) val;
+}
+
+static void d40_config_enable_lidx(struct d40_chan *d40c)
+{
+	/* Set LIDX for lcla */
+	writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
+	       D40_SREG_ELEM_LOG_LIDX_MASK,
+	       d40c->base->virtbase + D40_DREG_PCBASE +
+	       d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT);
+
+	writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
+	       D40_SREG_ELEM_LOG_LIDX_MASK,
+	       d40c->base->virtbase + D40_DREG_PCBASE +
+	       d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT);
+}
+
+static int d40_config_write(struct d40_chan *d40c)
+{
+	u32 addr_base;
+	u32 var;
+	int res;
+
+	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
+	if (res)
+		return res;
+
+	/* Odd addresses are even addresses + 4 */
+	addr_base = (d40c->phy_chan->num % 2) * 4;
+	/* Setup channel mode to logical or physical */
+	var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
+		D40_CHAN_POS(d40c->phy_chan->num);
+	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
+
+	/* Setup operational mode option register */
+	var = ((d40c->dma_cfg.channel_type >> STEDMA40_INFO_CH_MODE_OPT_POS) &
+	       0x3) << D40_CHAN_POS(d40c->phy_chan->num);
+
+	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
+
+	if (d40c->log_num != D40_PHY_CHAN) {
+		/* Set default config for CFG reg */
+		writel(d40c->src_def_cfg,
+		       d40c->base->virtbase + D40_DREG_PCBASE +
+		       d40c->phy_chan->num * D40_DREG_PCDELTA +
+		       D40_CHAN_REG_SSCFG);
+		writel(d40c->dst_def_cfg,
+		       d40c->base->virtbase + D40_DREG_PCBASE +
+		       d40c->phy_chan->num * D40_DREG_PCDELTA +
+		       D40_CHAN_REG_SDCFG);
+
+		d40_config_enable_lidx(d40c);
+	}
+	return res;
+}
+
+static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
+{
+
+	if (d40d->lli_phy.dst && d40d->lli_phy.src) {
+		d40_phy_lli_write(d40c->base->virtbase,
+				  d40c->phy_chan->num,
+				  d40d->lli_phy.dst,
+				  d40d->lli_phy.src);
+		d40d->lli_tcount = d40d->lli_len;
+	} else if (d40d->lli_log.dst && d40d->lli_log.src) {
+		u32 lli_len;
+		struct d40_log_lli *src = d40d->lli_log.src;
+		struct d40_log_lli *dst = d40d->lli_log.dst;
+
+		src += d40d->lli_tcount;
+		dst += d40d->lli_tcount;
+
+		if (d40d->lli_len <= d40c->base->plat_data->llis_per_log)
+			lli_len = d40d->lli_len;
+		else
+			lli_len = d40c->base->plat_data->llis_per_log;
+		d40d->lli_tcount += lli_len;
+		d40_log_lli_write(d40c->lcpa, d40c->lcla.src,
+				  d40c->lcla.dst,
+				  dst, src,
+				  d40c->base->plat_data->llis_per_log);
+	}
+}
+
+static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
+{
+	struct d40_chan *d40c = container_of(tx->chan,
+					     struct d40_chan,
+					     chan);
+	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
+	unsigned long flags;
+
+	spin_lock_irqsave(&d40c->lock, flags);
+
+	tx->cookie = d40_assign_cookie(d40c, d40d);
+
+	d40_desc_queue(d40c, d40d);
+
+	spin_unlock_irqrestore(&d40c->lock, flags);
+
+	return tx->cookie;
+}
+
+static int d40_start(struct d40_chan *d40c)
+{
+	int err;
+
+	if (d40c->log_num != D40_PHY_CHAN) {
+		err = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
+		if (err)
+			return err;
+		d40_config_set_event(d40c, true);
+	}
+
+	err = d40_channel_execute_command(d40c, D40_DMA_RUN);
+
+	return err;
+}
+
+static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
+{
+	struct d40_desc *d40d;
+	int err;
+
+	/* Start queued jobs, if any */
+	d40d = d40_first_queued(d40c);
+
+	if (d40d != NULL) {
+		d40c->busy = true;
+
+		/* Remove from queue */
+		d40_desc_remove(d40d);
+
+		/* Add to active queue */
+		d40_desc_submit(d40c, d40d);
+
+		/* Initiate DMA job */
+		d40_desc_load(d40c, d40d);
+
+		/* Start dma job */
+		err = d40_start(d40c);
+
+		if (err)
+			return NULL;
+	}
+
+	return d40d;
+}
+
+/* called from interrupt context */
+static void dma_tc_handle(struct d40_chan *d40c)
+{
+	struct d40_desc *d40d;
+
+	if (!d40c->phy_chan)
+		return;
+
+	/* Get first active entry from list */
+	d40d = d40_first_active_get(d40c);
+
+	if (d40d == NULL)
+		return;
+
+	if (d40d->lli_tcount < d40d->lli_len) {
+
+		d40_desc_load(d40c, d40d);
+		/* Start dma job */
+		(void) d40_start(d40c);
+		return;
+	}
+
+	if (d40_queue_start(d40c) == NULL)
+		d40c->busy = false;
+
+	d40c->pending_tx++;
+	tasklet_schedule(&d40c->tasklet);
+
+}
+
+static void dma_tasklet(unsigned long data)
+{
+	struct d40_chan *d40c = (struct d40_chan *) data;
+	struct d40_desc *d40d_fin;
+	unsigned long flags;
+	dma_async_tx_callback callback;
+	void *callback_param;
+
+	spin_lock_irqsave(&d40c->lock, flags);
+
+	/* Get first active entry from list */
+	d40d_fin = d40_first_active_get(d40c);
+
+	if (d40d_fin == NULL)
+		goto err;
+
+	d40c->completed = d40d_fin->txd.cookie;
+
+	/*
+	 * If terminating a channel pending_tx is set to zero.
+	 * This prevents any finished active jobs to return to the client.
+	 */
+	if (d40c->pending_tx == 0) {
+		spin_unlock_irqrestore(&d40c->lock, flags);
+		return;
+	}
+
+	/* Callback to client */
+	callback = d40d_fin->txd.callback;
+	callback_param = d40d_fin->txd.callback_param;
+
+	if (async_tx_test_ack(&d40d_fin->txd)) {
+		d40_pool_lli_free(d40d_fin);
+		d40_desc_remove(d40d_fin);
+		/* Return desc to free-list */
+		d40_desc_free(d40c, d40d_fin);
+	} else {
+		d40_desc_reset(d40d_fin);
+		if (!d40d_fin->is_in_client_list) {
+			d40_desc_remove(d40d_fin);
+			list_add_tail(&d40d_fin->node, &d40c->client);
+			d40d_fin->is_in_client_list = true;
+		}
+	}
+
+	d40c->pending_tx--;
+
+	if (d40c->pending_tx)
+		tasklet_schedule(&d40c->tasklet);
+
+	spin_unlock_irqrestore(&d40c->lock, flags);
+
+	if (callback)
+		callback(callback_param);
+
+	return;
+
+ err:
+	/* Rescue manouver if receiving double interrupts */
+	if (d40c->pending_tx > 0)
+		d40c->pending_tx--;
+	spin_unlock_irqrestore(&d40c->lock, flags);
+}
+
+static irqreturn_t d40_handle_interrupt(int irq, void *data)
+{
+	static const struct d40_interrupt_lookup il[] = {
+		{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
+		{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
+		{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
+		{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
+		{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
+		{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
+		{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
+		{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
+		{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
+		{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
+	};
+
+	int i;
+	u32 regs[ARRAY_SIZE(il)];
+	u32 tmp;
+	u32 idx;
+	u32 row;
+	long chan = -1;
+	struct d40_chan *d40c;
+	unsigned long flags;
+	struct d40_base *base = data;
+
+	spin_lock_irqsave(&base->interrupt_lock, flags);
+
+	/* Read interrupt status of both logical and physical channels */
+	for (i = 0; i < ARRAY_SIZE(il); i++)
+		regs[i] = readl(base->virtbase + il[i].src);
+
+	for (;;) {
+
+		chan = find_next_bit((unsigned long *)regs,
+				     BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
+
+		/* No more set bits found? */
+		if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
+			break;
+
+		row = chan / BITS_PER_LONG;
+		idx = chan & (BITS_PER_LONG - 1);
+
+		/* ACK interrupt */
+		tmp = readl(base->virtbase + il[row].clr);
+		tmp |= 1 << idx;
+		writel(tmp, base->virtbase + il[row].clr);
+
+		if (il[row].offset == D40_PHY_CHAN)
+			d40c = base->lookup_phy_chans[idx];
+		else
+			d40c = base->lookup_log_chans[il[row].offset + idx];
+		spin_lock(&d40c->lock);
+
+		if (!il[row].is_error)
+			dma_tc_handle(d40c);
+		else
+			dev_err(base->dev, "[%s] IRQ chan: %ld offset %d idx %d\n",
+				__func__, chan, il[row].offset, idx);
+
+		spin_unlock(&d40c->lock);
+	}
+
+	spin_unlock_irqrestore(&base->interrupt_lock, flags);
+
+	return IRQ_HANDLED;
+}
+
+
+static int d40_validate_conf(struct d40_chan *d40c,
+			     struct stedma40_chan_cfg *conf)
+{
+	int res = 0;
+	u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
+	u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
+	bool is_log = (conf->channel_type & STEDMA40_CHANNEL_IN_OPER_MODE)
+		== STEDMA40_CHANNEL_IN_LOG_MODE;
+
+	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH &&
+	    dst_event_group == STEDMA40_DEV_DST_MEMORY) {
+		dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
+			__func__);
+		res = -EINVAL;
+	}
+
+	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM &&
+	    src_event_group == STEDMA40_DEV_SRC_MEMORY) {
+		dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
+			__func__);
+		res = -EINVAL;
+	}
+
+	if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
+	    dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
+		dev_err(&d40c->chan.dev->device,
+			"[%s] No event line\n", __func__);
+		res = -EINVAL;
+	}
+
+	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
+	    (src_event_group != dst_event_group)) {
+		dev_err(&d40c->chan.dev->device,
+			"[%s] Invalid event group\n", __func__);
+		res = -EINVAL;
+	}
+
+	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
+		/*
+		 * DMAC HW supports it. Will be added to this driver,
+		 * in case any dma client requires it.
