xfs: rename xfs_sync.[ch] to xfs_icache.[ch]

xfs_sync.c now only contains inode reclaim functions and inode cache
iteration functions. It is not related to sync operations anymore.
Rename to xfs_icache.c to reflect it's contents and prepare for
consolidation with the other inode cache file that exists
(xfs_iget.c).

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>

diff --git a/fs/xfs/xfs_icache.c b/fs/xfs/xfs_icache.c
new file mode 100644
index 0000000..eba216f
--- /dev/null
+++ b/fs/xfs/xfs_icache.c
@@ -0,0 +1,715 @@
+/*
+ * Copyright (c) 2000-2005 Silicon Graphics, Inc.
+ * All Rights Reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it would be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write the Free Software Foundation,
+ * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
+ */
+#include "xfs.h"
+#include "xfs_fs.h"
+#include "xfs_types.h"
+#include "xfs_log.h"
+#include "xfs_log_priv.h"
+#include "xfs_inum.h"
+#include "xfs_trans.h"
+#include "xfs_trans_priv.h"
+#include "xfs_sb.h"
+#include "xfs_ag.h"
+#include "xfs_mount.h"
+#include "xfs_bmap_btree.h"
+#include "xfs_inode.h"
+#include "xfs_dinode.h"
+#include "xfs_error.h"
+#include "xfs_filestream.h"
+#include "xfs_vnodeops.h"
+#include "xfs_inode_item.h"
+#include "xfs_quota.h"
+#include "xfs_trace.h"
+#include "xfs_fsops.h"
+#include "xfs_icache.h"
+
+#include <linux/kthread.h>
+#include <linux/freezer.h>
+
+/*
+ * The inode lookup is done in batches to keep the amount of lock traffic and
+ * radix tree lookups to a minimum. The batch size is a trade off between
+ * lookup reduction and stack usage. This is in the reclaim path, so we can't
+ * be too greedy.
+ */
+#define XFS_LOOKUP_BATCH	32
+
+STATIC int
+xfs_inode_ag_walk_grab(
+	struct xfs_inode	*ip)
+{
+	struct inode		*inode = VFS_I(ip);
+
+	ASSERT(rcu_read_lock_held());
+
+	/*
+	 * check for stale RCU freed inode
+	 *
+	 * If the inode has been reallocated, it doesn't matter if it's not in
+	 * the AG we are walking - we are walking for writeback, so if it
+	 * passes all the "valid inode" checks and is dirty, then we'll write
+	 * it back anyway.  If it has been reallocated and still being
+	 * initialised, the XFS_INEW check below will catch it.
+	 */
+	spin_lock(&ip->i_flags_lock);
+	if (!ip->i_ino)
+		goto out_unlock_noent;
+
+	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
+	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
+		goto out_unlock_noent;
+	spin_unlock(&ip->i_flags_lock);
+
+	/* nothing to sync during shutdown */
+	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
+		return EFSCORRUPTED;
+
+	/* If we can't grab the inode, it must on it's way to reclaim. */
+	if (!igrab(inode))
+		return ENOENT;
+
+	if (is_bad_inode(inode)) {
+		IRELE(ip);
+		return ENOENT;
+	}
+
+	/* inode is valid */
+	return 0;
+
+out_unlock_noent:
+	spin_unlock(&ip->i_flags_lock);
+	return ENOENT;
+}
+
+STATIC int
+xfs_inode_ag_walk(
+	struct xfs_mount	*mp,
+	struct xfs_perag	*pag,
+	int			(*execute)(struct xfs_inode *ip,
+					   struct xfs_perag *pag, int flags),
+	int			flags)
+{
+	uint32_t		first_index;
+	int			last_error = 0;
+	int			skipped;
+	int			done;
+	int			nr_found;
+
+restart:
+	done = 0;
+	skipped = 0;
+	first_index = 0;
+	nr_found = 0;
+	do {
+		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
+		int		error = 0;
+		int		i;
+
+		rcu_read_lock();
+		nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
+					(void **)batch, first_index,
+					XFS_LOOKUP_BATCH);
+		if (!nr_found) {
+			rcu_read_unlock();
+			break;
+		}
+
+		/*
+		 * Grab the inodes before we drop the lock. if we found
+		 * nothing, nr == 0 and the loop will be skipped.
+		 */
+		for (i = 0; i < nr_found; i++) {
+			struct xfs_inode *ip = batch[i];
+
+			if (done || xfs_inode_ag_walk_grab(ip))
+				batch[i] = NULL;
+
+			/*
+			 * Update the index for the next lookup. Catch
+			 * overflows into the next AG range which can occur if
+			 * we have inodes in the last block of the AG and we
+			 * are currently pointing to the last inode.
