blob: ede128356af23c0fc23ecd05c9f6bf384cdc6372 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*****************************************************************************/
2
3/*
4 * istallion.c -- stallion intelligent multiport serial driver.
5 *
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
8 *
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27/*****************************************************************************/
28
29#include <linux/config.h>
30#include <linux/module.h>
31#include <linux/slab.h>
32#include <linux/interrupt.h>
33#include <linux/tty.h>
34#include <linux/tty_flip.h>
35#include <linux/serial.h>
36#include <linux/cdk.h>
37#include <linux/comstats.h>
38#include <linux/istallion.h>
39#include <linux/ioport.h>
40#include <linux/delay.h>
41#include <linux/init.h>
42#include <linux/devfs_fs_kernel.h>
43#include <linux/device.h>
44#include <linux/wait.h>
45
46#include <asm/io.h>
47#include <asm/uaccess.h>
48
49#ifdef CONFIG_PCI
50#include <linux/pci.h>
51#endif
52
53/*****************************************************************************/
54
55/*
56 * Define different board types. Not all of the following board types
57 * are supported by this driver. But I will use the standard "assigned"
58 * board numbers. Currently supported boards are abbreviated as:
59 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
60 * STAL = Stallion.
61 */
62#define BRD_UNKNOWN 0
63#define BRD_STALLION 1
64#define BRD_BRUMBY4 2
65#define BRD_ONBOARD2 3
66#define BRD_ONBOARD 4
67#define BRD_BRUMBY8 5
68#define BRD_BRUMBY16 6
69#define BRD_ONBOARDE 7
70#define BRD_ONBOARD32 9
71#define BRD_ONBOARD2_32 10
72#define BRD_ONBOARDRS 11
73#define BRD_EASYIO 20
74#define BRD_ECH 21
75#define BRD_ECHMC 22
76#define BRD_ECP 23
77#define BRD_ECPE 24
78#define BRD_ECPMC 25
79#define BRD_ECHPCI 26
80#define BRD_ECH64PCI 27
81#define BRD_EASYIOPCI 28
82#define BRD_ECPPCI 29
83
84#define BRD_BRUMBY BRD_BRUMBY4
85
86/*
87 * Define a configuration structure to hold the board configuration.
88 * Need to set this up in the code (for now) with the boards that are
89 * to be configured into the system. This is what needs to be modified
90 * when adding/removing/modifying boards. Each line entry in the
91 * stli_brdconf[] array is a board. Each line contains io/irq/memory
92 * ranges for that board (as well as what type of board it is).
93 * Some examples:
94 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
95 * This line will configure an EasyConnection 8/64 at io address 2a0,
96 * and shared memory address of cc000. Multiple EasyConnection 8/64
97 * boards can share the same shared memory address space. No interrupt
98 * is required for this board type.
99 * Another example:
100 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
101 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
102 * shared memory address of 0x80000000 (2 GByte). Multiple
103 * EasyConnection 8/64 EISA boards can share the same shared memory
104 * address space. No interrupt is required for this board type.
105 * Another example:
106 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
107 * This line will configure an ONboard (ISA type) at io address 240,
108 * and shared memory address of d0000. Multiple ONboards can share
109 * the same shared memory address space. No interrupt required.
110 * Another example:
111 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
112 * This line will configure a Brumby board (any number of ports!) at
113 * io address 360 and shared memory address of c8000. All Brumby boards
114 * configured into a system must have their own separate io and memory
115 * addresses. No interrupt is required.
116 * Another example:
117 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
118 * This line will configure an original Stallion board at io address 330
119 * and shared memory address d0000 (this would only be valid for a "V4.0"
120 * or Rev.O Stallion board). All Stallion boards configured into the
121 * system must have their own separate io and memory addresses. No
122 * interrupt is required.
123 */
124
125typedef struct {
126 int brdtype;
127 int ioaddr1;
128 int ioaddr2;
129 unsigned long memaddr;
130 int irq;
131 int irqtype;
132} stlconf_t;
133
134static stlconf_t stli_brdconf[] = {
135 /*{ BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },*/
136};
137
Tobias Klauserfe971072006-01-09 20:54:02 -0800138static int stli_nrbrds = ARRAY_SIZE(stli_brdconf);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700139
140/*
141 * There is some experimental EISA board detection code in this driver.
142 * By default it is disabled, but for those that want to try it out,
143 * then set the define below to be 1.
144 */
145#define STLI_EISAPROBE 0
146
147/*****************************************************************************/
148
149/*
150 * Define some important driver characteristics. Device major numbers
151 * allocated as per Linux Device Registry.
152 */
153#ifndef STL_SIOMEMMAJOR
154#define STL_SIOMEMMAJOR 28
155#endif
156#ifndef STL_SERIALMAJOR
157#define STL_SERIALMAJOR 24
158#endif
159#ifndef STL_CALLOUTMAJOR
160#define STL_CALLOUTMAJOR 25
161#endif
162
163/*****************************************************************************/
164
165/*
166 * Define our local driver identity first. Set up stuff to deal with
167 * all the local structures required by a serial tty driver.
168 */
169static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
170static char *stli_drvname = "istallion";
171static char *stli_drvversion = "5.6.0";
172static char *stli_serialname = "ttyE";
173
174static struct tty_driver *stli_serial;
175
176/*
177 * We will need to allocate a temporary write buffer for chars that
178 * come direct from user space. The problem is that a copy from user
179 * space might cause a page fault (typically on a system that is
180 * swapping!). All ports will share one buffer - since if the system
181 * is already swapping a shared buffer won't make things any worse.
182 */
183static char *stli_tmpwritebuf;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700184
185#define STLI_TXBUFSIZE 4096
186
187/*
188 * Use a fast local buffer for cooked characters. Typically a whole
189 * bunch of cooked characters come in for a port, 1 at a time. So we
190 * save those up into a local buffer, then write out the whole lot
191 * with a large memcpy. Just use 1 buffer for all ports, since its
192 * use it is only need for short periods of time by each port.
193 */
194static char *stli_txcookbuf;
195static int stli_txcooksize;
196static int stli_txcookrealsize;
197static struct tty_struct *stli_txcooktty;
198
199/*
200 * Define a local default termios struct. All ports will be created
201 * with this termios initially. Basically all it defines is a raw port
202 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
203 */
204static struct termios stli_deftermios = {
205 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
206 .c_cc = INIT_C_CC,
207};
208
209/*
210 * Define global stats structures. Not used often, and can be
211 * re-used for each stats call.
212 */
213static comstats_t stli_comstats;
214static combrd_t stli_brdstats;
215static asystats_t stli_cdkstats;
216static stlibrd_t stli_dummybrd;
217static stliport_t stli_dummyport;
218
219/*****************************************************************************/
220
221static stlibrd_t *stli_brds[STL_MAXBRDS];
222
223static int stli_shared;
224
225/*
226 * Per board state flags. Used with the state field of the board struct.
227 * Not really much here... All we need to do is keep track of whether
228 * the board has been detected, and whether it is actually running a slave
229 * or not.
230 */
231#define BST_FOUND 0x1
232#define BST_STARTED 0x2
233
234/*
235 * Define the set of port state flags. These are marked for internal
236 * state purposes only, usually to do with the state of communications
237 * with the slave. Most of them need to be updated atomically, so always
238 * use the bit setting operations (unless protected by cli/sti).
239 */
240#define ST_INITIALIZING 1
241#define ST_OPENING 2
242#define ST_CLOSING 3
243#define ST_CMDING 4
244#define ST_TXBUSY 5
245#define ST_RXING 6
246#define ST_DOFLUSHRX 7
247#define ST_DOFLUSHTX 8
248#define ST_DOSIGS 9
249#define ST_RXSTOP 10
250#define ST_GETSIGS 11
251
252/*
253 * Define an array of board names as printable strings. Handy for
254 * referencing boards when printing trace and stuff.
255 */
256static char *stli_brdnames[] = {
257 "Unknown",
258 "Stallion",
259 "Brumby",
260 "ONboard-MC",
261 "ONboard",
262 "Brumby",
263 "Brumby",
264 "ONboard-EI",
265 (char *) NULL,
266 "ONboard",
267 "ONboard-MC",
268 "ONboard-MC",
269 (char *) NULL,
270 (char *) NULL,
271 (char *) NULL,
272 (char *) NULL,
273 (char *) NULL,
274 (char *) NULL,
275 (char *) NULL,
276 (char *) NULL,
277 "EasyIO",
278 "EC8/32-AT",
279 "EC8/32-MC",
280 "EC8/64-AT",
281 "EC8/64-EI",
282 "EC8/64-MC",
283 "EC8/32-PCI",
284 "EC8/64-PCI",
285 "EasyIO-PCI",
286 "EC/RA-PCI",
287};
288
289/*****************************************************************************/
290
291#ifdef MODULE
292/*
293 * Define some string labels for arguments passed from the module
294 * load line. These allow for easy board definitions, and easy
295 * modification of the io, memory and irq resoucres.
296 */
297
298static char *board0[8];
299static char *board1[8];
300static char *board2[8];
301static char *board3[8];
302
303static char **stli_brdsp[] = {
304 (char **) &board0,
305 (char **) &board1,
306 (char **) &board2,
307 (char **) &board3
308};
309
310/*
311 * Define a set of common board names, and types. This is used to
312 * parse any module arguments.
313 */
314
315typedef struct stlibrdtype {
316 char *name;
317 int type;
318} stlibrdtype_t;
319
320static stlibrdtype_t stli_brdstr[] = {
321 { "stallion", BRD_STALLION },
322 { "1", BRD_STALLION },
323 { "brumby", BRD_BRUMBY },
324 { "brumby4", BRD_BRUMBY },
325 { "brumby/4", BRD_BRUMBY },
326 { "brumby-4", BRD_BRUMBY },
327 { "brumby8", BRD_BRUMBY },
328 { "brumby/8", BRD_BRUMBY },
329 { "brumby-8", BRD_BRUMBY },
330 { "brumby16", BRD_BRUMBY },
331 { "brumby/16", BRD_BRUMBY },
332 { "brumby-16", BRD_BRUMBY },
333 { "2", BRD_BRUMBY },
334 { "onboard2", BRD_ONBOARD2 },
335 { "onboard-2", BRD_ONBOARD2 },
336 { "onboard/2", BRD_ONBOARD2 },
337 { "onboard-mc", BRD_ONBOARD2 },
338 { "onboard/mc", BRD_ONBOARD2 },
339 { "onboard-mca", BRD_ONBOARD2 },
340 { "onboard/mca", BRD_ONBOARD2 },
341 { "3", BRD_ONBOARD2 },
342 { "onboard", BRD_ONBOARD },
343 { "onboardat", BRD_ONBOARD },
344 { "4", BRD_ONBOARD },
345 { "onboarde", BRD_ONBOARDE },
346 { "onboard-e", BRD_ONBOARDE },
347 { "onboard/e", BRD_ONBOARDE },
348 { "onboard-ei", BRD_ONBOARDE },
349 { "onboard/ei", BRD_ONBOARDE },
350 { "7", BRD_ONBOARDE },
351 { "ecp", BRD_ECP },
352 { "ecpat", BRD_ECP },
353 { "ec8/64", BRD_ECP },
354 { "ec8/64-at", BRD_ECP },
355 { "ec8/64-isa", BRD_ECP },
356 { "23", BRD_ECP },
357 { "ecpe", BRD_ECPE },
358 { "ecpei", BRD_ECPE },
359 { "ec8/64-e", BRD_ECPE },
360 { "ec8/64-ei", BRD_ECPE },
361 { "24", BRD_ECPE },
362 { "ecpmc", BRD_ECPMC },
363 { "ec8/64-mc", BRD_ECPMC },
364 { "ec8/64-mca", BRD_ECPMC },
365 { "25", BRD_ECPMC },
366 { "ecppci", BRD_ECPPCI },
367 { "ec/ra", BRD_ECPPCI },
368 { "ec/ra-pc", BRD_ECPPCI },
369 { "ec/ra-pci", BRD_ECPPCI },
370 { "29", BRD_ECPPCI },
371};
372
373/*
374 * Define the module agruments.
375 */
376MODULE_AUTHOR("Greg Ungerer");
377MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
378MODULE_LICENSE("GPL");
379
380
381MODULE_PARM(board0, "1-3s");
382MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
383MODULE_PARM(board1, "1-3s");
384MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
385MODULE_PARM(board2, "1-3s");
386MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
387MODULE_PARM(board3, "1-3s");
388MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
389
390#endif
391
392/*
393 * Set up a default memory address table for EISA board probing.
394 * The default addresses are all bellow 1Mbyte, which has to be the
395 * case anyway. They should be safe, since we only read values from
396 * them, and interrupts are disabled while we do it. If the higher
397 * memory support is compiled in then we also try probing around
398 * the 1Gb, 2Gb and 3Gb areas as well...
399 */
400static unsigned long stli_eisamemprobeaddrs[] = {
401 0xc0000, 0xd0000, 0xe0000, 0xf0000,
402 0x80000000, 0x80010000, 0x80020000, 0x80030000,
403 0x40000000, 0x40010000, 0x40020000, 0x40030000,
404 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
405 0xff000000, 0xff010000, 0xff020000, 0xff030000,
406};
407
Tobias Klauserfe971072006-01-09 20:54:02 -0800408static int stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700409
410/*
411 * Define the Stallion PCI vendor and device IDs.
412 */
413#ifdef CONFIG_PCI
414#ifndef PCI_VENDOR_ID_STALLION
415#define PCI_VENDOR_ID_STALLION 0x124d
416#endif
417#ifndef PCI_DEVICE_ID_ECRA
418#define PCI_DEVICE_ID_ECRA 0x0004
419#endif
420
421static struct pci_device_id istallion_pci_tbl[] = {
422 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
423 { 0 }
424};
425MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
426
427#endif /* CONFIG_PCI */
428
429/*****************************************************************************/
430
431/*
432 * Hardware configuration info for ECP boards. These defines apply
433 * to the directly accessible io ports of the ECP. There is a set of
434 * defines for each ECP board type, ISA, EISA, MCA and PCI.
435 */
436#define ECP_IOSIZE 4
437
438#define ECP_MEMSIZE (128 * 1024)
439#define ECP_PCIMEMSIZE (256 * 1024)
440
441#define ECP_ATPAGESIZE (4 * 1024)
442#define ECP_MCPAGESIZE (4 * 1024)
443#define ECP_EIPAGESIZE (64 * 1024)
444#define ECP_PCIPAGESIZE (64 * 1024)
445
446#define STL_EISAID 0x8c4e
447
448/*
449 * Important defines for the ISA class of ECP board.
450 */
451#define ECP_ATIREG 0
452#define ECP_ATCONFR 1
453#define ECP_ATMEMAR 2
454#define ECP_ATMEMPR 3
455#define ECP_ATSTOP 0x1
456#define ECP_ATINTENAB 0x10
457#define ECP_ATENABLE 0x20
458#define ECP_ATDISABLE 0x00
459#define ECP_ATADDRMASK 0x3f000
460#define ECP_ATADDRSHFT 12
461
462/*
463 * Important defines for the EISA class of ECP board.
464 */
465#define ECP_EIIREG 0
466#define ECP_EIMEMARL 1
467#define ECP_EICONFR 2
468#define ECP_EIMEMARH 3
469#define ECP_EIENABLE 0x1
470#define ECP_EIDISABLE 0x0
471#define ECP_EISTOP 0x4
472#define ECP_EIEDGE 0x00
473#define ECP_EILEVEL 0x80
474#define ECP_EIADDRMASKL 0x00ff0000
475#define ECP_EIADDRSHFTL 16
476#define ECP_EIADDRMASKH 0xff000000
477#define ECP_EIADDRSHFTH 24
478#define ECP_EIBRDENAB 0xc84
479
480#define ECP_EISAID 0x4
481
482/*
483 * Important defines for the Micro-channel class of ECP board.
484 * (It has a lot in common with the ISA boards.)
485 */
486#define ECP_MCIREG 0
487#define ECP_MCCONFR 1
488#define ECP_MCSTOP 0x20
489#define ECP_MCENABLE 0x80
490#define ECP_MCDISABLE 0x00
491
492/*
493 * Important defines for the PCI class of ECP board.
494 * (It has a lot in common with the other ECP boards.)
495 */
496#define ECP_PCIIREG 0
497#define ECP_PCICONFR 1
498#define ECP_PCISTOP 0x01
499
500/*
501 * Hardware configuration info for ONboard and Brumby boards. These
502 * defines apply to the directly accessible io ports of these boards.
503 */
504#define ONB_IOSIZE 16
505#define ONB_MEMSIZE (64 * 1024)
506#define ONB_ATPAGESIZE (64 * 1024)
507#define ONB_MCPAGESIZE (64 * 1024)
508#define ONB_EIMEMSIZE (128 * 1024)
509#define ONB_EIPAGESIZE (64 * 1024)
510
511/*
512 * Important defines for the ISA class of ONboard board.
513 */
514#define ONB_ATIREG 0
515#define ONB_ATMEMAR 1
516#define ONB_ATCONFR 2
517#define ONB_ATSTOP 0x4
518#define ONB_ATENABLE 0x01
519#define ONB_ATDISABLE 0x00
520#define ONB_ATADDRMASK 0xff0000
521#define ONB_ATADDRSHFT 16
522
523#define ONB_MEMENABLO 0
524#define ONB_MEMENABHI 0x02
525
526/*
527 * Important defines for the EISA class of ONboard board.
528 */
529#define ONB_EIIREG 0
530#define ONB_EIMEMARL 1
531#define ONB_EICONFR 2
532#define ONB_EIMEMARH 3
533#define ONB_EIENABLE 0x1
534#define ONB_EIDISABLE 0x0
535#define ONB_EISTOP 0x4
536#define ONB_EIEDGE 0x00
537#define ONB_EILEVEL 0x80
538#define ONB_EIADDRMASKL 0x00ff0000
539#define ONB_EIADDRSHFTL 16
540#define ONB_EIADDRMASKH 0xff000000
541#define ONB_EIADDRSHFTH 24
542#define ONB_EIBRDENAB 0xc84
543
544#define ONB_EISAID 0x1
545
546/*
547 * Important defines for the Brumby boards. They are pretty simple,
548 * there is not much that is programmably configurable.
549 */
550#define BBY_IOSIZE 16
551#define BBY_MEMSIZE (64 * 1024)
552#define BBY_PAGESIZE (16 * 1024)
553
554#define BBY_ATIREG 0
555#define BBY_ATCONFR 1
556#define BBY_ATSTOP 0x4
557
558/*
559 * Important defines for the Stallion boards. They are pretty simple,
560 * there is not much that is programmably configurable.
561 */
562#define STAL_IOSIZE 16
563#define STAL_MEMSIZE (64 * 1024)
564#define STAL_PAGESIZE (64 * 1024)
565
566/*
567 * Define the set of status register values for EasyConnection panels.
568 * The signature will return with the status value for each panel. From
569 * this we can determine what is attached to the board - before we have
570 * actually down loaded any code to it.
571 */
572#define ECH_PNLSTATUS 2
573#define ECH_PNL16PORT 0x20
574#define ECH_PNLIDMASK 0x07
575#define ECH_PNLXPID 0x40
576#define ECH_PNLINTRPEND 0x80
577
578/*
579 * Define some macros to do things to the board. Even those these boards
580 * are somewhat related there is often significantly different ways of
581 * doing some operation on it (like enable, paging, reset, etc). So each
582 * board class has a set of functions which do the commonly required
583 * operations. The macros below basically just call these functions,
584 * generally checking for a NULL function - which means that the board
585 * needs nothing done to it to achieve this operation!
586 */
587#define EBRDINIT(brdp) \
588 if (brdp->init != NULL) \
589 (* brdp->init)(brdp)
590
591#define EBRDENABLE(brdp) \
592 if (brdp->enable != NULL) \
593 (* brdp->enable)(brdp);
594
595#define EBRDDISABLE(brdp) \
596 if (brdp->disable != NULL) \
597 (* brdp->disable)(brdp);
598
599#define EBRDINTR(brdp) \
600 if (brdp->intr != NULL) \
601 (* brdp->intr)(brdp);
602
603#define EBRDRESET(brdp) \
604 if (brdp->reset != NULL) \
605 (* brdp->reset)(brdp);
606
607#define EBRDGETMEMPTR(brdp,offset) \
608 (* brdp->getmemptr)(brdp, offset, __LINE__)
609
610/*
611 * Define the maximal baud rate, and the default baud base for ports.
612 */
613#define STL_MAXBAUD 460800
614#define STL_BAUDBASE 115200
615#define STL_CLOSEDELAY (5 * HZ / 10)
616
617/*****************************************************************************/
618
619/*
620 * Define macros to extract a brd or port number from a minor number.
621 */
622#define MINOR2BRD(min) (((min) & 0xc0) >> 6)
623#define MINOR2PORT(min) ((min) & 0x3f)
624
625/*
626 * Define a baud rate table that converts termios baud rate selector
627 * into the actual baud rate value. All baud rate calculations are based
628 * on the actual baud rate required.