+		 */
+		dev_err(&d40c->chan.dev->device,
+			"[%s] periph to periph not supported\n",
+			__func__);
+		res = -EINVAL;
+	}
+
+	return res;
+}
+
+static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
+			       int log_event_line)
+{
+	unsigned long flags;
+	spin_lock_irqsave(&phy->lock, flags);
+	if (!log_event_line) {
+		/* Physical interrupts are masked per physical full channel */
+		if (phy->allocated_src == D40_ALLOC_FREE &&
+		    phy->allocated_dst == D40_ALLOC_FREE) {
+			phy->allocated_dst = D40_ALLOC_PHY;
+			phy->allocated_src = D40_ALLOC_PHY;
+			goto found;
+		} else
+			goto not_found;
+	}
+
+	/* Logical channel */
+	if (is_src) {
+		if (phy->allocated_src == D40_ALLOC_PHY)
+			goto not_found;
+
+		if (phy->allocated_src == D40_ALLOC_FREE)
+			phy->allocated_src = D40_ALLOC_LOG_FREE;
+
+		if (!(phy->allocated_src & (1 << log_event_line))) {
+			phy->allocated_src |= 1 << log_event_line;
+			goto found;
+		} else
+			goto not_found;
+	} else {
+		if (phy->allocated_dst == D40_ALLOC_PHY)
+			goto not_found;
+
+		if (phy->allocated_dst == D40_ALLOC_FREE)
+			phy->allocated_dst = D40_ALLOC_LOG_FREE;
+
+		if (!(phy->allocated_dst & (1 << log_event_line))) {
+			phy->allocated_dst |= 1 << log_event_line;
+			goto found;
+		} else
+			goto not_found;
+	}
+
+not_found:
+	spin_unlock_irqrestore(&phy->lock, flags);
+	return false;
+found:
+	spin_unlock_irqrestore(&phy->lock, flags);
+	return true;
+}
+
+static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
+			       int log_event_line)
+{
+	unsigned long flags;
+	bool is_free = false;
+
+	spin_lock_irqsave(&phy->lock, flags);
+	if (!log_event_line) {
+		/* Physical interrupts are masked per physical full channel */
+		phy->allocated_dst = D40_ALLOC_FREE;
+		phy->allocated_src = D40_ALLOC_FREE;
+		is_free = true;
+		goto out;
+	}
+
+	/* Logical channel */
+	if (is_src) {
+		phy->allocated_src &= ~(1 << log_event_line);
+		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
+			phy->allocated_src = D40_ALLOC_FREE;
+	} else {
+		phy->allocated_dst &= ~(1 << log_event_line);
+		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
+			phy->allocated_dst = D40_ALLOC_FREE;
+	}
+
+	is_free = ((phy->allocated_src | phy->allocated_dst) ==
+		   D40_ALLOC_FREE);
+
+out:
+	spin_unlock_irqrestore(&phy->lock, flags);
+
+	return is_free;
+}
+
+static int d40_allocate_channel(struct d40_chan *d40c)
+{
+	int dev_type;
+	int event_group;
+	int event_line;
+	struct d40_phy_res *phys;
+	int i;
+	int j;
+	int log_num;
+	bool is_src;
+	bool is_log = (d40c->dma_cfg.channel_type & STEDMA40_CHANNEL_IN_OPER_MODE)
+		== STEDMA40_CHANNEL_IN_LOG_MODE;
+
+
+	phys = d40c->base->phy_res;
+
+	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
+		dev_type = d40c->dma_cfg.src_dev_type;
+		log_num = 2 * dev_type;
+		is_src = true;
+	} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
+		   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
+		/* dst event lines are used for logical memcpy */
+		dev_type = d40c->dma_cfg.dst_dev_type;
+		log_num = 2 * dev_type + 1;
+		is_src = false;
+	} else
+		return -EINVAL;
+
+	event_group = D40_TYPE_TO_GROUP(dev_type);
+	event_line = D40_TYPE_TO_EVENT(dev_type);
+
+	if (!is_log) {
+		if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
+			/* Find physical half channel */
+			for (i = 0; i < d40c->base->num_phy_chans; i++) {
+
+				if (d40_alloc_mask_set(&phys[i], is_src, 0))
+					goto found_phy;
+			}
+		} else
+			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
+				int phy_num = j  + event_group * 2;
+				for (i = phy_num; i < phy_num + 2; i++) {
+					if (d40_alloc_mask_set(&phys[i],
+							       is_src, 0))
+						goto found_phy;
+				}
+			}
+		return -EINVAL;
+found_phy:
+		d40c->phy_chan = &phys[i];
+		d40c->log_num = D40_PHY_CHAN;
+		goto out;
+	}
+	if (dev_type == -1)
+		return -EINVAL;
+
+	/* Find logical channel */
+	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
+		int phy_num = j + event_group * 2;
+		/*
+		 * Spread logical channels across all available physical rather
+		 * than pack every logical channel at the first available phy
+		 * channels.
+		 */
+		if (is_src) {
+			for (i = phy_num; i < phy_num + 2; i++) {
+				if (d40_alloc_mask_set(&phys[i], is_src,
+						       event_line))
+					goto found_log;
+			}
+		} else {
+			for (i = phy_num + 1; i >= phy_num; i--) {
+				if (d40_alloc_mask_set(&phys[i], is_src,
+						       event_line))
+					goto found_log;
+			}
+		}
+	}
+	return -EINVAL;
+
+found_log:
+	d40c->phy_chan = &phys[i];
+	d40c->log_num = log_num;
+out:
+
+	if (is_log)
+		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
+	else
+		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
+
+	return 0;
+
+}
+
+static int d40_config_chan(struct d40_chan *d40c,
+			   struct stedma40_chan_cfg *info)
+{
+
+	/* Fill in basic CFG register values */
+	d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
+		    &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
+
+	if (d40c->log_num != D40_PHY_CHAN) {
+		d40_log_cfg(&d40c->dma_cfg,
+			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
+
+		if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
+			d40c->lcpa = d40c->base->lcpa_base +
+				d40c->dma_cfg.src_dev_type * 32;
+		else
+			d40c->lcpa = d40c->base->lcpa_base +
+				d40c->dma_cfg.dst_dev_type * 32 + 16;
+	}
+
+	/* Write channel configuration to the DMA */
+	return d40_config_write(d40c);
+}
+
+static int d40_config_memcpy(struct d40_chan *d40c)
+{
+	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
+
+	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
+		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
+		d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
+		d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
+			memcpy[d40c->chan.chan_id];
+
+	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
+		   dma_has_cap(DMA_SLAVE, cap)) {
+		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
+	} else {
+		dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
+			__func__);
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+
+static int d40_free_dma(struct d40_chan *d40c)
+{
+
+	int res = 0;
+	u32 event, dir;
+	struct d40_phy_res *phy = d40c->phy_chan;
+	bool is_src;
+
+	/* Terminate all queued and active transfers */
+	d40_term_all(d40c);
+
+	if (phy == NULL) {
+		dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
+			__func__);
+		return -EINVAL;
+	}
+
+	if (phy->allocated_src == D40_ALLOC_FREE &&
+	    phy->allocated_dst == D40_ALLOC_FREE) {
+		dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
+			__func__);
+		return -EINVAL;
+	}
+
+
+	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
+	if (res) {
+		dev_err(&d40c->chan.dev->device, "[%s] suspend\n",
+			__func__);
+		return res;
+	}
+
+	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
+	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
+		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
+		dir = D40_CHAN_REG_SDLNK;
+		is_src = false;
+	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
+		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
+		dir = D40_CHAN_REG_SSLNK;
+		is_src = true;
+	} else {
+		dev_err(&d40c->chan.dev->device,
+			"[%s] Unknown direction\n", __func__);
+		return -EINVAL;
+	}
+
+	if (d40c->log_num != D40_PHY_CHAN) {
+		/*
+		 * Release logical channel, deactivate the event line during
+		 * the time physical res is suspended.
+		 */
+		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event)) &
+		       D40_EVENTLINE_MASK(event),
+		       d40c->base->virtbase + D40_DREG_PCBASE +
+		       phy->num * D40_DREG_PCDELTA + dir);
+
+		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
+
+		/*
+		 * Check if there are more logical allocation
+		 * on this phy channel.
+		 */
+		if (!d40_alloc_mask_free(phy, is_src, event)) {
+			/* Resume the other logical channels if any */
+			if (d40_chan_has_events(d40c)) {
+				res = d40_channel_execute_command(d40c,
+								  D40_DMA_RUN);
+				if (res) {
+					dev_err(&d40c->chan.dev->device,
+						"[%s] Executing RUN command\n",
+						__func__);
+					return res;
+				}
+			}
+			return 0;
+		}
+	} else
+		d40_alloc_mask_free(phy, is_src, 0);
+
+	/* Release physical channel */
+	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
+	if (res) {
+		dev_err(&d40c->chan.dev->device,
+			"[%s] Failed to stop channel\n", __func__);
+		return res;
+	}
+	d40c->phy_chan = NULL;
+	/* Invalidate channel type */
+	d40c->dma_cfg.channel_type = 0;
+	d40c->base->lookup_phy_chans[phy->num] = NULL;
+
+	return 0;
+
+
+}
+
+static int d40_pause(struct dma_chan *chan)
+{
+	struct d40_chan *d40c =
+		container_of(chan, struct d40_chan, chan);
+	int res;
+
+	unsigned long flags;
+
+	spin_lock_irqsave(&d40c->lock, flags);
+
+	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
+	if (res == 0) {
+		if (d40c->log_num != D40_PHY_CHAN) {
+			d40_config_set_event(d40c, false);
+			/* Resume the other logical channels if any */
+			if (d40_chan_has_events(d40c))
+				res = d40_channel_execute_command(d40c,
+								  D40_DMA_RUN);
+		}
+	}
+
+	spin_unlock_irqrestore(&d40c->lock, flags);
+	return res;
+}
+
+static bool d40_tx_is_linked(struct d40_chan *d40c)
+{
+	bool is_link;
+
+	if (d40c->log_num != D40_PHY_CHAN)
+		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
+	else
+		is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
+				d40c->phy_chan->num * D40_DREG_PCDELTA +
+				D40_CHAN_REG_SDLNK) &
+			D40_SREG_LNK_PHYS_LNK_MASK;
+	return is_link;
+}
+
+static u32 d40_residue(struct d40_chan *d40c)
+{
+	u32 num_elt;
+
+	if (d40c->log_num != D40_PHY_CHAN)
+		num_elt = (readl(&d40c->lcpa->lcsp2) &  D40_MEM_LCSP2_ECNT_MASK)
+			>> D40_MEM_LCSP2_ECNT_POS;
+	else
+		num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
+				 d40c->phy_chan->num * D40_DREG_PCDELTA +
+				 D40_CHAN_REG_SDELT) &
+			   D40_SREG_ELEM_PHY_ECNT_MASK) >> D40_SREG_ELEM_PHY_ECNT_POS;
+	return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
+}
+
+static int d40_resume(struct dma_chan *chan)
+{
+	struct d40_chan *d40c =
+		container_of(chan, struct d40_chan, chan);
+	int res = 0;
+	unsigned long flags;
+
+	spin_lock_irqsave(&d40c->lock, flags);
+
+	if (d40c->log_num != D40_PHY_CHAN) {
+		res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
+		if (res)
+			goto out;
+
+		/* If bytes left to transfer or linked tx resume job */
+		if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
+			d40_config_set_event(d40c, true);
+			res = d40_channel_execute_command(d40c, D40_DMA_RUN);
+		}
+	} else if (d40_residue(d40c) || d40_tx_is_linked(d40c))
+		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
+
+out:
+	spin_unlock_irqrestore(&d40c->lock, flags);
+	return res;
+}
+
+static u32 stedma40_residue(struct dma_chan *chan)
+{
+	struct d40_chan *d40c =
+		container_of(chan, struct d40_chan, chan);
+	u32 bytes_left;
+	unsigned long flags;
+
+	spin_lock_irqsave(&d40c->lock, flags);
+	bytes_left = d40_residue(d40c);
+	spin_unlock_irqrestore(&d40c->lock, flags);
+
+	return bytes_left;
+}
+
+/* Public DMA functions in addition to the DMA engine framework */
+
+int stedma40_set_psize(struct dma_chan *chan,
+		       int src_psize,
+		       int dst_psize)
+{
+	struct d40_chan *d40c =
+		container_of(chan, struct d40_chan, chan);
+	unsigned long flags;
+
+	spin_lock_irqsave(&d40c->lock, flags);
+
+	if (d40c->log_num != D40_PHY_CHAN) {
+		d40c->log_def.lcsp1 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
+		d40c->log_def.lcsp3 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
+		d40c->log_def.lcsp1 |= src_psize << D40_MEM_LCSP1_SCFG_PSIZE_POS;
+		d40c->log_def.lcsp3 |= dst_psize << D40_MEM_LCSP1_SCFG_PSIZE_POS;
+		goto out;
+	}
+
+	if (src_psize == STEDMA40_PSIZE_PHY_1)
+		d40c->src_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
+	else {
+		d40c->src_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
+		d40c->src_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
+				       D40_SREG_CFG_PSIZE_POS);
+		d40c->src_def_cfg |= src_psize << D40_SREG_CFG_PSIZE_POS;
+	}
+
+	if (dst_psize == STEDMA40_PSIZE_PHY_1)
+		d40c->dst_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
+	else {
+		d40c->dst_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
+		d40c->dst_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
+				       D40_SREG_CFG_PSIZE_POS);
+		d40c->dst_def_cfg |= dst_psize << D40_SREG_CFG_PSIZE_POS;
+	}
+out:
+	spin_unlock_irqrestore(&d40c->lock, flags);
+	return 0;
+}
+EXPORT_SYMBOL(stedma40_set_psize);
+
+struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
+						   struct scatterlist *sgl_dst,
+						   struct scatterlist *sgl_src,
+						   unsigned int sgl_len,
+						   unsigned long flags)
+{
+	int res;
+	struct d40_desc *d40d;
+	struct d40_chan *d40c = container_of(chan, struct d40_chan,
+					     chan);
+	unsigned long flg;
+	int lli_max = d40c->base->plat_data->llis_per_log;
+
+
+	spin_lock_irqsave(&d40c->lock, flg);
+	d40d = d40_desc_get(d40c);
+
+	if (d40d == NULL)
+		goto err;
+
+	memset(d40d, 0, sizeof(struct d40_desc));
+	d40d->lli_len = sgl_len;
+
+	d40d->txd.flags = flags;
+
+	if (d40c->log_num != D40_PHY_CHAN) {
+		if (sgl_len > 1)
+			/*
+			 * Check if there is space available in lcla. If not,
+			 * split list into 1-length and run only in lcpa
+			 * space.