+			 *
+			 * Because we may see inodes that are from the wrong AG
+			 * due to RCU freeing and reallocation, only update the
+			 * index if it lies in this AG. It was a race that lead
+			 * us to see this inode, so another lookup from the
+			 * same index will not find it again.
+			 */
+			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
+				continue;
+			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
+			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
+				done = 1;
+		}
+
+		/* unlock now we've grabbed the inodes. */
+		rcu_read_unlock();
+
+		for (i = 0; i < nr_found; i++) {
+			if (!batch[i])
+				continue;
+			error = execute(batch[i], pag, flags);
+			IRELE(batch[i]);
+			if (error == EAGAIN) {
+				skipped++;
+				continue;
+			}
+			if (error && last_error != EFSCORRUPTED)
+				last_error = error;
+		}
+
+		/* bail out if the filesystem is corrupted.  */
+		if (error == EFSCORRUPTED)
+			break;
+
+		cond_resched();
+
+	} while (nr_found && !done);
+
+	if (skipped) {
+		delay(1);
+		goto restart;
+	}
+	return last_error;
+}
+
+int
+xfs_inode_ag_iterator(
+	struct xfs_mount	*mp,
+	int			(*execute)(struct xfs_inode *ip,
+					   struct xfs_perag *pag, int flags),
+	int			flags)
+{
+	struct xfs_perag	*pag;
+	int			error = 0;
+	int			last_error = 0;
+	xfs_agnumber_t		ag;
+
+	ag = 0;
+	while ((pag = xfs_perag_get(mp, ag))) {
+		ag = pag->pag_agno + 1;
+		error = xfs_inode_ag_walk(mp, pag, execute, flags);
+		xfs_perag_put(pag);
+		if (error) {
+			last_error = error;
+			if (error == EFSCORRUPTED)
+				break;
+		}
+	}
+	return XFS_ERROR(last_error);
+}
+
+/*
+ * Queue a new inode reclaim pass if there are reclaimable inodes and there
+ * isn't a reclaim pass already in progress. By default it runs every 5s based
+ * on the xfs periodic sync default of 30s. Perhaps this should have it's own
+ * tunable, but that can be done if this method proves to be ineffective or too
+ * aggressive.
+ */
+static void
+xfs_reclaim_work_queue(
+	struct xfs_mount        *mp)
+{
+
+	rcu_read_lock();
+	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
+		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
+			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
+	}
+	rcu_read_unlock();
+}
+
+/*
+ * This is a fast pass over the inode cache to try to get reclaim moving on as
+ * many inodes as possible in a short period of time. It kicks itself every few
+ * seconds, as well as being kicked by the inode cache shrinker when memory
+ * goes low. It scans as quickly as possible avoiding locked inodes or those
+ * already being flushed, and once done schedules a future pass.
+ */
+void
+xfs_reclaim_worker(
+	struct work_struct *work)
+{
+	struct xfs_mount *mp = container_of(to_delayed_work(work),
+					struct xfs_mount, m_reclaim_work);
+
+	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
+	xfs_reclaim_work_queue(mp);
+}
+
+void
+__xfs_inode_set_reclaim_tag(
+	struct xfs_perag	*pag,
+	struct xfs_inode	*ip)
+{
+	radix_tree_tag_set(&pag->pag_ici_root,
+			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
+			   XFS_ICI_RECLAIM_TAG);
+
+	if (!pag->pag_ici_reclaimable) {
+		/* propagate the reclaim tag up into the perag radix tree */
+		spin_lock(&ip->i_mount->m_perag_lock);
+		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
+				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
+				XFS_ICI_RECLAIM_TAG);
+		spin_unlock(&ip->i_mount->m_perag_lock);
+
+		/* schedule periodic background inode reclaim */
+		xfs_reclaim_work_queue(ip->i_mount);
+
+		trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
+							-1, _RET_IP_);
+	}
+	pag->pag_ici_reclaimable++;
+}
+
+/*
+ * We set the inode flag atomically with the radix tree tag.
+ * Once we get tag lookups on the radix tree, this inode flag
+ * can go away.
