static keys: Add docs better explaining the whole 'struct static_key' mechanism

Add better documentation for static keys.

Signed-off-by: Jason Baron <jbaron@redhat.com>
Cc: rostedt@goodmis.org
Cc: mathieu.desnoyers@efficios.com
Cc: davem@davemloft.net
Cc: ddaney.cavm@gmail.com
Cc: a.p.zijlstra@chello.nl
Link: http://lkml.kernel.org/r/52570e566e5f1914f27b67e4eafb5781b8f9f9db.1329851692.git.jbaron@redhat.com
[ Added a 'Summary' section and rewrote it to explain static keys ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
diff --git a/Documentation/static-keys.txt b/Documentation/static-keys.txt
new file mode 100644
index 0000000..d93f3c0
--- /dev/null
+++ b/Documentation/static-keys.txt
@@ -0,0 +1,286 @@
+			Static Keys
+			-----------
+
+By: Jason Baron <jbaron@redhat.com>
+
+0) Abstract
+
+Static keys allows the inclusion of seldom used features in
+performance-sensitive fast-path kernel code, via a GCC feature and a code
+patching technique. A quick example:
+
+	struct static_key key = STATIC_KEY_INIT_FALSE;
+
+	...
+
+        if (static_key_false(&key))
+                do unlikely code
+        else
+                do likely code
+
+	...
+	static_key_slow_inc();
+	...
+	static_key_slow_inc();
+	...
+
+The static_key_false() branch will be generated into the code with as little
+impact to the likely code path as possible.
+
+
+1) Motivation
+
+
+Currently, tracepoints are implemented using a conditional branch. The
+conditional check requires checking a global variable for each tracepoint.
+Although the overhead of this check is small, it increases when the memory
+cache comes under pressure (memory cache lines for these global variables may
+be shared with other memory accesses). As we increase the number of tracepoints
+in the kernel this overhead may become more of an issue. In addition,
+tracepoints are often dormant (disabled) and provide no direct kernel
+functionality. Thus, it is highly desirable to reduce their impact as much as
+possible. Although tracepoints are the original motivation for this work, other
+kernel code paths should be able to make use of the static keys facility.
+
+
+2) Solution
+
+
+gcc (v4.5) adds a new 'asm goto' statement that allows branching to a label:
+
+http://gcc.gnu.org/ml/gcc-patches/2009-07/msg01556.html
+
+Using the 'asm goto', we can create branches that are either taken or not taken
+by default, without the need to check memory. Then, at run-time, we can patch
+the branch site to change the branch direction.
+
+For example, if we have a simple branch that is disabled by default:
+
+	if (static_key_false(&key))
+		printk("I am the true branch\n");
+
+Thus, by default the 'printk' will not be emitted. And the code generated will
+consist of a single atomic 'no-op' instruction (5 bytes on x86), in the
+straight-line code path. When the branch is 'flipped', we will patch the
+'no-op' in the straight-line codepath with a 'jump' instruction to the
+out-of-line true branch. Thus, changing branch direction is expensive but
+branch selection is basically 'free'. That is the basic tradeoff of this
+optimization.
+
+This lowlevel patching mechanism is called 'jump label patching', and it gives
+the basis for the static keys facility.
+
+3) Static key label API, usage and examples:
+
+
+In order to make use of this optimization you must first define a key:
+
+	struct static_key key;
+
+Which is initialized as:
+
+	struct static_key key = STATIC_KEY_INIT_TRUE;
+
+or:
+
+	struct static_key key = STATIC_KEY_INIT_FALSE;
+
+If the key is not initialized, it is default false. The 'struct static_key',
+must be a 'global'. That is, it can't be allocated on the stack or dynamically
+allocated at run-time.
+
+The key is then used in code as:
+
+        if (static_key_false(&key))
+                do unlikely code
+        else
+                do likely code
+
+Or:
+
+        if (static_key_true(&key))
+                do likely code
+        else
+                do unlikely code
+
+A key that is initialized via 'STATIC_KEY_INIT_FALSE', must be used in a
+'static_key_false()' construct. Likewise, a key initialized via
+'STATIC_KEY_INIT_TRUE' must be used in a 'static_key_true()' construct. A
+single key can be used in many branches, but all the branches must match the
+way that the key has been initialized.
+
+The branch(es) can then be switched via:
+
+	static_key_slow_inc(&key);
+	...