+			 */
+			if (d40_lcla_id_get(d40c,
+					    &d40c->base->lcla_pool) != 0)
+				lli_max = 1;
+
+		if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
+			dev_err(&d40c->chan.dev->device,
+				"[%s] Out of memory\n", __func__);
+			goto err;
+		}
+
+		(void) d40_log_sg_to_lli(d40c->lcla.src_id,
+					 sgl_src,
+					 sgl_len,
+					 d40d->lli_log.src,
+					 d40c->log_def.lcsp1,
+					 d40c->dma_cfg.src_info.data_width,
+					 flags & DMA_PREP_INTERRUPT, lli_max,
+					 d40c->base->plat_data->llis_per_log);
+
+		(void) d40_log_sg_to_lli(d40c->lcla.dst_id,
+					 sgl_dst,
+					 sgl_len,
+					 d40d->lli_log.dst,
+					 d40c->log_def.lcsp3,
+					 d40c->dma_cfg.dst_info.data_width,
+					 flags & DMA_PREP_INTERRUPT, lli_max,
+					 d40c->base->plat_data->llis_per_log);
+
+
+	} else {
+		if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
+			dev_err(&d40c->chan.dev->device,
+				"[%s] Out of memory\n", __func__);
+			goto err;
+		}
+
+		res = d40_phy_sg_to_lli(sgl_src,
+					sgl_len,
+					0,
+					d40d->lli_phy.src,
+					d40d->lli_phy.src_addr,
+					d40c->src_def_cfg,
+					d40c->dma_cfg.src_info.data_width,
+					d40c->dma_cfg.src_info.psize,
+					true);
+
+		if (res < 0)
+			goto err;
+
+		res = d40_phy_sg_to_lli(sgl_dst,
+					sgl_len,
+					0,
+					d40d->lli_phy.dst,
+					d40d->lli_phy.dst_addr,
+					d40c->dst_def_cfg,
+					d40c->dma_cfg.dst_info.data_width,
+					d40c->dma_cfg.dst_info.psize,
+					true);
+
+		if (res < 0)
+			goto err;
+
+		(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
+				      d40d->lli_pool.size, DMA_TO_DEVICE);
+	}
+
+	dma_async_tx_descriptor_init(&d40d->txd, chan);
+
+	d40d->txd.tx_submit = d40_tx_submit;
+
+	spin_unlock_irqrestore(&d40c->lock, flg);
+
+	return &d40d->txd;
+err:
+	spin_unlock_irqrestore(&d40c->lock, flg);
+	return NULL;
+}
+EXPORT_SYMBOL(stedma40_memcpy_sg);
+
+bool stedma40_filter(struct dma_chan *chan, void *data)
+{
+	struct stedma40_chan_cfg *info = data;
+	struct d40_chan *d40c =
+		container_of(chan, struct d40_chan, chan);
+	int err;
+
+	if (data) {
+		err = d40_validate_conf(d40c, info);
+		if (!err)
+			d40c->dma_cfg = *info;
+	} else
+		err = d40_config_memcpy(d40c);
+
+	return err == 0;
+}
+EXPORT_SYMBOL(stedma40_filter);
+
+/* DMA ENGINE functions */
+static int d40_alloc_chan_resources(struct dma_chan *chan)
+{
+	int err;
+	unsigned long flags;
+	struct d40_chan *d40c =
+		container_of(chan, struct d40_chan, chan);
+
+	spin_lock_irqsave(&d40c->lock, flags);
+
+	d40c->completed = chan->cookie = 1;
+
+	/*
+	 * If no dma configuration is set (channel_type == 0)
+	 * use default configuration
+	 */
+	if (d40c->dma_cfg.channel_type == 0) {
+		err = d40_config_memcpy(d40c);
+		if (err)
+			goto err_alloc;
+	}
+
+	err = d40_allocate_channel(d40c);
+	if (err) {
+		dev_err(&d40c->chan.dev->device,
+			"[%s] Failed to allocate channel\n", __func__);
+		goto err_alloc;
+	}
+
+	err = d40_config_chan(d40c, &d40c->dma_cfg);
+	if (err) {
+		dev_err(&d40c->chan.dev->device,
+			"[%s] Failed to configure channel\n",
+			__func__);
+		goto err_config;
+	}
+
+	spin_unlock_irqrestore(&d40c->lock, flags);
+	return 0;
+
+ err_config:
+	(void) d40_free_dma(d40c);
+ err_alloc:
+	spin_unlock_irqrestore(&d40c->lock, flags);
+	dev_err(&d40c->chan.dev->device,
+		"[%s] Channel allocation failed\n", __func__);
+	return -EINVAL;
+}
+
+static void d40_free_chan_resources(struct dma_chan *chan)
+{
+	struct d40_chan *d40c =
+		container_of(chan, struct d40_chan, chan);
+	int err;
+	unsigned long flags;
+
+	spin_lock_irqsave(&d40c->lock, flags);
+
+	err = d40_free_dma(d40c);
+
+	if (err)
+		dev_err(&d40c->chan.dev->device,
+			"[%s] Failed to free channel\n", __func__);
+	spin_unlock_irqrestore(&d40c->lock, flags);
+}
+
+static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
+						       dma_addr_t dst,
+						       dma_addr_t src,
+						       size_t size,
+						       unsigned long flags)
+{
+	struct d40_desc *d40d;
+	struct d40_chan *d40c = container_of(chan, struct d40_chan,
+					     chan);
+	unsigned long flg;
+	int err = 0;
+
+	spin_lock_irqsave(&d40c->lock, flg);
+	d40d = d40_desc_get(d40c);
+
+	if (d40d == NULL) {
+		dev_err(&d40c->chan.dev->device,
+			"[%s] Descriptor is NULL\n", __func__);
+		goto err;
+	}
+
+	memset(d40d, 0, sizeof(struct d40_desc));
+
+	d40d->txd.flags = flags;
+
+	dma_async_tx_descriptor_init(&d40d->txd, chan);
+
+	d40d->txd.tx_submit = d40_tx_submit;
+
+	if (d40c->log_num != D40_PHY_CHAN) {
+
+		if (d40_pool_lli_alloc(d40d, 1, true) < 0) {
+			dev_err(&d40c->chan.dev->device,
+				"[%s] Out of memory\n", __func__);
+			goto err;
+		}
+		d40d->lli_len = 1;
+
+		d40_log_fill_lli(d40d->lli_log.src,
+				 src,
+				 size,
+				 0,
+				 d40c->log_def.lcsp1,
+				 d40c->dma_cfg.src_info.data_width,
+				 true, true);
+
+		d40_log_fill_lli(d40d->lli_log.dst,
+				 dst,
+				 size,
+				 0,
+				 d40c->log_def.lcsp3,
+				 d40c->dma_cfg.dst_info.data_width,
+				 true, true);
+
+	} else {
+
+		if (d40_pool_lli_alloc(d40d, 1, false) < 0) {
+			dev_err(&d40c->chan.dev->device,
+				"[%s] Out of memory\n", __func__);
+			goto err;
+		}
+
+		err = d40_phy_fill_lli(d40d->lli_phy.src,
+				       src,
+				       size,
+				       d40c->dma_cfg.src_info.psize,
+				       0,
+				       d40c->src_def_cfg,
+				       true,
+				       d40c->dma_cfg.src_info.data_width,
+				       false);
+		if (err)
+			goto err_fill_lli;
+
+		err = d40_phy_fill_lli(d40d->lli_phy.dst,
+				       dst,
+				       size,
+				       d40c->dma_cfg.dst_info.psize,
+				       0,
+				       d40c->dst_def_cfg,
+				       true,
+				       d40c->dma_cfg.dst_info.data_width,
+				       false);
+
+		if (err)
+			goto err_fill_lli;
+
+		(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
+				      d40d->lli_pool.size, DMA_TO_DEVICE);
+	}
+
+	spin_unlock_irqrestore(&d40c->lock, flg);
+	return &d40d->txd;
+
+err_fill_lli:
+	dev_err(&d40c->chan.dev->device,
+		"[%s] Failed filling in PHY LLI\n", __func__);
+	d40_pool_lli_free(d40d);
+err:
+	spin_unlock_irqrestore(&d40c->lock, flg);
+	return NULL;
+}
+
+static int d40_prep_slave_sg_log(struct d40_desc *d40d,
+				 struct d40_chan *d40c,
+				 struct scatterlist *sgl,
+				 unsigned int sg_len,
+				 enum dma_data_direction direction,
+				 unsigned long flags)
+{
+	dma_addr_t dev_addr = 0;
+	int total_size;
+	int lli_max = d40c->base->plat_data->llis_per_log;
+
+	if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
+		dev_err(&d40c->chan.dev->device,
+			"[%s] Out of memory\n", __func__);
+		return -ENOMEM;
+	}
+
+	d40d->lli_len = sg_len;
+	d40d->lli_tcount = 0;
+
+	if (sg_len > 1)
+		/*
+		 * Check if there is space available in lcla.
+		 * If not, split list into 1-length and run only
+		 * in lcpa space.