+ */
+void
+xfs_inode_set_reclaim_tag(
+	xfs_inode_t	*ip)
+{
+	struct xfs_mount *mp = ip->i_mount;
+	struct xfs_perag *pag;
+
+	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
+	spin_lock(&pag->pag_ici_lock);
+	spin_lock(&ip->i_flags_lock);
+	__xfs_inode_set_reclaim_tag(pag, ip);
+	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
+	spin_unlock(&ip->i_flags_lock);
+	spin_unlock(&pag->pag_ici_lock);
+	xfs_perag_put(pag);
+}
+
+STATIC void
+__xfs_inode_clear_reclaim(
+	xfs_perag_t	*pag,
+	xfs_inode_t	*ip)
+{
+	pag->pag_ici_reclaimable--;
+	if (!pag->pag_ici_reclaimable) {
+		/* clear the reclaim tag from the perag radix tree */
+		spin_lock(&ip->i_mount->m_perag_lock);
+		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
+				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
+				XFS_ICI_RECLAIM_TAG);
+		spin_unlock(&ip->i_mount->m_perag_lock);
+		trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
+							-1, _RET_IP_);
+	}
+}
+
+void
+__xfs_inode_clear_reclaim_tag(
+	xfs_mount_t	*mp,
+	xfs_perag_t	*pag,
+	xfs_inode_t	*ip)
+{
+	radix_tree_tag_clear(&pag->pag_ici_root,
+			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
+	__xfs_inode_clear_reclaim(pag, ip);
+}
+
+/*
+ * Grab the inode for reclaim exclusively.
+ * Return 0 if we grabbed it, non-zero otherwise.
+ */
+STATIC int
+xfs_reclaim_inode_grab(
+	struct xfs_inode	*ip,
+	int			flags)
+{
+	ASSERT(rcu_read_lock_held());
+
+	/* quick check for stale RCU freed inode */
+	if (!ip->i_ino)
+		return 1;
+
+	/*
+	 * If we are asked for non-blocking operation, do unlocked checks to
+	 * see if the inode already is being flushed or in reclaim to avoid
+	 * lock traffic.
+	 */
+	if ((flags & SYNC_TRYLOCK) &&
+	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
+		return 1;
+
+	/*
+	 * The radix tree lock here protects a thread in xfs_iget from racing
+	 * with us starting reclaim on the inode.  Once we have the
+	 * XFS_IRECLAIM flag set it will not touch us.
+	 *
+	 * Due to RCU lookup, we may find inodes that have been freed and only
+	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
+	 * aren't candidates for reclaim at all, so we must check the
+	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
+	 */
+	spin_lock(&ip->i_flags_lock);
+	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
+	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
+		/* not a reclaim candidate. */
+		spin_unlock(&ip->i_flags_lock);
+		return 1;
+	}
+	__xfs_iflags_set(ip, XFS_IRECLAIM);
+	spin_unlock(&ip->i_flags_lock);
+	return 0;
+}
+
+/*
+ * Inodes in different states need to be treated differently. The following
+ * table lists the inode states and the reclaim actions necessary:
+ *
+ *	inode state	     iflush ret		required action
+ *      ---------------      ----------         ---------------
+ *	bad			-		reclaim
+ *	shutdown		EIO		unpin and reclaim
+ *	clean, unpinned		0		reclaim
+ *	stale, unpinned		0		reclaim
+ *	clean, pinned(*)	0		requeue
+ *	stale, pinned		EAGAIN		requeue
+ *	dirty, async		-		requeue
+ *	dirty, sync		0		reclaim
+ *
+ * (*) dgc: I don't think the clean, pinned state is possible but it gets
+ * handled anyway given the order of checks implemented.
+ *
+ * Also, because we get the flush lock first, we know that any inode that has
+ * been flushed delwri has had the flush completed by the time we check that
+ * the inode is clean.
+ *
+ * Note that because the inode is flushed delayed write by AIL pushing, the
+ * flush lock may already be held here and waiting on it can result in very
+ * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
+ * the caller should push the AIL first before trying to reclaim inodes to
+ * minimise the amount of time spent waiting.  For background relaim, we only
+ * bother to reclaim clean inodes anyway.