629 */
630static unsigned int stli_baudrates[] = {
631 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
632 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
633};
634
635/*****************************************************************************/
636
637/*
638 * Define some handy local macros...
639 */
640#undef MIN
641#define MIN(a,b) (((a) <= (b)) ? (a) : (b))
642
643#undef TOLOWER
644#define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
645
646/*****************************************************************************/
647
648/*
649 * Prototype all functions in this driver!
650 */
651
652#ifdef MODULE
653static void stli_argbrds(void);
654static int stli_parsebrd(stlconf_t *confp, char **argp);
655
656static unsigned long stli_atol(char *str);
657#endif
658
659int stli_init(void);
660static int stli_open(struct tty_struct *tty, struct file *filp);
661static void stli_close(struct tty_struct *tty, struct file *filp);
662static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
663static void stli_putchar(struct tty_struct *tty, unsigned char ch);
664static void stli_flushchars(struct tty_struct *tty);
665static int stli_writeroom(struct tty_struct *tty);
666static int stli_charsinbuffer(struct tty_struct *tty);
667static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
668static void stli_settermios(struct tty_struct *tty, struct termios *old);
669static void stli_throttle(struct tty_struct *tty);
670static void stli_unthrottle(struct tty_struct *tty);
671static void stli_stop(struct tty_struct *tty);
672static void stli_start(struct tty_struct *tty);
673static void stli_flushbuffer(struct tty_struct *tty);
674static void stli_breakctl(struct tty_struct *tty, int state);
675static void stli_waituntilsent(struct tty_struct *tty, int timeout);
676static void stli_sendxchar(struct tty_struct *tty, char ch);
677static void stli_hangup(struct tty_struct *tty);
678static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos);
679
680static int stli_brdinit(stlibrd_t *brdp);
681static int stli_startbrd(stlibrd_t *brdp);
682static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
683static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
684static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
685static void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp);
686static void stli_poll(unsigned long arg);
687static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp);
688static int stli_initopen(stlibrd_t *brdp, stliport_t *portp);
689static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
690static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
691static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp);
692static void stli_dohangup(void *arg);
693static int stli_setport(stliport_t *portp);
694static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
695static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
696static void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp);
697static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp);
698static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
699static long stli_mktiocm(unsigned long sigvalue);
700static void stli_read(stlibrd_t *brdp, stliport_t *portp);
701static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp);
702static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp);
703static int stli_getbrdstats(combrd_t __user *bp);
704static int stli_getportstats(stliport_t *portp, comstats_t __user *cp);
705static int stli_portcmdstats(stliport_t *portp);
706static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp);
707static int stli_getportstruct(stliport_t __user *arg);
708static int stli_getbrdstruct(stlibrd_t __user *arg);
709static void *stli_memalloc(int len);
710static stlibrd_t *stli_allocbrd(void);
711
712static void stli_ecpinit(stlibrd_t *brdp);
713static void stli_ecpenable(stlibrd_t *brdp);
714static void stli_ecpdisable(stlibrd_t *brdp);
715static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
716static void stli_ecpreset(stlibrd_t *brdp);
717static void stli_ecpintr(stlibrd_t *brdp);
718static void stli_ecpeiinit(stlibrd_t *brdp);
719static void stli_ecpeienable(stlibrd_t *brdp);
720static void stli_ecpeidisable(stlibrd_t *brdp);
721static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
722static void stli_ecpeireset(stlibrd_t *brdp);
723static void stli_ecpmcenable(stlibrd_t *brdp);
724static void stli_ecpmcdisable(stlibrd_t *brdp);
725static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
726static void stli_ecpmcreset(stlibrd_t *brdp);
727static void stli_ecppciinit(stlibrd_t *brdp);
728static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
729static void stli_ecppcireset(stlibrd_t *brdp);
730
731static void stli_onbinit(stlibrd_t *brdp);
732static void stli_onbenable(stlibrd_t *brdp);
733static void stli_onbdisable(stlibrd_t *brdp);
734static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
735static void stli_onbreset(stlibrd_t *brdp);
736static void stli_onbeinit(stlibrd_t *brdp);
737static void stli_onbeenable(stlibrd_t *brdp);
738static void stli_onbedisable(stlibrd_t *brdp);
739static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
740static void stli_onbereset(stlibrd_t *brdp);
741static void stli_bbyinit(stlibrd_t *brdp);
742static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
743static void stli_bbyreset(stlibrd_t *brdp);
744static void stli_stalinit(stlibrd_t *brdp);
745static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
746static void stli_stalreset(stlibrd_t *brdp);
747
748static stliport_t *stli_getport(int brdnr, int panelnr, int portnr);
749
750static int stli_initecp(stlibrd_t *brdp);
751static int stli_initonb(stlibrd_t *brdp);
752static int stli_eisamemprobe(stlibrd_t *brdp);
753static int stli_initports(stlibrd_t *brdp);
754
755#ifdef CONFIG_PCI
756static int stli_initpcibrd(int brdtype, struct pci_dev *devp);
757#endif
758
759/*****************************************************************************/
760
761/*
762 * Define the driver info for a user level shared memory device. This
763 * device will work sort of like the /dev/kmem device - except that it
764 * will give access to the shared memory on the Stallion intelligent
765 * board. This is also a very useful debugging tool.
766 */
767static struct file_operations stli_fsiomem = {
768 .owner = THIS_MODULE,
769 .read = stli_memread,
770 .write = stli_memwrite,
771 .ioctl = stli_memioctl,
772};
773
774/*****************************************************************************/
775
776/*
777 * Define a timer_list entry for our poll routine. The slave board
778 * is polled every so often to see if anything needs doing. This is
779 * much cheaper on host cpu than using interrupts. It turns out to
780 * not increase character latency by much either...
781 */
Ingo Molnar8d06afa2005-09-09 13:10:40 -0700782static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700783
784static int stli_timeron;
785
786/*
787 * Define the calculation for the timeout routine.
788 */
789#define STLI_TIMEOUT (jiffies + 1)
790
791/*****************************************************************************/
792
gregkh@suse.deca8eca62005-03-23 09:53:09 -0800793static struct class *istallion_class;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700794
795#ifdef MODULE
796
797/*
798 * Loadable module initialization stuff.
799 */
800
801static int __init istallion_module_init(void)
802{
803 unsigned long flags;
804
805#ifdef DEBUG
806 printk("init_module()\n");
807#endif
808
809 save_flags(flags);
810 cli();
811 stli_init();
812 restore_flags(flags);
813
814 return(0);
815}
816
817/*****************************************************************************/
818
819static void __exit istallion_module_exit(void)
820{
821 stlibrd_t *brdp;
822 stliport_t *portp;
823 unsigned long flags;
824 int i, j;
825
826#ifdef DEBUG
827 printk("cleanup_module()\n");
828#endif
829
830 printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
831 stli_drvversion);
832
833 save_flags(flags);
834 cli();
835
836/*
837 * Free up all allocated resources used by the ports. This includes
838 * memory and interrupts.
839 */
840 if (stli_timeron) {
841 stli_timeron = 0;
842 del_timer(&stli_timerlist);
843 }
844
845 i = tty_unregister_driver(stli_serial);
846 if (i) {
847 printk("STALLION: failed to un-register tty driver, "
848 "errno=%d\n", -i);
849 restore_flags(flags);
850 return;
851 }
852 put_tty_driver(stli_serial);
853 for (i = 0; i < 4; i++) {
854 devfs_remove("staliomem/%d", i);
gregkh@suse.deca8eca62005-03-23 09:53:09 -0800855 class_device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, i));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700856 }
857 devfs_remove("staliomem");
gregkh@suse.deca8eca62005-03-23 09:53:09 -0800858 class_destroy(istallion_class);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700859 if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
860 printk("STALLION: failed to un-register serial memory device, "
861 "errno=%d\n", -i);
Jesper Juhl735d5662005-11-07 01:01:29 -0800862
863 kfree(stli_tmpwritebuf);
864 kfree(stli_txcookbuf);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700865
866 for (i = 0; (i < stli_nrbrds); i++) {
867 if ((brdp = stli_brds[i]) == (stlibrd_t *) NULL)
868 continue;
869 for (j = 0; (j < STL_MAXPORTS); j++) {
870 portp = brdp->ports[j];
871 if (portp != (stliport_t *) NULL) {
872 if (portp->tty != (struct tty_struct *) NULL)
873 tty_hangup(portp->tty);
874 kfree(portp);
875 }
876 }
877
878 iounmap(brdp->membase);
879 if (brdp->iosize > 0)
880 release_region(brdp->iobase, brdp->iosize);
881 kfree(brdp);
882 stli_brds[i] = (stlibrd_t *) NULL;
883 }
884
885 restore_flags(flags);
886}
887
888module_init(istallion_module_init);
889module_exit(istallion_module_exit);
890
891/*****************************************************************************/
892
893/*
894 * Check for any arguments passed in on the module load command line.
895 */
896
897static void stli_argbrds(void)
898{
899 stlconf_t conf;
900 stlibrd_t *brdp;
Tobias Klauserfe971072006-01-09 20:54:02 -0800901 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700902
903#ifdef DEBUG
904 printk("stli_argbrds()\n");
905#endif
906
Tobias Klauserfe971072006-01-09 20:54:02 -0800907 for (i = stli_nrbrds; i < ARRAY_SIZE(stli_brdsp); i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700908 memset(&conf, 0, sizeof(conf));
909 if (stli_parsebrd(&conf, stli_brdsp[i]) == 0)
910 continue;
911 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
912 continue;
913 stli_nrbrds = i + 1;
914 brdp->brdnr = i;
915 brdp->brdtype = conf.brdtype;
916 brdp->iobase = conf.ioaddr1;
917 brdp->memaddr = conf.memaddr;
918 stli_brdinit(brdp);
919 }
920}
921
922/*****************************************************************************/
923
924/*
925 * Convert an ascii string number into an unsigned long.
926 */
927
928static unsigned long stli_atol(char *str)
929{
930 unsigned long val;
931 int base, c;
932 char *sp;
933
934 val = 0;
935 sp = str;
936 if ((*sp == '0') && (*(sp+1) == 'x')) {
937 base = 16;
938 sp += 2;
939 } else if (*sp == '0') {
940 base = 8;
941 sp++;
942 } else {
943 base = 10;
944 }
945
946 for (; (*sp != 0); sp++) {
947 c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0');
948 if ((c < 0) || (c >= base)) {
949 printk("STALLION: invalid argument %s\n", str);
950 val = 0;
951 break;
952 }
953 val = (val * base) + c;
954 }
955 return(val);
956}
957
958/*****************************************************************************/
959
960/*
961 * Parse the supplied argument string, into the board conf struct.
962 */
963
964static int stli_parsebrd(stlconf_t *confp, char **argp)
965{
966 char *sp;
Tobias Klauserfe971072006-01-09 20:54:02 -0800967 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700968
969#ifdef DEBUG
970 printk("stli_parsebrd(confp=%x,argp=%x)\n", (int) confp, (int) argp);
971#endif
972
973 if ((argp[0] == (char *) NULL) || (*argp[0] == 0))
974 return(0);
975
976 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
977 *sp = TOLOWER(*sp);
978
Tobias Klauserfe971072006-01-09 20:54:02 -0800979 for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700980 if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
981 break;
982 }
Tobias Klauserfe971072006-01-09 20:54:02 -0800983 if (i == ARRAY_SIZE(stli_brdstr)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700984 printk("STALLION: unknown board name, %s?\n", argp[0]);
Tobias Klauserfe971072006-01-09 20:54:02 -0800985 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700986 }
987
988 confp->brdtype = stli_brdstr[i].type;
989 if ((argp[1] != (char *) NULL) && (*argp[1] != 0))
990 confp->ioaddr1 = stli_atol(argp[1]);
991 if ((argp[2] != (char *) NULL) && (*argp[2] != 0))
992 confp->memaddr = stli_atol(argp[2]);
993 return(1);
994}
995
996#endif
997
998/*****************************************************************************/
999
1000/*
1001 * Local driver kernel malloc routine.
1002 */
1003
1004static void *stli_memalloc(int len)
1005{
1006 return((void *) kmalloc(len, GFP_KERNEL));
1007}
1008
1009/*****************************************************************************/
1010
1011static int stli_open(struct tty_struct *tty, struct file *filp)
1012{
1013 stlibrd_t *brdp;
1014 stliport_t *portp;
1015 unsigned int minordev;
1016 int brdnr, portnr, rc;
1017
1018#ifdef DEBUG
1019 printk("stli_open(tty=%x,filp=%x): device=%s\n", (int) tty,
1020 (int) filp, tty->name);
1021#endif
1022
1023 minordev = tty->index;
1024 brdnr = MINOR2BRD(minordev);
1025 if (brdnr >= stli_nrbrds)
1026 return(-ENODEV);
1027 brdp = stli_brds[brdnr];
1028 if (brdp == (stlibrd_t *) NULL)
1029 return(-ENODEV);
1030 if ((brdp->state & BST_STARTED) == 0)
1031 return(-ENODEV);
1032 portnr = MINOR2PORT(minordev);
1033 if ((portnr < 0) || (portnr > brdp->nrports))
1034 return(-ENODEV);
1035
1036 portp = brdp->ports[portnr];
1037 if (portp == (stliport_t *) NULL)
1038 return(-ENODEV);
1039 if (portp->devnr < 1)
1040 return(-ENODEV);
1041
1042
1043/*
1044 * Check if this port is in the middle of closing. If so then wait
1045 * until it is closed then return error status based on flag settings.
1046 * The sleep here does not need interrupt protection since the wakeup
1047 * for it is done with the same context.
1048 */
1049 if (portp->flags & ASYNC_CLOSING) {
1050 interruptible_sleep_on(&portp->close_wait);
1051 if (portp->flags & ASYNC_HUP_NOTIFY)
1052 return(-EAGAIN);
1053 return(-ERESTARTSYS);
1054 }
1055
1056/*
1057 * On the first open of the device setup the port hardware, and
1058 * initialize the per port data structure. Since initializing the port
1059 * requires several commands to the board we will need to wait for any
1060 * other open that is already initializing the port.
1061 */
1062 portp->tty = tty;
1063 tty->driver_data = portp;
1064 portp->refcount++;
1065
1066 wait_event_interruptible(portp->raw_wait,
1067 !test_bit(ST_INITIALIZING, &portp->state));
1068 if (signal_pending(current))
1069 return(-ERESTARTSYS);
1070
1071 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
1072 set_bit(ST_INITIALIZING, &portp->state);
1073 if ((rc = stli_initopen(brdp, portp)) >= 0) {
1074 portp->flags |= ASYNC_INITIALIZED;
1075 clear_bit(TTY_IO_ERROR, &tty->flags);
1076 }
1077 clear_bit(ST_INITIALIZING, &portp->state);
1078 wake_up_interruptible(&portp->raw_wait);
1079 if (rc < 0)
1080 return(rc);
1081 }
1082
1083/*
1084 * Check if this port is in the middle of closing. If so then wait
1085 * until it is closed then return error status, based on flag settings.
1086 * The sleep here does not need interrupt protection since the wakeup
1087 * for it is done with the same context.
1088 */
1089 if (portp->flags & ASYNC_CLOSING) {
1090 interruptible_sleep_on(&portp->close_wait);
1091 if (portp->flags & ASYNC_HUP_NOTIFY)
1092 return(-EAGAIN);
1093 return(-ERESTARTSYS);
1094 }
1095
1096/*
1097 * Based on type of open being done check if it can overlap with any
1098 * previous opens still in effect. If we are a normal serial device
1099 * then also we might have to wait for carrier.
1100 */
1101 if (!(filp->f_flags & O_NONBLOCK)) {
1102 if ((rc = stli_waitcarrier(brdp, portp, filp)) != 0)
1103 return(rc);
1104 }
1105 portp->flags |= ASYNC_NORMAL_ACTIVE;
1106 return(0);
1107}
1108
1109/*****************************************************************************/
1110
1111static void stli_close(struct tty_struct *tty, struct file *filp)
1112{
1113 stlibrd_t *brdp;
1114 stliport_t *portp;
1115 unsigned long flags;
1116
1117#ifdef DEBUG
1118 printk("stli_close(tty=%x,filp=%x)\n", (int) tty, (int) filp);
1119#endif
1120
1121 portp = tty->driver_data;
1122 if (portp == (stliport_t *) NULL)
1123 return;
1124
1125 save_flags(flags);
1126 cli();
1127 if (tty_hung_up_p(filp)) {
1128 restore_flags(flags);
1129 return;
1130 }
1131 if ((tty->count == 1) && (portp->refcount != 1))
1132 portp->refcount = 1;
1133 if (portp->refcount-- > 1) {
1134 restore_flags(flags);
1135 return;
1136 }
1137
1138 portp->flags |= ASYNC_CLOSING;
1139
1140/*
1141 * May want to wait for data to drain before closing. The BUSY flag
1142 * keeps track of whether we are still transmitting or not. It is
1143 * updated by messages from the slave - indicating when all chars
1144 * really have drained.
1145 */
1146 if (tty == stli_txcooktty)
1147 stli_flushchars(tty);
1148 tty->closing = 1;
1149 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
1150 tty_wait_until_sent(tty, portp->closing_wait);
1151
1152 portp->flags &= ~ASYNC_INITIALIZED;
1153 brdp = stli_brds[portp->brdnr];
1154 stli_rawclose(brdp, portp, 0, 0);
1155 if (tty->termios->c_cflag & HUPCL) {
1156 stli_mkasysigs(&portp->asig, 0, 0);
1157 if (test_bit(ST_CMDING, &portp->state))
1158 set_bit(ST_DOSIGS, &portp->state);
1159 else
1160 stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
1161 sizeof(asysigs_t), 0);
1162 }
1163 clear_bit(ST_TXBUSY, &portp->state);
1164 clear_bit(ST_RXSTOP, &portp->state);
1165 set_bit(TTY_IO_ERROR, &tty->flags);
1166 if (tty->ldisc.flush_buffer)
1167 (tty->ldisc.flush_buffer)(tty);
1168 set_bit(ST_DOFLUSHRX, &portp->state);
1169 stli_flushbuffer(tty);
1170
1171 tty->closing = 0;
1172 portp->tty = (struct tty_struct *) NULL;
1173
1174 if (portp->openwaitcnt) {
1175 if (portp->close_delay)
1176 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
1177 wake_up_interruptible(&portp->open_wait);
1178 }
1179
1180 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
1181 wake_up_interruptible(&portp->close_wait);
1182 restore_flags(flags);
1183}
1184
1185/*****************************************************************************/
1186
1187/*
1188 * Carry out first open operations on a port. This involves a number of
1189 * commands to be sent to the slave. We need to open the port, set the
1190 * notification events, set the initial port settings, get and set the
1191 * initial signal values. We sleep and wait in between each one. But
1192 * this still all happens pretty quickly.
1193 */
1194
1195static int stli_initopen(stlibrd_t *brdp, stliport_t *portp)
1196{
1197 struct tty_struct *tty;
1198 asynotify_t nt;
1199 asyport_t aport;
1200 int rc;
1201
1202#ifdef DEBUG
1203 printk("stli_initopen(brdp=%x,portp=%x)\n", (int) brdp, (int) portp);
1204#endif
1205
1206 if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
1207 return(rc);
1208
1209 memset(&nt, 0, sizeof(asynotify_t));
1210 nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
1211 nt.signal = SG_DCD;
1212 if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
1213 sizeof(asynotify_t), 0)) < 0)
1214 return(rc);
1215
1216 tty = portp->tty;
1217 if (tty == (struct tty_struct *) NULL)
1218 return(-ENODEV);
1219 stli_mkasyport(portp, &aport, tty->termios);
1220 if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
1221 sizeof(asyport_t), 0)) < 0)
1222 return(rc);
1223
1224 set_bit(ST_GETSIGS, &portp->state);
1225 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
1226 sizeof(asysigs_t), 1)) < 0)
1227 return(rc);
1228 if (test_and_clear_bit(ST_GETSIGS, &portp->state))
1229 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
1230 stli_mkasysigs(&portp->asig, 1, 1);
1231 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1232 sizeof(asysigs_t), 0)) < 0)
1233 return(rc);
1234
1235 return(0);
1236}
1237
1238/*****************************************************************************/
1239
1240/*
1241 * Send an open message to the slave. This will sleep waiting for the
1242 * acknowledgement, so must have user context. We need to co-ordinate
1243 * with close events here, since we don't want open and close events
1244 * to overlap.
1245 */
1246
1247static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1248{
1249 volatile cdkhdr_t *hdrp;
1250 volatile cdkctrl_t *cp;
1251 volatile unsigned char *bits;
1252 unsigned long flags;
1253 int rc;
1254
1255#ifdef DEBUG
1256 printk("stli_rawopen(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1257 (int) brdp, (int) portp, (int) arg, wait);
1258#endif
1259
1260/*
1261 * Send a message to the slave to open this port.
