Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 1 | #include <linux/kernel.h> |
| 2 | #include <linux/errno.h> |
| 3 | #include <linux/err.h> |
| 4 | #include <linux/spinlock.h> |
| 5 | |
| 6 | #include <linux/hugetlb.h> |
| 7 | #include <linux/mm.h> |
| 8 | #include <linux/pagemap.h> |
| 9 | #include <linux/rmap.h> |
| 10 | #include <linux/swap.h> |
| 11 | #include <linux/swapops.h> |
| 12 | |
| 13 | #include "internal.h" |
| 14 | |
Kirill A. Shutemov | 69e68b4 | 2014-06-04 16:08:11 -0700 | [diff] [blame] | 15 | static struct page *no_page_table(struct vm_area_struct *vma, |
| 16 | unsigned int flags) |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 17 | { |
Kirill A. Shutemov | 69e68b4 | 2014-06-04 16:08:11 -0700 | [diff] [blame] | 18 | /* |
| 19 | * When core dumping an enormous anonymous area that nobody |
| 20 | * has touched so far, we don't want to allocate unnecessary pages or |
| 21 | * page tables. Return error instead of NULL to skip handle_mm_fault, |
| 22 | * then get_dump_page() will return NULL to leave a hole in the dump. |
| 23 | * But we can only make this optimization where a hole would surely |
| 24 | * be zero-filled if handle_mm_fault() actually did handle it. |
| 25 | */ |
| 26 | if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) |
| 27 | return ERR_PTR(-EFAULT); |
| 28 | return NULL; |
| 29 | } |
| 30 | |
| 31 | static struct page *follow_page_pte(struct vm_area_struct *vma, |
| 32 | unsigned long address, pmd_t *pmd, unsigned int flags) |
| 33 | { |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 34 | struct mm_struct *mm = vma->vm_mm; |
Kirill A. Shutemov | 69e68b4 | 2014-06-04 16:08:11 -0700 | [diff] [blame] | 35 | struct page *page; |
| 36 | spinlock_t *ptl; |
| 37 | pte_t *ptep, pte; |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 38 | |
Kirill A. Shutemov | 69e68b4 | 2014-06-04 16:08:11 -0700 | [diff] [blame] | 39 | retry: |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 40 | if (unlikely(pmd_bad(*pmd))) |
Kirill A. Shutemov | 69e68b4 | 2014-06-04 16:08:11 -0700 | [diff] [blame] | 41 | return no_page_table(vma, flags); |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 42 | |
| 43 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 44 | pte = *ptep; |
| 45 | if (!pte_present(pte)) { |
| 46 | swp_entry_t entry; |
| 47 | /* |
| 48 | * KSM's break_ksm() relies upon recognizing a ksm page |
| 49 | * even while it is being migrated, so for that case we |
| 50 | * need migration_entry_wait(). |
| 51 | */ |
| 52 | if (likely(!(flags & FOLL_MIGRATION))) |
| 53 | goto no_page; |
| 54 | if (pte_none(pte) || pte_file(pte)) |
| 55 | goto no_page; |
| 56 | entry = pte_to_swp_entry(pte); |
| 57 | if (!is_migration_entry(entry)) |
| 58 | goto no_page; |
| 59 | pte_unmap_unlock(ptep, ptl); |
| 60 | migration_entry_wait(mm, pmd, address); |
Kirill A. Shutemov | 69e68b4 | 2014-06-04 16:08:11 -0700 | [diff] [blame] | 61 | goto retry; |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 62 | } |
| 63 | if ((flags & FOLL_NUMA) && pte_numa(pte)) |
| 64 | goto no_page; |
Kirill A. Shutemov | 69e68b4 | 2014-06-04 16:08:11 -0700 | [diff] [blame] | 65 | if ((flags & FOLL_WRITE) && !pte_write(pte)) { |
| 66 | pte_unmap_unlock(ptep, ptl); |
| 67 | return NULL; |
| 68 | } |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 69 | |
| 70 | page = vm_normal_page(vma, address, pte); |
| 71 | if (unlikely(!page)) { |
| 72 | if ((flags & FOLL_DUMP) || |
