KVM: PPC: Maintain a doubly-linked list of guest HPTEs for each gfn
This expands the reverse mapping array to contain two links for each
HPTE which are used to link together HPTEs that correspond to the
same guest logical page. Each circular list of HPTEs is pointed to
by the rmap array entry for the guest logical page, pointed to by
the relevant memslot. Links are 32-bit HPT entry indexes rather than
full 64-bit pointers, to save space. We use 3 of the remaining 32
bits in the rmap array entries as a lock bit, a referenced bit and
a present bit (the present bit is needed since HPTE index 0 is valid).
The bit lock for the rmap chain nests inside the HPTE lock bit.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
diff --git a/arch/powerpc/include/asm/kvm_host.h b/arch/powerpc/include/asm/kvm_host.h
index 243bc80..97cb2d7 100644
--- a/arch/powerpc/include/asm/kvm_host.h
+++ b/arch/powerpc/include/asm/kvm_host.h
@@ -170,12 +170,27 @@
/*
* The reverse mapping array has one entry for each HPTE,
* which stores the guest's view of the second word of the HPTE
- * (including the guest physical address of the mapping).
+ * (including the guest physical address of the mapping),
+ * plus forward and backward pointers in a doubly-linked ring
+ * of HPTEs that map the same host page. The pointers in this
+ * ring are 32-bit HPTE indexes, to save space.
*/
struct revmap_entry {
unsigned long guest_rpte;
+ unsigned int forw, back;
};
+/*
+ * We use the top bit of each memslot->rmap entry as a lock bit,
+ * and bit 32 as a present flag. The bottom 32 bits are the
+ * index in the guest HPT of a HPTE that points to the page.
+ */
+#define KVMPPC_RMAP_LOCK_BIT 63
+#define KVMPPC_RMAP_REF_BIT 33
+#define KVMPPC_RMAP_REFERENCED (1ul << KVMPPC_RMAP_REF_BIT)
+#define KVMPPC_RMAP_PRESENT 0x100000000ul
+#define KVMPPC_RMAP_INDEX 0xfffffffful
+
/* Low-order bits in kvm->arch.slot_phys[][] */
#define KVMPPC_PAGE_ORDER_MASK 0x1f
#define KVMPPC_PAGE_NO_CACHE HPTE_R_I /* 0x20 */