+		 */
+		if (d40_lcla_id_get(d40c, &d40c->base->lcla_pool) != 0)
+			lli_max = 1;
+
+	if (direction == DMA_FROM_DEVICE) {
+		dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
+		total_size = d40_log_sg_to_dev(&d40c->lcla,
+					       sgl, sg_len,
+					       &d40d->lli_log,
+					       &d40c->log_def,
+					       d40c->dma_cfg.src_info.data_width,
+					       d40c->dma_cfg.dst_info.data_width,
+					       direction,
+					       flags & DMA_PREP_INTERRUPT,
+					       dev_addr, lli_max,
+					       d40c->base->plat_data->llis_per_log);
+	} else if (direction == DMA_TO_DEVICE) {
+		dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
+		total_size = d40_log_sg_to_dev(&d40c->lcla,
+					       sgl, sg_len,
+					       &d40d->lli_log,
+					       &d40c->log_def,
+					       d40c->dma_cfg.src_info.data_width,
+					       d40c->dma_cfg.dst_info.data_width,
+					       direction,
+					       flags & DMA_PREP_INTERRUPT,
+					       dev_addr, lli_max,
+					       d40c->base->plat_data->llis_per_log);
+	} else
+		return -EINVAL;
+	if (total_size < 0)
+		return -EINVAL;
+
+	return 0;
+}
+
+static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
+				 struct d40_chan *d40c,
+				 struct scatterlist *sgl,
+				 unsigned int sgl_len,
+				 enum dma_data_direction direction,
+				 unsigned long flags)
+{
+	dma_addr_t src_dev_addr;
+	dma_addr_t dst_dev_addr;
+	int res;
+
+	if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
+		dev_err(&d40c->chan.dev->device,
+			"[%s] Out of memory\n", __func__);
+		return -ENOMEM;
+	}
+
+	d40d->lli_len = sgl_len;
+	d40d->lli_tcount = 0;
+
+	if (direction == DMA_FROM_DEVICE) {
+		dst_dev_addr = 0;
+		src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
+	} else if (direction == DMA_TO_DEVICE) {
+		dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
+		src_dev_addr = 0;
+	} else
+		return -EINVAL;
+
+	res = d40_phy_sg_to_lli(sgl,
+				sgl_len,
+				src_dev_addr,
+				d40d->lli_phy.src,
+				d40d->lli_phy.src_addr,
+				d40c->src_def_cfg,
+				d40c->dma_cfg.src_info.data_width,
+				d40c->dma_cfg.src_info.psize,
+				true);
+	if (res < 0)
+		return res;
+
+	res = d40_phy_sg_to_lli(sgl,
+				sgl_len,
+				dst_dev_addr,
+				d40d->lli_phy.dst,
+				d40d->lli_phy.dst_addr,
+				d40c->dst_def_cfg,
+				d40c->dma_cfg.dst_info.data_width,
+				d40c->dma_cfg.dst_info.psize,
+				 true);
+	if (res < 0)
+		return res;
+
+	(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
+			      d40d->lli_pool.size, DMA_TO_DEVICE);
+	return 0;
+}
+
+static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
+							 struct scatterlist *sgl,
+							 unsigned int sg_len,
+							 enum dma_data_direction direction,
+							 unsigned long flags)
+{
+	struct d40_desc *d40d;
+	struct d40_chan *d40c = container_of(chan, struct d40_chan,
+					     chan);
+	unsigned long flg;
+	int err;
+
+	if (d40c->dma_cfg.pre_transfer)
+		d40c->dma_cfg.pre_transfer(chan,
+					   d40c->dma_cfg.pre_transfer_data,
+					   sg_dma_len(sgl));
+
+	spin_lock_irqsave(&d40c->lock, flg);
+	d40d = d40_desc_get(d40c);
+	spin_unlock_irqrestore(&d40c->lock, flg);
+
+	if (d40d == NULL)
+		return NULL;
+
+	memset(d40d, 0, sizeof(struct d40_desc));
+
+	if (d40c->log_num != D40_PHY_CHAN)
+		err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
+					    direction, flags);
+	else
+		err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
+					    direction, flags);
+	if (err) {
+		dev_err(&d40c->chan.dev->device,
+			"[%s] Failed to prepare %s slave sg job: %d\n",
+			__func__,
+			d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
+		return NULL;
+	}
+
+	d40d->txd.flags = flags;
+
+	dma_async_tx_descriptor_init(&d40d->txd, chan);
+
+	d40d->txd.tx_submit = d40_tx_submit;
+
+	return &d40d->txd;
+}
+
+static enum dma_status d40_tx_status(struct dma_chan *chan,
+				     dma_cookie_t cookie,
+				     struct dma_tx_state *txstate)
+{
+	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
+	dma_cookie_t last_used;
+	dma_cookie_t last_complete;
+	int ret;
+
+	last_complete = d40c->completed;
+	last_used = chan->cookie;
+
+	ret = dma_async_is_complete(cookie, last_complete, last_used);
+
+	if (txstate) {
+		txstate->last = last_complete;
+		txstate->used = last_used;
+		txstate->residue = stedma40_residue(chan);
+	}
+
+	return ret;
+}
+
+static void d40_issue_pending(struct dma_chan *chan)
+{
+	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
+	unsigned long flags;
+
+	spin_lock_irqsave(&d40c->lock, flags);
+
+	/* Busy means that pending jobs are already being processed */
+	if (!d40c->busy)
+		(void) d40_queue_start(d40c);
+
+	spin_unlock_irqrestore(&d40c->lock, flags);
+}
+
+static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd)
+{
+	unsigned long flags;
+	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
+
+	switch (cmd) {
+	case DMA_TERMINATE_ALL:
+		spin_lock_irqsave(&d40c->lock, flags);
+		d40_term_all(d40c);
+		spin_unlock_irqrestore(&d40c->lock, flags);
+		return 0;
+	case DMA_PAUSE:
+		return d40_pause(chan);
+	case DMA_RESUME:
+		return d40_resume(chan);
+	}
+
+	/* Other commands are unimplemented */
+	return -ENXIO;
+}
+
+/* Initialization functions */
+
+static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
+				 struct d40_chan *chans, int offset,
+				 int num_chans)
+{
+	int i = 0;
+	struct d40_chan *d40c;
+
+	INIT_LIST_HEAD(&dma->channels);
+
+	for (i = offset; i < offset + num_chans; i++) {
+		d40c = &chans[i];
+		d40c->base = base;
+		d40c->chan.device = dma;
+
+		/* Invalidate lcla element */
+		d40c->lcla.src_id = -1;
+		d40c->lcla.dst_id = -1;
+
+		spin_lock_init(&d40c->lock);
+
+		d40c->log_num = D40_PHY_CHAN;
+
+		INIT_LIST_HEAD(&d40c->free);
+		INIT_LIST_HEAD(&d40c->active);
+		INIT_LIST_HEAD(&d40c->queue);
+		INIT_LIST_HEAD(&d40c->client);
+
+		d40c->free_len = 0;
+
+		tasklet_init(&d40c->tasklet, dma_tasklet,
+			     (unsigned long) d40c);
+
+		list_add_tail(&d40c->chan.device_node,
+			      &dma->channels);
+	}
+}
+
+static int __init d40_dmaengine_init(struct d40_base *base,
+				     int num_reserved_chans)
+{
+	int err ;
+
+	d40_chan_init(base, &base->dma_slave, base->log_chans,
+		      0, base->num_log_chans);
+
+	dma_cap_zero(base->dma_slave.cap_mask);
+	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
+
+	base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
+	base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
+	base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
+	base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
+	base->dma_slave.device_tx_status = d40_tx_status;
+	base->dma_slave.device_issue_pending = d40_issue_pending;
+	base->dma_slave.device_control = d40_control;
+	base->dma_slave.dev = base->dev;
+
+	err = dma_async_device_register(&base->dma_slave);
+
+	if (err) {
+		dev_err(base->dev,
+			"[%s] Failed to register slave channels\n",
+			__func__);
+		goto failure1;
+	}
+
+	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
+		      base->num_log_chans, base->plat_data->memcpy_len);
+
+	dma_cap_zero(base->dma_memcpy.cap_mask);
+	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
+
+	base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
+	base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
+	base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
+	base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
+	base->dma_memcpy.device_tx_status = d40_tx_status;
+	base->dma_memcpy.device_issue_pending = d40_issue_pending;
+	base->dma_memcpy.device_control = d40_control;
+	base->dma_memcpy.dev = base->dev;
+	/*
+	 * This controller can only access address at even
+	 * 32bit boundaries, i.e. 2^2
+	 */
+	base->dma_memcpy.copy_align = 2;
+
+	err = dma_async_device_register(&base->dma_memcpy);
+
+	if (err) {
+		dev_err(base->dev,
+			"[%s] Failed to regsiter memcpy only channels\n",
+			__func__);
+		goto failure2;
+	}
+
+	d40_chan_init(base, &base->dma_both, base->phy_chans,
+		      0, num_reserved_chans);
+
+	dma_cap_zero(base->dma_both.cap_mask);
+	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
+	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
+
+	base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
+	base->dma_both.device_free_chan_resources = d40_free_chan_resources;
+	base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
+	base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
+	base->dma_both.device_tx_status = d40_tx_status;
+	base->dma_both.device_issue_pending = d40_issue_pending;
+	base->dma_both.device_control = d40_control;
+	base->dma_both.dev = base->dev;
+	base->dma_both.copy_align = 2;
+	err = dma_async_device_register(&base->dma_both);
+
+	if (err) {
+		dev_err(base->dev,
+			"[%s] Failed to register logical and physical capable channels\n",
+			__func__);
+		goto failure3;
+	}
+	return 0;
+failure3:
+	dma_async_device_unregister(&base->dma_memcpy);
+failure2:
+	dma_async_device_unregister(&base->dma_slave);
+failure1:
+	return err;
+}
+
+/* Initialization functions. */
+
+static int __init d40_phy_res_init(struct d40_base *base)
+{
+	int i;
+	int num_phy_chans_avail = 0;
+	u32 val[2];
+	int odd_even_bit = -2;
+
+	val[0] = readl(base->virtbase + D40_DREG_PRSME);
+	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
+
+	for (i = 0; i < base->num_phy_chans; i++) {
+		base->phy_res[i].num = i;
+		odd_even_bit += 2 * ((i % 2) == 0);
+		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
+			/* Mark security only channels as occupied */
+			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
+			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
+		} else {
+			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
+			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
+			num_phy_chans_avail++;
+		}
+		spin_lock_init(&base->phy_res[i].lock);
+	}
+	dev_info(base->dev, "%d of %d physical DMA channels available\n",
+		 num_phy_chans_avail, base->num_phy_chans);
+
+	/* Verify settings extended vs standard */
+	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
+
+	for (i = 0; i < base->num_phy_chans; i++) {
+
+		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