| 73 | !is_zero_pfn(pte_pfn(pte))) |
| 74 | goto bad_page; |
| 75 | page = pte_page(pte); |
| 76 | } |
| 77 | |
| 78 | if (flags & FOLL_GET) |
| 79 | get_page_foll(page); |
| 80 | if (flags & FOLL_TOUCH) { |
| 81 | if ((flags & FOLL_WRITE) && |
| 82 | !pte_dirty(pte) && !PageDirty(page)) |
| 83 | set_page_dirty(page); |
| 84 | /* |
| 85 | * pte_mkyoung() would be more correct here, but atomic care |
| 86 | * is needed to avoid losing the dirty bit: it is easier to use |
| 87 | * mark_page_accessed(). |
| 88 | */ |
| 89 | mark_page_accessed(page); |
| 90 | } |
| 91 | if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { |
| 92 | /* |
| 93 | * The preliminary mapping check is mainly to avoid the |
| 94 | * pointless overhead of lock_page on the ZERO_PAGE |
| 95 | * which might bounce very badly if there is contention. |
| 96 | * |
| 97 | * If the page is already locked, we don't need to |
| 98 | * handle it now - vmscan will handle it later if and |
| 99 | * when it attempts to reclaim the page. |
| 100 | */ |
| 101 | if (page->mapping && trylock_page(page)) { |
| 102 | lru_add_drain(); /* push cached pages to LRU */ |
| 103 | /* |
| 104 | * Because we lock page here, and migration is |
| 105 | * blocked by the pte's page reference, and we |
| 106 | * know the page is still mapped, we don't even |
| 107 | * need to check for file-cache page truncation. |
| 108 | */ |
| 109 | mlock_vma_page(page); |
| 110 | unlock_page(page); |
| 111 | } |
| 112 | } |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 113 | pte_unmap_unlock(ptep, ptl); |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 114 | return page; |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 115 | bad_page: |
| 116 | pte_unmap_unlock(ptep, ptl); |
| 117 | return ERR_PTR(-EFAULT); |
| 118 | |
| 119 | no_page: |
| 120 | pte_unmap_unlock(ptep, ptl); |
| 121 | if (!pte_none(pte)) |
Kirill A. Shutemov | 69e68b4 | 2014-06-04 16:08:11 -0700 | [diff] [blame] | 122 | return NULL; |
| 123 | return no_page_table(vma, flags); |
| 124 | } |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 125 | |
Kirill A. Shutemov | 69e68b4 | 2014-06-04 16:08:11 -0700 | [diff] [blame] | 126 | /** |
| 127 | * follow_page_mask - look up a page descriptor from a user-virtual address |
| 128 | * @vma: vm_area_struct mapping @address |
| 129 | * @address: virtual address to look up |
| 130 | * @flags: flags modifying lookup behaviour |
| 131 | * @page_mask: on output, *page_mask is set according to the size of the page |
| 132 | * |
| 133 | * @flags can have FOLL_ flags set, defined in <linux/mm.h> |
| 134 | * |
| 135 | * Returns the mapped (struct page *), %NULL if no mapping exists, or |
| 136 | * an error pointer if there is a mapping to something not represented |
| 137 | * by a page descriptor (see also vm_normal_page()). |
| 138 | */ |
| 139 | struct page *follow_page_mask(struct vm_area_struct *vma, |
| 140 | unsigned long address, unsigned int flags, |
| 141 | unsigned int *page_mask) |
| 142 | { |
| 143 | pgd_t *pgd; |
| 144 | pud_t *pud; |
| 145 | pmd_t *pmd; |
| 146 | spinlock_t *ptl; |
| 147 | struct page *page; |
| 148 | struct mm_struct *mm = vma->vm_mm; |
| 149 | |
| 150 | *page_mask = 0; |
| 151 | |
| 152 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); |
| 153 | if (!IS_ERR(page)) { |
| 154 | BUG_ON(flags & FOLL_GET); |
| 155 | return page; |
| 156 | } |
| 157 | |
| 158 | pgd = pgd_offset(mm, address); |