1262 */
1263 save_flags(flags);
1264 cli();
1265
1266/*
1267 * Slave is already closing this port. This can happen if a hangup
1268 * occurs on this port. So we must wait until it is complete. The
1269 * order of opens and closes may not be preserved across shared
1270 * memory, so we must wait until it is complete.
1271 */
1272 wait_event_interruptible(portp->raw_wait,
1273 !test_bit(ST_CLOSING, &portp->state));
1274 if (signal_pending(current)) {
1275 restore_flags(flags);
1276 return -ERESTARTSYS;
1277 }
1278
1279/*
1280 * Everything is ready now, so write the open message into shared
1281 * memory. Once the message is in set the service bits to say that
1282 * this port wants service.
1283 */
1284 EBRDENABLE(brdp);
1285 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1286 cp->openarg = arg;
1287 cp->open = 1;
1288 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1289 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1290 portp->portidx;
1291 *bits |= portp->portbit;
1292 EBRDDISABLE(brdp);
1293
1294 if (wait == 0) {
1295 restore_flags(flags);
1296 return(0);
1297 }
1298
1299/*
1300 * Slave is in action, so now we must wait for the open acknowledgment
1301 * to come back.
1302 */
1303 rc = 0;
1304 set_bit(ST_OPENING, &portp->state);
1305 wait_event_interruptible(portp->raw_wait,
1306 !test_bit(ST_OPENING, &portp->state));
1307 if (signal_pending(current))
1308 rc = -ERESTARTSYS;
1309 restore_flags(flags);
1310
1311 if ((rc == 0) && (portp->rc != 0))
1312 rc = -EIO;
1313 return(rc);
1314}
1315
1316/*****************************************************************************/
1317
1318/*
1319 * Send a close message to the slave. Normally this will sleep waiting
1320 * for the acknowledgement, but if wait parameter is 0 it will not. If
1321 * wait is true then must have user context (to sleep).
1322 */
1323
1324static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1325{
1326 volatile cdkhdr_t *hdrp;
1327 volatile cdkctrl_t *cp;
1328 volatile unsigned char *bits;
1329 unsigned long flags;
1330 int rc;
1331
1332#ifdef DEBUG
1333 printk("stli_rawclose(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1334 (int) brdp, (int) portp, (int) arg, wait);
1335#endif
1336
1337 save_flags(flags);
1338 cli();
1339
1340/*
1341 * Slave is already closing this port. This can happen if a hangup
1342 * occurs on this port.
1343 */
1344 if (wait) {
1345 wait_event_interruptible(portp->raw_wait,
1346 !test_bit(ST_CLOSING, &portp->state));
1347 if (signal_pending(current)) {
1348 restore_flags(flags);
1349 return -ERESTARTSYS;
1350 }
1351 }
1352
1353/*
1354 * Write the close command into shared memory.
1355 */
1356 EBRDENABLE(brdp);
1357 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1358 cp->closearg = arg;
1359 cp->close = 1;
1360 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1361 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1362 portp->portidx;
1363 *bits |= portp->portbit;
1364 EBRDDISABLE(brdp);
1365
1366 set_bit(ST_CLOSING, &portp->state);
1367 if (wait == 0) {
1368 restore_flags(flags);
1369 return(0);
1370 }
1371
1372/*
1373 * Slave is in action, so now we must wait for the open acknowledgment
1374 * to come back.
1375 */
1376 rc = 0;
1377 wait_event_interruptible(portp->raw_wait,
1378 !test_bit(ST_CLOSING, &portp->state));
1379 if (signal_pending(current))
1380 rc = -ERESTARTSYS;
1381 restore_flags(flags);
1382
1383 if ((rc == 0) && (portp->rc != 0))
1384 rc = -EIO;
1385 return(rc);
1386}
1387
1388/*****************************************************************************/
1389
1390/*
1391 * Send a command to the slave and wait for the response. This must
1392 * have user context (it sleeps). This routine is generic in that it
1393 * can send any type of command. Its purpose is to wait for that command
1394 * to complete (as opposed to initiating the command then returning).
1395 */
1396
1397static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
1398{
1399 unsigned long flags;
1400
1401#ifdef DEBUG
1402 printk("stli_cmdwait(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
1403 "copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
1404 (int) arg, size, copyback);
1405#endif
1406
1407 save_flags(flags);
1408 cli();
1409 wait_event_interruptible(portp->raw_wait,
1410 !test_bit(ST_CMDING, &portp->state));
1411 if (signal_pending(current)) {
1412 restore_flags(flags);
1413 return -ERESTARTSYS;
1414 }
1415
1416 stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1417
1418 wait_event_interruptible(portp->raw_wait,
1419 !test_bit(ST_CMDING, &portp->state));
1420 if (signal_pending(current)) {
1421 restore_flags(flags);
1422 return -ERESTARTSYS;
1423 }
1424 restore_flags(flags);
1425
1426 if (portp->rc != 0)
1427 return(-EIO);
1428 return(0);
1429}
1430
1431/*****************************************************************************/
1432
1433/*
1434 * Send the termios settings for this port to the slave. This sleeps
1435 * waiting for the command to complete - so must have user context.
1436 */
1437
1438static int stli_setport(stliport_t *portp)
1439{
1440 stlibrd_t *brdp;
1441 asyport_t aport;
1442
1443#ifdef DEBUG
1444 printk("stli_setport(portp=%x)\n", (int) portp);
1445#endif
1446
1447 if (portp == (stliport_t *) NULL)
1448 return(-ENODEV);
1449 if (portp->tty == (struct tty_struct *) NULL)
1450 return(-ENODEV);
1451 if ((portp->brdnr < 0) && (portp->brdnr >= stli_nrbrds))
1452 return(-ENODEV);
1453 brdp = stli_brds[portp->brdnr];
1454 if (brdp == (stlibrd_t *) NULL)
1455 return(-ENODEV);
1456
1457 stli_mkasyport(portp, &aport, portp->tty->termios);
1458 return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1459}
1460
1461/*****************************************************************************/
1462
1463/*
1464 * Possibly need to wait for carrier (DCD signal) to come high. Say
1465 * maybe because if we are clocal then we don't need to wait...
1466 */
1467
1468static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp)
1469{
1470 unsigned long flags;
1471 int rc, doclocal;
1472
1473#ifdef DEBUG
1474 printk("stli_waitcarrier(brdp=%x,portp=%x,filp=%x)\n",
1475 (int) brdp, (int) portp, (int) filp);
1476#endif
1477
1478 rc = 0;
1479 doclocal = 0;
1480
1481 if (portp->tty->termios->c_cflag & CLOCAL)
1482 doclocal++;
1483
1484 save_flags(flags);
1485 cli();
1486 portp->openwaitcnt++;
1487 if (! tty_hung_up_p(filp))
1488 portp->refcount--;
1489
1490 for (;;) {
1491 stli_mkasysigs(&portp->asig, 1, 1);
1492 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS,
1493 &portp->asig, sizeof(asysigs_t), 0)) < 0)
1494 break;
1495 if (tty_hung_up_p(filp) ||
1496 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
1497 if (portp->flags & ASYNC_HUP_NOTIFY)
1498 rc = -EBUSY;
1499 else
1500 rc = -ERESTARTSYS;
1501 break;
1502 }
1503 if (((portp->flags & ASYNC_CLOSING) == 0) &&
1504 (doclocal || (portp->sigs & TIOCM_CD))) {
1505 break;
1506 }
1507 if (signal_pending(current)) {
1508 rc = -ERESTARTSYS;
1509 break;
1510 }
1511 interruptible_sleep_on(&portp->open_wait);
1512 }
1513
1514 if (! tty_hung_up_p(filp))
1515 portp->refcount++;
1516 portp->openwaitcnt--;
1517 restore_flags(flags);
1518
1519 return(rc);
1520}
1521
1522/*****************************************************************************/
1523
1524/*
1525 * Write routine. Take the data and put it in the shared memory ring
1526 * queue. If port is not already sending chars then need to mark the
1527 * service bits for this port.
1528 */
1529
1530static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1531{
1532 volatile cdkasy_t *ap;
1533 volatile cdkhdr_t *hdrp;
1534 volatile unsigned char *bits;
1535 unsigned char *shbuf, *chbuf;
1536 stliport_t *portp;
1537 stlibrd_t *brdp;
1538 unsigned int len, stlen, head, tail, size;
1539 unsigned long flags;
1540
1541#ifdef DEBUG
1542 printk("stli_write(tty=%x,buf=%x,count=%d)\n",
1543 (int) tty, (int) buf, count);
1544#endif
1545
1546 if ((tty == (struct tty_struct *) NULL) ||
1547 (stli_tmpwritebuf == (char *) NULL))
1548 return(0);
1549 if (tty == stli_txcooktty)
1550 stli_flushchars(tty);
1551 portp = tty->driver_data;
1552 if (portp == (stliport_t *) NULL)
1553 return(0);
1554 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1555 return(0);
1556 brdp = stli_brds[portp->brdnr];
1557 if (brdp == (stlibrd_t *) NULL)
1558 return(0);
1559 chbuf = (unsigned char *) buf;
1560
1561/*
1562 * All data is now local, shove as much as possible into shared memory.
1563 */
1564 save_flags(flags);
1565 cli();
1566 EBRDENABLE(brdp);
1567 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1568 head = (unsigned int) ap->txq.head;
1569 tail = (unsigned int) ap->txq.tail;
1570 if (tail != ((unsigned int) ap->txq.tail))
1571 tail = (unsigned int) ap->txq.tail;
1572 size = portp->txsize;
1573 if (head >= tail) {
1574 len = size - (head - tail) - 1;
1575 stlen = size - head;
1576 } else {
1577 len = tail - head - 1;
1578 stlen = len;
1579 }
1580
1581 len = MIN(len, count);
1582 count = 0;
1583 shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
1584
1585 while (len > 0) {
1586 stlen = MIN(len, stlen);
1587 memcpy((shbuf + head), chbuf, stlen);
1588 chbuf += stlen;
1589 len -= stlen;
1590 count += stlen;
1591 head += stlen;
1592 if (head >= size) {
1593 head = 0;
1594 stlen = tail;
1595 }
1596 }
1597
1598 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1599 ap->txq.head = head;
1600 if (test_bit(ST_TXBUSY, &portp->state)) {
1601 if (ap->changed.data & DT_TXEMPTY)
1602 ap->changed.data &= ~DT_TXEMPTY;
1603 }
1604 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1605 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1606 portp->portidx;
1607 *bits |= portp->portbit;
1608 set_bit(ST_TXBUSY, &portp->state);
1609 EBRDDISABLE(brdp);
1610
1611 restore_flags(flags);
1612
1613 return(count);
1614}
1615
1616/*****************************************************************************/
1617
1618/*
1619 * Output a single character. We put it into a temporary local buffer
1620 * (for speed) then write out that buffer when the flushchars routine
1621 * is called. There is a safety catch here so that if some other port
1622 * writes chars before the current buffer has been, then we write them
1623 * first them do the new ports.
1624 */
1625
1626static void stli_putchar(struct tty_struct *tty, unsigned char ch)
1627{
1628#ifdef DEBUG
1629 printk("stli_putchar(tty=%x,ch=%x)\n", (int) tty, (int) ch);
1630#endif
1631
1632 if (tty == (struct tty_struct *) NULL)
1633 return;
1634 if (tty != stli_txcooktty) {
1635 if (stli_txcooktty != (struct tty_struct *) NULL)
1636 stli_flushchars(stli_txcooktty);
1637 stli_txcooktty = tty;
1638 }
1639
1640 stli_txcookbuf[stli_txcooksize++] = ch;
1641}
1642
1643/*****************************************************************************/
1644
1645/*
1646 * Transfer characters from the local TX cooking buffer to the board.
1647 * We sort of ignore the tty that gets passed in here. We rely on the
1648 * info stored with the TX cook buffer to tell us which port to flush
1649 * the data on. In any case we clean out the TX cook buffer, for re-use
1650 * by someone else.
1651 */
1652
1653static void stli_flushchars(struct tty_struct *tty)
1654{
1655 volatile cdkhdr_t *hdrp;
1656 volatile unsigned char *bits;
1657 volatile cdkasy_t *ap;
1658 struct tty_struct *cooktty;
1659 stliport_t *portp;
1660 stlibrd_t *brdp;
1661 unsigned int len, stlen, head, tail, size, count, cooksize;
1662 unsigned char *buf, *shbuf;
1663 unsigned long flags;
1664
1665#ifdef DEBUG
1666 printk("stli_flushchars(tty=%x)\n", (int) tty);
1667#endif
1668
1669 cooksize = stli_txcooksize;
1670 cooktty = stli_txcooktty;
1671 stli_txcooksize = 0;
1672 stli_txcookrealsize = 0;
1673 stli_txcooktty = (struct tty_struct *) NULL;
1674
1675 if (tty == (struct tty_struct *) NULL)
1676 return;
1677 if (cooktty == (struct tty_struct *) NULL)
1678 return;
1679 if (tty != cooktty)
1680 tty = cooktty;
1681 if (cooksize == 0)
1682 return;
1683
1684 portp = tty->driver_data;
1685 if (portp == (stliport_t *) NULL)
1686 return;
1687 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1688 return;
1689 brdp = stli_brds[portp->brdnr];
1690 if (brdp == (stlibrd_t *) NULL)
1691 return;
1692
1693 save_flags(flags);
1694 cli();
1695 EBRDENABLE(brdp);
1696
1697 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1698 head = (unsigned int) ap->txq.head;
1699 tail = (unsigned int) ap->txq.tail;
1700 if (tail != ((unsigned int) ap->txq.tail))
1701 tail = (unsigned int) ap->txq.tail;
1702 size = portp->txsize;
1703 if (head >= tail) {
1704 len = size - (head - tail) - 1;
1705 stlen = size - head;
1706 } else {
1707 len = tail - head - 1;
1708 stlen = len;
1709 }
1710
1711 len = MIN(len, cooksize);
1712 count = 0;
1713 shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
1714 buf = stli_txcookbuf;
1715
1716 while (len > 0) {
1717 stlen = MIN(len, stlen);
1718 memcpy((shbuf + head), buf, stlen);
1719 buf += stlen;
1720 len -= stlen;
1721 count += stlen;
1722 head += stlen;
1723 if (head >= size) {
1724 head = 0;
1725 stlen = tail;
1726 }
1727 }
1728
1729 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1730 ap->txq.head = head;
1731
1732 if (test_bit(ST_TXBUSY, &portp->state)) {
1733 if (ap->changed.data & DT_TXEMPTY)
1734 ap->changed.data &= ~DT_TXEMPTY;
1735 }
1736 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1737 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1738 portp->portidx;
1739 *bits |= portp->portbit;
1740 set_bit(ST_TXBUSY, &portp->state);
1741
1742 EBRDDISABLE(brdp);
1743 restore_flags(flags);
1744}
1745
1746/*****************************************************************************/
1747
1748static int stli_writeroom(struct tty_struct *tty)
1749{
1750 volatile cdkasyrq_t *rp;
1751 stliport_t *portp;
1752 stlibrd_t *brdp;
1753 unsigned int head, tail, len;
1754 unsigned long flags;
1755
1756#ifdef DEBUG
1757 printk("stli_writeroom(tty=%x)\n", (int) tty);
1758#endif
1759
1760 if (tty == (struct tty_struct *) NULL)
1761 return(0);
1762 if (tty == stli_txcooktty) {
1763 if (stli_txcookrealsize != 0) {
1764 len = stli_txcookrealsize - stli_txcooksize;
1765 return(len);
1766 }
1767 }
1768
1769 portp = tty->driver_data;
1770 if (portp == (stliport_t *) NULL)
1771 return(0);
1772 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1773 return(0);
1774 brdp = stli_brds[portp->brdnr];
1775 if (brdp == (stlibrd_t *) NULL)
1776 return(0);
1777
1778 save_flags(flags);
1779 cli();
1780 EBRDENABLE(brdp);
1781 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1782 head = (unsigned int) rp->head;
1783 tail = (unsigned int) rp->tail;
1784 if (tail != ((unsigned int) rp->tail))
1785 tail = (unsigned int) rp->tail;
1786 len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1787 len--;
1788 EBRDDISABLE(brdp);
1789 restore_flags(flags);
1790
1791 if (tty == stli_txcooktty) {
1792 stli_txcookrealsize = len;
1793 len -= stli_txcooksize;
1794 }
1795 return(len);
1796}
1797
1798/*****************************************************************************/
1799
1800/*
1801 * Return the number of characters in the transmit buffer. Normally we
1802 * will return the number of chars in the shared memory ring queue.
1803 * We need to kludge around the case where the shared memory buffer is
1804 * empty but not all characters have drained yet, for this case just
1805 * return that there is 1 character in the buffer!
1806 */
1807
1808static int stli_charsinbuffer(struct tty_struct *tty)
1809{
1810 volatile cdkasyrq_t *rp;
1811 stliport_t *portp;
1812 stlibrd_t *brdp;
1813 unsigned int head, tail, len;
1814 unsigned long flags;
1815
1816#ifdef DEBUG
1817 printk("stli_charsinbuffer(tty=%x)\n", (int) tty);
1818#endif
1819
1820 if (tty == (struct tty_struct *) NULL)
1821 return(0);
1822 if (tty == stli_txcooktty)
1823 stli_flushchars(tty);
1824 portp = tty->driver_data;
1825 if (portp == (stliport_t *) NULL)
1826 return(0);
1827 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1828 return(0);
1829 brdp = stli_brds[portp->brdnr];
1830 if (brdp == (stlibrd_t *) NULL)
1831 return(0);
1832
1833 save_flags(flags);
1834 cli();
1835 EBRDENABLE(brdp);
1836 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1837 head = (unsigned int) rp->head;
1838 tail = (unsigned int) rp->tail;
1839 if (tail != ((unsigned int) rp->tail))
1840 tail = (unsigned int) rp->tail;
1841 len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1842 if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1843 len = 1;
1844 EBRDDISABLE(brdp);
1845 restore_flags(flags);
1846
1847 return(len);
1848}
1849
1850/*****************************************************************************/
1851
1852/*
1853 * Generate the serial struct info.
1854 */
1855
1856static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp)
1857{
1858 struct serial_struct sio;
1859 stlibrd_t *brdp;
1860
1861#ifdef DEBUG
1862 printk("stli_getserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1863#endif
1864
1865 memset(&sio, 0, sizeof(struct serial_struct));
1866 sio.type = PORT_UNKNOWN;
1867 sio.line = portp->portnr;
1868 sio.irq = 0;
1869 sio.flags = portp->flags;
1870 sio.baud_base = portp->baud_base;
1871 sio.close_delay = portp->close_delay;
1872 sio.closing_wait = portp->closing_wait;
1873 sio.custom_divisor = portp->custom_divisor;
1874 sio.xmit_fifo_size = 0;
1875 sio.hub6 = 0;
1876
1877 brdp = stli_brds[portp->brdnr];
1878 if (brdp != (stlibrd_t *) NULL)
1879 sio.port = brdp->iobase;
1880
1881 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1882 -EFAULT : 0;
1883}
1884
1885/*****************************************************************************/
1886
1887/*
1888 * Set port according to the serial struct info.
1889 * At this point we do not do any auto-configure stuff, so we will
1890 * just quietly ignore any requests to change irq, etc.