+		    (val[0] & 0x3) != 1)
+			dev_info(base->dev,
+				 "[%s] INFO: channel %d is misconfigured (%d)\n",
+				 __func__, i, val[0] & 0x3);
+
+		val[0] = val[0] >> 2;
+	}
+
+	return num_phy_chans_avail;
+}
+
+static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
+{
+	static const struct d40_reg_val dma_id_regs[] = {
+		/* Peripheral Id */
+		{ .reg = D40_DREG_PERIPHID0, .val = 0x0040},
+		{ .reg = D40_DREG_PERIPHID1, .val = 0x0000},
+		/*
+		 * D40_DREG_PERIPHID2 Depends on HW revision:
+		 *  MOP500/HREF ED has 0x0008,
+		 *  ? has 0x0018,
+		 *  HREF V1 has 0x0028
+		 */
+		{ .reg = D40_DREG_PERIPHID3, .val = 0x0000},
+
+		/* PCell Id */
+		{ .reg = D40_DREG_CELLID0, .val = 0x000d},
+		{ .reg = D40_DREG_CELLID1, .val = 0x00f0},
+		{ .reg = D40_DREG_CELLID2, .val = 0x0005},
+		{ .reg = D40_DREG_CELLID3, .val = 0x00b1}
+	};
+	struct stedma40_platform_data *plat_data;
+	struct clk *clk = NULL;
+	void __iomem *virtbase = NULL;
+	struct resource *res = NULL;
+	struct d40_base *base = NULL;
+	int num_log_chans = 0;
+	int num_phy_chans;
+	int i;
+
+	clk = clk_get(&pdev->dev, NULL);
+
+	if (IS_ERR(clk)) {
+		dev_err(&pdev->dev, "[%s] No matching clock found\n",
+			__func__);
+		goto failure;
+	}
+
+	clk_enable(clk);
+
+	/* Get IO for DMAC base address */
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
+	if (!res)
+		goto failure;
+
+	if (request_mem_region(res->start, resource_size(res),
+			       D40_NAME " I/O base") == NULL)
+		goto failure;
+
+	virtbase = ioremap(res->start, resource_size(res));
+	if (!virtbase)
+		goto failure;
+
+	/* HW version check */
+	for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
+		if (dma_id_regs[i].val !=
+		    readl(virtbase + dma_id_regs[i].reg)) {
+			dev_err(&pdev->dev,
+				"[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
+				__func__,
+				dma_id_regs[i].val,
+				dma_id_regs[i].reg,
+				readl(virtbase + dma_id_regs[i].reg));
+			goto failure;
+		}
+	}
+
+	i = readl(virtbase + D40_DREG_PERIPHID2);
+
+	if ((i & 0xf) != D40_PERIPHID2_DESIGNER) {
+		dev_err(&pdev->dev,
+			"[%s] Unknown designer! Got %x wanted %x\n",
+			__func__, i & 0xf, D40_PERIPHID2_DESIGNER);
+		goto failure;
+	}
+
+	/* The number of physical channels on this HW */
+	num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
+
+	dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
+		 (i >> 4) & 0xf, res->start);
+
+	plat_data = pdev->dev.platform_data;
+
+	/* Count the number of logical channels in use */
+	for (i = 0; i < plat_data->dev_len; i++)
+		if (plat_data->dev_rx[i] != 0)
+			num_log_chans++;
+
+	for (i = 0; i < plat_data->dev_len; i++)
+		if (plat_data->dev_tx[i] != 0)
+			num_log_chans++;
+
+	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
+		       (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
+		       sizeof(struct d40_chan), GFP_KERNEL);
+
+	if (base == NULL) {
+		dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
+		goto failure;
+	}
+
+	base->clk = clk;
+	base->num_phy_chans = num_phy_chans;
+	base->num_log_chans = num_log_chans;
+	base->phy_start = res->start;
+	base->phy_size = resource_size(res);
+	base->virtbase = virtbase;
+	base->plat_data = plat_data;
+	base->dev = &pdev->dev;
+	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
+	base->log_chans = &base->phy_chans[num_phy_chans];
+
+	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
+				GFP_KERNEL);
+	if (!base->phy_res)
+		goto failure;
+
+	base->lookup_phy_chans = kzalloc(num_phy_chans *
+					 sizeof(struct d40_chan *),
+					 GFP_KERNEL);
+	if (!base->lookup_phy_chans)
+		goto failure;
+
+	if (num_log_chans + plat_data->memcpy_len) {
+		/*
+		 * The max number of logical channels are event lines for all
+		 * src devices and dst devices
+		 */
+		base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
+						 sizeof(struct d40_chan *),
+						 GFP_KERNEL);
+		if (!base->lookup_log_chans)
+			goto failure;
+	}
+	base->lcla_pool.alloc_map = kzalloc(num_phy_chans * sizeof(u32),
+					    GFP_KERNEL);
+	if (!base->lcla_pool.alloc_map)
+		goto failure;
+
+	return base;
+
+failure:
+	if (clk) {
+		clk_disable(clk);
+		clk_put(clk);
+	}
+	if (virtbase)
+		iounmap(virtbase);
+	if (res)
+		release_mem_region(res->start,
+				   resource_size(res));
+	if (virtbase)
+		iounmap(virtbase);
+
+	if (base) {
+		kfree(base->lcla_pool.alloc_map);
+		kfree(base->lookup_log_chans);
+		kfree(base->lookup_phy_chans);
+		kfree(base->phy_res);
+		kfree(base);
+	}
+
+	return NULL;
+}
+
+static void __init d40_hw_init(struct d40_base *base)
+{
+
+	static const struct d40_reg_val dma_init_reg[] = {
+		/* Clock every part of the DMA block from start */
+		{ .reg = D40_DREG_GCC,    .val = 0x0000ff01},
+
+		/* Interrupts on all logical channels */
+		{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
+		{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
+		{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
+		{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
+		{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
+		{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
+		{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
+		{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
+		{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
+		{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
+		{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
+		{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
+	};
+	int i;
+	u32 prmseo[2] = {0, 0};
+	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
+	u32 pcmis = 0;
+	u32 pcicr = 0;
+
+	for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
+		writel(dma_init_reg[i].val,
+		       base->virtbase + dma_init_reg[i].reg);
+
+	/* Configure all our dma channels to default settings */
+	for (i = 0; i < base->num_phy_chans; i++) {
+
+		activeo[i % 2] = activeo[i % 2] << 2;
+
+		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
+		    == D40_ALLOC_PHY) {
+			activeo[i % 2] |= 3;
+			continue;
+		}
+
+		/* Enable interrupt # */
+		pcmis = (pcmis << 1) | 1;
+
+		/* Clear interrupt # */
+		pcicr = (pcicr << 1) | 1;
+
+		/* Set channel to physical mode */
+		prmseo[i % 2] = prmseo[i % 2] << 2;
+		prmseo[i % 2] |= 1;
+
+	}
+
+	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
+	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
+	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
+	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
+
+	/* Write which interrupt to enable */
+	writel(pcmis, base->virtbase + D40_DREG_PCMIS);
+
+	/* Write which interrupt to clear */
+	writel(pcicr, base->virtbase + D40_DREG_PCICR);
+
+}
+
+static int __init d40_probe(struct platform_device *pdev)
+{
+	int err;
+	int ret = -ENOENT;
+	struct d40_base *base;
+	struct resource *res = NULL;
+	int num_reserved_chans;
+	u32 val;
+
+	base = d40_hw_detect_init(pdev);
+
+	if (!base)
+		goto failure;
+
+	num_reserved_chans = d40_phy_res_init(base);
+
+	platform_set_drvdata(pdev, base);
+
+	spin_lock_init(&base->interrupt_lock);
+	spin_lock_init(&base->execmd_lock);
+
+	/* Get IO for logical channel parameter address */
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
+	if (!res) {
+		ret = -ENOENT;
+		dev_err(&pdev->dev,
+			"[%s] No \"lcpa\" memory resource\n",
+			__func__);
+		goto failure;
+	}
+	base->lcpa_size = resource_size(res);
+	base->phy_lcpa = res->start;
+
+	if (request_mem_region(res->start, resource_size(res),
+			       D40_NAME " I/O lcpa") == NULL) {
+		ret = -EBUSY;
+		dev_err(&pdev->dev,
+			"[%s] Failed to request LCPA region 0x%x-0x%x\n",
+			__func__, res->start, res->end);
+		goto failure;
+	}
+
+	/* We make use of ESRAM memory for this. */
+	val = readl(base->virtbase + D40_DREG_LCPA);
+	if (res->start != val && val != 0) {
+		dev_warn(&pdev->dev,
+			 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
+			 __func__, val, res->start);
+	} else
+		writel(res->start, base->virtbase + D40_DREG_LCPA);
+
+	base->lcpa_base = ioremap(res->start, resource_size(res));
+	if (!base->lcpa_base) {
+		ret = -ENOMEM;
+		dev_err(&pdev->dev,
+			"[%s] Failed to ioremap LCPA region\n",
+			__func__);
+		goto failure;
+	}
+	/* Get IO for logical channel link address */
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcla");
+	if (!res) {
+		ret = -ENOENT;
+		dev_err(&pdev->dev,
+			"[%s] No \"lcla\" resource defined\n",
+			__func__);
+		goto failure;
+	}
+
+	base->lcla_pool.base_size = resource_size(res);
+	base->lcla_pool.phy = res->start;
+
+	if (request_mem_region(res->start, resource_size(res),
+			       D40_NAME " I/O lcla") == NULL) {
+		ret = -EBUSY;
+		dev_err(&pdev->dev,
+			"[%s] Failed to request LCLA region 0x%x-0x%x\n",
+			__func__, res->start, res->end);
+		goto failure;
+	}
+	val = readl(base->virtbase + D40_DREG_LCLA);
+	if (res->start != val && val != 0) {
+		dev_warn(&pdev->dev,
+			 "[%s] Mismatch LCLA dma 0x%x, def 0x%x\n",
+			 __func__, val, res->start);
+	} else
+		writel(res->start, base->virtbase + D40_DREG_LCLA);
+
+	base->lcla_pool.base = ioremap(res->start, resource_size(res));
+	if (!base->lcla_pool.base) {
+		ret = -ENOMEM;
+		dev_err(&pdev->dev,
+			"[%s] Failed to ioremap LCLA 0x%x-0x%x\n",
+			__func__, res->start, res->end);
+		goto failure;
+	}
+
+	spin_lock_init(&base->lcla_pool.lock);
+
+	base->lcla_pool.num_blocks = base->num_phy_chans;
+
+	base->irq = platform_get_irq(pdev, 0);
+
+	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
+
+	if (ret) {
+		dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
+		goto failure;
+	}
+
+	err = d40_dmaengine_init(base, num_reserved_chans);
+	if (err)
+		goto failure;
+
+	d40_hw_init(base);
+
+	dev_info(base->dev, "initialized\n");
+	return 0;
+
+failure:
+	if (base) {
+		if (base->virtbase)
+			iounmap(base->virtbase);
+		if (base->lcla_pool.phy)
+			release_mem_region(base->lcla_pool.phy,
+					   base->lcla_pool.base_size);
+		if (base->phy_lcpa)
+			release_mem_region(base->phy_lcpa,
+					   base->lcpa_size);
+		if (base->phy_start)
+			release_mem_region(base->phy_start,
+					   base->phy_size);
+		if (base->clk) {
+			clk_disable(base->clk);
+			clk_put(base->clk);
+		}
+