| 159 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) |
| 160 | return no_page_table(vma, flags); |
| 161 | |
| 162 | pud = pud_offset(pgd, address); |
| 163 | if (pud_none(*pud)) |
| 164 | return no_page_table(vma, flags); |
| 165 | if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { |
| 166 | if (flags & FOLL_GET) |
| 167 | return NULL; |
| 168 | page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); |
| 169 | return page; |
| 170 | } |
| 171 | if (unlikely(pud_bad(*pud))) |
| 172 | return no_page_table(vma, flags); |
| 173 | |
| 174 | pmd = pmd_offset(pud, address); |
| 175 | if (pmd_none(*pmd)) |
| 176 | return no_page_table(vma, flags); |
| 177 | if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { |
| 178 | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); |
| 179 | if (flags & FOLL_GET) { |
| 180 | /* |
| 181 | * Refcount on tail pages are not well-defined and |
| 182 | * shouldn't be taken. The caller should handle a NULL |
| 183 | * return when trying to follow tail pages. |
| 184 | */ |
| 185 | if (PageHead(page)) |
| 186 | get_page(page); |
| 187 | else |
| 188 | page = NULL; |
| 189 | } |
| 190 | return page; |
| 191 | } |
| 192 | if ((flags & FOLL_NUMA) && pmd_numa(*pmd)) |
| 193 | return no_page_table(vma, flags); |
| 194 | if (pmd_trans_huge(*pmd)) { |
| 195 | if (flags & FOLL_SPLIT) { |
| 196 | split_huge_page_pmd(vma, address, pmd); |
| 197 | return follow_page_pte(vma, address, pmd, flags); |
| 198 | } |
| 199 | ptl = pmd_lock(mm, pmd); |
| 200 | if (likely(pmd_trans_huge(*pmd))) { |
| 201 | if (unlikely(pmd_trans_splitting(*pmd))) { |
| 202 | spin_unlock(ptl); |
| 203 | wait_split_huge_page(vma->anon_vma, pmd); |
| 204 | } else { |
| 205 | page = follow_trans_huge_pmd(vma, address, |
| 206 | pmd, flags); |
| 207 | spin_unlock(ptl); |
| 208 | *page_mask = HPAGE_PMD_NR - 1; |
| 209 | return page; |
| 210 | } |
| 211 | } else |
| 212 | spin_unlock(ptl); |
| 213 | } |
| 214 | return follow_page_pte(vma, address, pmd, flags); |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 215 | } |
| 216 | |
Kirill A. Shutemov | f2b495c | 2014-06-04 16:08:11 -0700 | [diff] [blame] | 217 | static int get_gate_page(struct mm_struct *mm, unsigned long address, |
| 218 | unsigned int gup_flags, struct vm_area_struct **vma, |
| 219 | struct page **page) |
| 220 | { |
| 221 | pgd_t *pgd; |
| 222 | pud_t *pud; |
| 223 | pmd_t *pmd; |
| 224 | pte_t *pte; |
| 225 | int ret = -EFAULT; |
| 226 | |
| 227 | /* user gate pages are read-only */ |
| 228 | if (gup_flags & FOLL_WRITE) |
| 229 | return -EFAULT; |
| 230 | if (address > TASK_SIZE) |
| 231 | pgd = pgd_offset_k(address); |
| 232 | else |
| 233 | pgd = pgd_offset_gate(mm, address); |
| 234 | BUG_ON(pgd_none(*pgd)); |
| 235 | pud = pud_offset(pgd, address); |
| 236 | BUG_ON(pud_none(*pud)); |
| 237 | pmd = pmd_offset(pud, address); |
| 238 | if (pmd_none(*pmd)) |
| 239 | return -EFAULT; |
| 240 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
| 241 | pte = pte_offset_map(pmd, address); |
| 242 | if (pte_none(*pte)) |
| 243 | goto unmap; |
| 244 | *vma = get_gate_vma(mm); |
| 245 | if (!page) |
| 246 | goto out; |
| 247 | *page = vm_normal_page(*vma, address, *pte); |
| 248 | if (!*page) { |
| 249 | if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) |
| 250 | goto unmap; |
| 251 | *page = pte_page(*pte); |
| 252 | } |
| 253 | get_page(*page); |
| 254 | out: |
| 255 | ret = 0; |
| 256 | unmap: |