1891 */
1892
1893static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp)
1894{
1895 struct serial_struct sio;
1896 int rc;
1897
1898#ifdef DEBUG
1899 printk("stli_setserial(portp=%p,sp=%p)\n", portp, sp);
1900#endif
1901
1902 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1903 return -EFAULT;
1904 if (!capable(CAP_SYS_ADMIN)) {
1905 if ((sio.baud_base != portp->baud_base) ||
1906 (sio.close_delay != portp->close_delay) ||
1907 ((sio.flags & ~ASYNC_USR_MASK) !=
1908 (portp->flags & ~ASYNC_USR_MASK)))
1909 return(-EPERM);
1910 }
1911
1912 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1913 (sio.flags & ASYNC_USR_MASK);
1914 portp->baud_base = sio.baud_base;
1915 portp->close_delay = sio.close_delay;
1916 portp->closing_wait = sio.closing_wait;
1917 portp->custom_divisor = sio.custom_divisor;
1918
1919 if ((rc = stli_setport(portp)) < 0)
1920 return(rc);
1921 return(0);
1922}
1923
1924/*****************************************************************************/
1925
1926static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1927{
1928 stliport_t *portp = tty->driver_data;
1929 stlibrd_t *brdp;
1930 int rc;
1931
1932 if (portp == (stliport_t *) NULL)
1933 return(-ENODEV);
1934 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1935 return(0);
1936 brdp = stli_brds[portp->brdnr];
1937 if (brdp == (stlibrd_t *) NULL)
1938 return(0);
1939 if (tty->flags & (1 << TTY_IO_ERROR))
1940 return(-EIO);
1941
1942 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1943 &portp->asig, sizeof(asysigs_t), 1)) < 0)
1944 return(rc);
1945
1946 return stli_mktiocm(portp->asig.sigvalue);
1947}
1948
1949static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1950 unsigned int set, unsigned int clear)
1951{
1952 stliport_t *portp = tty->driver_data;
1953 stlibrd_t *brdp;
1954 int rts = -1, dtr = -1;
1955
1956 if (portp == (stliport_t *) NULL)
1957 return(-ENODEV);
1958 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1959 return(0);
1960 brdp = stli_brds[portp->brdnr];
1961 if (brdp == (stlibrd_t *) NULL)
1962 return(0);
1963 if (tty->flags & (1 << TTY_IO_ERROR))
1964 return(-EIO);
1965
1966 if (set & TIOCM_RTS)
1967 rts = 1;
1968 if (set & TIOCM_DTR)
1969 dtr = 1;
1970 if (clear & TIOCM_RTS)
1971 rts = 0;
1972 if (clear & TIOCM_DTR)
1973 dtr = 0;
1974
1975 stli_mkasysigs(&portp->asig, dtr, rts);
1976
1977 return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1978 sizeof(asysigs_t), 0);
1979}
1980
1981static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1982{
1983 stliport_t *portp;
1984 stlibrd_t *brdp;
1985 unsigned int ival;
1986 int rc;
1987 void __user *argp = (void __user *)arg;
1988
1989#ifdef DEBUG
1990 printk("stli_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n",
1991 (int) tty, (int) file, cmd, (int) arg);
1992#endif
1993
1994 if (tty == (struct tty_struct *) NULL)
1995 return(-ENODEV);
1996 portp = tty->driver_data;
1997 if (portp == (stliport_t *) NULL)
1998 return(-ENODEV);
1999 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2000 return(0);
2001 brdp = stli_brds[portp->brdnr];
2002 if (brdp == (stlibrd_t *) NULL)
2003 return(0);
2004
2005 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
2006 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
2007 if (tty->flags & (1 << TTY_IO_ERROR))
2008 return(-EIO);
2009 }
2010
2011 rc = 0;
2012
2013 switch (cmd) {
2014 case TIOCGSOFTCAR:
2015 rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
2016 (unsigned __user *) arg);
2017 break;
2018 case TIOCSSOFTCAR:
2019 if ((rc = get_user(ival, (unsigned __user *) arg)) == 0)
2020 tty->termios->c_cflag =
2021 (tty->termios->c_cflag & ~CLOCAL) |
2022 (ival ? CLOCAL : 0);
2023 break;
2024 case TIOCGSERIAL:
2025 rc = stli_getserial(portp, argp);
2026 break;
2027 case TIOCSSERIAL:
2028 rc = stli_setserial(portp, argp);
2029 break;
2030 case STL_GETPFLAG:
2031 rc = put_user(portp->pflag, (unsigned __user *)argp);
2032 break;
2033 case STL_SETPFLAG:
2034 if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
2035 stli_setport(portp);
2036 break;
2037 case COM_GETPORTSTATS:
2038 rc = stli_getportstats(portp, argp);
2039 break;
2040 case COM_CLRPORTSTATS:
2041 rc = stli_clrportstats(portp, argp);
2042 break;
2043 case TIOCSERCONFIG:
2044 case TIOCSERGWILD:
2045 case TIOCSERSWILD:
2046 case TIOCSERGETLSR:
2047 case TIOCSERGSTRUCT:
2048 case TIOCSERGETMULTI:
2049 case TIOCSERSETMULTI:
2050 default:
2051 rc = -ENOIOCTLCMD;
2052 break;
2053 }
2054
2055 return(rc);
2056}
2057
2058/*****************************************************************************/
2059
2060/*
2061 * This routine assumes that we have user context and can sleep.
2062 * Looks like it is true for the current ttys implementation..!!
2063 */
2064
2065static void stli_settermios(struct tty_struct *tty, struct termios *old)
2066{
2067 stliport_t *portp;
2068 stlibrd_t *brdp;
2069 struct termios *tiosp;
2070 asyport_t aport;
2071
2072#ifdef DEBUG
2073 printk("stli_settermios(tty=%x,old=%x)\n", (int) tty, (int) old);
2074#endif
2075
2076 if (tty == (struct tty_struct *) NULL)
2077 return;
2078 portp = tty->driver_data;
2079 if (portp == (stliport_t *) NULL)
2080 return;
2081 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2082 return;
2083 brdp = stli_brds[portp->brdnr];
2084 if (brdp == (stlibrd_t *) NULL)
2085 return;
2086
2087 tiosp = tty->termios;
2088 if ((tiosp->c_cflag == old->c_cflag) &&
2089 (tiosp->c_iflag == old->c_iflag))
2090 return;
2091
2092 stli_mkasyport(portp, &aport, tiosp);
2093 stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
2094 stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
2095 stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
2096 sizeof(asysigs_t), 0);
2097 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
2098 tty->hw_stopped = 0;
2099 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
2100 wake_up_interruptible(&portp->open_wait);
2101}
2102
2103/*****************************************************************************/
2104
2105/*
2106 * Attempt to flow control who ever is sending us data. We won't really
2107 * do any flow control action here. We can't directly, and even if we
2108 * wanted to we would have to send a command to the slave. The slave
2109 * knows how to flow control, and will do so when its buffers reach its
2110 * internal high water marks. So what we will do is set a local state
2111 * bit that will stop us sending any RX data up from the poll routine
2112 * (which is the place where RX data from the slave is handled).
2113 */
2114
2115static void stli_throttle(struct tty_struct *tty)
2116{
2117 stliport_t *portp;
2118
2119#ifdef DEBUG
2120 printk("stli_throttle(tty=%x)\n", (int) tty);
2121#endif
2122
2123 if (tty == (struct tty_struct *) NULL)
2124 return;
2125 portp = tty->driver_data;
2126 if (portp == (stliport_t *) NULL)
2127 return;
2128
2129 set_bit(ST_RXSTOP, &portp->state);
2130}
2131
2132/*****************************************************************************/
2133
2134/*
2135 * Unflow control the device sending us data... That means that all
2136 * we have to do is clear the RXSTOP state bit. The next poll call
2137 * will then be able to pass the RX data back up.
2138 */
2139
2140static void stli_unthrottle(struct tty_struct *tty)
2141{
2142 stliport_t *portp;
2143
2144#ifdef DEBUG
2145 printk("stli_unthrottle(tty=%x)\n", (int) tty);
2146#endif
2147
2148 if (tty == (struct tty_struct *) NULL)
2149 return;
2150 portp = tty->driver_data;
2151 if (portp == (stliport_t *) NULL)
2152 return;
2153
2154 clear_bit(ST_RXSTOP, &portp->state);
2155}
2156
2157/*****************************************************************************/
2158
2159/*
2160 * Stop the transmitter. Basically to do this we will just turn TX
2161 * interrupts off.
2162 */
2163
2164static void stli_stop(struct tty_struct *tty)
2165{
2166 stlibrd_t *brdp;
2167 stliport_t *portp;
2168 asyctrl_t actrl;
2169
2170#ifdef DEBUG
2171 printk("stli_stop(tty=%x)\n", (int) tty);
2172#endif
2173
2174 if (tty == (struct tty_struct *) NULL)
2175 return;
2176 portp = tty->driver_data;
2177 if (portp == (stliport_t *) NULL)
2178 return;
2179 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2180 return;
2181 brdp = stli_brds[portp->brdnr];
2182 if (brdp == (stlibrd_t *) NULL)
2183 return;
2184
2185 memset(&actrl, 0, sizeof(asyctrl_t));
2186 actrl.txctrl = CT_STOPFLOW;
2187#if 0
2188 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2189#endif
2190}
2191
2192/*****************************************************************************/
2193
2194/*
2195 * Start the transmitter again. Just turn TX interrupts back on.
2196 */
2197
2198static void stli_start(struct tty_struct *tty)
2199{
2200 stliport_t *portp;
2201 stlibrd_t *brdp;
2202 asyctrl_t actrl;
2203
2204#ifdef DEBUG
2205 printk("stli_start(tty=%x)\n", (int) tty);
2206#endif
2207
2208 if (tty == (struct tty_struct *) NULL)
2209 return;
2210 portp = tty->driver_data;
2211 if (portp == (stliport_t *) NULL)
2212 return;
2213 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2214 return;
2215 brdp = stli_brds[portp->brdnr];
2216 if (brdp == (stlibrd_t *) NULL)
2217 return;
2218
2219 memset(&actrl, 0, sizeof(asyctrl_t));
2220 actrl.txctrl = CT_STARTFLOW;
2221#if 0
2222 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2223#endif
2224}
2225
2226/*****************************************************************************/
2227
2228/*
2229 * Scheduler called hang up routine. This is called from the scheduler,
2230 * not direct from the driver "poll" routine. We can't call it there
2231 * since the real local hangup code will enable/disable the board and
2232 * other things that we can't do while handling the poll. Much easier
2233 * to deal with it some time later (don't really care when, hangups
2234 * aren't that time critical).
2235 */
2236
2237static void stli_dohangup(void *arg)
2238{
2239 stliport_t *portp;
2240
2241#ifdef DEBUG
2242 printk(KERN_DEBUG "stli_dohangup(portp=%x)\n", (int) arg);
2243#endif
2244
2245 /*
2246 * FIXME: There's a module removal race here: tty_hangup
2247 * calls schedule_work which will call into this
2248 * driver later.
2249 */
2250 portp = (stliport_t *) arg;
2251 if (portp != (stliport_t *) NULL) {
2252 if (portp->tty != (struct tty_struct *) NULL) {
2253 tty_hangup(portp->tty);
2254 }
2255 }
2256}
2257
2258/*****************************************************************************/
2259
2260/*
2261 * Hangup this port. This is pretty much like closing the port, only
2262 * a little more brutal. No waiting for data to drain. Shutdown the
2263 * port and maybe drop signals. This is rather tricky really. We want
2264 * to close the port as well.
2265 */
2266
2267static void stli_hangup(struct tty_struct *tty)
2268{
2269 stliport_t *portp;
2270 stlibrd_t *brdp;
2271 unsigned long flags;
2272
2273#ifdef DEBUG
2274 printk(KERN_DEBUG "stli_hangup(tty=%x)\n", (int) tty);
2275#endif
2276
2277 if (tty == (struct tty_struct *) NULL)
2278 return;
2279 portp = tty->driver_data;
2280 if (portp == (stliport_t *) NULL)
2281 return;
2282 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2283 return;
2284 brdp = stli_brds[portp->brdnr];
2285 if (brdp == (stlibrd_t *) NULL)
2286 return;
2287
2288 portp->flags &= ~ASYNC_INITIALIZED;
2289
2290 save_flags(flags);
2291 cli();
2292 if (! test_bit(ST_CLOSING, &portp->state))
2293 stli_rawclose(brdp, portp, 0, 0);
2294 if (tty->termios->c_cflag & HUPCL) {
2295 stli_mkasysigs(&portp->asig, 0, 0);
2296 if (test_bit(ST_CMDING, &portp->state)) {
2297 set_bit(ST_DOSIGS, &portp->state);
2298 set_bit(ST_DOFLUSHTX, &portp->state);
2299 set_bit(ST_DOFLUSHRX, &portp->state);
2300 } else {
2301 stli_sendcmd(brdp, portp, A_SETSIGNALSF,
2302 &portp->asig, sizeof(asysigs_t), 0);
2303 }
2304 }
2305 restore_flags(flags);
2306
2307 clear_bit(ST_TXBUSY, &portp->state);
2308 clear_bit(ST_RXSTOP, &portp->state);
2309 set_bit(TTY_IO_ERROR, &tty->flags);
2310 portp->tty = (struct tty_struct *) NULL;
2311 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
2312 portp->refcount = 0;
2313 wake_up_interruptible(&portp->open_wait);
2314}
2315
2316/*****************************************************************************/
2317
2318/*
2319 * Flush characters from the lower buffer. We may not have user context
2320 * so we cannot sleep waiting for it to complete. Also we need to check
2321 * if there is chars for this port in the TX cook buffer, and flush them
2322 * as well.
2323 */
2324
2325static void stli_flushbuffer(struct tty_struct *tty)
2326{
2327 stliport_t *portp;
2328 stlibrd_t *brdp;
2329 unsigned long ftype, flags;
2330
2331#ifdef DEBUG
2332 printk(KERN_DEBUG "stli_flushbuffer(tty=%x)\n", (int) tty);
2333#endif
2334
2335 if (tty == (struct tty_struct *) NULL)
2336 return;
2337 portp = tty->driver_data;
2338 if (portp == (stliport_t *) NULL)
2339 return;
2340 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2341 return;
2342 brdp = stli_brds[portp->brdnr];
2343 if (brdp == (stlibrd_t *) NULL)
2344 return;
2345
2346 save_flags(flags);
2347 cli();
2348 if (tty == stli_txcooktty) {
2349 stli_txcooktty = (struct tty_struct *) NULL;
2350 stli_txcooksize = 0;
2351 stli_txcookrealsize = 0;
2352 }
2353 if (test_bit(ST_CMDING, &portp->state)) {
2354 set_bit(ST_DOFLUSHTX, &portp->state);
2355 } else {
2356 ftype = FLUSHTX;
2357 if (test_bit(ST_DOFLUSHRX, &portp->state)) {
2358 ftype |= FLUSHRX;
2359 clear_bit(ST_DOFLUSHRX, &portp->state);
2360 }
2361 stli_sendcmd(brdp, portp, A_FLUSH, &ftype,
2362 sizeof(unsigned long), 0);
2363 }
2364 restore_flags(flags);
2365
2366 wake_up_interruptible(&tty->write_wait);
2367 if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
2368 tty->ldisc.write_wakeup)
2369 (tty->ldisc.write_wakeup)(tty);
2370}
2371
2372/*****************************************************************************/
2373
2374static void stli_breakctl(struct tty_struct *tty, int state)
2375{
2376 stlibrd_t *brdp;
2377 stliport_t *portp;
2378 long arg;
2379 /* long savestate, savetime; */
2380
2381#ifdef DEBUG
2382 printk(KERN_DEBUG "stli_breakctl(tty=%x,state=%d)\n", (int) tty, state);
2383#endif
2384
2385 if (tty == (struct tty_struct *) NULL)
2386 return;
2387 portp = tty->driver_data;
2388 if (portp == (stliport_t *) NULL)
2389 return;
2390 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2391 return;
2392 brdp = stli_brds[portp->brdnr];
2393 if (brdp == (stlibrd_t *) NULL)
2394 return;
2395
2396/*
2397 * Due to a bug in the tty send_break() code we need to preserve
2398 * the current process state and timeout...
2399 savetime = current->timeout;
2400 savestate = current->state;
2401 */
2402
2403 arg = (state == -1) ? BREAKON : BREAKOFF;
2404 stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
2405
2406/*
2407 *
2408 current->timeout = savetime;
2409 current->state = savestate;
2410 */
2411}
2412
2413/*****************************************************************************/
2414
2415static void stli_waituntilsent(struct tty_struct *tty, int timeout)
2416{
2417 stliport_t *portp;
2418 unsigned long tend;
2419
2420#ifdef DEBUG
2421 printk(KERN_DEBUG "stli_waituntilsent(tty=%x,timeout=%x)\n", (int) tty, timeout);
2422#endif
2423
2424 if (tty == (struct tty_struct *) NULL)
2425 return;
2426 portp = tty->driver_data;
2427 if (portp == (stliport_t *) NULL)
2428 return;
2429
2430 if (timeout == 0)
2431 timeout = HZ;
2432 tend = jiffies + timeout;
2433
2434 while (test_bit(ST_TXBUSY, &portp->state)) {
2435 if (signal_pending(current))
2436 break;
2437 msleep_interruptible(20);
2438 if (time_after_eq(jiffies, tend))
2439 break;
2440 }
2441}
2442
2443/*****************************************************************************/
2444
2445static void stli_sendxchar(struct tty_struct *tty, char ch)
2446{
2447 stlibrd_t *brdp;
2448 stliport_t *portp;
2449 asyctrl_t actrl;
2450
2451#ifdef DEBUG
2452 printk(KERN_DEBUG "stli_sendxchar(tty=%x,ch=%x)\n", (int) tty, ch);
2453#endif
2454
2455 if (tty == (struct tty_struct *) NULL)
2456 return;
2457 portp = tty->driver_data;
2458 if (portp == (stliport_t *) NULL)
2459 return;
2460 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2461 return;
2462 brdp = stli_brds[portp->brdnr];
2463 if (brdp == (stlibrd_t *) NULL)
2464 return;
2465
2466 memset(&actrl, 0, sizeof(asyctrl_t));
2467 if (ch == STOP_CHAR(tty)) {
2468 actrl.rxctrl = CT_STOPFLOW;
2469 } else if (ch == START_CHAR(tty)) {
2470 actrl.rxctrl = CT_STARTFLOW;
2471 } else {
2472 actrl.txctrl = CT_SENDCHR;
2473 actrl.tximdch = ch;
2474 }
2475
2476 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2477}
2478
2479/*****************************************************************************/
2480
2481#define MAXLINE 80
2482
2483/*
2484 * Format info for a specified port. The line is deliberately limited
2485 * to 80 characters. (If it is too long it will be truncated, if too
2486 * short then padded with spaces).
2487 */
2488
2489static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos)
2490{
2491 char *sp, *uart;
2492 int rc, cnt;
2493
2494 rc = stli_portcmdstats(portp);
2495
2496 uart = "UNKNOWN";
2497 if (brdp->state & BST_STARTED) {
2498 switch (stli_comstats.hwid) {
2499 case 0: uart = "2681"; break;
2500 case 1: uart = "SC26198"; break;
2501 default: uart = "CD1400"; break;
2502 }
2503 }
2504
2505 sp = pos;
2506 sp += sprintf(sp, "%d: uart:%s ", portnr, uart);
2507
2508 if ((brdp->state & BST_STARTED) && (rc >= 0)) {
2509 sp += sprintf(sp, "tx:%d rx:%d", (int) stli_comstats.txtotal,
2510 (int) stli_comstats.rxtotal);
2511
2512 if (stli_comstats.rxframing)
2513 sp += sprintf(sp, " fe:%d",
2514 (int) stli_comstats.rxframing);
2515 if (stli_comstats.rxparity)
2516 sp += sprintf(sp, " pe:%d",
2517 (int) stli_comstats.rxparity);
2518 if (stli_comstats.rxbreaks)
2519 sp += sprintf(sp, " brk:%d",
2520 (int) stli_comstats.rxbreaks);
2521 if (stli_comstats.rxoverrun)
2522 sp += sprintf(sp, " oe:%d",
2523 (int) stli_comstats.rxoverrun);
2524
2525 cnt = sprintf(sp, "%s%s%s%s%s ",
2526 (stli_comstats.signals & TIOCM_RTS) ? "|RTS" : "",
2527 (stli_comstats.signals & TIOCM_CTS) ? "|CTS" : "",
2528 (stli_comstats.signals & TIOCM_DTR) ? "|DTR" : "",
2529 (stli_comstats.signals & TIOCM_CD) ? "|DCD" : "",
2530 (stli_comstats.signals & TIOCM_DSR) ? "|DSR" : "");
2531 *sp = ' ';
2532 sp += cnt;
2533 }
2534
2535 for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
2536 *sp++ = ' ';
2537 if (cnt >= MAXLINE)
2538 pos[(MAXLINE - 2)] = '+';
2539 pos[(MAXLINE - 1)] = '\n';
2540
2541 return(MAXLINE);
2542}
2543
2544/*****************************************************************************/
2545
2546/*
2547 * Port info, read from the /proc file system.
2548 */
2549
2550static int stli_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
2551{
2552 stlibrd_t *brdp;
2553 stliport_t *portp;
2554 int brdnr, portnr, totalport;
2555 int curoff, maxoff;
2556 char *pos;
2557
2558#ifdef DEBUG
2559 printk(KERN_DEBUG "stli_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x,"
2560 "data=%x\n", (int) page, (int) start, (int) off, count,
2561 (int) eof, (int) data);
2562#endif
2563
2564 pos = page;
2565 totalport = 0;
2566 curoff = 0;
2567
2568 if (off == 0) {
2569 pos += sprintf(pos, "%s: version %s", stli_drvtitle,
2570 stli_drvversion);
2571 while (pos < (page + MAXLINE - 1))
2572 *pos++ = ' ';
2573 *pos++ = '\n';
2574 }
2575 curoff = MAXLINE;
2576
2577/*
2578 * We scan through for each board, panel and port. The offset is
2579 * calculated on the fly, and irrelevant ports are skipped.