+		kfree(base->lcla_pool.alloc_map);
+		kfree(base->lookup_log_chans);
+		kfree(base->lookup_phy_chans);
+		kfree(base->phy_res);
+		kfree(base);
+	}
+
+	dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
+	return ret;
+}
+
+static struct platform_driver d40_driver = {
+	.driver = {
+		.owner = THIS_MODULE,
+		.name  = D40_NAME,
+	},
+};
+
+int __init stedma40_init(void)
+{
+	return platform_driver_probe(&d40_driver, d40_probe);
+}
+arch_initcall(stedma40_init);
diff --git a/drivers/dma/ste_dma40_ll.c b/drivers/dma/ste_dma40_ll.c
new file mode 100644
index 0000000..561fdd8
--- /dev/null
+++ b/drivers/dma/ste_dma40_ll.c
@@ -0,0 +1,454 @@
+/*
+ * driver/dma/ste_dma40_ll.c
+ *
+ * Copyright (C) ST-Ericsson 2007-2010
+ * License terms: GNU General Public License (GPL) version 2
+ * Author: Per Friden <per.friden@stericsson.com>
+ * Author: Jonas Aaberg <jonas.aberg@stericsson.com>
+ */
+
+#include <linux/kernel.h>
+#include <plat/ste_dma40.h>
+
+#include "ste_dma40_ll.h"
+
+/* Sets up proper LCSP1 and LCSP3 register for a logical channel */
+void d40_log_cfg(struct stedma40_chan_cfg *cfg,
+		 u32 *lcsp1, u32 *lcsp3)
+{
+	u32 l3 = 0; /* dst */
+	u32 l1 = 0; /* src */
+
+	/* src is mem? -> increase address pos */
+	if (cfg->dir ==  STEDMA40_MEM_TO_PERIPH ||
+	    cfg->dir ==  STEDMA40_MEM_TO_MEM)
+		l1 |= 1 << D40_MEM_LCSP1_SCFG_INCR_POS;
+
+	/* dst is mem? -> increase address pos */
+	if (cfg->dir ==  STEDMA40_PERIPH_TO_MEM ||
+	    cfg->dir ==  STEDMA40_MEM_TO_MEM)
+		l3 |= 1 << D40_MEM_LCSP3_DCFG_INCR_POS;
+
+	/* src is hw? -> master port 1 */
+	if (cfg->dir ==  STEDMA40_PERIPH_TO_MEM ||
+	    cfg->dir ==  STEDMA40_PERIPH_TO_PERIPH)
+		l1 |= 1 << D40_MEM_LCSP1_SCFG_MST_POS;
+
+	/* dst is hw? -> master port 1 */
+	if (cfg->dir ==  STEDMA40_MEM_TO_PERIPH ||
+	    cfg->dir ==  STEDMA40_PERIPH_TO_PERIPH)
+		l3 |= 1 << D40_MEM_LCSP3_DCFG_MST_POS;
+
+	l3 |= 1 << D40_MEM_LCSP3_DCFG_TIM_POS;
+	l3 |= 1 << D40_MEM_LCSP3_DCFG_EIM_POS;
+	l3 |= cfg->dst_info.psize << D40_MEM_LCSP3_DCFG_PSIZE_POS;
+	l3 |= cfg->dst_info.data_width << D40_MEM_LCSP3_DCFG_ESIZE_POS;
+	l3 |= 1 << D40_MEM_LCSP3_DTCP_POS;
+
+	l1 |= 1 << D40_MEM_LCSP1_SCFG_EIM_POS;
+	l1 |= cfg->src_info.psize << D40_MEM_LCSP1_SCFG_PSIZE_POS;
+	l1 |= cfg->src_info.data_width << D40_MEM_LCSP1_SCFG_ESIZE_POS;
+	l1 |= 1 << D40_MEM_LCSP1_STCP_POS;
+
+	*lcsp1 = l1;
+	*lcsp3 = l3;
+
+}
+
+/* Sets up SRC and DST CFG register for both logical and physical channels */
+void d40_phy_cfg(struct stedma40_chan_cfg *cfg,
+		 u32 *src_cfg, u32 *dst_cfg, bool is_log)
+{
+	u32 src = 0;
+	u32 dst = 0;
+
+	if (!is_log) {
+		/* Physical channel */
+		if ((cfg->dir ==  STEDMA40_PERIPH_TO_MEM) ||
+		    (cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) {
+			/* Set master port to 1 */
+			src |= 1 << D40_SREG_CFG_MST_POS;
+			src |= D40_TYPE_TO_EVENT(cfg->src_dev_type);
+
+			if (cfg->src_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL)
+				src |= 1 << D40_SREG_CFG_PHY_TM_POS;
+			else
+				src |= 3 << D40_SREG_CFG_PHY_TM_POS;
+		}
+		if ((cfg->dir ==  STEDMA40_MEM_TO_PERIPH) ||
+		    (cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) {
+			/* Set master port to 1 */
+			dst |= 1 << D40_SREG_CFG_MST_POS;
+			dst |= D40_TYPE_TO_EVENT(cfg->dst_dev_type);
+
+			if (cfg->dst_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL)
+				dst |= 1 << D40_SREG_CFG_PHY_TM_POS;
+			else
+				dst |= 3 << D40_SREG_CFG_PHY_TM_POS;
+		}
+		/* Interrupt on end of transfer for destination */
+		dst |= 1 << D40_SREG_CFG_TIM_POS;
+
+		/* Generate interrupt on error */
+		src |= 1 << D40_SREG_CFG_EIM_POS;
+		dst |= 1 << D40_SREG_CFG_EIM_POS;
+
+		/* PSIZE */
+		if (cfg->src_info.psize != STEDMA40_PSIZE_PHY_1) {
+			src |= 1 << D40_SREG_CFG_PHY_PEN_POS;
+			src |= cfg->src_info.psize << D40_SREG_CFG_PSIZE_POS;
+		}
+		if (cfg->dst_info.psize != STEDMA40_PSIZE_PHY_1) {
+			dst |= 1 << D40_SREG_CFG_PHY_PEN_POS;
+			dst |= cfg->dst_info.psize << D40_SREG_CFG_PSIZE_POS;
+		}
+
+		/* Element size */
+		src |= cfg->src_info.data_width << D40_SREG_CFG_ESIZE_POS;
+		dst |= cfg->dst_info.data_width << D40_SREG_CFG_ESIZE_POS;
+
+	} else {
+		/* Logical channel */
+		dst |= 1 << D40_SREG_CFG_LOG_GIM_POS;
+		src |= 1 << D40_SREG_CFG_LOG_GIM_POS;
+	}
+
+	if (cfg->channel_type & STEDMA40_HIGH_PRIORITY_CHANNEL) {
+		src |= 1 << D40_SREG_CFG_PRI_POS;
+		dst |= 1 << D40_SREG_CFG_PRI_POS;
+	}
+
+	src |= cfg->src_info.endianess << D40_SREG_CFG_LBE_POS;
+	dst |= cfg->dst_info.endianess << D40_SREG_CFG_LBE_POS;
+
+	*src_cfg = src;
+	*dst_cfg = dst;
+}
+
+int d40_phy_fill_lli(struct d40_phy_lli *lli,
+		     dma_addr_t data,
+		     u32 data_size,
+		     int psize,
+		     dma_addr_t next_lli,
+		     u32 reg_cfg,
+		     bool term_int,
+		     u32 data_width,
+		     bool is_device)
+{
+	int num_elems;
+
+	if (psize == STEDMA40_PSIZE_PHY_1)
+		num_elems = 1;
+	else
+		num_elems = 2 << psize;
+
+	/*
+	 * Size is 16bit. data_width is 8, 16, 32 or 64 bit
+	 * Block large than 64 KiB must be split.
+	 */
+	if (data_size > (0xffff << data_width))
+		return -EINVAL;
+
+	/* Must be aligned */
+	if (!IS_ALIGNED(data, 0x1 << data_width))
+		return -EINVAL;
+
+	/* Transfer size can't be smaller than (num_elms * elem_size) */
+	if (data_size < num_elems * (0x1 << data_width))
+		return -EINVAL;
+
+	/* The number of elements. IE now many chunks */
+	lli->reg_elt = (data_size >> data_width) << D40_SREG_ELEM_PHY_ECNT_POS;
+
+	/*
+	 * Distance to next element sized entry.
+	 * Usually the size of the element unless you want gaps.
+	 */
+	if (!is_device)
+		lli->reg_elt |= (0x1 << data_width) <<
+			D40_SREG_ELEM_PHY_EIDX_POS;
+
+	/* Where the data is */
+	lli->reg_ptr = data;
+	lli->reg_cfg = reg_cfg;
+
+	/* If this scatter list entry is the last one, no next link */
+	if (next_lli == 0)
+		lli->reg_lnk = 0x1 << D40_SREG_LNK_PHY_TCP_POS;
+	else
+		lli->reg_lnk = next_lli;
+
+	/* Set/clear interrupt generation on this link item.*/
+	if (term_int)
+		lli->reg_cfg |= 0x1 << D40_SREG_CFG_TIM_POS;
+	else
+		lli->reg_cfg &= ~(0x1 << D40_SREG_CFG_TIM_POS);
+
+	/* Post link */
+	lli->reg_lnk |= 0 << D40_SREG_LNK_PHY_PRE_POS;
+
+	return 0;
+}
+
+int d40_phy_sg_to_lli(struct scatterlist *sg,
+		      int sg_len,
+		      dma_addr_t target,
+		      struct d40_phy_lli *lli,
+		      dma_addr_t lli_phys,
+		      u32 reg_cfg,
+		      u32 data_width,
+		      int psize,
+		      bool term_int)
+{
+	int total_size = 0;
+	int i;
+	struct scatterlist *current_sg = sg;
+	dma_addr_t next_lli_phys;
+	dma_addr_t dst;
+	int err = 0;
+
+	for_each_sg(sg, current_sg, sg_len, i) {
+
+		total_size += sg_dma_len(current_sg);
+
+		/* If this scatter list entry is the last one, no next link */
+		if (sg_len - 1 == i)
+			next_lli_phys = 0;
+		else
+			next_lli_phys = ALIGN(lli_phys + (i + 1) *
+					      sizeof(struct d40_phy_lli),
+					      D40_LLI_ALIGN);
+
+		if (target)
+			dst = target;
+		else
+			dst = sg_phys(current_sg);
+
+		err = d40_phy_fill_lli(&lli[i],
+				       dst,
+				       sg_dma_len(current_sg),
+				       psize,
+				       next_lli_phys,
+				       reg_cfg,
+				       !next_lli_phys,
+				       data_width,
+				       target == dst);
+		if (err)
+			goto err;
+	}
+
+	return total_size;
+ err:
+	return err;
+}
+
+
+void d40_phy_lli_write(void __iomem *virtbase,
+		       u32 phy_chan_num,
+		       struct d40_phy_lli *lli_dst,
+		       struct d40_phy_lli *lli_src)
+{
+
+	writel(lli_src->reg_cfg, virtbase + D40_DREG_PCBASE +
+	       phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSCFG);
+	writel(lli_src->reg_elt, virtbase + D40_DREG_PCBASE +
+	       phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT);
+	writel(lli_src->reg_ptr, virtbase + D40_DREG_PCBASE +
+	       phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSPTR);
+	writel(lli_src->reg_lnk, virtbase + D40_DREG_PCBASE +
+	       phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SSLNK);
+
+	writel(lli_dst->reg_cfg, virtbase + D40_DREG_PCBASE +
+	       phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDCFG);
+	writel(lli_dst->reg_elt, virtbase + D40_DREG_PCBASE +
+	       phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT);
+	writel(lli_dst->reg_ptr, virtbase + D40_DREG_PCBASE +
+	       phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDPTR);
+	writel(lli_dst->reg_lnk, virtbase + D40_DREG_PCBASE +
+	       phy_chan_num * D40_DREG_PCDELTA + D40_CHAN_REG_SDLNK);
+
+}
+
+/* DMA logical lli operations */
+
+void d40_log_fill_lli(struct d40_log_lli *lli,
+		      dma_addr_t data, u32 data_size,
+		      u32 lli_next_off, u32 reg_cfg,
+		      u32 data_width,
+		      bool term_int, bool addr_inc)
+{
+	lli->lcsp13 = reg_cfg;
+
+	/* The number of elements to transfer */
+	lli->lcsp02 = ((data_size >> data_width) <<
+		       D40_MEM_LCSP0_ECNT_POS) & D40_MEM_LCSP0_ECNT_MASK;
+	/* 16 LSBs address of the current element */
+	lli->lcsp02 |= data & D40_MEM_LCSP0_SPTR_MASK;
+	/* 16 MSBs address of the current element */
+	lli->lcsp13 |= data & D40_MEM_LCSP1_SPTR_MASK;
+
+	if (addr_inc)
+		lli->lcsp13 |= D40_MEM_LCSP1_SCFG_INCR_MASK;
+
+	lli->lcsp13 |= D40_MEM_LCSP3_DTCP_MASK;
+	/* If this scatter list entry is the last one, no next link */
+	lli->lcsp13 |= (lli_next_off << D40_MEM_LCSP1_SLOS_POS) &
+		D40_MEM_LCSP1_SLOS_MASK;
+
+	if (term_int)
+		lli->lcsp13 |= D40_MEM_LCSP1_SCFG_TIM_MASK;
+	else
+		lli->lcsp13 &= ~D40_MEM_LCSP1_SCFG_TIM_MASK;
+}
+
+int d40_log_sg_to_dev(struct d40_lcla_elem *lcla,
+		      struct scatterlist *sg,
+		      int sg_len,
+		      struct d40_log_lli_bidir *lli,
+		      struct d40_def_lcsp *lcsp,
+		      u32 src_data_width,
+		      u32 dst_data_width,
+		      enum dma_data_direction direction,
+		      bool term_int, dma_addr_t dev_addr, int max_len,
+		      int llis_per_log)
+{
+	int total_size = 0;
+	struct scatterlist *current_sg = sg;
+	int i;
+	u32 next_lli_off_dst;
+	u32 next_lli_off_src;
+
+	next_lli_off_src = 0;
+	next_lli_off_dst = 0;
+
+	for_each_sg(sg, current_sg, sg_len, i) {
+		total_size += sg_dma_len(current_sg);
+
+		/*
+		 * If this scatter list entry is the last one or
+		 * max length, terminate link.