+	static_key_slow_dec(&key);
+
+Thus, 'static_key_slow_inc()' means 'make the branch true', and
+'static_key_slow_dec()' means 'make the the branch false' with appropriate
+reference counting. For example, if the key is initialized true, a
+static_key_slow_dec(), will switch the branch to false. And a subsequent
+static_key_slow_inc(), will change the branch back to true. Likewise, if the
+key is initialized false, a 'static_key_slow_inc()', will change the branch to
+true. And then a 'static_key_slow_dec()', will again make the branch false.
+
+An example usage in the kernel is the implementation of tracepoints:
+
+        static inline void trace_##name(proto)                          \
+        {                                                               \
+                if (static_key_false(&__tracepoint_##name.key))		\
+                        __DO_TRACE(&__tracepoint_##name,                \
+                                TP_PROTO(data_proto),                   \
+                                TP_ARGS(data_args),                     \
+                                TP_CONDITION(cond));                    \
+        }
+
+Tracepoints are disabled by default, and can be placed in performance critical
+pieces of the kernel. Thus, by using a static key, the tracepoints can have
+absolutely minimal impact when not in use.
+
+
+4) Architecture level code patching interface, 'jump labels'
+
+
+There are a few functions and macros that architectures must implement in order
+to take advantage of this optimization. If there is no architecture support, we
+simply fall back to a traditional, load, test, and jump sequence.
+
+* select HAVE_ARCH_JUMP_LABEL, see: arch/x86/Kconfig
+
+* #define JUMP_LABEL_NOP_SIZE, see: arch/x86/include/asm/jump_label.h
+
+* __always_inline bool arch_static_branch(struct static_key *key), see:
+					arch/x86/include/asm/jump_label.h
+
+* void arch_jump_label_transform(struct jump_entry *entry, enum jump_label_type type),
+					see: arch/x86/kernel/jump_label.c
+
+* __init_or_module void arch_jump_label_transform_static(struct jump_entry *entry, enum jump_label_type type),
+					see: arch/x86/kernel/jump_label.c
+
+
+* struct jump_entry, see: arch/x86/include/asm/jump_label.h
+
+
+5) Static keys / jump label analysis, results (x86_64):
+
+
+As an example, let's add the following branch to 'getppid()', such that the
+system call now looks like:
+
+SYSCALL_DEFINE0(getppid)
+{
+        int pid;
+
++       if (static_key_false(&key))
++               printk("I am the true branch\n");
+
+        rcu_read_lock();
+        pid = task_tgid_vnr(rcu_dereference(current->real_parent));
+        rcu_read_unlock();
+
+        return pid;
+}
+
+The resulting instructions with jump labels generated by GCC is:
+
+ffffffff81044290 <sys_getppid>:
+ffffffff81044290:       55                      push   %rbp
+ffffffff81044291:       48 89 e5                mov    %rsp,%rbp
+ffffffff81044294:       e9 00 00 00 00          jmpq   ffffffff81044299 <sys_getppid+0x9>
+ffffffff81044299:       65 48 8b 04 25 c0 b6    mov    %gs:0xb6c0,%rax
+ffffffff810442a0:       00 00
+ffffffff810442a2:       48 8b 80 80 02 00 00    mov    0x280(%rax),%rax
+ffffffff810442a9:       48 8b 80 b0 02 00 00    mov    0x2b0(%rax),%rax
+ffffffff810442b0:       48 8b b8 e8 02 00 00    mov    0x2e8(%rax),%rdi
+ffffffff810442b7:       e8 f4 d9 00 00          callq  ffffffff81051cb0 <pid_vnr>
+ffffffff810442bc:       5d                      pop    %rbp
+ffffffff810442bd:       48 98                   cltq
+ffffffff810442bf:       c3                      retq
+ffffffff810442c0:       48 c7 c7 e3 54 98 81    mov    $0xffffffff819854e3,%rdi
+ffffffff810442c7:       31 c0                   xor    %eax,%eax
+ffffffff810442c9:       e8 71 13 6d 00          callq  ffffffff8171563f <printk>
+ffffffff810442ce:       eb c9                   jmp    ffffffff81044299 <sys_getppid+0x9>
+
+Without the jump label optimization it looks like:
+
+ffffffff810441f0 <sys_getppid>:
+ffffffff810441f0:       8b 05 8a 52 d8 00       mov    0xd8528a(%rip),%eax        # ffffffff81dc9480 <key>
+ffffffff810441f6:       55                      push   %rbp
+ffffffff810441f7:       48 89 e5                mov    %rsp,%rbp
+ffffffff810441fa:       85 c0                   test   %eax,%eax
+ffffffff810441fc:       75 27                   jne    ffffffff81044225 <sys_getppid+0x35>