2580 */
2581 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2582 brdp = stli_brds[brdnr];
2583 if (brdp == (stlibrd_t *) NULL)
2584 continue;
2585 if (brdp->state == 0)
2586 continue;
2587
2588 maxoff = curoff + (brdp->nrports * MAXLINE);
2589 if (off >= maxoff) {
2590 curoff = maxoff;
2591 continue;
2592 }
2593
2594 totalport = brdnr * STL_MAXPORTS;
2595 for (portnr = 0; (portnr < brdp->nrports); portnr++,
2596 totalport++) {
2597 portp = brdp->ports[portnr];
2598 if (portp == (stliport_t *) NULL)
2599 continue;
2600 if (off >= (curoff += MAXLINE))
2601 continue;
2602 if ((pos - page + MAXLINE) > count)
2603 goto stli_readdone;
2604 pos += stli_portinfo(brdp, portp, totalport, pos);
2605 }
2606 }
2607
2608 *eof = 1;
2609
2610stli_readdone:
2611 *start = page;
2612 return(pos - page);
2613}
2614
2615/*****************************************************************************/
2616
2617/*
2618 * Generic send command routine. This will send a message to the slave,
2619 * of the specified type with the specified argument. Must be very
2620 * careful of data that will be copied out from shared memory -
2621 * containing command results. The command completion is all done from
2622 * a poll routine that does not have user context. Therefore you cannot
2623 * copy back directly into user space, or to the kernel stack of a
2624 * process. This routine does not sleep, so can be called from anywhere.
2625 */
2626
2627static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
2628{
2629 volatile cdkhdr_t *hdrp;
2630 volatile cdkctrl_t *cp;
2631 volatile unsigned char *bits;
2632 unsigned long flags;
2633
2634#ifdef DEBUG
2635 printk(KERN_DEBUG "stli_sendcmd(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
2636 "copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
2637 (int) arg, size, copyback);
2638#endif
2639
2640 save_flags(flags);
2641 cli();
2642
2643 if (test_bit(ST_CMDING, &portp->state)) {
2644 printk(KERN_ERR "STALLION: command already busy, cmd=%x!\n",
2645 (int) cmd);
2646 restore_flags(flags);
2647 return;
2648 }
2649
2650 EBRDENABLE(brdp);
2651 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
2652 if (size > 0) {
2653 memcpy((void *) &(cp->args[0]), arg, size);
2654 if (copyback) {
2655 portp->argp = arg;
2656 portp->argsize = size;
2657 }
2658 }
2659 cp->status = 0;
2660 cp->cmd = cmd;
2661 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2662 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
2663 portp->portidx;
2664 *bits |= portp->portbit;
2665 set_bit(ST_CMDING, &portp->state);
2666 EBRDDISABLE(brdp);
2667 restore_flags(flags);
2668}
2669
2670/*****************************************************************************/
2671
2672/*
2673 * Read data from shared memory. This assumes that the shared memory
2674 * is enabled and that interrupts are off. Basically we just empty out
2675 * the shared memory buffer into the tty buffer. Must be careful to
2676 * handle the case where we fill up the tty buffer, but still have
2677 * more chars to unload.
2678 */
2679
2680static void stli_read(stlibrd_t *brdp, stliport_t *portp)
2681{
2682 volatile cdkasyrq_t *rp;
2683 volatile char *shbuf;
2684 struct tty_struct *tty;
2685 unsigned int head, tail, size;
2686 unsigned int len, stlen;
2687
2688#ifdef DEBUG
2689 printk(KERN_DEBUG "stli_read(brdp=%x,portp=%d)\n",
2690 (int) brdp, (int) portp);
2691#endif
2692
2693 if (test_bit(ST_RXSTOP, &portp->state))
2694 return;
2695 tty = portp->tty;
2696 if (tty == (struct tty_struct *) NULL)
2697 return;
2698
2699 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2700 head = (unsigned int) rp->head;
2701 if (head != ((unsigned int) rp->head))
2702 head = (unsigned int) rp->head;
2703 tail = (unsigned int) rp->tail;
2704 size = portp->rxsize;
2705 if (head >= tail) {
2706 len = head - tail;
2707 stlen = len;
2708 } else {
2709 len = size - (tail - head);
2710 stlen = size - tail;
2711 }
2712
Alan Cox33f0f882006-01-09 20:54:13 -08002713 len = tty_buffer_request_room(tty, len);
2714 /* FIXME : iomap ? */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002715 shbuf = (volatile char *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2716
2717 while (len > 0) {
2718 stlen = MIN(len, stlen);
Alan Cox33f0f882006-01-09 20:54:13 -08002719 tty_insert_flip_string(tty, (char *)(shbuf + tail), stlen);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002720 len -= stlen;
2721 tail += stlen;
2722 if (tail >= size) {
2723 tail = 0;
2724 stlen = head;
2725 }
2726 }
2727 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2728 rp->tail = tail;
2729
2730 if (head != tail)
2731 set_bit(ST_RXING, &portp->state);
2732
2733 tty_schedule_flip(tty);
2734}
2735
2736/*****************************************************************************/
2737
2738/*
2739 * Set up and carry out any delayed commands. There is only a small set
2740 * of slave commands that can be done "off-level". So it is not too
2741 * difficult to deal with them here.
2742 */
2743
2744static void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp)
2745{
2746 int cmd;
2747
2748 if (test_bit(ST_DOSIGS, &portp->state)) {
2749 if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2750 test_bit(ST_DOFLUSHRX, &portp->state))
2751 cmd = A_SETSIGNALSF;
2752 else if (test_bit(ST_DOFLUSHTX, &portp->state))
2753 cmd = A_SETSIGNALSFTX;
2754 else if (test_bit(ST_DOFLUSHRX, &portp->state))
2755 cmd = A_SETSIGNALSFRX;
2756 else
2757 cmd = A_SETSIGNALS;
2758 clear_bit(ST_DOFLUSHTX, &portp->state);
2759 clear_bit(ST_DOFLUSHRX, &portp->state);
2760 clear_bit(ST_DOSIGS, &portp->state);
2761 memcpy((void *) &(cp->args[0]), (void *) &portp->asig,
2762 sizeof(asysigs_t));
2763 cp->status = 0;
2764 cp->cmd = cmd;
2765 set_bit(ST_CMDING, &portp->state);
2766 } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2767 test_bit(ST_DOFLUSHRX, &portp->state)) {
2768 cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2769 cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2770 clear_bit(ST_DOFLUSHTX, &portp->state);
2771 clear_bit(ST_DOFLUSHRX, &portp->state);
2772 memcpy((void *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2773 cp->status = 0;
2774 cp->cmd = A_FLUSH;
2775 set_bit(ST_CMDING, &portp->state);
2776 }
2777}
2778
2779/*****************************************************************************/
2780
2781/*
2782 * Host command service checking. This handles commands or messages
2783 * coming from the slave to the host. Must have board shared memory
2784 * enabled and interrupts off when called. Notice that by servicing the
2785 * read data last we don't need to change the shared memory pointer
2786 * during processing (which is a slow IO operation).
2787 * Return value indicates if this port is still awaiting actions from
2788 * the slave (like open, command, or even TX data being sent). If 0
2789 * then port is still busy, otherwise no longer busy.
2790 */
2791
2792static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp)
2793{
2794 volatile cdkasy_t *ap;
2795 volatile cdkctrl_t *cp;
2796 struct tty_struct *tty;
2797 asynotify_t nt;
2798 unsigned long oldsigs;
2799 int rc, donerx;
2800
2801#ifdef DEBUG
2802 printk(KERN_DEBUG "stli_hostcmd(brdp=%x,channr=%d)\n",
2803 (int) brdp, channr);
2804#endif
2805
2806 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
2807 cp = &ap->ctrl;
2808
2809/*
2810 * Check if we are waiting for an open completion message.
2811 */
2812 if (test_bit(ST_OPENING, &portp->state)) {
2813 rc = (int) cp->openarg;
2814 if ((cp->open == 0) && (rc != 0)) {
2815 if (rc > 0)
2816 rc--;
2817 cp->openarg = 0;
2818 portp->rc = rc;
2819 clear_bit(ST_OPENING, &portp->state);
2820 wake_up_interruptible(&portp->raw_wait);
2821 }
2822 }
2823
2824/*
2825 * Check if we are waiting for a close completion message.
2826 */
2827 if (test_bit(ST_CLOSING, &portp->state)) {
2828 rc = (int) cp->closearg;
2829 if ((cp->close == 0) && (rc != 0)) {
2830 if (rc > 0)
2831 rc--;
2832 cp->closearg = 0;
2833 portp->rc = rc;
2834 clear_bit(ST_CLOSING, &portp->state);
2835 wake_up_interruptible(&portp->raw_wait);
2836 }
2837 }
2838
2839/*
2840 * Check if we are waiting for a command completion message. We may
2841 * need to copy out the command results associated with this command.
2842 */
2843 if (test_bit(ST_CMDING, &portp->state)) {
2844 rc = cp->status;
2845 if ((cp->cmd == 0) && (rc != 0)) {
2846 if (rc > 0)
2847 rc--;
2848 if (portp->argp != (void *) NULL) {
2849 memcpy(portp->argp, (void *) &(cp->args[0]),
2850 portp->argsize);
2851 portp->argp = (void *) NULL;
2852 }
2853 cp->status = 0;
2854 portp->rc = rc;
2855 clear_bit(ST_CMDING, &portp->state);
2856 stli_dodelaycmd(portp, cp);
2857 wake_up_interruptible(&portp->raw_wait);
2858 }
2859 }
2860
2861/*
2862 * Check for any notification messages ready. This includes lots of
2863 * different types of events - RX chars ready, RX break received,
2864 * TX data low or empty in the slave, modem signals changed state.
2865 */
2866 donerx = 0;
2867
2868 if (ap->notify) {
2869 nt = ap->changed;
2870 ap->notify = 0;
2871 tty = portp->tty;
2872
2873 if (nt.signal & SG_DCD) {
2874 oldsigs = portp->sigs;
2875 portp->sigs = stli_mktiocm(nt.sigvalue);
2876 clear_bit(ST_GETSIGS, &portp->state);
2877 if ((portp->sigs & TIOCM_CD) &&
2878 ((oldsigs & TIOCM_CD) == 0))
2879 wake_up_interruptible(&portp->open_wait);
2880 if ((oldsigs & TIOCM_CD) &&
2881 ((portp->sigs & TIOCM_CD) == 0)) {
2882 if (portp->flags & ASYNC_CHECK_CD) {
2883 if (tty)
2884 schedule_work(&portp->tqhangup);
2885 }
2886 }
2887 }
2888
2889 if (nt.data & DT_TXEMPTY)
2890 clear_bit(ST_TXBUSY, &portp->state);
2891 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2892 if (tty != (struct tty_struct *) NULL) {
2893 if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
2894 tty->ldisc.write_wakeup) {
2895 (tty->ldisc.write_wakeup)(tty);
2896 EBRDENABLE(brdp);
2897 }
2898 wake_up_interruptible(&tty->write_wait);
2899 }
2900 }
2901
2902 if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2903 if (tty != (struct tty_struct *) NULL) {
Alan Cox33f0f882006-01-09 20:54:13 -08002904 tty_insert_flip_char(tty, 0, TTY_BREAK);
2905 if (portp->flags & ASYNC_SAK) {
2906 do_SAK(tty);
2907 EBRDENABLE(brdp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002908 }
Alan Cox33f0f882006-01-09 20:54:13 -08002909 tty_schedule_flip(tty);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002910 }
2911 }
2912
2913 if (nt.data & DT_RXBUSY) {
2914 donerx++;
2915 stli_read(brdp, portp);
2916 }
2917 }
2918
2919/*
2920 * It might seem odd that we are checking for more RX chars here.
2921 * But, we need to handle the case where the tty buffer was previously
2922 * filled, but we had more characters to pass up. The slave will not
2923 * send any more RX notify messages until the RX buffer has been emptied.
2924 * But it will leave the service bits on (since the buffer is not empty).
2925 * So from here we can try to process more RX chars.
2926 */
2927 if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2928 clear_bit(ST_RXING, &portp->state);
2929 stli_read(brdp, portp);
2930 }
2931
2932 return((test_bit(ST_OPENING, &portp->state) ||
2933 test_bit(ST_CLOSING, &portp->state) ||
2934 test_bit(ST_CMDING, &portp->state) ||
2935 test_bit(ST_TXBUSY, &portp->state) ||
2936 test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2937}
2938
2939/*****************************************************************************/
2940
2941/*
2942 * Service all ports on a particular board. Assumes that the boards
2943 * shared memory is enabled, and that the page pointer is pointed
2944 * at the cdk header structure.
2945 */
2946
2947static void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp)
2948{
2949 stliport_t *portp;
2950 unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2951 unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2952 unsigned char *slavep;
2953 int bitpos, bitat, bitsize;
2954 int channr, nrdevs, slavebitchange;
2955
2956 bitsize = brdp->bitsize;
2957 nrdevs = brdp->nrdevs;
2958
2959/*
2960 * Check if slave wants any service. Basically we try to do as
2961 * little work as possible here. There are 2 levels of service
2962 * bits. So if there is nothing to do we bail early. We check
2963 * 8 service bits at a time in the inner loop, so we can bypass
2964 * the lot if none of them want service.
2965 */
2966 memcpy(&hostbits[0], (((unsigned char *) hdrp) + brdp->hostoffset),
2967 bitsize);
2968
2969 memset(&slavebits[0], 0, bitsize);
2970 slavebitchange = 0;
2971
2972 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2973 if (hostbits[bitpos] == 0)
2974 continue;
2975 channr = bitpos * 8;
2976 for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2977 if (hostbits[bitpos] & bitat) {
2978 portp = brdp->ports[(channr - 1)];
2979 if (stli_hostcmd(brdp, portp)) {
2980 slavebitchange++;
2981 slavebits[bitpos] |= bitat;
2982 }
2983 }
2984 }
2985 }
2986
2987/*
2988 * If any of the ports are no longer busy then update them in the
2989 * slave request bits. We need to do this after, since a host port
2990 * service may initiate more slave requests.
2991 */
2992 if (slavebitchange) {
2993 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2994 slavep = ((unsigned char *) hdrp) + brdp->slaveoffset;
2995 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2996 if (slavebits[bitpos])
2997 slavep[bitpos] &= ~slavebits[bitpos];
2998 }
2999 }
3000}
3001
3002/*****************************************************************************/
3003
3004/*
3005 * Driver poll routine. This routine polls the boards in use and passes
3006 * messages back up to host when necessary. This is actually very
3007 * CPU efficient, since we will always have the kernel poll clock, it
3008 * adds only a few cycles when idle (since board service can be
3009 * determined very easily), but when loaded generates no interrupts
3010 * (with their expensive associated context change).
3011 */
3012
3013static void stli_poll(unsigned long arg)
3014{
3015 volatile cdkhdr_t *hdrp;
3016 stlibrd_t *brdp;
3017 int brdnr;
3018
3019 stli_timerlist.expires = STLI_TIMEOUT;
3020 add_timer(&stli_timerlist);
3021
3022/*
3023 * Check each board and do any servicing required.
3024 */
3025 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
3026 brdp = stli_brds[brdnr];
3027 if (brdp == (stlibrd_t *) NULL)
3028 continue;
3029 if ((brdp->state & BST_STARTED) == 0)
3030 continue;
3031
3032 EBRDENABLE(brdp);
3033 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3034 if (hdrp->hostreq)
3035 stli_brdpoll(brdp, hdrp);
3036 EBRDDISABLE(brdp);
3037 }
3038}
3039
3040/*****************************************************************************/
3041
3042/*
3043 * Translate the termios settings into the port setting structure of
3044 * the slave.
3045 */
3046
3047static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp)
3048{
3049#ifdef DEBUG
3050 printk(KERN_DEBUG "stli_mkasyport(portp=%x,pp=%x,tiosp=%d)\n",
3051 (int) portp, (int) pp, (int) tiosp);
3052#endif
3053
3054 memset(pp, 0, sizeof(asyport_t));
3055
3056/*
3057 * Start of by setting the baud, char size, parity and stop bit info.
3058 */
3059 pp->baudout = tiosp->c_cflag & CBAUD;
3060 if (pp->baudout & CBAUDEX) {
3061 pp->baudout &= ~CBAUDEX;
3062 if ((pp->baudout < 1) || (pp->baudout > 4))
3063 tiosp->c_cflag &= ~CBAUDEX;
3064 else
3065 pp->baudout += 15;
3066 }
3067 pp->baudout = stli_baudrates[pp->baudout];
3068 if ((tiosp->c_cflag & CBAUD) == B38400) {
3069 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3070 pp->baudout = 57600;
3071 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3072 pp->baudout = 115200;
3073 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3074 pp->baudout = 230400;
3075 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3076 pp->baudout = 460800;
3077 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3078 pp->baudout = (portp->baud_base / portp->custom_divisor);
3079 }
3080 if (pp->baudout > STL_MAXBAUD)
3081 pp->baudout = STL_MAXBAUD;
3082 pp->baudin = pp->baudout;
3083
3084 switch (tiosp->c_cflag & CSIZE) {
3085 case CS5:
3086 pp->csize = 5;
3087 break;
3088 case CS6:
3089 pp->csize = 6;
3090 break;
3091 case CS7:
3092 pp->csize = 7;
3093 break;
3094 default:
3095 pp->csize = 8;
3096 break;
3097 }
3098
3099 if (tiosp->c_cflag & CSTOPB)
3100 pp->stopbs = PT_STOP2;
3101 else
3102 pp->stopbs = PT_STOP1;
3103
3104 if (tiosp->c_cflag & PARENB) {
3105 if (tiosp->c_cflag & PARODD)
3106 pp->parity = PT_ODDPARITY;
3107 else
3108 pp->parity = PT_EVENPARITY;
3109 } else {
3110 pp->parity = PT_NOPARITY;
3111 }
3112
3113/*
3114 * Set up any flow control options enabled.
3115 */
3116 if (tiosp->c_iflag & IXON) {
3117 pp->flow |= F_IXON;
3118 if (tiosp->c_iflag & IXANY)
3119 pp->flow |= F_IXANY;
3120 }
3121 if (tiosp->c_cflag & CRTSCTS)
3122 pp->flow |= (F_RTSFLOW | F_CTSFLOW);
3123
3124 pp->startin = tiosp->c_cc[VSTART];
3125 pp->stopin = tiosp->c_cc[VSTOP];
3126 pp->startout = tiosp->c_cc[VSTART];
3127 pp->stopout = tiosp->c_cc[VSTOP];
3128
3129/*
3130 * Set up the RX char marking mask with those RX error types we must
3131 * catch. We can get the slave to help us out a little here, it will
3132 * ignore parity errors and breaks for us, and mark parity errors in
3133 * the data stream.
3134 */
3135 if (tiosp->c_iflag & IGNPAR)
3136 pp->iflag |= FI_IGNRXERRS;
3137 if (tiosp->c_iflag & IGNBRK)
3138 pp->iflag |= FI_IGNBREAK;
3139
3140 portp->rxmarkmsk = 0;
3141 if (tiosp->c_iflag & (INPCK | PARMRK))
3142 pp->iflag |= FI_1MARKRXERRS;
3143 if (tiosp->c_iflag & BRKINT)
3144 portp->rxmarkmsk |= BRKINT;
3145
3146/*
3147 * Set up clocal processing as required.
3148 */
3149 if (tiosp->c_cflag & CLOCAL)
3150 portp->flags &= ~ASYNC_CHECK_CD;
3151 else
3152 portp->flags |= ASYNC_CHECK_CD;
3153
3154/*
3155 * Transfer any persistent flags into the asyport structure.
3156 */
3157 pp->pflag = (portp->pflag & 0xffff);
3158 pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
3159 pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
3160 pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
3161}
3162
3163/*****************************************************************************/
3164
3165/*
3166 * Construct a slave signals structure for setting the DTR and RTS
3167 * signals as specified.
3168 */
3169
3170static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
3171{
3172#ifdef DEBUG
3173 printk(KERN_DEBUG "stli_mkasysigs(sp=%x,dtr=%d,rts=%d)\n",
3174 (int) sp, dtr, rts);
3175#endif
3176
3177 memset(sp, 0, sizeof(asysigs_t));
3178 if (dtr >= 0) {
3179 sp->signal |= SG_DTR;
3180 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
3181 }
3182 if (rts >= 0) {
3183 sp->signal |= SG_RTS;
3184 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
3185 }
3186}
3187
3188/*****************************************************************************/
3189
3190/*
3191 * Convert the signals returned from the slave into a local TIOCM type
3192 * signals value. We keep them locally in TIOCM format.
3193 */
3194
3195static long stli_mktiocm(unsigned long sigvalue)
3196{
3197 long tiocm;
3198
3199#ifdef DEBUG
3200 printk(KERN_DEBUG "stli_mktiocm(sigvalue=%x)\n", (int) sigvalue);
3201#endif
3202
3203 tiocm = 0;
3204 tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
3205 tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
3206 tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
3207 tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
3208 tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
3209 tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
3210 return(tiocm);
3211}
3212
3213/*****************************************************************************/
3214
3215/*
3216 * All panels and ports actually attached have been worked out. All
3217 * we need to do here is set up the appropriate per port data structures.
