mm: Protect operations adding pages to page cache with invalidate_lock

Currently, serializing operations such as page fault, read, or readahead
against hole punching is rather difficult. The basic race scheme is
like:

fallocate(FALLOC_FL_PUNCH_HOLE)			read / fault / ..
  truncate_inode_pages_range()
						  <create pages in page
						   cache here>
  <update fs block mapping and free blocks>

Now the problem is in this way read / page fault / readahead can
instantiate pages in page cache with potentially stale data (if blocks
get quickly reused). Avoiding this race is not simple - page locks do
not work because we want to make sure there are *no* pages in given
range. inode->i_rwsem does not work because page fault happens under
mmap_sem which ranks below inode->i_rwsem. Also using it for reads makes
the performance for mixed read-write workloads suffer.

So create a new rw_semaphore in the address_space - invalidate_lock -
that protects adding of pages to page cache for page faults / reads /
readahead.

Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
diff --git a/mm/rmap.c b/mm/rmap.c
index a8b0192..86471aa 100644
--- a/mm/rmap.c
+++ b/mm/rmap.c
@@ -22,24 +22,25 @@
  *
  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
  *   mm->mmap_lock
- *     page->flags PG_locked (lock_page)   * (see hugetlbfs below)
- *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
- *         mapping->i_mmap_rwsem
- *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
- *           anon_vma->rwsem
- *             mm->page_table_lock or pte_lock
- *               swap_lock (in swap_duplicate, swap_info_get)
- *                 mmlist_lock (in mmput, drain_mmlist and others)
- *                 mapping->private_lock (in __set_page_dirty_buffers)
- *                   lock_page_memcg move_lock (in __set_page_dirty_buffers)
- *                     i_pages lock (widely used)
- *                       lruvec->lru_lock (in lock_page_lruvec_irq)
- *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
- *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
- *                   sb_lock (within inode_lock in fs/fs-writeback.c)
- *                   i_pages lock (widely used, in set_page_dirty,
- *                             in arch-dependent flush_dcache_mmap_lock,
- *                             within bdi.wb->list_lock in __sync_single_inode)
+ *     mapping->invalidate_lock (in filemap_fault)
+ *       page->flags PG_locked (lock_page)   * (see hugetlbfs below)
+ *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
+ *           mapping->i_mmap_rwsem
+ *             hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
+ *             anon_vma->rwsem
+ *               mm->page_table_lock or pte_lock
+ *                 swap_lock (in swap_duplicate, swap_info_get)
+ *                   mmlist_lock (in mmput, drain_mmlist and others)
+ *                   mapping->private_lock (in __set_page_dirty_buffers)
+ *                     lock_page_memcg move_lock (in __set_page_dirty_buffers)
+ *                       i_pages lock (widely used)
+ *                         lruvec->lru_lock (in lock_page_lruvec_irq)
+ *                   inode->i_lock (in set_page_dirty's __mark_inode_dirty)
+ *                   bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
+ *                     sb_lock (within inode_lock in fs/fs-writeback.c)
+ *                     i_pages lock (widely used, in set_page_dirty,
+ *                               in arch-dependent flush_dcache_mmap_lock,
+ *                               within bdi.wb->list_lock in __sync_single_inode)
  *
  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
  *   ->tasklist_lock