+ffffffff810441fe:       65 48 8b 04 25 c0 b6    mov    %gs:0xb6c0,%rax
+ffffffff81044205:       00 00
+ffffffff81044207:       48 8b 80 80 02 00 00    mov    0x280(%rax),%rax
+ffffffff8104420e:       48 8b 80 b0 02 00 00    mov    0x2b0(%rax),%rax
+ffffffff81044215:       48 8b b8 e8 02 00 00    mov    0x2e8(%rax),%rdi
+ffffffff8104421c:       e8 2f da 00 00          callq  ffffffff81051c50 <pid_vnr>
+ffffffff81044221:       5d                      pop    %rbp
+ffffffff81044222:       48 98                   cltq
+ffffffff81044224:       c3                      retq
+ffffffff81044225:       48 c7 c7 13 53 98 81    mov    $0xffffffff81985313,%rdi
+ffffffff8104422c:       31 c0                   xor    %eax,%eax
+ffffffff8104422e:       e8 60 0f 6d 00          callq  ffffffff81715193 <printk>
+ffffffff81044233:       eb c9                   jmp    ffffffff810441fe <sys_getppid+0xe>
+ffffffff81044235:       66 66 2e 0f 1f 84 00    data32 nopw %cs:0x0(%rax,%rax,1)
+ffffffff8104423c:       00 00 00 00
+
+Thus, the disable jump label case adds a 'mov', 'test' and 'jne' instruction
+vs. the jump label case just has a 'no-op' or 'jmp 0'. (The jmp 0, is patched
+to a 5 byte atomic no-op instruction at boot-time.) Thus, the disabled jump
+label case adds:
+
+6 (mov) + 2 (test) + 2 (jne) = 10 - 5 (5 byte jump 0) = 5 addition bytes.
+
+If we then include the padding bytes, the jump label code saves, 16 total bytes
+of instruction memory for this small fucntion. In this case the non-jump label
+function is 80 bytes long. Thus, we have have saved 20% of the instruction
+footprint. We can in fact improve this even further, since the 5-byte no-op
+really can be a 2-byte no-op since we can reach the branch with a 2-byte jmp.
+However, we have not yet implemented optimal no-op sizes (they are currently
+hard-coded).
+
+Since there are a number of static key API uses in the scheduler paths,
+'pipe-test' (also known as 'perf bench sched pipe') can be used to show the
+performance improvement. Testing done on 3.3.0-rc2:
+
+jump label disabled:
+
+ Performance counter stats for 'bash -c /tmp/pipe-test' (50 runs):
+
+        855.700314 task-clock                #    0.534 CPUs utilized            ( +-  0.11% )
+           200,003 context-switches          #    0.234 M/sec                    ( +-  0.00% )
+                 0 CPU-migrations            #    0.000 M/sec                    ( +- 39.58% )
+               487 page-faults               #    0.001 M/sec                    ( +-  0.02% )
+     1,474,374,262 cycles                    #    1.723 GHz                      ( +-  0.17% )
+   <not supported> stalled-cycles-frontend
+   <not supported> stalled-cycles-backend
+     1,178,049,567 instructions              #    0.80  insns per cycle          ( +-  0.06% )
+       208,368,926 branches                  #  243.507 M/sec                    ( +-  0.06% )
+         5,569,188 branch-misses             #    2.67% of all branches          ( +-  0.54% )
+
+       1.601607384 seconds time elapsed                                          ( +-  0.07% )
+
+jump label enabled:
+
+ Performance counter stats for 'bash -c /tmp/pipe-test' (50 runs):
+
+        841.043185 task-clock                #    0.533 CPUs utilized            ( +-  0.12% )
+           200,004 context-switches          #    0.238 M/sec                    ( +-  0.00% )
+                 0 CPU-migrations            #    0.000 M/sec                    ( +- 40.87% )
+               487 page-faults               #    0.001 M/sec                    ( +-  0.05% )
+     1,432,559,428 cycles                    #    1.703 GHz                      ( +-  0.18% )
+   <not supported> stalled-cycles-frontend
+   <not supported> stalled-cycles-backend
+     1,175,363,994 instructions              #    0.82  insns per cycle          ( +-  0.04% )
+       206,859,359 branches                  #  245.956 M/sec                    ( +-  0.04% )
+         4,884,119 branch-misses             #    2.36% of all branches          ( +-  0.85% )
+
+       1.579384366 seconds time elapsed
+
+The percentage of saved branches is .7%, and we've saved 12% on
+'branch-misses'. This is where we would expect to get the most savings, since
+this optimization is about reducing the number of branches. In addition, we've
+saved .2% on instructions, and 2.8% on cycles and 1.4% on elapsed time.