3218 */
3219
3220static int stli_initports(stlibrd_t *brdp)
3221{
3222 stliport_t *portp;
3223 int i, panelnr, panelport;
3224
3225#ifdef DEBUG
3226 printk(KERN_DEBUG "stli_initports(brdp=%x)\n", (int) brdp);
3227#endif
3228
3229 for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
3230 portp = (stliport_t *) stli_memalloc(sizeof(stliport_t));
3231 if (portp == (stliport_t *) NULL) {
3232 printk("STALLION: failed to allocate port structure\n");
3233 continue;
3234 }
3235
3236 memset(portp, 0, sizeof(stliport_t));
3237 portp->magic = STLI_PORTMAGIC;
3238 portp->portnr = i;
3239 portp->brdnr = brdp->brdnr;
3240 portp->panelnr = panelnr;
3241 portp->baud_base = STL_BAUDBASE;
3242 portp->close_delay = STL_CLOSEDELAY;
3243 portp->closing_wait = 30 * HZ;
3244 INIT_WORK(&portp->tqhangup, stli_dohangup, portp);
3245 init_waitqueue_head(&portp->open_wait);
3246 init_waitqueue_head(&portp->close_wait);
3247 init_waitqueue_head(&portp->raw_wait);
3248 panelport++;
3249 if (panelport >= brdp->panels[panelnr]) {
3250 panelport = 0;
3251 panelnr++;
3252 }
3253 brdp->ports[i] = portp;
3254 }
3255
3256 return(0);
3257}
3258
3259/*****************************************************************************/
3260
3261/*
3262 * All the following routines are board specific hardware operations.
3263 */
3264
3265static void stli_ecpinit(stlibrd_t *brdp)
3266{
3267 unsigned long memconf;
3268
3269#ifdef DEBUG
3270 printk(KERN_DEBUG "stli_ecpinit(brdp=%d)\n", (int) brdp);
3271#endif
3272
3273 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
3274 udelay(10);
3275 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3276 udelay(100);
3277
3278 memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
3279 outb(memconf, (brdp->iobase + ECP_ATMEMAR));
3280}
3281
3282/*****************************************************************************/
3283
3284static void stli_ecpenable(stlibrd_t *brdp)
3285{
3286#ifdef DEBUG
3287 printk(KERN_DEBUG "stli_ecpenable(brdp=%x)\n", (int) brdp);
3288#endif
3289 outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
3290}
3291
3292/*****************************************************************************/
3293
3294static void stli_ecpdisable(stlibrd_t *brdp)
3295{
3296#ifdef DEBUG
3297 printk(KERN_DEBUG "stli_ecpdisable(brdp=%x)\n", (int) brdp);
3298#endif
3299 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3300}
3301
3302/*****************************************************************************/
3303
3304static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3305{
3306 void *ptr;
3307 unsigned char val;
3308
3309#ifdef DEBUG
3310 printk(KERN_DEBUG "stli_ecpgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3311 (int) offset);
3312#endif
3313
3314 if (offset > brdp->memsize) {
3315 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3316 "range at line=%d(%d), brd=%d\n",
3317 (int) offset, line, __LINE__, brdp->brdnr);
3318 ptr = NULL;
3319 val = 0;
3320 } else {
3321 ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
3322 val = (unsigned char) (offset / ECP_ATPAGESIZE);
3323 }
3324 outb(val, (brdp->iobase + ECP_ATMEMPR));
3325 return(ptr);
3326}
3327
3328/*****************************************************************************/
3329
3330static void stli_ecpreset(stlibrd_t *brdp)
3331{
3332#ifdef DEBUG
3333 printk(KERN_DEBUG "stli_ecpreset(brdp=%x)\n", (int) brdp);
3334#endif
3335
3336 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
3337 udelay(10);
3338 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3339 udelay(500);
3340}
3341
3342/*****************************************************************************/
3343
3344static void stli_ecpintr(stlibrd_t *brdp)
3345{
3346#ifdef DEBUG
3347 printk(KERN_DEBUG "stli_ecpintr(brdp=%x)\n", (int) brdp);
3348#endif
3349 outb(0x1, brdp->iobase);
3350}
3351
3352/*****************************************************************************/
3353
3354/*
3355 * The following set of functions act on ECP EISA boards.
3356 */
3357
3358static void stli_ecpeiinit(stlibrd_t *brdp)
3359{
3360 unsigned long memconf;
3361
3362#ifdef DEBUG
3363 printk(KERN_DEBUG "stli_ecpeiinit(brdp=%x)\n", (int) brdp);
3364#endif
3365
3366 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3367 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3368 udelay(10);
3369 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3370 udelay(500);
3371
3372 memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
3373 outb(memconf, (brdp->iobase + ECP_EIMEMARL));
3374 memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
3375 outb(memconf, (brdp->iobase + ECP_EIMEMARH));
3376}
3377
3378/*****************************************************************************/
3379
3380static void stli_ecpeienable(stlibrd_t *brdp)
3381{
3382 outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
3383}
3384
3385/*****************************************************************************/
3386
3387static void stli_ecpeidisable(stlibrd_t *brdp)
3388{
3389 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3390}
3391
3392/*****************************************************************************/
3393
3394static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3395{
3396 void *ptr;
3397 unsigned char val;
3398
3399#ifdef DEBUG
3400 printk(KERN_DEBUG "stli_ecpeigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3401 (int) brdp, (int) offset, line);
3402#endif
3403
3404 if (offset > brdp->memsize) {
3405 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3406 "range at line=%d(%d), brd=%d\n",
3407 (int) offset, line, __LINE__, brdp->brdnr);
3408 ptr = NULL;
3409 val = 0;
3410 } else {
3411 ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
3412 if (offset < ECP_EIPAGESIZE)
3413 val = ECP_EIENABLE;
3414 else
3415 val = ECP_EIENABLE | 0x40;
3416 }
3417 outb(val, (brdp->iobase + ECP_EICONFR));
3418 return(ptr);
3419}
3420
3421/*****************************************************************************/
3422
3423static void stli_ecpeireset(stlibrd_t *brdp)
3424{
3425 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3426 udelay(10);
3427 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3428 udelay(500);
3429}
3430
3431/*****************************************************************************/
3432
3433/*
3434 * The following set of functions act on ECP MCA boards.
3435 */
3436
3437static void stli_ecpmcenable(stlibrd_t *brdp)
3438{
3439 outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
3440}
3441
3442/*****************************************************************************/
3443
3444static void stli_ecpmcdisable(stlibrd_t *brdp)
3445{
3446 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3447}
3448
3449/*****************************************************************************/
3450
3451static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3452{
3453 void *ptr;
3454 unsigned char val;
3455
3456 if (offset > brdp->memsize) {
3457 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3458 "range at line=%d(%d), brd=%d\n",
3459 (int) offset, line, __LINE__, brdp->brdnr);
3460 ptr = NULL;
3461 val = 0;
3462 } else {
3463 ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
3464 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
3465 }
3466 outb(val, (brdp->iobase + ECP_MCCONFR));
3467 return(ptr);
3468}
3469
3470/*****************************************************************************/
3471
3472static void stli_ecpmcreset(stlibrd_t *brdp)
3473{
3474 outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
3475 udelay(10);
3476 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3477 udelay(500);
3478}
3479
3480/*****************************************************************************/
3481
3482/*
3483 * The following set of functions act on ECP PCI boards.
3484 */
3485
3486static void stli_ecppciinit(stlibrd_t *brdp)
3487{
3488#ifdef DEBUG
3489 printk(KERN_DEBUG "stli_ecppciinit(brdp=%x)\n", (int) brdp);
3490#endif
3491
3492 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3493 udelay(10);
3494 outb(0, (brdp->iobase + ECP_PCICONFR));
3495 udelay(500);
3496}
3497
3498/*****************************************************************************/
3499
3500static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3501{
3502 void *ptr;
3503 unsigned char val;
3504
3505#ifdef DEBUG
3506 printk(KERN_DEBUG "stli_ecppcigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3507 (int) brdp, (int) offset, line);
3508#endif
3509
3510 if (offset > brdp->memsize) {
3511 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3512 "range at line=%d(%d), board=%d\n",
3513 (int) offset, line, __LINE__, brdp->brdnr);
3514 ptr = NULL;
3515 val = 0;
3516 } else {
3517 ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
3518 val = (offset / ECP_PCIPAGESIZE) << 1;
3519 }
3520 outb(val, (brdp->iobase + ECP_PCICONFR));
3521 return(ptr);
3522}
3523
3524/*****************************************************************************/
3525
3526static void stli_ecppcireset(stlibrd_t *brdp)
3527{
3528 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3529 udelay(10);
3530 outb(0, (brdp->iobase + ECP_PCICONFR));
3531 udelay(500);
3532}
3533
3534/*****************************************************************************/
3535
3536/*
3537 * The following routines act on ONboards.
3538 */
3539
3540static void stli_onbinit(stlibrd_t *brdp)
3541{
3542 unsigned long memconf;
3543
3544#ifdef DEBUG
3545 printk(KERN_DEBUG "stli_onbinit(brdp=%d)\n", (int) brdp);
3546#endif
3547
3548 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3549 udelay(10);
3550 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3551 mdelay(1000);
3552
3553 memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
3554 outb(memconf, (brdp->iobase + ONB_ATMEMAR));
3555 outb(0x1, brdp->iobase);
3556 mdelay(1);
3557}
3558
3559/*****************************************************************************/
3560
3561static void stli_onbenable(stlibrd_t *brdp)
3562{
3563#ifdef DEBUG
3564 printk(KERN_DEBUG "stli_onbenable(brdp=%x)\n", (int) brdp);
3565#endif
3566 outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
3567}
3568
3569/*****************************************************************************/
3570
3571static void stli_onbdisable(stlibrd_t *brdp)
3572{
3573#ifdef DEBUG
3574 printk(KERN_DEBUG "stli_onbdisable(brdp=%x)\n", (int) brdp);
3575#endif
3576 outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
3577}
3578
3579/*****************************************************************************/
3580
3581static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3582{
3583 void *ptr;
3584
3585#ifdef DEBUG
3586 printk(KERN_DEBUG "stli_onbgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3587 (int) offset);
3588#endif
3589
3590 if (offset > brdp->memsize) {
3591 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3592 "range at line=%d(%d), brd=%d\n",
3593 (int) offset, line, __LINE__, brdp->brdnr);
3594 ptr = NULL;
3595 } else {
3596 ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
3597 }
3598 return(ptr);
3599}
3600
3601/*****************************************************************************/
3602
3603static void stli_onbreset(stlibrd_t *brdp)
3604{
3605
3606#ifdef DEBUG
3607 printk(KERN_DEBUG "stli_onbreset(brdp=%x)\n", (int) brdp);
3608#endif
3609
3610 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3611 udelay(10);
3612 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3613 mdelay(1000);
3614}
3615
3616/*****************************************************************************/
3617
3618/*
3619 * The following routines act on ONboard EISA.
3620 */
3621
3622static void stli_onbeinit(stlibrd_t *brdp)
3623{
3624 unsigned long memconf;
3625
3626#ifdef DEBUG
3627 printk(KERN_DEBUG "stli_onbeinit(brdp=%d)\n", (int) brdp);
3628#endif
3629
3630 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3631 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3632 udelay(10);
3633 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3634 mdelay(1000);
3635
3636 memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
3637 outb(memconf, (brdp->iobase + ONB_EIMEMARL));
3638 memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
3639 outb(memconf, (brdp->iobase + ONB_EIMEMARH));
3640 outb(0x1, brdp->iobase);
3641 mdelay(1);
3642}
3643
3644/*****************************************************************************/
3645
3646static void stli_onbeenable(stlibrd_t *brdp)
3647{
3648#ifdef DEBUG
3649 printk(KERN_DEBUG "stli_onbeenable(brdp=%x)\n", (int) brdp);
3650#endif
3651 outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
3652}
3653
3654/*****************************************************************************/
3655
3656static void stli_onbedisable(stlibrd_t *brdp)
3657{
3658#ifdef DEBUG
3659 printk(KERN_DEBUG "stli_onbedisable(brdp=%x)\n", (int) brdp);
3660#endif
3661 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3662}
3663
3664/*****************************************************************************/
3665
3666static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3667{
3668 void *ptr;
3669 unsigned char val;
3670
3671#ifdef DEBUG
3672 printk(KERN_DEBUG "stli_onbegetmemptr(brdp=%x,offset=%x,line=%d)\n",
3673 (int) brdp, (int) offset, line);
3674#endif
3675
3676 if (offset > brdp->memsize) {
3677 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3678 "range at line=%d(%d), brd=%d\n",
3679 (int) offset, line, __LINE__, brdp->brdnr);
3680 ptr = NULL;
3681 val = 0;
3682 } else {
3683 ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
3684 if (offset < ONB_EIPAGESIZE)
3685 val = ONB_EIENABLE;
3686 else
3687 val = ONB_EIENABLE | 0x40;
3688 }
3689 outb(val, (brdp->iobase + ONB_EICONFR));
3690 return(ptr);
3691}
3692
3693/*****************************************************************************/
3694
3695static void stli_onbereset(stlibrd_t *brdp)
3696{
3697
3698#ifdef DEBUG
3699 printk(KERN_ERR "stli_onbereset(brdp=%x)\n", (int) brdp);
3700#endif
3701
3702 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3703 udelay(10);
3704 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3705 mdelay(1000);
3706}
3707
3708/*****************************************************************************/
3709
3710/*
3711 * The following routines act on Brumby boards.
3712 */
3713
3714static void stli_bbyinit(stlibrd_t *brdp)
3715{
3716
3717#ifdef DEBUG
3718 printk(KERN_ERR "stli_bbyinit(brdp=%d)\n", (int) brdp);
3719#endif
3720
3721 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3722 udelay(10);
3723 outb(0, (brdp->iobase + BBY_ATCONFR));
3724 mdelay(1000);
3725 outb(0x1, brdp->iobase);
3726 mdelay(1);
3727}
3728
3729/*****************************************************************************/
3730
3731static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3732{
3733 void *ptr;
3734 unsigned char val;
3735
3736#ifdef DEBUG
3737 printk(KERN_ERR "stli_bbygetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3738 (int) offset);
3739#endif
3740
3741 if (offset > brdp->memsize) {
3742 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3743 "range at line=%d(%d), brd=%d\n",
3744 (int) offset, line, __LINE__, brdp->brdnr);
3745 ptr = NULL;
3746 val = 0;
3747 } else {
3748 ptr = brdp->membase + (offset % BBY_PAGESIZE);
3749 val = (unsigned char) (offset / BBY_PAGESIZE);
3750 }
3751 outb(val, (brdp->iobase + BBY_ATCONFR));
3752 return(ptr);
3753}
3754
3755/*****************************************************************************/
3756
3757static void stli_bbyreset(stlibrd_t *brdp)
3758{
3759
3760#ifdef DEBUG
3761 printk(KERN_DEBUG "stli_bbyreset(brdp=%x)\n", (int) brdp);
3762#endif
3763
3764 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3765 udelay(10);
3766 outb(0, (brdp->iobase + BBY_ATCONFR));
3767 mdelay(1000);
3768}
3769
3770/*****************************************************************************/
3771
3772/*
3773 * The following routines act on original old Stallion boards.
3774 */
3775
3776static void stli_stalinit(stlibrd_t *brdp)
3777{
3778
3779#ifdef DEBUG
3780 printk(KERN_DEBUG "stli_stalinit(brdp=%d)\n", (int) brdp);
3781#endif
3782
3783 outb(0x1, brdp->iobase);
3784 mdelay(1000);
3785}
3786
3787/*****************************************************************************/
3788
3789static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3790{
3791 void *ptr;
3792
3793#ifdef DEBUG
3794 printk(KERN_DEBUG "stli_stalgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3795 (int) offset);
3796#endif
3797
3798 if (offset > brdp->memsize) {
3799 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3800 "range at line=%d(%d), brd=%d\n",
3801 (int) offset, line, __LINE__, brdp->brdnr);
3802 ptr = NULL;
3803 } else {
3804 ptr = brdp->membase + (offset % STAL_PAGESIZE);
3805 }
3806 return(ptr);
3807}
3808
3809/*****************************************************************************/
3810
3811static void stli_stalreset(stlibrd_t *brdp)
3812{
3813 volatile unsigned long *vecp;
3814
3815#ifdef DEBUG
3816 printk(KERN_DEBUG "stli_stalreset(brdp=%x)\n", (int) brdp);
3817#endif
3818
3819 vecp = (volatile unsigned long *) (brdp->membase + 0x30);
3820 *vecp = 0xffff0000;
3821 outb(0, brdp->iobase);
3822 mdelay(1000);
3823}
3824
3825/*****************************************************************************/
3826
3827/*
3828 * Try to find an ECP board and initialize it. This handles only ECP
3829 * board types.
3830 */
3831
3832static int stli_initecp(stlibrd_t *brdp)
3833{
3834 cdkecpsig_t sig;
3835 cdkecpsig_t *sigsp;
3836 unsigned int status, nxtid;
3837 char *name;
3838 int panelnr, nrports;
3839
3840#ifdef DEBUG
3841 printk(KERN_DEBUG "stli_initecp(brdp=%x)\n", (int) brdp);
3842#endif
3843
3844 if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
3845 return -EIO;
3846
3847 if ((brdp->iobase == 0) || (brdp->memaddr == 0))
3848 {
3849 release_region(brdp->iobase, brdp->iosize);
3850 return(-ENODEV);
3851 }
3852
3853 brdp->iosize = ECP_IOSIZE;
3854
3855/*
3856 * Based on the specific board type setup the common vars to access
3857 * and enable shared memory. Set all board specific information now
3858 * as well.
3859 */
3860 switch (brdp->brdtype) {
3861 case BRD_ECP:
3862 brdp->membase = (void *) brdp->memaddr;
3863 brdp->memsize = ECP_MEMSIZE;
3864 brdp->pagesize = ECP_ATPAGESIZE;
3865 brdp->init = stli_ecpinit;
3866 brdp->enable = stli_ecpenable;
3867 brdp->reenable = stli_ecpenable;
3868 brdp->disable = stli_ecpdisable;
3869 brdp->getmemptr = stli_ecpgetmemptr;
3870 brdp->intr = stli_ecpintr;
3871 brdp->reset = stli_ecpreset;
3872 name = "serial(EC8/64)";
3873 break;
3874
3875 case BRD_ECPE:
3876 brdp->membase = (void *) brdp->memaddr;
3877 brdp->memsize = ECP_MEMSIZE;
3878 brdp->pagesize = ECP_EIPAGESIZE;
3879 brdp->init = stli_ecpeiinit;
3880 brdp->enable = stli_ecpeienable;
3881 brdp->reenable = stli_ecpeienable;
3882 brdp->disable = stli_ecpeidisable;
3883 brdp->getmemptr = stli_ecpeigetmemptr;
3884 brdp->intr = stli_ecpintr;
3885 brdp->reset = stli_ecpeireset;
3886 name = "serial(EC8/64-EI)";
3887 break;
3888
3889 case BRD_ECPMC:
3890 brdp->membase = (void *) brdp->memaddr;
3891 brdp->memsize = ECP_MEMSIZE;
3892 brdp->pagesize = ECP_MCPAGESIZE;
3893 brdp->init = NULL;
3894 brdp->enable = stli_ecpmcenable;
3895 brdp->reenable = stli_ecpmcenable;
3896 brdp->disable = stli_ecpmcdisable;
3897 brdp->getmemptr = stli_ecpmcgetmemptr;
3898 brdp->intr = stli_ecpintr;
3899 brdp->reset = stli_ecpmcreset;
3900 name = "serial(EC8/64-MCA)";
3901 break;
3902
3903 case BRD_ECPPCI:
3904 brdp->membase = (void *) brdp->memaddr;
3905 brdp->memsize = ECP_PCIMEMSIZE;
3906 brdp->pagesize = ECP_PCIPAGESIZE;
3907 brdp->init = stli_ecppciinit;
3908 brdp->enable = NULL;
3909 brdp->reenable = NULL;
3910 brdp->disable = NULL;
3911 brdp->getmemptr = stli_ecppcigetmemptr;
3912 brdp->intr = stli_ecpintr;
3913 brdp->reset = stli_ecppcireset;
3914 name = "serial(EC/RA-PCI)";
3915 break;
3916
3917 default:
3918 release_region(brdp->iobase, brdp->iosize);
3919 return(-EINVAL);
3920 }
3921
3922/*
3923 * The per-board operations structure is all set up, so now let's go
3924 * and get the board operational. Firstly initialize board configuration
3925 * registers. Set the memory mapping info so we can get at the boards
3926 * shared memory.
3927 */
3928 EBRDINIT(brdp);
3929
3930 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3931 if (brdp->membase == (void *) NULL)
3932 {
3933 release_region(brdp->iobase, brdp->iosize);
3934 return(-ENOMEM);
3935 }
3936
3937/*
3938 * Now that all specific code is set up, enable the shared memory and
3939 * look for the a signature area that will tell us exactly what board
3940 * this is, and what it is connected to it.