| 257 | pte_unmap(pte); |
| 258 | return ret; |
| 259 | } |
| 260 | |
Kirill A. Shutemov | 1674448 | 2014-06-04 16:08:12 -0700 | [diff] [blame^] | 261 | static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, |
| 262 | unsigned long address, unsigned int *flags, int *nonblocking) |
| 263 | { |
| 264 | struct mm_struct *mm = vma->vm_mm; |
| 265 | unsigned int fault_flags = 0; |
| 266 | int ret; |
| 267 | |
| 268 | /* For mlock, just skip the stack guard page. */ |
| 269 | if ((*flags & FOLL_MLOCK) && |
| 270 | (stack_guard_page_start(vma, address) || |
| 271 | stack_guard_page_end(vma, address + PAGE_SIZE))) |
| 272 | return -ENOENT; |
| 273 | if (*flags & FOLL_WRITE) |
| 274 | fault_flags |= FAULT_FLAG_WRITE; |
| 275 | if (nonblocking) |
| 276 | fault_flags |= FAULT_FLAG_ALLOW_RETRY; |
| 277 | if (*flags & FOLL_NOWAIT) |
| 278 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; |
| 279 | |
| 280 | ret = handle_mm_fault(mm, vma, address, fault_flags); |
| 281 | if (ret & VM_FAULT_ERROR) { |
| 282 | if (ret & VM_FAULT_OOM) |
| 283 | return -ENOMEM; |
| 284 | if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) |
| 285 | return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT; |
| 286 | if (ret & VM_FAULT_SIGBUS) |
| 287 | return -EFAULT; |
| 288 | BUG(); |
| 289 | } |
| 290 | |
| 291 | if (tsk) { |
| 292 | if (ret & VM_FAULT_MAJOR) |
| 293 | tsk->maj_flt++; |
| 294 | else |
| 295 | tsk->min_flt++; |
| 296 | } |
| 297 | |
| 298 | if (ret & VM_FAULT_RETRY) { |
| 299 | if (nonblocking) |
| 300 | *nonblocking = 0; |
| 301 | return -EBUSY; |
| 302 | } |
| 303 | |
| 304 | /* |
| 305 | * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when |
| 306 | * necessary, even if maybe_mkwrite decided not to set pte_write. We |
| 307 | * can thus safely do subsequent page lookups as if they were reads. |
| 308 | * But only do so when looping for pte_write is futile: in some cases |
| 309 | * userspace may also be wanting to write to the gotten user page, |
| 310 | * which a read fault here might prevent (a readonly page might get |
| 311 | * reCOWed by userspace write). |
| 312 | */ |
| 313 | if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) |
| 314 | *flags &= ~FOLL_WRITE; |
| 315 | return 0; |
| 316 | } |
| 317 | |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 318 | /** |
| 319 | * __get_user_pages() - pin user pages in memory |
| 320 | * @tsk: task_struct of target task |
| 321 | * @mm: mm_struct of target mm |
| 322 | * @start: starting user address |
| 323 | * @nr_pages: number of pages from start to pin |
| 324 | * @gup_flags: flags modifying pin behaviour |
| 325 | * @pages: array that receives pointers to the pages pinned. |
| 326 | * Should be at least nr_pages long. Or NULL, if caller |
| 327 | * only intends to ensure the pages are faulted in. |
| 328 | * @vmas: array of pointers to vmas corresponding to each page. |
| 329 | * Or NULL if the caller does not require them. |
| 330 | * @nonblocking: whether waiting for disk IO or mmap_sem contention |
| 331 | * |
| 332 | * Returns number of pages pinned. This may be fewer than the number |
| 333 | * requested. If nr_pages is 0 or negative, returns 0. If no pages |
| 334 | * were pinned, returns -errno. Each page returned must be released |
| 335 | * with a put_page() call when it is finished with. vmas will only |
| 336 | * remain valid while mmap_sem is held. |
| 337 | * |
| 338 | * Must be called with mmap_sem held for read or write. |