+ *
+ * Hence the order of actions after gaining the locks should be:
+ *	bad		=> reclaim
+ *	shutdown	=> unpin and reclaim
+ *	pinned, async	=> requeue
+ *	pinned, sync	=> unpin
+ *	stale		=> reclaim
+ *	clean		=> reclaim
+ *	dirty, async	=> requeue
+ *	dirty, sync	=> flush, wait and reclaim
+ */
+STATIC int
+xfs_reclaim_inode(
+	struct xfs_inode	*ip,
+	struct xfs_perag	*pag,
+	int			sync_mode)
+{
+	struct xfs_buf		*bp = NULL;
+	int			error;
+
+restart:
+	error = 0;
+	xfs_ilock(ip, XFS_ILOCK_EXCL);
+	if (!xfs_iflock_nowait(ip)) {
+		if (!(sync_mode & SYNC_WAIT))
+			goto out;
+		xfs_iflock(ip);
+	}
+
+	if (is_bad_inode(VFS_I(ip)))
+		goto reclaim;
+	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
+		xfs_iunpin_wait(ip);
+		xfs_iflush_abort(ip, false);
+		goto reclaim;
+	}
+	if (xfs_ipincount(ip)) {
+		if (!(sync_mode & SYNC_WAIT))
+			goto out_ifunlock;
+		xfs_iunpin_wait(ip);
+	}
+	if (xfs_iflags_test(ip, XFS_ISTALE))
+		goto reclaim;
+	if (xfs_inode_clean(ip))
+		goto reclaim;
+
+	/*
+	 * Never flush out dirty data during non-blocking reclaim, as it would
+	 * just contend with AIL pushing trying to do the same job.
+	 */
+	if (!(sync_mode & SYNC_WAIT))
+		goto out_ifunlock;
+
+	/*
+	 * Now we have an inode that needs flushing.
+	 *
+	 * Note that xfs_iflush will never block on the inode buffer lock, as
+	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
+	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
+	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
+	 * result in an ABBA deadlock with xfs_ifree_cluster().
+	 *
+	 * As xfs_ifree_cluser() must gather all inodes that are active in the
+	 * cache to mark them stale, if we hit this case we don't actually want
+	 * to do IO here - we want the inode marked stale so we can simply
+	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
+	 * inode, back off and try again.  Hopefully the next pass through will
+	 * see the stale flag set on the inode.
+	 */
+	error = xfs_iflush(ip, &bp);
+	if (error == EAGAIN) {
+		xfs_iunlock(ip, XFS_ILOCK_EXCL);
+		/* backoff longer than in xfs_ifree_cluster */
+		delay(2);
+		goto restart;
+	}
+
+	if (!error) {
+		error = xfs_bwrite(bp);
+		xfs_buf_relse(bp);
+	}
+
+	xfs_iflock(ip);
+reclaim:
+	xfs_ifunlock(ip);
+	xfs_iunlock(ip, XFS_ILOCK_EXCL);
+
+	XFS_STATS_INC(xs_ig_reclaims);
+	/*
+	 * Remove the inode from the per-AG radix tree.
+	 *
+	 * Because radix_tree_delete won't complain even if the item was never
+	 * added to the tree assert that it's been there before to catch
+	 * problems with the inode life time early on.
+	 */
+	spin_lock(&pag->pag_ici_lock);
+	if (!radix_tree_delete(&pag->pag_ici_root,
+				XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
+		ASSERT(0);
+	__xfs_inode_clear_reclaim(pag, ip);
+	spin_unlock(&pag->pag_ici_lock);
+
+	/*
+	 * Here we do an (almost) spurious inode lock in order to coordinate
+	 * with inode cache radix tree lookups.  This is because the lookup
+	 * can reference the inodes in the cache without taking references.
+	 *
+	 * We make that OK here by ensuring that we wait until the inode is
+	 * unlocked after the lookup before we go ahead and free it.
+	 */
+	xfs_ilock(ip, XFS_ILOCK_EXCL);
+	xfs_qm_dqdetach(ip);
+	xfs_iunlock(ip, XFS_ILOCK_EXCL);
+
+	xfs_inode_free(ip);
+	return error;
+
+out_ifunlock:
+	xfs_ifunlock(ip);
+out:
+	xfs_iflags_clear(ip, XFS_IRECLAIM);
+	xfs_iunlock(ip, XFS_ILOCK_EXCL);
+	/*
+	 * We could return EAGAIN here to make reclaim rescan the inode tree in
+	 * a short while. However, this just burns CPU time scanning the tree
+	 * waiting for IO to complete and the reclaim work never goes back to
+	 * the idle state. Instead, return 0 to let the next scheduled
+	 * background reclaim attempt to reclaim the inode again.
+	 */
+	return 0;
+}
+
+/*
+ * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
+ * corrupted, we still want to try to reclaim all the inodes. If we don't,
+ * then a shut down during filesystem unmount reclaim walk leak all the
+ * unreclaimed inodes.