+		 */
+		if (sg_len - 1 == i || ((i+1) % max_len == 0)) {
+			next_lli_off_src = 0;
+			next_lli_off_dst = 0;
+		} else {
+			if (next_lli_off_dst == 0 &&
+			    next_lli_off_src == 0) {
+				/* The first lli will be at next_lli_off */
+				next_lli_off_dst = (lcla->dst_id *
+						    llis_per_log + 1);
+				next_lli_off_src = (lcla->src_id *
+						    llis_per_log + 1);
+			} else {
+				next_lli_off_dst++;
+				next_lli_off_src++;
+			}
+		}
+
+		if (direction == DMA_TO_DEVICE) {
+			d40_log_fill_lli(&lli->src[i],
+					 sg_phys(current_sg),
+					 sg_dma_len(current_sg),
+					 next_lli_off_src,
+					 lcsp->lcsp1, src_data_width,
+					 term_int && !next_lli_off_src,
+					 true);
+			d40_log_fill_lli(&lli->dst[i],
+					 dev_addr,
+					 sg_dma_len(current_sg),
+					 next_lli_off_dst,
+					 lcsp->lcsp3, dst_data_width,
+					 /* No next == terminal interrupt */
+					 term_int && !next_lli_off_dst,
+					 false);
+		} else {
+			d40_log_fill_lli(&lli->dst[i],
+					 sg_phys(current_sg),
+					 sg_dma_len(current_sg),
+					 next_lli_off_dst,
+					 lcsp->lcsp3, dst_data_width,
+					 /* No next == terminal interrupt */
+					 term_int && !next_lli_off_dst,
+					 true);
+			d40_log_fill_lli(&lli->src[i],
+					 dev_addr,
+					 sg_dma_len(current_sg),
+					 next_lli_off_src,
+					 lcsp->lcsp1, src_data_width,
+					 term_int && !next_lli_off_src,
+					 false);
+		}
+	}
+	return total_size;
+}
+
+int d40_log_sg_to_lli(int lcla_id,
+		      struct scatterlist *sg,
+		      int sg_len,
+		      struct d40_log_lli *lli_sg,
+		      u32 lcsp13, /* src or dst*/
+		      u32 data_width,
+		      bool term_int, int max_len, int llis_per_log)
+{
+	int total_size = 0;
+	struct scatterlist *current_sg = sg;
+	int i;
+	u32 next_lli_off = 0;
+
+	for_each_sg(sg, current_sg, sg_len, i) {
+		total_size += sg_dma_len(current_sg);
+
+		/*
+		 * If this scatter list entry is the last one or
+		 * max length, terminate link.
+		 */
+		if (sg_len - 1 == i || ((i+1) % max_len == 0))
+			next_lli_off = 0;
+		else {
+			if (next_lli_off == 0)
+				/* The first lli will be at next_lli_off */
+				next_lli_off = lcla_id * llis_per_log + 1;
+			else
+				next_lli_off++;
+		}
+
+		d40_log_fill_lli(&lli_sg[i],
+				 sg_phys(current_sg),
+				 sg_dma_len(current_sg),
+				 next_lli_off,
+				 lcsp13, data_width,
+				 term_int && !next_lli_off,
+				 true);
+	}
+	return total_size;
+}
+
+void d40_log_lli_write(struct d40_log_lli_full *lcpa,
+		       struct d40_log_lli *lcla_src,
+		       struct d40_log_lli *lcla_dst,
+		       struct d40_log_lli *lli_dst,
+		       struct d40_log_lli *lli_src,
+		       int llis_per_log)
+{
+	u32 slos = 0;
+	u32 dlos = 0;
+	int i;
+
+	lcpa->lcsp0 = lli_src->lcsp02;
+	lcpa->lcsp1 = lli_src->lcsp13;
+	lcpa->lcsp2 = lli_dst->lcsp02;
+	lcpa->lcsp3 = lli_dst->lcsp13;
+
+	slos = lli_src->lcsp13 & D40_MEM_LCSP1_SLOS_MASK;
+	dlos = lli_dst->lcsp13 & D40_MEM_LCSP3_DLOS_MASK;
+
+	for (i = 0; (i < llis_per_log) && slos && dlos; i++) {
+		writel(lli_src[i+1].lcsp02, &lcla_src[i].lcsp02);
+		writel(lli_src[i+1].lcsp13, &lcla_src[i].lcsp13);
+		writel(lli_dst[i+1].lcsp02, &lcla_dst[i].lcsp02);
+		writel(lli_dst[i+1].lcsp13, &lcla_dst[i].lcsp13);
+
+		slos = lli_src[i+1].lcsp13 & D40_MEM_LCSP1_SLOS_MASK;
+		dlos = lli_dst[i+1].lcsp13 & D40_MEM_LCSP3_DLOS_MASK;
+	}
+}
diff --git a/drivers/dma/ste_dma40_ll.h b/drivers/dma/ste_dma40_ll.h
new file mode 100644
index 0000000..2029280
--- /dev/null
+++ b/drivers/dma/ste_dma40_ll.h
@@ -0,0 +1,354 @@
+/*
+ * driver/dma/ste_dma40_ll.h
+ *
+ * Copyright (C) ST-Ericsson 2007-2010
+ * License terms: GNU General Public License (GPL) version 2
+ * Author: Per Friden <per.friden@stericsson.com>
+ * Author: Jonas Aaberg <jonas.aberg@stericsson.com>
+ */
+#ifndef STE_DMA40_LL_H
+#define STE_DMA40_LL_H
+
+#define D40_DREG_PCBASE		0x400
+#define D40_DREG_PCDELTA	(8 * 4)
+#define D40_LLI_ALIGN		16 /* LLI alignment must be 16 bytes. */
+
+#define D40_TYPE_TO_GROUP(type) (type / 16)
+#define D40_TYPE_TO_EVENT(type) (type % 16)
+
+/* Most bits of the CFG register are the same in log as in phy mode */
+#define D40_SREG_CFG_MST_POS		15
+#define D40_SREG_CFG_TIM_POS		14
+#define D40_SREG_CFG_EIM_POS		13
+#define D40_SREG_CFG_LOG_INCR_POS	12
+#define D40_SREG_CFG_PHY_PEN_POS	12
+#define D40_SREG_CFG_PSIZE_POS		10
+#define D40_SREG_CFG_ESIZE_POS		 8
+#define D40_SREG_CFG_PRI_POS		 7
+#define D40_SREG_CFG_LBE_POS		 6
+#define D40_SREG_CFG_LOG_GIM_POS	 5
+#define D40_SREG_CFG_LOG_MFU_POS	 4
+#define D40_SREG_CFG_PHY_TM_POS		 4
+#define D40_SREG_CFG_PHY_EVTL_POS	 0
+
+
+/* Standard channel parameters - basic mode (element register) */
+#define D40_SREG_ELEM_PHY_ECNT_POS	16
+#define D40_SREG_ELEM_PHY_EIDX_POS	 0
+
+#define D40_SREG_ELEM_PHY_ECNT_MASK	(0xFFFF << D40_SREG_ELEM_PHY_ECNT_POS)
+
+/* Standard channel parameters - basic mode (Link register) */
+#define D40_SREG_LNK_PHY_TCP_POS	0
+#define D40_SREG_LNK_PHY_LMP_POS	1
+#define D40_SREG_LNK_PHY_PRE_POS	2
+/*
+ * Source  destination link address. Contains the
+ * 29-bit byte word aligned address of the reload area.