| 339 | * |
| 340 | * __get_user_pages walks a process's page tables and takes a reference to |
| 341 | * each struct page that each user address corresponds to at a given |
| 342 | * instant. That is, it takes the page that would be accessed if a user |
| 343 | * thread accesses the given user virtual address at that instant. |
| 344 | * |
| 345 | * This does not guarantee that the page exists in the user mappings when |
| 346 | * __get_user_pages returns, and there may even be a completely different |
| 347 | * page there in some cases (eg. if mmapped pagecache has been invalidated |
| 348 | * and subsequently re faulted). However it does guarantee that the page |
| 349 | * won't be freed completely. And mostly callers simply care that the page |
| 350 | * contains data that was valid *at some point in time*. Typically, an IO |
| 351 | * or similar operation cannot guarantee anything stronger anyway because |
| 352 | * locks can't be held over the syscall boundary. |
| 353 | * |
| 354 | * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If |
| 355 | * the page is written to, set_page_dirty (or set_page_dirty_lock, as |
| 356 | * appropriate) must be called after the page is finished with, and |
| 357 | * before put_page is called. |
| 358 | * |
| 359 | * If @nonblocking != NULL, __get_user_pages will not wait for disk IO |
| 360 | * or mmap_sem contention, and if waiting is needed to pin all pages, |
| 361 | * *@nonblocking will be set to 0. |
| 362 | * |
| 363 | * In most cases, get_user_pages or get_user_pages_fast should be used |
| 364 | * instead of __get_user_pages. __get_user_pages should be used only if |
| 365 | * you need some special @gup_flags. |
| 366 | */ |
| 367 | long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
| 368 | unsigned long start, unsigned long nr_pages, |
| 369 | unsigned int gup_flags, struct page **pages, |
| 370 | struct vm_area_struct **vmas, int *nonblocking) |
| 371 | { |
| 372 | long i; |
| 373 | unsigned long vm_flags; |
| 374 | unsigned int page_mask; |
| 375 | |
| 376 | if (!nr_pages) |
| 377 | return 0; |
| 378 | |
| 379 | VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); |
| 380 | |
| 381 | /* |
| 382 | * If FOLL_FORCE is set then do not force a full fault as the hinting |
| 383 | * fault information is unrelated to the reference behaviour of a task |
| 384 | * using the address space |
| 385 | */ |
| 386 | if (!(gup_flags & FOLL_FORCE)) |
| 387 | gup_flags |= FOLL_NUMA; |
| 388 | |
| 389 | i = 0; |
| 390 | |
| 391 | do { |
| 392 | struct vm_area_struct *vma; |
| 393 | |
| 394 | vma = find_extend_vma(mm, start); |
| 395 | if (!vma && in_gate_area(mm, start)) { |
Kirill A. Shutemov | f2b495c | 2014-06-04 16:08:11 -0700 | [diff] [blame] | 396 | int ret; |
| 397 | ret = get_gate_page(mm, start & PAGE_MASK, gup_flags, |
| 398 | &vma, pages ? &pages[i] : NULL); |
| 399 | if (ret) |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 400 | goto efault; |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 401 | page_mask = 0; |
| 402 | goto next_page; |
| 403 | } |
| 404 | |
| 405 | if (!vma) |
| 406 | goto efault; |
| 407 | vm_flags = vma->vm_flags; |
| 408 | if (vm_flags & (VM_IO | VM_PFNMAP)) |
| 409 | goto efault; |
| 410 | |
| 411 | if (gup_flags & FOLL_WRITE) { |
| 412 | if (!(vm_flags & VM_WRITE)) { |
| 413 | if (!(gup_flags & FOLL_FORCE)) |
| 414 | goto efault; |
| 415 | /* |