+ */
+int
+xfs_reclaim_inodes_ag(
+	struct xfs_mount	*mp,
+	int			flags,
+	int			*nr_to_scan)
+{
+	struct xfs_perag	*pag;
+	int			error = 0;
+	int			last_error = 0;
+	xfs_agnumber_t		ag;
+	int			trylock = flags & SYNC_TRYLOCK;
+	int			skipped;
+
+restart:
+	ag = 0;
+	skipped = 0;
+	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
+		unsigned long	first_index = 0;
+		int		done = 0;
+		int		nr_found = 0;
+
+		ag = pag->pag_agno + 1;
+
+		if (trylock) {
+			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
+				skipped++;
+				xfs_perag_put(pag);
+				continue;
+			}
+			first_index = pag->pag_ici_reclaim_cursor;
+		} else
+			mutex_lock(&pag->pag_ici_reclaim_lock);
+
+		do {
+			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
+			int	i;
+
+			rcu_read_lock();
+			nr_found = radix_tree_gang_lookup_tag(
+					&pag->pag_ici_root,
+					(void **)batch, first_index,
+					XFS_LOOKUP_BATCH,
+					XFS_ICI_RECLAIM_TAG);
+			if (!nr_found) {
+				done = 1;
+				rcu_read_unlock();
+				break;
+			}
+
+			/*
+			 * Grab the inodes before we drop the lock. if we found
+			 * nothing, nr == 0 and the loop will be skipped.
+			 */
+			for (i = 0; i < nr_found; i++) {
+				struct xfs_inode *ip = batch[i];
+
+				if (done || xfs_reclaim_inode_grab(ip, flags))
+					batch[i] = NULL;
+
+				/*
+				 * Update the index for the next lookup. Catch
+				 * overflows into the next AG range which can
+				 * occur if we have inodes in the last block of
+				 * the AG and we are currently pointing to the
+				 * last inode.
+				 *
+				 * Because we may see inodes that are from the
+				 * wrong AG due to RCU freeing and
+				 * reallocation, only update the index if it
+				 * lies in this AG. It was a race that lead us
+				 * to see this inode, so another lookup from
+				 * the same index will not find it again.
+				 */
+				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
+								pag->pag_agno)
+					continue;
+				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
+				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
+					done = 1;
+			}
+
+			/* unlock now we've grabbed the inodes. */
+			rcu_read_unlock();
+
+			for (i = 0; i < nr_found; i++) {
+				if (!batch[i])
+					continue;
+				error = xfs_reclaim_inode(batch[i], pag, flags);
+				if (error && last_error != EFSCORRUPTED)
+					last_error = error;
+			}
+
+			*nr_to_scan -= XFS_LOOKUP_BATCH;
+
+			cond_resched();
+
+		} while (nr_found && !done && *nr_to_scan > 0);
+
+		if (trylock && !done)
+			pag->pag_ici_reclaim_cursor = first_index;
+		else
+			pag->pag_ici_reclaim_cursor = 0;
+		mutex_unlock(&pag->pag_ici_reclaim_lock);
+		xfs_perag_put(pag);
+	}
+
+	/*
+	 * if we skipped any AG, and we still have scan count remaining, do
+	 * another pass this time using blocking reclaim semantics (i.e
+	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
+	 * ensure that when we get more reclaimers than AGs we block rather
+	 * than spin trying to execute reclaim.
+	 */
+	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
+		trylock = 0;
+		goto restart;
+	}
+	return XFS_ERROR(last_error);
+}
+
+int
+xfs_reclaim_inodes(
+	xfs_mount_t	*mp,
+	int		mode)
+{
+	int		nr_to_scan = INT_MAX;
+
+	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
+}
+
+/*
+ * Scan a certain number of inodes for reclaim.
+ *
+ * When called we make sure that there is a background (fast) inode reclaim in
+ * progress, while we will throttle the speed of reclaim via doing synchronous
+ * reclaim of inodes. That means if we come across dirty inodes, we wait for
+ * them to be cleaned, which we hope will not be very long due to the
+ * background walker having already kicked the IO off on those dirty inodes.
+ */
+void
+xfs_reclaim_inodes_nr(
+	struct xfs_mount	*mp,
+	int			nr_to_scan)
+{
+	/* kick background reclaimer and push the AIL */
+	xfs_reclaim_work_queue(mp);
+	xfs_ail_push_all(mp->m_ail);
+
+	xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
+}
+
+/*
+ * Return the number of reclaimable inodes in the filesystem for
+ * the shrinker to determine how much to reclaim.
+ */
+int
+xfs_reclaim_inodes_count(
+	struct xfs_mount	*mp)
+{
+	struct xfs_perag	*pag;
+	xfs_agnumber_t		ag = 0;
+	int			reclaimable = 0;
+
+	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
+		ag = pag->pag_agno + 1;
+		reclaimable += pag->pag_ici_reclaimable;
+		xfs_perag_put(pag);
+	}
+	return reclaimable;
+}
+