+ */
+#define D40_SREG_LNK_PHYS_LNK_MASK	0xFFFFFFF8UL
+
+/* Standard basic channel logical mode */
+
+/* Element register */
+#define D40_SREG_ELEM_LOG_ECNT_POS	16
+#define D40_SREG_ELEM_LOG_LIDX_POS	 8
+#define D40_SREG_ELEM_LOG_LOS_POS	 1
+#define D40_SREG_ELEM_LOG_TCP_POS	 0
+
+#define D40_SREG_ELEM_LOG_LIDX_MASK	(0xFF << D40_SREG_ELEM_LOG_LIDX_POS)
+
+/* Link register */
+#define D40_DEACTIVATE_EVENTLINE	0x0
+#define D40_ACTIVATE_EVENTLINE		0x1
+#define D40_EVENTLINE_POS(i)		(2 * i)
+#define D40_EVENTLINE_MASK(i)		(0x3 << D40_EVENTLINE_POS(i))
+
+/* Standard basic channel logical params in memory */
+
+/* LCSP0 */
+#define D40_MEM_LCSP0_ECNT_POS		16
+#define D40_MEM_LCSP0_SPTR_POS		 0
+
+#define D40_MEM_LCSP0_ECNT_MASK		(0xFFFF << D40_MEM_LCSP0_ECNT_POS)
+#define D40_MEM_LCSP0_SPTR_MASK		(0xFFFF << D40_MEM_LCSP0_SPTR_POS)
+
+/* LCSP1 */
+#define D40_MEM_LCSP1_SPTR_POS		16
+#define D40_MEM_LCSP1_SCFG_MST_POS	15
+#define D40_MEM_LCSP1_SCFG_TIM_POS	14
+#define D40_MEM_LCSP1_SCFG_EIM_POS	13
+#define D40_MEM_LCSP1_SCFG_INCR_POS	12
+#define D40_MEM_LCSP1_SCFG_PSIZE_POS	10
+#define D40_MEM_LCSP1_SCFG_ESIZE_POS	 8
+#define D40_MEM_LCSP1_SLOS_POS		 1
+#define D40_MEM_LCSP1_STCP_POS		 0
+
+#define D40_MEM_LCSP1_SPTR_MASK		(0xFFFF << D40_MEM_LCSP1_SPTR_POS)
+#define D40_MEM_LCSP1_SCFG_TIM_MASK	(0x1 << D40_MEM_LCSP1_SCFG_TIM_POS)
+#define D40_MEM_LCSP1_SCFG_INCR_MASK	(0x1 << D40_MEM_LCSP1_SCFG_INCR_POS)
+#define D40_MEM_LCSP1_SCFG_PSIZE_MASK	(0x3 << D40_MEM_LCSP1_SCFG_PSIZE_POS)
+#define D40_MEM_LCSP1_SLOS_MASK		(0x7F << D40_MEM_LCSP1_SLOS_POS)
+#define D40_MEM_LCSP1_STCP_MASK		(0x1 << D40_MEM_LCSP1_STCP_POS)
+
+/* LCSP2 */
+#define D40_MEM_LCSP2_ECNT_POS		16
+
+#define D40_MEM_LCSP2_ECNT_MASK		(0xFFFF << D40_MEM_LCSP2_ECNT_POS)
+
+/* LCSP3 */
+#define D40_MEM_LCSP3_DCFG_MST_POS	15
+#define D40_MEM_LCSP3_DCFG_TIM_POS	14
+#define D40_MEM_LCSP3_DCFG_EIM_POS	13
+#define D40_MEM_LCSP3_DCFG_INCR_POS	12
+#define D40_MEM_LCSP3_DCFG_PSIZE_POS	10
+#define D40_MEM_LCSP3_DCFG_ESIZE_POS	 8
+#define D40_MEM_LCSP3_DLOS_POS		 1
+#define D40_MEM_LCSP3_DTCP_POS		 0
+
+#define D40_MEM_LCSP3_DLOS_MASK		(0x7F << D40_MEM_LCSP3_DLOS_POS)
+#define D40_MEM_LCSP3_DTCP_MASK		(0x1 << D40_MEM_LCSP3_DTCP_POS)
+
+
+/* Standard channel parameter register offsets */
+#define D40_CHAN_REG_SSCFG	0x00
+#define D40_CHAN_REG_SSELT	0x04
+#define D40_CHAN_REG_SSPTR	0x08
+#define D40_CHAN_REG_SSLNK	0x0C
+#define D40_CHAN_REG_SDCFG	0x10
+#define D40_CHAN_REG_SDELT	0x14
+#define D40_CHAN_REG_SDPTR	0x18
+#define D40_CHAN_REG_SDLNK	0x1C
+
+/* DMA Register Offsets */
+#define D40_DREG_GCC		0x000
+#define D40_DREG_PRTYP		0x004
+#define D40_DREG_PRSME		0x008
+#define D40_DREG_PRSMO		0x00C
+#define D40_DREG_PRMSE		0x010
+#define D40_DREG_PRMSO		0x014
+#define D40_DREG_PRMOE		0x018
+#define D40_DREG_PRMOO		0x01C
+#define D40_DREG_LCPA		0x020
+#define D40_DREG_LCLA		0x024
+#define D40_DREG_ACTIVE		0x050
+#define D40_DREG_ACTIVO		0x054
+#define D40_DREG_FSEB1		0x058
+#define D40_DREG_FSEB2		0x05C
+#define D40_DREG_PCMIS		0x060
+#define D40_DREG_PCICR		0x064
+#define D40_DREG_PCTIS		0x068
+#define D40_DREG_PCEIS		0x06C
+#define D40_DREG_LCMIS0		0x080
+#define D40_DREG_LCMIS1		0x084
+#define D40_DREG_LCMIS2		0x088
+#define D40_DREG_LCMIS3		0x08C
+#define D40_DREG_LCICR0		0x090
+#define D40_DREG_LCICR1		0x094
+#define D40_DREG_LCICR2		0x098
+#define D40_DREG_LCICR3		0x09C
+#define D40_DREG_LCTIS0		0x0A0
+#define D40_DREG_LCTIS1		0x0A4
+#define D40_DREG_LCTIS2		0x0A8
+#define D40_DREG_LCTIS3		0x0AC
+#define D40_DREG_LCEIS0		0x0B0
+#define D40_DREG_LCEIS1		0x0B4
+#define D40_DREG_LCEIS2		0x0B8
+#define D40_DREG_LCEIS3		0x0BC
+#define D40_DREG_STFU		0xFC8
+#define D40_DREG_ICFG		0xFCC
+#define D40_DREG_PERIPHID0	0xFE0
+#define D40_DREG_PERIPHID1	0xFE4
+#define D40_DREG_PERIPHID2	0xFE8
+#define D40_DREG_PERIPHID3	0xFEC
+#define D40_DREG_CELLID0	0xFF0
+#define D40_DREG_CELLID1	0xFF4
+#define D40_DREG_CELLID2	0xFF8
+#define D40_DREG_CELLID3	0xFFC
+
+/* LLI related structures */
+
+/**
+ * struct d40_phy_lli - The basic configration register for each physical
+ * channel.
+ *
+ * @reg_cfg: The configuration register.
+ * @reg_elt: The element register.
+ * @reg_ptr: The pointer register.
+ * @reg_lnk: The link register.
+ *
+ * These registers are set up for both physical and logical transfers
+ * Note that the bit in each register means differently in logical and
+ * physical(standard) mode.
+ *
+ * This struct must be 16 bytes aligned, and only contain physical registers
+ * since it will be directly accessed by the DMA.
+ */
+struct d40_phy_lli {
+	u32 reg_cfg;
+	u32 reg_elt;
+	u32 reg_ptr;
+	u32 reg_lnk;
+};
+
+/**
+ * struct d40_phy_lli_bidir - struct for a transfer.
+ *
+ * @src: Register settings for src channel.
+ * @dst: Register settings for dst channel.
+ * @dst_addr: Physical destination address.
+ * @src_addr: Physical source address.
+ *
+ * All DMA transfers have a source and a destination.
+ */
+
+struct d40_phy_lli_bidir {
+	struct d40_phy_lli	*src;
+	struct d40_phy_lli	*dst;
+	dma_addr_t		 dst_addr;
+	dma_addr_t		 src_addr;
+};
+
+
+/**
+ * struct d40_log_lli - logical lli configuration
+ *
+ * @lcsp02: Either maps to register lcsp0 if src or lcsp2 if dst.
+ * @lcsp13: Either maps to register lcsp1 if src or lcsp3 if dst.
+ *
+ * This struct must be 8 bytes aligned since it will be accessed directy by
+ * the DMA. Never add any none hw mapped registers to this struct.
+ */
+
+struct d40_log_lli {
+	u32 lcsp02;
+	u32 lcsp13;
+};
+
+/**
+ * struct d40_log_lli_bidir - For both src and dst
+ *
+ * @src: pointer to src lli configuration.
+ * @dst: pointer to dst lli configuration.
+ *
+ * You always have a src and a dst when doing DMA transfers.
+ */
+
+struct d40_log_lli_bidir {
+	struct d40_log_lli *src;
+	struct d40_log_lli *dst;
+};
+
+/**
+ * struct d40_log_lli_full - LCPA layout
+ *
+ * @lcsp0: Logical Channel Standard Param 0 - Src.
+ * @lcsp1: Logical Channel Standard Param 1 - Src.
+ * @lcsp2: Logical Channel Standard Param 2 - Dst.
+ * @lcsp3: Logical Channel Standard Param 3 - Dst.
+ *
+ * This struct maps to LCPA physical memory layout. Must map to
+ * the hw.
+ */
+struct d40_log_lli_full {
+	u32 lcsp0;
+	u32 lcsp1;
+	u32 lcsp2;
+	u32 lcsp3;
+};
+
+/**
+ * struct d40_def_lcsp - Default LCSP1 and LCSP3 settings
+ *
+ * @lcsp3: The default configuration for dst.
+ * @lcsp1: The default configuration for src.
+ */
+struct d40_def_lcsp {
+	u32 lcsp3;
+	u32 lcsp1;
+};
+
+/**
+ * struct d40_lcla_elem - Info for one LCA element.
+ *
+ * @src_id: logical channel src id
+ * @dst_id: logical channel dst id
+ * @src: LCPA formated src parameters
+ * @dst: LCPA formated dst parameters
+ *
+ */
+struct d40_lcla_elem {
+	int			src_id;
+	int			dst_id;
+	struct d40_log_lli     *src;
+	struct d40_log_lli     *dst;
+};
+
+/* Physical channels */
+
+void d40_phy_cfg(struct stedma40_chan_cfg *cfg,
+		 u32 *src_cfg, u32 *dst_cfg, bool is_log);
+
+void d40_log_cfg(struct stedma40_chan_cfg *cfg,
+		 u32 *lcsp1, u32 *lcsp2);
+
+int d40_phy_sg_to_lli(struct scatterlist *sg,
+		      int sg_len,
+		      dma_addr_t target,
+		      struct d40_phy_lli *lli,
+		      dma_addr_t lli_phys,
+		      u32 reg_cfg,
+		      u32 data_width,
+		      int psize,
+		      bool term_int);
+
+int d40_phy_fill_lli(struct d40_phy_lli *lli,
+		     dma_addr_t data,
+		     u32 data_size,
+		     int psize,
+		     dma_addr_t next_lli,
+		     u32 reg_cfg,
+		     bool term_int,
+		     u32 data_width,
+		     bool is_device);
+
+void d40_phy_lli_write(void __iomem *virtbase,
+		       u32 phy_chan_num,
+		       struct d40_phy_lli *lli_dst,
+		       struct d40_phy_lli *lli_src);
+
+/* Logical channels */
+
+void d40_log_fill_lli(struct d40_log_lli *lli,
+		      dma_addr_t data, u32 data_size,
+		      u32 lli_next_off, u32 reg_cfg,
+		      u32 data_width,
+		      bool term_int, bool addr_inc);
+
+int d40_log_sg_to_dev(struct d40_lcla_elem *lcla,
+		      struct scatterlist *sg,
+		      int sg_len,
+		      struct d40_log_lli_bidir *lli,
+		      struct d40_def_lcsp *lcsp,
+		      u32 src_data_width,
+		      u32 dst_data_width,
+		      enum dma_data_direction direction,
+		      bool term_int, dma_addr_t dev_addr, int max_len,
+		      int llis_per_log);
+
+void d40_log_lli_write(struct d40_log_lli_full *lcpa,
+		       struct d40_log_lli *lcla_src,
+		       struct d40_log_lli *lcla_dst,
+		       struct d40_log_lli *lli_dst,
+		       struct d40_log_lli *lli_src,
+		       int llis_per_log);
+
+int d40_log_sg_to_lli(int lcla_id,
+		      struct scatterlist *sg,
+		      int sg_len,
+		      struct d40_log_lli *lli_sg,
+		      u32 lcsp13, /* src or dst*/
+		      u32 data_width,
+		      bool term_int, int max_len, int llis_per_log);
+
+#endif /* STE_DMA40_LLI_H */