| 416 | * We used to let the write,force case do COW |
| 417 | * in a VM_MAYWRITE VM_SHARED !VM_WRITE vma, so |
| 418 | * ptrace could set a breakpoint in a read-only |
| 419 | * mapping of an executable, without corrupting |
| 420 | * the file (yet only when that file had been |
| 421 | * opened for writing!). Anon pages in shared |
| 422 | * mappings are surprising: now just reject it. |
| 423 | */ |
| 424 | if (!is_cow_mapping(vm_flags)) { |
| 425 | WARN_ON_ONCE(vm_flags & VM_MAYWRITE); |
| 426 | goto efault; |
| 427 | } |
| 428 | } |
| 429 | } else { |
| 430 | if (!(vm_flags & VM_READ)) { |
| 431 | if (!(gup_flags & FOLL_FORCE)) |
| 432 | goto efault; |
| 433 | /* |
| 434 | * Is there actually any vma we can reach here |
| 435 | * which does not have VM_MAYREAD set? |
| 436 | */ |
| 437 | if (!(vm_flags & VM_MAYREAD)) |
| 438 | goto efault; |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | if (is_vm_hugetlb_page(vma)) { |
| 443 | i = follow_hugetlb_page(mm, vma, pages, vmas, |
| 444 | &start, &nr_pages, i, gup_flags); |
| 445 | continue; |
| 446 | } |
| 447 | |
| 448 | do { |
| 449 | struct page *page; |
| 450 | unsigned int foll_flags = gup_flags; |
| 451 | unsigned int page_increm; |
| 452 | |
| 453 | /* |
| 454 | * If we have a pending SIGKILL, don't keep faulting |
| 455 | * pages and potentially allocating memory. |
| 456 | */ |
| 457 | if (unlikely(fatal_signal_pending(current))) |
| 458 | return i ? i : -ERESTARTSYS; |
| 459 | |
| 460 | cond_resched(); |
| 461 | while (!(page = follow_page_mask(vma, start, |
| 462 | foll_flags, &page_mask))) { |
| 463 | int ret; |
Kirill A. Shutemov | 1674448 | 2014-06-04 16:08:12 -0700 | [diff] [blame^] | 464 | ret = faultin_page(tsk, vma, start, &foll_flags, |
| 465 | nonblocking); |
| 466 | switch (ret) { |
| 467 | case 0: |
| 468 | break; |
| 469 | case -EFAULT: |
| 470 | case -ENOMEM: |
| 471 | case -EHWPOISON: |
| 472 | return i ? i : ret; |
| 473 | case -EBUSY: |
| 474 | return i; |
| 475 | case -ENOENT: |
| 476 | goto next_page; |
| 477 | default: |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 478 | BUG(); |
| 479 | } |
Kirill A. Shutemov | 4bbd4c7 | 2014-06-04 16:08:10 -0700 | [diff] [blame] | 480 | cond_resched(); |
| 481 | } |
| 482 | if (IS_ERR(page)) |
| 483 | return i ? i : PTR_ERR(page); |
| 484 | if (pages) { |
| 485 | pages[i] = page; |
| 486 | |
| 487 | flush_anon_page(vma, page, start); |
| 488 | flush_dcache_page(page); |
| 489 | page_mask = 0; |
| 490 | } |
| 491 | next_page: |
| 492 | if (vmas) { |
| 493 | vmas[i] = vma; |
| 494 | page_mask = 0; |
| 495 | } |
| 496 | page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); |
| 497 | if (page_increm > nr_pages) |
| 498 | page_increm = nr_pages; |
| 499 | i += page_increm; |
| 500 | start += page_increm * PAGE_SIZE; |
| 501 | nr_pages -= page_increm; |
| 502 | } while (nr_pages && start < vma->vm_end); |
| 503 | } while (nr_pages); |
| 504 | return i; |
| 505 | efault: |
| 506 | return i ? : -EFAULT; |
| 507 | } |
| 508 | EXPORT_SYMBOL(__get_user_pages); |
| 509 | |
| 510 | /* |
| 511 | * fixup_user_fault() - manually resolve a user page fault |
| 512 | * @tsk: the task_struct to use for page fault accounting, or |
| 513 | * NULL if faults are not to be recorded. |
| 514 | * @mm: mm_struct of target mm |
| 515 | * @address: user address |
| 516 | * @fault_flags:flags to pass down to handle_mm_fault() |
| 517 | * |
| 518 | * This is meant to be called in the specific scenario where for locking reasons |