3941 */
3942 EBRDENABLE(brdp);
3943 sigsp = (cdkecpsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3944 memcpy(&sig, sigsp, sizeof(cdkecpsig_t));
3945 EBRDDISABLE(brdp);
3946
3947#if 0
3948 printk("%s(%d): sig-> magic=%x rom=%x panel=%x,%x,%x,%x,%x,%x,%x,%x\n",
3949 __FILE__, __LINE__, (int) sig.magic, sig.romver, sig.panelid[0],
3950 (int) sig.panelid[1], (int) sig.panelid[2],
3951 (int) sig.panelid[3], (int) sig.panelid[4],
3952 (int) sig.panelid[5], (int) sig.panelid[6],
3953 (int) sig.panelid[7]);
3954#endif
3955
3956 if (sig.magic != ECP_MAGIC)
3957 {
3958 release_region(brdp->iobase, brdp->iosize);
3959 return(-ENODEV);
3960 }
3961
3962/*
3963 * Scan through the signature looking at the panels connected to the
3964 * board. Calculate the total number of ports as we go.
3965 */
3966 for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3967 status = sig.panelid[nxtid];
3968 if ((status & ECH_PNLIDMASK) != nxtid)
3969 break;
3970
3971 brdp->panelids[panelnr] = status;
3972 nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3973 if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3974 nxtid++;
3975 brdp->panels[panelnr] = nrports;
3976 brdp->nrports += nrports;
3977 nxtid++;
3978 brdp->nrpanels++;
3979 }
3980
3981
3982 brdp->state |= BST_FOUND;
3983 return(0);
3984}
3985
3986/*****************************************************************************/
3987
3988/*
3989 * Try to find an ONboard, Brumby or Stallion board and initialize it.
3990 * This handles only these board types.
3991 */
3992
3993static int stli_initonb(stlibrd_t *brdp)
3994{
3995 cdkonbsig_t sig;
3996 cdkonbsig_t *sigsp;
3997 char *name;
3998 int i;
3999
4000#ifdef DEBUG
4001 printk(KERN_DEBUG "stli_initonb(brdp=%x)\n", (int) brdp);
4002#endif
4003
4004/*
4005 * Do a basic sanity check on the IO and memory addresses.
4006 */
4007 if ((brdp->iobase == 0) || (brdp->memaddr == 0))
4008 return(-ENODEV);
4009
4010 brdp->iosize = ONB_IOSIZE;
4011
4012 if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
4013 return -EIO;
4014
4015/*
4016 * Based on the specific board type setup the common vars to access
4017 * and enable shared memory. Set all board specific information now
4018 * as well.
4019 */
4020 switch (brdp->brdtype) {
4021 case BRD_ONBOARD:
4022 case BRD_ONBOARD32:
4023 case BRD_ONBOARD2:
4024 case BRD_ONBOARD2_32:
4025 case BRD_ONBOARDRS:
4026 brdp->membase = (void *) brdp->memaddr;
4027 brdp->memsize = ONB_MEMSIZE;
4028 brdp->pagesize = ONB_ATPAGESIZE;
4029 brdp->init = stli_onbinit;
4030 brdp->enable = stli_onbenable;
4031 brdp->reenable = stli_onbenable;
4032 brdp->disable = stli_onbdisable;
4033 brdp->getmemptr = stli_onbgetmemptr;
4034 brdp->intr = stli_ecpintr;
4035 brdp->reset = stli_onbreset;
4036 if (brdp->memaddr > 0x100000)
4037 brdp->enabval = ONB_MEMENABHI;
4038 else
4039 brdp->enabval = ONB_MEMENABLO;
4040 name = "serial(ONBoard)";
4041 break;
4042
4043 case BRD_ONBOARDE:
4044 brdp->membase = (void *) brdp->memaddr;
4045 brdp->memsize = ONB_EIMEMSIZE;
4046 brdp->pagesize = ONB_EIPAGESIZE;
4047 brdp->init = stli_onbeinit;
4048 brdp->enable = stli_onbeenable;
4049 brdp->reenable = stli_onbeenable;
4050 brdp->disable = stli_onbedisable;
4051 brdp->getmemptr = stli_onbegetmemptr;
4052 brdp->intr = stli_ecpintr;
4053 brdp->reset = stli_onbereset;
4054 name = "serial(ONBoard/E)";
4055 break;
4056
4057 case BRD_BRUMBY4:
4058 case BRD_BRUMBY8:
4059 case BRD_BRUMBY16:
4060 brdp->membase = (void *) brdp->memaddr;
4061 brdp->memsize = BBY_MEMSIZE;
4062 brdp->pagesize = BBY_PAGESIZE;
4063 brdp->init = stli_bbyinit;
4064 brdp->enable = NULL;
4065 brdp->reenable = NULL;
4066 brdp->disable = NULL;
4067 brdp->getmemptr = stli_bbygetmemptr;
4068 brdp->intr = stli_ecpintr;
4069 brdp->reset = stli_bbyreset;
4070 name = "serial(Brumby)";
4071 break;
4072
4073 case BRD_STALLION:
4074 brdp->membase = (void *) brdp->memaddr;
4075 brdp->memsize = STAL_MEMSIZE;
4076 brdp->pagesize = STAL_PAGESIZE;
4077 brdp->init = stli_stalinit;
4078 brdp->enable = NULL;
4079 brdp->reenable = NULL;
4080 brdp->disable = NULL;
4081 brdp->getmemptr = stli_stalgetmemptr;
4082 brdp->intr = stli_ecpintr;
4083 brdp->reset = stli_stalreset;
4084 name = "serial(Stallion)";
4085 break;
4086
4087 default:
4088 release_region(brdp->iobase, brdp->iosize);
4089 return(-EINVAL);
4090 }
4091
4092/*
4093 * The per-board operations structure is all set up, so now let's go
4094 * and get the board operational. Firstly initialize board configuration
4095 * registers. Set the memory mapping info so we can get at the boards
4096 * shared memory.
4097 */
4098 EBRDINIT(brdp);
4099
4100 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
4101 if (brdp->membase == (void *) NULL)
4102 {
4103 release_region(brdp->iobase, brdp->iosize);
4104 return(-ENOMEM);
4105 }
4106
4107/*
4108 * Now that all specific code is set up, enable the shared memory and
4109 * look for the a signature area that will tell us exactly what board
4110 * this is, and how many ports.
4111 */
4112 EBRDENABLE(brdp);
4113 sigsp = (cdkonbsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
4114 memcpy(&sig, sigsp, sizeof(cdkonbsig_t));
4115 EBRDDISABLE(brdp);
4116
4117#if 0
4118 printk("%s(%d): sig-> magic=%x:%x:%x:%x romver=%x amask=%x:%x:%x\n",
4119 __FILE__, __LINE__, sig.magic0, sig.magic1, sig.magic2,
4120 sig.magic3, sig.romver, sig.amask0, sig.amask1, sig.amask2);
4121#endif
4122
4123 if ((sig.magic0 != ONB_MAGIC0) || (sig.magic1 != ONB_MAGIC1) ||
4124 (sig.magic2 != ONB_MAGIC2) || (sig.magic3 != ONB_MAGIC3))
4125 {
4126 release_region(brdp->iobase, brdp->iosize);
4127 return(-ENODEV);
4128 }
4129
4130/*
4131 * Scan through the signature alive mask and calculate how many ports
4132 * there are on this board.
4133 */
4134 brdp->nrpanels = 1;
4135 if (sig.amask1) {
4136 brdp->nrports = 32;
4137 } else {
4138 for (i = 0; (i < 16); i++) {
4139 if (((sig.amask0 << i) & 0x8000) == 0)
4140 break;
4141 }
4142 brdp->nrports = i;
4143 }
4144 brdp->panels[0] = brdp->nrports;
4145
4146
4147 brdp->state |= BST_FOUND;
4148 return(0);
4149}
4150
4151/*****************************************************************************/
4152
4153/*
4154 * Start up a running board. This routine is only called after the
4155 * code has been down loaded to the board and is operational. It will
4156 * read in the memory map, and get the show on the road...
4157 */
4158
4159static int stli_startbrd(stlibrd_t *brdp)
4160{
4161 volatile cdkhdr_t *hdrp;
4162 volatile cdkmem_t *memp;
4163 volatile cdkasy_t *ap;
4164 unsigned long flags;
4165 stliport_t *portp;
4166 int portnr, nrdevs, i, rc;
4167
4168#ifdef DEBUG
4169 printk(KERN_DEBUG "stli_startbrd(brdp=%x)\n", (int) brdp);
4170#endif
4171
4172 rc = 0;
4173
4174 save_flags(flags);
4175 cli();
4176 EBRDENABLE(brdp);
4177 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
4178 nrdevs = hdrp->nrdevs;
4179
4180#if 0
4181 printk("%s(%d): CDK version %d.%d.%d --> "
4182 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
4183 __FILE__, __LINE__, hdrp->ver_release, hdrp->ver_modification,
4184 hdrp->ver_fix, nrdevs, (int) hdrp->memp, (int) hdrp->hostp,
4185 (int) hdrp->slavep);
4186#endif
4187
4188 if (nrdevs < (brdp->nrports + 1)) {
4189 printk(KERN_ERR "STALLION: slave failed to allocate memory for "
4190 "all devices, devices=%d\n", nrdevs);
4191 brdp->nrports = nrdevs - 1;
4192 }
4193 brdp->nrdevs = nrdevs;
4194 brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
4195 brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
4196 brdp->bitsize = (nrdevs + 7) / 8;
4197 memp = (volatile cdkmem_t *) hdrp->memp;
4198 if (((unsigned long) memp) > brdp->memsize) {
4199 printk(KERN_ERR "STALLION: corrupted shared memory region?\n");
4200 rc = -EIO;
4201 goto stli_donestartup;
4202 }
4203 memp = (volatile cdkmem_t *) EBRDGETMEMPTR(brdp, (unsigned long) memp);
4204 if (memp->dtype != TYP_ASYNCTRL) {
4205 printk(KERN_ERR "STALLION: no slave control device found\n");
4206 goto stli_donestartup;
4207 }
4208 memp++;
4209
4210/*
4211 * Cycle through memory allocation of each port. We are guaranteed to
4212 * have all ports inside the first page of slave window, so no need to
4213 * change pages while reading memory map.
4214 */
4215 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
4216 if (memp->dtype != TYP_ASYNC)
4217 break;
4218 portp = brdp->ports[portnr];
4219 if (portp == (stliport_t *) NULL)
4220 break;
4221 portp->devnr = i;
4222 portp->addr = memp->offset;
4223 portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
4224 portp->portidx = (unsigned char) (i / 8);
4225 portp->portbit = (unsigned char) (0x1 << (i % 8));
4226 }
4227
4228 hdrp->slavereq = 0xff;
4229
4230/*
4231 * For each port setup a local copy of the RX and TX buffer offsets
4232 * and sizes. We do this separate from the above, because we need to
4233 * move the shared memory page...
4234 */
4235 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
4236 portp = brdp->ports[portnr];
4237 if (portp == (stliport_t *) NULL)
4238 break;
4239 if (portp->addr == 0)
4240 break;
4241 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
4242 if (ap != (volatile cdkasy_t *) NULL) {
4243 portp->rxsize = ap->rxq.size;
4244 portp->txsize = ap->txq.size;
4245 portp->rxoffset = ap->rxq.offset;
4246 portp->txoffset = ap->txq.offset;
4247 }
4248 }
4249
4250stli_donestartup:
4251 EBRDDISABLE(brdp);
4252 restore_flags(flags);
4253
4254 if (rc == 0)
4255 brdp->state |= BST_STARTED;
4256
4257 if (! stli_timeron) {
4258 stli_timeron++;
4259 stli_timerlist.expires = STLI_TIMEOUT;
4260 add_timer(&stli_timerlist);
4261 }
4262
4263 return(rc);
4264}
4265
4266/*****************************************************************************/
4267
4268/*
4269 * Probe and initialize the specified board.
4270 */
4271
4272static int __init stli_brdinit(stlibrd_t *brdp)
4273{
4274#ifdef DEBUG
4275 printk(KERN_DEBUG "stli_brdinit(brdp=%x)\n", (int) brdp);
4276#endif
4277
4278 stli_brds[brdp->brdnr] = brdp;
4279
4280 switch (brdp->brdtype) {
4281 case BRD_ECP:
4282 case BRD_ECPE:
4283 case BRD_ECPMC:
4284 case BRD_ECPPCI:
4285 stli_initecp(brdp);
4286 break;
4287 case BRD_ONBOARD:
4288 case BRD_ONBOARDE:
4289 case BRD_ONBOARD2:
4290 case BRD_ONBOARD32:
4291 case BRD_ONBOARD2_32:
4292 case BRD_ONBOARDRS:
4293 case BRD_BRUMBY4:
4294 case BRD_BRUMBY8:
4295 case BRD_BRUMBY16:
4296 case BRD_STALLION:
4297 stli_initonb(brdp);
4298 break;
4299 case BRD_EASYIO:
4300 case BRD_ECH:
4301 case BRD_ECHMC:
4302 case BRD_ECHPCI:
4303 printk(KERN_ERR "STALLION: %s board type not supported in "
4304 "this driver\n", stli_brdnames[brdp->brdtype]);
4305 return(ENODEV);
4306 default:
4307 printk(KERN_ERR "STALLION: board=%d is unknown board "
4308 "type=%d\n", brdp->brdnr, brdp->brdtype);
4309 return(ENODEV);
4310 }
4311
4312 if ((brdp->state & BST_FOUND) == 0) {
4313 printk(KERN_ERR "STALLION: %s board not found, board=%d "
4314 "io=%x mem=%x\n",
4315 stli_brdnames[brdp->brdtype], brdp->brdnr,
4316 brdp->iobase, (int) brdp->memaddr);
4317 return(ENODEV);
4318 }
4319
4320 stli_initports(brdp);
4321 printk(KERN_INFO "STALLION: %s found, board=%d io=%x mem=%x "
4322 "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
4323 brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
4324 brdp->nrpanels, brdp->nrports);
4325 return(0);
4326}
4327
4328/*****************************************************************************/
4329
4330/*
4331 * Probe around trying to find where the EISA boards shared memory
4332 * might be. This is a bit if hack, but it is the best we can do.
4333 */
4334
4335static int stli_eisamemprobe(stlibrd_t *brdp)
4336{
4337 cdkecpsig_t ecpsig, *ecpsigp;
4338 cdkonbsig_t onbsig, *onbsigp;
4339 int i, foundit;
4340
4341#ifdef DEBUG
4342 printk(KERN_DEBUG "stli_eisamemprobe(brdp=%x)\n", (int) brdp);
4343#endif
4344
4345/*
4346 * First up we reset the board, to get it into a known state. There
4347 * is only 2 board types here we need to worry about. Don;t use the
4348 * standard board init routine here, it programs up the shared
4349 * memory address, and we don't know it yet...
4350 */
4351 if (brdp->brdtype == BRD_ECPE) {
4352 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
4353 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
4354 udelay(10);
4355 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
4356 udelay(500);
4357 stli_ecpeienable(brdp);
4358 } else if (brdp->brdtype == BRD_ONBOARDE) {
4359 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
4360 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
4361 udelay(10);
4362 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
4363 mdelay(100);
4364 outb(0x1, brdp->iobase);
4365 mdelay(1);
4366 stli_onbeenable(brdp);
4367 } else {
4368 return(-ENODEV);
4369 }
4370
4371 foundit = 0;
4372 brdp->memsize = ECP_MEMSIZE;
4373
4374/*
4375 * Board shared memory is enabled, so now we have a poke around and
4376 * see if we can find it.
4377 */
4378 for (i = 0; (i < stli_eisamempsize); i++) {
4379 brdp->memaddr = stli_eisamemprobeaddrs[i];
4380 brdp->membase = (void *) brdp->memaddr;
4381 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
4382 if (brdp->membase == (void *) NULL)
4383 continue;
4384
4385 if (brdp->brdtype == BRD_ECPE) {
4386 ecpsigp = (cdkecpsig_t *) stli_ecpeigetmemptr(brdp,
4387 CDK_SIGADDR, __LINE__);
4388 memcpy(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
4389 if (ecpsig.magic == ECP_MAGIC)
4390 foundit = 1;
4391 } else {
4392 onbsigp = (cdkonbsig_t *) stli_onbegetmemptr(brdp,
4393 CDK_SIGADDR, __LINE__);
4394 memcpy(&onbsig, onbsigp, sizeof(cdkonbsig_t));
4395 if ((onbsig.magic0 == ONB_MAGIC0) &&
4396 (onbsig.magic1 == ONB_MAGIC1) &&
4397 (onbsig.magic2 == ONB_MAGIC2) &&
4398 (onbsig.magic3 == ONB_MAGIC3))
4399 foundit = 1;
4400 }
4401
4402 iounmap(brdp->membase);
4403 if (foundit)
4404 break;
4405 }
4406
4407/*
4408 * Regardless of whether we found the shared memory or not we must
4409 * disable the region. After that return success or failure.
4410 */
4411 if (brdp->brdtype == BRD_ECPE)
4412 stli_ecpeidisable(brdp);
4413 else
4414 stli_onbedisable(brdp);
4415
4416 if (! foundit) {
4417 brdp->memaddr = 0;
4418 brdp->membase = NULL;
4419 printk(KERN_ERR "STALLION: failed to probe shared memory "
4420 "region for %s in EISA slot=%d\n",
4421 stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
4422 return(-ENODEV);
4423 }
4424 return(0);
4425}
4426
4427static int stli_getbrdnr(void)
4428{
4429 int i;
4430
4431 for (i = 0; i < STL_MAXBRDS; i++) {
4432 if (!stli_brds[i]) {
4433 if (i >= stli_nrbrds)
4434 stli_nrbrds = i + 1;
4435 return i;
4436 }
4437 }
4438 return -1;
4439}
4440
4441/*****************************************************************************/
4442
4443/*
4444 * Probe around and try to find any EISA boards in system. The biggest
4445 * problem here is finding out what memory address is associated with
4446 * an EISA board after it is found. The registers of the ECPE and
4447 * ONboardE are not readable - so we can't read them from there. We
4448 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
4449 * actually have any way to find out the real value. The best we can
4450 * do is go probing around in the usual places hoping we can find it.
4451 */
4452
4453static int stli_findeisabrds(void)
4454{
4455 stlibrd_t *brdp;
4456 unsigned int iobase, eid;
4457 int i;
4458
4459#ifdef DEBUG
4460 printk(KERN_DEBUG "stli_findeisabrds()\n");
4461#endif
4462
4463/*
4464 * Firstly check if this is an EISA system. Do this by probing for
4465 * the system board EISA ID. If this is not an EISA system then
4466 * don't bother going any further!
4467 */
4468 outb(0xff, 0xc80);
4469 if (inb(0xc80) == 0xff)
4470 return(0);
4471
4472/*
4473 * Looks like an EISA system, so go searching for EISA boards.
4474 */
4475 for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
4476 outb(0xff, (iobase + 0xc80));
4477 eid = inb(iobase + 0xc80);
4478 eid |= inb(iobase + 0xc81) << 8;
4479 if (eid != STL_EISAID)
4480 continue;
4481
4482/*
4483 * We have found a board. Need to check if this board was
4484 * statically configured already (just in case!).
4485 */
4486 for (i = 0; (i < STL_MAXBRDS); i++) {
4487 brdp = stli_brds[i];
4488 if (brdp == (stlibrd_t *) NULL)
4489 continue;
4490 if (brdp->iobase == iobase)
4491 break;
4492 }
4493 if (i < STL_MAXBRDS)
4494 continue;
4495
4496/*
4497 * We have found a Stallion board and it is not configured already.
4498 * Allocate a board structure and initialize it.
4499 */
4500 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4501 return(-ENOMEM);
4502 if ((brdp->brdnr = stli_getbrdnr()) < 0)
4503 return(-ENOMEM);
4504 eid = inb(iobase + 0xc82);
4505 if (eid == ECP_EISAID)
4506 brdp->brdtype = BRD_ECPE;
4507 else if (eid == ONB_EISAID)
4508 brdp->brdtype = BRD_ONBOARDE;
4509 else
4510 brdp->brdtype = BRD_UNKNOWN;
4511 brdp->iobase = iobase;
4512 outb(0x1, (iobase + 0xc84));
4513 if (stli_eisamemprobe(brdp))
4514 outb(0, (iobase + 0xc84));
4515 stli_brdinit(brdp);
4516 }
4517
4518 return(0);
4519}
4520
4521/*****************************************************************************/
4522
4523/*
4524 * Find the next available board number that is free.
4525 */
4526
4527/*****************************************************************************/
4528
4529#ifdef CONFIG_PCI
4530
4531/*
4532 * We have a Stallion board. Allocate a board structure and
4533 * initialize it. Read its IO and MEMORY resources from PCI
4534 * configuration space.
