time: Improve performance of time64_to_tm()

The current implementation of time64_to_tm() contains unnecessary loops,
branches and look-up tables. The new one uses an arithmetic-based algorithm
appeared in [1] and is approximately 3x faster (YMMV).

The drawback is that the new code isn't intuitive and contains many 'magic
numbers' (not unusual for this type of algorithm). However, [1] justifies
all those numbers and, given this function's history, the code is unlikely
to need much maintenance, if any at all.

Add a KUnit test for it which checks every day in a 160,000 years interval
centered at 1970-01-01 against the expected result.

[1] Neri, Schneider, "Euclidean Affine Functions and Applications to
Calendar Algorithms". https://arxiv.org/abs/2102.06959

Signed-off-by: Cassio Neri <cassio.neri@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210622213616.313046-1-cassio.neri@gmail.com
diff --git a/kernel/time/time_test.c b/kernel/time/time_test.c
new file mode 100644
index 0000000..341ebfa
--- /dev/null
+++ b/kernel/time/time_test.c
@@ -0,0 +1,98 @@
+// SPDX-License-Identifier: LGPL-2.1+
+
+#include <kunit/test.h>
+#include <linux/time.h>
+
+/*
+ * Traditional implementation of leap year evaluation.
+ */
+static bool is_leap(long year)
+{
+	return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);
+}
+
+/*
+ * Gets the last day of a month.
+ */
+static int last_day_of_month(long year, int month)
+{
+	if (month == 2)
+		return 28 + is_leap(year);
+	if (month == 4 || month == 6 || month == 9 || month == 11)
+		return 30;
+	return 31;
+}
+
+/*
+ * Advances a date by one day.
+ */
+static void advance_date(long *year, int *month, int *mday, int *yday)
+{
+	if (*mday != last_day_of_month(*year, *month)) {
+		++*mday;
+		++*yday;
+		return;
+	}
+
+	*mday = 1;
+	if (*month != 12) {
+		++*month;
+		++*yday;
+		return;
+	}
+
+	*month = 1;
+	*yday  = 0;
+	++*year;
+}
+
+/*
+ * Checks every day in a 160000 years interval centered at 1970-01-01
+ * against the expected result.
+ */
+static void time64_to_tm_test_date_range(struct kunit *test)
+{
+	/*
+	 * 80000 years	= (80000 / 400) * 400 years
+	 *		= (80000 / 400) * 146097 days
+	 *		= (80000 / 400) * 146097 * 86400 seconds
+	 */
+	time64_t total_secs = ((time64_t) 80000) / 400 * 146097 * 86400;
+	long year = 1970 - 80000;
+	int month = 1;
+	int mdday = 1;
+	int yday = 0;
+
+	struct tm result;
+	time64_t secs;
+	s64 days;
+
+	for (secs = -total_secs; secs <= total_secs; secs += 86400) {
+
+		time64_to_tm(secs, 0, &result);
+
+		days = div_s64(secs, 86400);
+
+		#define FAIL_MSG "%05ld/%02d/%02d (%2d) : %ld", \
+			year, month, mdday, yday, days
+
+		KUNIT_ASSERT_EQ_MSG(test, year - 1900, result.tm_year, FAIL_MSG);
+		KUNIT_ASSERT_EQ_MSG(test, month - 1, result.tm_mon, FAIL_MSG);
+		KUNIT_ASSERT_EQ_MSG(test, mdday, result.tm_mday, FAIL_MSG);
+		KUNIT_ASSERT_EQ_MSG(test, yday, result.tm_yday, FAIL_MSG);
+
+		advance_date(&year, &month, &mdday, &yday);
+	}
+}
+
+static struct kunit_case time_test_cases[] = {
+	KUNIT_CASE(time64_to_tm_test_date_range),
+	{}
+};
+
+static struct kunit_suite time_test_suite = {
+	.name = "time_test_cases",
+	.test_cases = time_test_cases,
+};
+
+kunit_test_suite(time_test_suite);