| 519 | * we try to access user memory in atomic context (within a pagefault_disable() |
| 520 | * section), this returns -EFAULT, and we want to resolve the user fault before |
| 521 | * trying again. |
| 522 | * |
| 523 | * Typically this is meant to be used by the futex code. |
| 524 | * |
| 525 | * The main difference with get_user_pages() is that this function will |
| 526 | * unconditionally call handle_mm_fault() which will in turn perform all the |
| 527 | * necessary SW fixup of the dirty and young bits in the PTE, while |
| 528 | * handle_mm_fault() only guarantees to update these in the struct page. |
| 529 | * |
| 530 | * This is important for some architectures where those bits also gate the |
| 531 | * access permission to the page because they are maintained in software. On |
| 532 | * such architectures, gup() will not be enough to make a subsequent access |
| 533 | * succeed. |
| 534 | * |
| 535 | * This should be called with the mm_sem held for read. |
| 536 | */ |
| 537 | int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, |
| 538 | unsigned long address, unsigned int fault_flags) |
| 539 | { |
| 540 | struct vm_area_struct *vma; |
| 541 | vm_flags_t vm_flags; |
| 542 | int ret; |
| 543 | |
| 544 | vma = find_extend_vma(mm, address); |
| 545 | if (!vma || address < vma->vm_start) |
| 546 | return -EFAULT; |
| 547 | |
| 548 | vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ; |
| 549 | if (!(vm_flags & vma->vm_flags)) |
| 550 | return -EFAULT; |
| 551 | |
| 552 | ret = handle_mm_fault(mm, vma, address, fault_flags); |
| 553 | if (ret & VM_FAULT_ERROR) { |
| 554 | if (ret & VM_FAULT_OOM) |
| 555 | return -ENOMEM; |
| 556 | if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) |
| 557 | return -EHWPOISON; |
| 558 | if (ret & VM_FAULT_SIGBUS) |
| 559 | return -EFAULT; |
| 560 | BUG(); |
| 561 | } |
| 562 | if (tsk) { |
| 563 | if (ret & VM_FAULT_MAJOR) |
| 564 | tsk->maj_flt++; |
| 565 | else |
| 566 | tsk->min_flt++; |
| 567 | } |
| 568 | return 0; |
| 569 | } |
| 570 | |
| 571 | /* |
| 572 | * get_user_pages() - pin user pages in memory |
| 573 | * @tsk: the task_struct to use for page fault accounting, or |
| 574 | * NULL if faults are not to be recorded. |
| 575 | * @mm: mm_struct of target mm |
| 576 | * @start: starting user address |
| 577 | * @nr_pages: number of pages from start to pin |
| 578 | * @write: whether pages will be written to by the caller |
| 579 | * @force: whether to force access even when user mapping is currently |
| 580 | * protected (but never forces write access to shared mapping). |
| 581 | * @pages: array that receives pointers to the pages pinned. |
| 582 | * Should be at least nr_pages long. Or NULL, if caller |
| 583 | * only intends to ensure the pages are faulted in. |
| 584 | * @vmas: array of pointers to vmas corresponding to each page. |
| 585 | * Or NULL if the caller does not require them. |
| 586 | * |
| 587 | * Returns number of pages pinned. This may be fewer than the number |
| 588 | * requested. If nr_pages is 0 or negative, returns 0. If no pages |
| 589 | * were pinned, returns -errno. Each page returned must be released |
| 590 | * with a put_page() call when it is finished with. vmas will only |
| 591 | * remain valid while mmap_sem is held. |
| 592 | * |
| 593 | * Must be called with mmap_sem held for read or write. |
| 594 | * |
| 595 | * get_user_pages walks a process's page tables and takes a reference to |
