ARM: kernel: implement stack pointer save array through MPIDR hashing

Current implementation of cpu_{suspend}/cpu_{resume} relies on the MPIDR
to index the array of pointers where the context is saved and restored.
The current approach works as long as the MPIDR can be considered a
linear index, so that the pointers array can simply be dereferenced by
using the MPIDR[7:0] value.
On ARM multi-cluster systems, where the MPIDR may not be a linear index,
to properly dereference the stack pointer array, a mapping function should
be applied to it so that it can be used for arrays look-ups.

This patch adds code in the cpu_{suspend}/cpu_{resume} implementation
that relies on shifting and ORing hashing method to map a MPIDR value to a
set of buckets precomputed at boot to have a collision free mapping from
MPIDR to context pointers.

The hashing algorithm must be simple, fast, and implementable with few
instructions since in the cpu_resume path the mapping is carried out with
the MMU off and the I-cache off, hence code and data are fetched from DRAM
with no-caching available. Simplicity is counterbalanced with a little
increase of memory (allocated dynamically) for stack pointers buckets, that
should be anyway fairly limited on most systems.

Memory for context pointers is allocated in a early_initcall with
size precomputed and stashed previously in kernel data structures.
Memory for context pointers is allocated through kmalloc; this
guarantees contiguous physical addresses for the allocated memory which
is fundamental to the correct functioning of the resume mechanism that
relies on the context pointer array to be a chunk of contiguous physical
memory. Virtual to physical address conversion for the context pointer
array base is carried out at boot to avoid fiddling with virt_to_phys
conversions in the cpu_resume path which is quite fragile and should be
optimized to execute as few instructions as possible.
Virtual and physical context pointer base array addresses are stashed in a
struct that is accessible from assembly using values generated through the
asm-offsets.c mechanism.

Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Colin Cross <ccross@android.com>
Cc: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Amit Kucheria <amit.kucheria@linaro.org>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Nicolas Pitre <nico@linaro.org>
Tested-by: Shawn Guo <shawn.guo@linaro.org>
Tested-by: Kevin Hilman <khilman@linaro.org>
Tested-by: Stephen Warren <swarren@wwwdotorg.org>
diff --git a/arch/arm/kernel/suspend.c b/arch/arm/kernel/suspend.c
index 38a5067..41cf3cb 100644
--- a/arch/arm/kernel/suspend.c
+++ b/arch/arm/kernel/suspend.c
@@ -1,9 +1,12 @@
 #include <linux/init.h>
+#include <linux/slab.h>
 
+#include <asm/cacheflush.h>
 #include <asm/idmap.h>
 #include <asm/pgalloc.h>
 #include <asm/pgtable.h>
 #include <asm/memory.h>
+#include <asm/smp_plat.h>
 #include <asm/suspend.h>
 #include <asm/tlbflush.h>
 
@@ -82,3 +85,20 @@
 	outer_clean_range(virt_to_phys(save_ptr),
 			  virt_to_phys(save_ptr) + sizeof(*save_ptr));
 }
+
+extern struct sleep_save_sp sleep_save_sp;
+
+static int cpu_suspend_alloc_sp(void)
+{
+	void *ctx_ptr;
+	/* ctx_ptr is an array of physical addresses */
+	ctx_ptr = kcalloc(mpidr_hash_size(), sizeof(u32), GFP_KERNEL);
+
+	if (WARN_ON(!ctx_ptr))
+		return -ENOMEM;
+	sleep_save_sp.save_ptr_stash = ctx_ptr;
+	sleep_save_sp.save_ptr_stash_phys = virt_to_phys(ctx_ptr);
+	sync_cache_w(&sleep_save_sp);
+	return 0;
+}
+early_initcall(cpu_suspend_alloc_sp);