| 596 | * each struct page that each user address corresponds to at a given |
| 597 | * instant. That is, it takes the page that would be accessed if a user |
| 598 | * thread accesses the given user virtual address at that instant. |
| 599 | * |
| 600 | * This does not guarantee that the page exists in the user mappings when |
| 601 | * get_user_pages returns, and there may even be a completely different |
| 602 | * page there in some cases (eg. if mmapped pagecache has been invalidated |
| 603 | * and subsequently re faulted). However it does guarantee that the page |
| 604 | * won't be freed completely. And mostly callers simply care that the page |
| 605 | * contains data that was valid *at some point in time*. Typically, an IO |
| 606 | * or similar operation cannot guarantee anything stronger anyway because |
| 607 | * locks can't be held over the syscall boundary. |
| 608 | * |
| 609 | * If write=0, the page must not be written to. If the page is written to, |
| 610 | * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called |
| 611 | * after the page is finished with, and before put_page is called. |
| 612 | * |
| 613 | * get_user_pages is typically used for fewer-copy IO operations, to get a |
| 614 | * handle on the memory by some means other than accesses via the user virtual |
| 615 | * addresses. The pages may be submitted for DMA to devices or accessed via |
| 616 | * their kernel linear mapping (via the kmap APIs). Care should be taken to |
| 617 | * use the correct cache flushing APIs. |
| 618 | * |
| 619 | * See also get_user_pages_fast, for performance critical applications. |
| 620 | */ |
| 621 | long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
| 622 | unsigned long start, unsigned long nr_pages, int write, |
| 623 | int force, struct page **pages, struct vm_area_struct **vmas) |
| 624 | { |
| 625 | int flags = FOLL_TOUCH; |
| 626 | |
| 627 | if (pages) |
| 628 | flags |= FOLL_GET; |
| 629 | if (write) |
| 630 | flags |= FOLL_WRITE; |
| 631 | if (force) |
| 632 | flags |= FOLL_FORCE; |
| 633 | |
| 634 | return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, |
| 635 | NULL); |
| 636 | } |
| 637 | EXPORT_SYMBOL(get_user_pages); |
| 638 | |
| 639 | /** |
| 640 | * get_dump_page() - pin user page in memory while writing it to core dump |
| 641 | * @addr: user address |
| 642 | * |
| 643 | * Returns struct page pointer of user page pinned for dump, |
| 644 | * to be freed afterwards by page_cache_release() or put_page(). |
| 645 | * |
| 646 | * Returns NULL on any kind of failure - a hole must then be inserted into |
| 647 | * the corefile, to preserve alignment with its headers; and also returns |
| 648 | * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - |
| 649 | * allowing a hole to be left in the corefile to save diskspace. |
| 650 | * |
| 651 | * Called without mmap_sem, but after all other threads have been killed. |
| 652 | */ |
| 653 | #ifdef CONFIG_ELF_CORE |
| 654 | struct page *get_dump_page(unsigned long addr) |
| 655 | { |
| 656 | struct vm_area_struct *vma; |
| 657 | struct page *page; |
| 658 | |
| 659 | if (__get_user_pages(current, current->mm, addr, 1, |
| 660 | FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, |
| 661 | NULL) < 1) |
| 662 | return NULL; |
| 663 | flush_cache_page(vma, addr, page_to_pfn(page)); |
| 664 | return page; |
| 665 | } |
| 666 | #endif /* CONFIG_ELF_CORE */ |