4535 */
4536
4537static int stli_initpcibrd(int brdtype, struct pci_dev *devp)
4538{
4539 stlibrd_t *brdp;
4540
4541#ifdef DEBUG
4542 printk(KERN_DEBUG "stli_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n",
4543 brdtype, dev->bus->number, dev->devfn);
4544#endif
4545
4546 if (pci_enable_device(devp))
4547 return(-EIO);
4548 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4549 return(-ENOMEM);
4550 if ((brdp->brdnr = stli_getbrdnr()) < 0) {
4551 printk(KERN_INFO "STALLION: too many boards found, "
4552 "maximum supported %d\n", STL_MAXBRDS);
4553 return(0);
4554 }
4555 brdp->brdtype = brdtype;
4556
4557#ifdef DEBUG
4558 printk(KERN_DEBUG "%s(%d): BAR[]=%lx,%lx,%lx,%lx\n", __FILE__, __LINE__,
4559 pci_resource_start(devp, 0),
4560 pci_resource_start(devp, 1),
4561 pci_resource_start(devp, 2),
4562 pci_resource_start(devp, 3));
4563#endif
4564
4565/*
4566 * We have all resources from the board, so lets setup the actual
4567 * board structure now.
4568 */
4569 brdp->iobase = pci_resource_start(devp, 3);
4570 brdp->memaddr = pci_resource_start(devp, 2);
4571 stli_brdinit(brdp);
4572
4573 return(0);
4574}
4575
4576/*****************************************************************************/
4577
4578/*
4579 * Find all Stallion PCI boards that might be installed. Initialize each
4580 * one as it is found.
4581 */
4582
4583static int stli_findpcibrds(void)
4584{
4585 struct pci_dev *dev = NULL;
4586 int rc;
4587
4588#ifdef DEBUG
4589 printk("stli_findpcibrds()\n");
4590#endif
4591
4592 while ((dev = pci_find_device(PCI_VENDOR_ID_STALLION,
4593 PCI_DEVICE_ID_ECRA, dev))) {
4594 if ((rc = stli_initpcibrd(BRD_ECPPCI, dev)))
4595 return(rc);
4596 }
4597
4598 return(0);
4599}
4600
4601#endif
4602
4603/*****************************************************************************/
4604
4605/*
4606 * Allocate a new board structure. Fill out the basic info in it.
4607 */
4608
4609static stlibrd_t *stli_allocbrd(void)
4610{
4611 stlibrd_t *brdp;
4612
4613 brdp = (stlibrd_t *) stli_memalloc(sizeof(stlibrd_t));
4614 if (brdp == (stlibrd_t *) NULL) {
4615 printk(KERN_ERR "STALLION: failed to allocate memory "
4616 "(size=%d)\n", sizeof(stlibrd_t));
4617 return((stlibrd_t *) NULL);
4618 }
4619
4620 memset(brdp, 0, sizeof(stlibrd_t));
4621 brdp->magic = STLI_BOARDMAGIC;
4622 return(brdp);
4623}
4624
4625/*****************************************************************************/
4626
4627/*
4628 * Scan through all the boards in the configuration and see what we
4629 * can find.
4630 */
4631
4632static int stli_initbrds(void)
4633{
4634 stlibrd_t *brdp, *nxtbrdp;
4635 stlconf_t *confp;
4636 int i, j;
4637
4638#ifdef DEBUG
4639 printk(KERN_DEBUG "stli_initbrds()\n");
4640#endif
4641
4642 if (stli_nrbrds > STL_MAXBRDS) {
4643 printk(KERN_INFO "STALLION: too many boards in configuration "
4644 "table, truncating to %d\n", STL_MAXBRDS);
4645 stli_nrbrds = STL_MAXBRDS;
4646 }
4647
4648/*
4649 * Firstly scan the list of static boards configured. Allocate
4650 * resources and initialize the boards as found. If this is a
4651 * module then let the module args override static configuration.
4652 */
4653 for (i = 0; (i < stli_nrbrds); i++) {
4654 confp = &stli_brdconf[i];
4655#ifdef MODULE
4656 stli_parsebrd(confp, stli_brdsp[i]);
4657#endif
4658 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4659 return(-ENOMEM);
4660 brdp->brdnr = i;
4661 brdp->brdtype = confp->brdtype;
4662 brdp->iobase = confp->ioaddr1;
4663 brdp->memaddr = confp->memaddr;
4664 stli_brdinit(brdp);
4665 }
4666
4667/*
4668 * Static configuration table done, so now use dynamic methods to
4669 * see if any more boards should be configured.
4670 */
4671#ifdef MODULE
4672 stli_argbrds();
4673#endif
Adrian Bunkdbc6b5f2005-06-25 14:59:03 -07004674 if (STLI_EISAPROBE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004675 stli_findeisabrds();
4676#ifdef CONFIG_PCI
4677 stli_findpcibrds();
4678#endif
4679
4680/*
4681 * All found boards are initialized. Now for a little optimization, if
4682 * no boards are sharing the "shared memory" regions then we can just
4683 * leave them all enabled. This is in fact the usual case.
4684 */
4685 stli_shared = 0;
4686 if (stli_nrbrds > 1) {
4687 for (i = 0; (i < stli_nrbrds); i++) {
4688 brdp = stli_brds[i];
4689 if (brdp == (stlibrd_t *) NULL)
4690 continue;
4691 for (j = i + 1; (j < stli_nrbrds); j++) {
4692 nxtbrdp = stli_brds[j];
4693 if (nxtbrdp == (stlibrd_t *) NULL)
4694 continue;
4695 if ((brdp->membase >= nxtbrdp->membase) &&
4696 (brdp->membase <= (nxtbrdp->membase +
4697 nxtbrdp->memsize - 1))) {
4698 stli_shared++;
4699 break;
4700 }
4701 }
4702 }
4703 }
4704
4705 if (stli_shared == 0) {
4706 for (i = 0; (i < stli_nrbrds); i++) {
4707 brdp = stli_brds[i];
4708 if (brdp == (stlibrd_t *) NULL)
4709 continue;
4710 if (brdp->state & BST_FOUND) {
4711 EBRDENABLE(brdp);
4712 brdp->enable = NULL;
4713 brdp->disable = NULL;
4714 }
4715 }
4716 }
4717
4718 return(0);
4719}
4720
4721/*****************************************************************************/
4722
4723/*
4724 * Code to handle an "staliomem" read operation. This device is the
4725 * contents of the board shared memory. It is used for down loading
4726 * the slave image (and debugging :-)
4727 */
4728
4729static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
4730{
4731 unsigned long flags;
4732 void *memptr;
4733 stlibrd_t *brdp;
4734 int brdnr, size, n;
4735
4736#ifdef DEBUG
4737 printk(KERN_DEBUG "stli_memread(fp=%x,buf=%x,count=%x,offp=%x)\n",
4738 (int) fp, (int) buf, count, (int) offp);
4739#endif
4740
4741 brdnr = iminor(fp->f_dentry->d_inode);
4742 if (brdnr >= stli_nrbrds)
4743 return(-ENODEV);
4744 brdp = stli_brds[brdnr];
4745 if (brdp == (stlibrd_t *) NULL)
4746 return(-ENODEV);
4747 if (brdp->state == 0)
4748 return(-ENODEV);
4749 if (fp->f_pos >= brdp->memsize)
4750 return(0);
4751
4752 size = MIN(count, (brdp->memsize - fp->f_pos));
4753
4754 save_flags(flags);
4755 cli();
4756 EBRDENABLE(brdp);
4757 while (size > 0) {
4758 memptr = (void *) EBRDGETMEMPTR(brdp, fp->f_pos);
4759 n = MIN(size, (brdp->pagesize - (((unsigned long) fp->f_pos) % brdp->pagesize)));
4760 if (copy_to_user(buf, memptr, n)) {
4761 count = -EFAULT;
4762 goto out;
4763 }
4764 fp->f_pos += n;
4765 buf += n;
4766 size -= n;
4767 }
4768out:
4769 EBRDDISABLE(brdp);
4770 restore_flags(flags);
4771
4772 return(count);
4773}
4774
4775/*****************************************************************************/
4776
4777/*
4778 * Code to handle an "staliomem" write operation. This device is the
4779 * contents of the board shared memory. It is used for down loading
4780 * the slave image (and debugging :-)
4781 */
4782
4783static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
4784{
4785 unsigned long flags;
4786 void *memptr;
4787 stlibrd_t *brdp;
4788 char __user *chbuf;
4789 int brdnr, size, n;
4790
4791#ifdef DEBUG
4792 printk(KERN_DEBUG "stli_memwrite(fp=%x,buf=%x,count=%x,offp=%x)\n",
4793 (int) fp, (int) buf, count, (int) offp);
4794#endif
4795
4796 brdnr = iminor(fp->f_dentry->d_inode);
4797 if (brdnr >= stli_nrbrds)
4798 return(-ENODEV);
4799 brdp = stli_brds[brdnr];
4800 if (brdp == (stlibrd_t *) NULL)
4801 return(-ENODEV);
4802 if (brdp->state == 0)
4803 return(-ENODEV);
4804 if (fp->f_pos >= brdp->memsize)
4805 return(0);
4806
4807 chbuf = (char __user *) buf;
4808 size = MIN(count, (brdp->memsize - fp->f_pos));
4809
4810 save_flags(flags);
4811 cli();
4812 EBRDENABLE(brdp);
4813 while (size > 0) {
4814 memptr = (void *) EBRDGETMEMPTR(brdp, fp->f_pos);
4815 n = MIN(size, (brdp->pagesize - (((unsigned long) fp->f_pos) % brdp->pagesize)));
4816 if (copy_from_user(memptr, chbuf, n)) {
4817 count = -EFAULT;
4818 goto out;
4819 }
4820 fp->f_pos += n;
4821 chbuf += n;
4822 size -= n;
4823 }
4824out:
4825 EBRDDISABLE(brdp);
4826 restore_flags(flags);
4827
4828 return(count);
4829}
4830
4831/*****************************************************************************/
4832
4833/*
4834 * Return the board stats structure to user app.
4835 */
4836
4837static int stli_getbrdstats(combrd_t __user *bp)
4838{
4839 stlibrd_t *brdp;
4840 int i;
4841
4842 if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4843 return -EFAULT;
4844 if (stli_brdstats.brd >= STL_MAXBRDS)
4845 return(-ENODEV);
4846 brdp = stli_brds[stli_brdstats.brd];
4847 if (brdp == (stlibrd_t *) NULL)
4848 return(-ENODEV);
4849
4850 memset(&stli_brdstats, 0, sizeof(combrd_t));
4851 stli_brdstats.brd = brdp->brdnr;
4852 stli_brdstats.type = brdp->brdtype;
4853 stli_brdstats.hwid = 0;
4854 stli_brdstats.state = brdp->state;
4855 stli_brdstats.ioaddr = brdp->iobase;
4856 stli_brdstats.memaddr = brdp->memaddr;
4857 stli_brdstats.nrpanels = brdp->nrpanels;
4858 stli_brdstats.nrports = brdp->nrports;
4859 for (i = 0; (i < brdp->nrpanels); i++) {
4860 stli_brdstats.panels[i].panel = i;
4861 stli_brdstats.panels[i].hwid = brdp->panelids[i];
4862 stli_brdstats.panels[i].nrports = brdp->panels[i];
4863 }
4864
4865 if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4866 return -EFAULT;
4867 return(0);
4868}
4869
4870/*****************************************************************************/
4871
4872/*
4873 * Resolve the referenced port number into a port struct pointer.
4874 */
4875
4876static stliport_t *stli_getport(int brdnr, int panelnr, int portnr)
4877{
4878 stlibrd_t *brdp;
4879 int i;
4880
4881 if ((brdnr < 0) || (brdnr >= STL_MAXBRDS))
4882 return((stliport_t *) NULL);
4883 brdp = stli_brds[brdnr];
4884 if (brdp == (stlibrd_t *) NULL)
4885 return((stliport_t *) NULL);
4886 for (i = 0; (i < panelnr); i++)
4887 portnr += brdp->panels[i];
4888 if ((portnr < 0) || (portnr >= brdp->nrports))
4889 return((stliport_t *) NULL);
4890 return(brdp->ports[portnr]);
4891}
4892
4893/*****************************************************************************/
4894
4895/*
4896 * Return the port stats structure to user app. A NULL port struct
4897 * pointer passed in means that we need to find out from the app
4898 * what port to get stats for (used through board control device).
4899 */
4900
4901static int stli_portcmdstats(stliport_t *portp)
4902{
4903 unsigned long flags;
4904 stlibrd_t *brdp;
4905 int rc;
4906
4907 memset(&stli_comstats, 0, sizeof(comstats_t));
4908
4909 if (portp == (stliport_t *) NULL)
4910 return(-ENODEV);
4911 brdp = stli_brds[portp->brdnr];
4912 if (brdp == (stlibrd_t *) NULL)
4913 return(-ENODEV);
4914
4915 if (brdp->state & BST_STARTED) {
4916 if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4917 &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
4918 return(rc);
4919 } else {
4920 memset(&stli_cdkstats, 0, sizeof(asystats_t));
4921 }
4922
4923 stli_comstats.brd = portp->brdnr;
4924 stli_comstats.panel = portp->panelnr;
4925 stli_comstats.port = portp->portnr;
4926 stli_comstats.state = portp->state;
4927 stli_comstats.flags = portp->flags;
4928
4929 save_flags(flags);
4930 cli();
4931 if (portp->tty != (struct tty_struct *) NULL) {
4932 if (portp->tty->driver_data == portp) {
4933 stli_comstats.ttystate = portp->tty->flags;
Alan Cox33f0f882006-01-09 20:54:13 -08004934 stli_comstats.rxbuffered = -1 /*portp->tty->flip.count*/;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004935 if (portp->tty->termios != (struct termios *) NULL) {
4936 stli_comstats.cflags = portp->tty->termios->c_cflag;
4937 stli_comstats.iflags = portp->tty->termios->c_iflag;
4938 stli_comstats.oflags = portp->tty->termios->c_oflag;
4939 stli_comstats.lflags = portp->tty->termios->c_lflag;
4940 }
4941 }
4942 }
4943 restore_flags(flags);
4944
4945 stli_comstats.txtotal = stli_cdkstats.txchars;
4946 stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4947 stli_comstats.txbuffered = stli_cdkstats.txringq;
4948 stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4949 stli_comstats.rxoverrun = stli_cdkstats.overruns;
4950 stli_comstats.rxparity = stli_cdkstats.parity;
4951 stli_comstats.rxframing = stli_cdkstats.framing;
4952 stli_comstats.rxlost = stli_cdkstats.ringover;
4953 stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4954 stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4955 stli_comstats.txxon = stli_cdkstats.txstart;
4956 stli_comstats.txxoff = stli_cdkstats.txstop;
4957 stli_comstats.rxxon = stli_cdkstats.rxstart;
4958 stli_comstats.rxxoff = stli_cdkstats.rxstop;
4959 stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4960 stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4961 stli_comstats.modem = stli_cdkstats.dcdcnt;
4962 stli_comstats.hwid = stli_cdkstats.hwid;
4963 stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4964
4965 return(0);
4966}
4967
4968/*****************************************************************************/
4969
4970/*
4971 * Return the port stats structure to user app. A NULL port struct
4972 * pointer passed in means that we need to find out from the app
4973 * what port to get stats for (used through board control device).
4974 */
4975
4976static int stli_getportstats(stliport_t *portp, comstats_t __user *cp)
4977{
4978 stlibrd_t *brdp;
4979 int rc;
4980
4981 if (!portp) {
4982 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4983 return -EFAULT;
4984 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4985 stli_comstats.port);
4986 if (!portp)
4987 return -ENODEV;
4988 }
4989
4990 brdp = stli_brds[portp->brdnr];
4991 if (!brdp)
4992 return -ENODEV;
4993
4994 if ((rc = stli_portcmdstats(portp)) < 0)
4995 return rc;
4996
4997 return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
4998 -EFAULT : 0;
4999}
5000
5001/*****************************************************************************/
5002
5003/*
5004 * Clear the port stats structure. We also return it zeroed out...
5005 */
5006
5007static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp)
5008{
5009 stlibrd_t *brdp;
5010 int rc;
5011
5012 if (!portp) {
5013 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
5014 return -EFAULT;
5015 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
5016 stli_comstats.port);
5017 if (!portp)
5018 return -ENODEV;
5019 }
5020
5021 brdp = stli_brds[portp->brdnr];
5022 if (!brdp)
5023 return -ENODEV;
5024
5025 if (brdp->state & BST_STARTED) {
5026 if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
5027 return rc;
5028 }
5029
5030 memset(&stli_comstats, 0, sizeof(comstats_t));
5031 stli_comstats.brd = portp->brdnr;
5032 stli_comstats.panel = portp->panelnr;
5033 stli_comstats.port = portp->portnr;
5034
5035 if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
5036 return -EFAULT;
5037 return 0;
5038}
5039
5040/*****************************************************************************/
5041
5042/*
5043 * Return the entire driver ports structure to a user app.
5044 */
5045
5046static int stli_getportstruct(stliport_t __user *arg)
5047{
5048 stliport_t *portp;
5049
5050 if (copy_from_user(&stli_dummyport, arg, sizeof(stliport_t)))
5051 return -EFAULT;
5052 portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
5053 stli_dummyport.portnr);
5054 if (!portp)
5055 return -ENODEV;
5056 if (copy_to_user(arg, portp, sizeof(stliport_t)))
5057 return -EFAULT;
5058 return 0;
5059}
5060
5061/*****************************************************************************/
5062
5063/*
5064 * Return the entire driver board structure to a user app.
5065 */
5066
5067static int stli_getbrdstruct(stlibrd_t __user *arg)
5068{
5069 stlibrd_t *brdp;
5070
5071 if (copy_from_user(&stli_dummybrd, arg, sizeof(stlibrd_t)))
5072 return -EFAULT;
5073 if ((stli_dummybrd.brdnr < 0) || (stli_dummybrd.brdnr >= STL_MAXBRDS))
5074 return -ENODEV;
5075 brdp = stli_brds[stli_dummybrd.brdnr];
5076 if (!brdp)
5077 return -ENODEV;
5078 if (copy_to_user(arg, brdp, sizeof(stlibrd_t)))
5079 return -EFAULT;
5080 return 0;
5081}
5082
5083/*****************************************************************************/
5084
5085/*
5086 * The "staliomem" device is also required to do some special operations on
5087 * the board. We need to be able to send an interrupt to the board,
5088 * reset it, and start/stop it.
5089 */
5090
5091static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
5092{
5093 stlibrd_t *brdp;
5094 int brdnr, rc, done;
5095 void __user *argp = (void __user *)arg;
5096
5097#ifdef DEBUG
5098 printk(KERN_DEBUG "stli_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n",
5099 (int) ip, (int) fp, cmd, (int) arg);
5100#endif
5101
5102/*
5103 * First up handle the board independent ioctls.
5104 */
5105 done = 0;
5106 rc = 0;
5107
5108 switch (cmd) {
5109 case COM_GETPORTSTATS:
5110 rc = stli_getportstats(NULL, argp);
5111 done++;
5112 break;
5113 case COM_CLRPORTSTATS:
5114 rc = stli_clrportstats(NULL, argp);
5115 done++;
5116 break;
5117 case COM_GETBRDSTATS:
5118 rc = stli_getbrdstats(argp);
5119 done++;
5120 break;
5121 case COM_READPORT:
5122 rc = stli_getportstruct(argp);
5123 done++;
5124 break;
5125 case COM_READBOARD:
5126 rc = stli_getbrdstruct(argp);
5127 done++;
5128 break;
5129 }
5130
5131 if (done)
5132 return(rc);
5133
5134/*
5135 * Now handle the board specific ioctls. These all depend on the
5136 * minor number of the device they were called from.
5137 */
5138 brdnr = iminor(ip);
5139 if (brdnr >= STL_MAXBRDS)
5140 return(-ENODEV);
5141 brdp = stli_brds[brdnr];
5142 if (!brdp)
5143 return(-ENODEV);
5144 if (brdp->state == 0)
5145 return(-ENODEV);
5146
5147 switch (cmd) {
5148 case STL_BINTR:
5149 EBRDINTR(brdp);
5150 break;
5151 case STL_BSTART:
5152 rc = stli_startbrd(brdp);
5153 break;
5154 case STL_BSTOP:
5155 brdp->state &= ~BST_STARTED;
5156 break;
5157 case STL_BRESET:
5158 brdp->state &= ~BST_STARTED;
5159 EBRDRESET(brdp);
5160 if (stli_shared == 0) {
5161 if (brdp->reenable != NULL)
5162 (* brdp->reenable)(brdp);
5163 }
5164 break;
5165 default:
5166 rc = -ENOIOCTLCMD;
5167 break;
5168 }
5169
5170 return(rc);
5171}
5172
5173static struct tty_operations stli_ops = {
5174 .open = stli_open,
5175 .close = stli_close,
5176 .write = stli_write,
5177 .put_char = stli_putchar,
5178 .flush_chars = stli_flushchars,
5179 .write_room = stli_writeroom,
5180 .chars_in_buffer = stli_charsinbuffer,
5181 .ioctl = stli_ioctl,
5182 .set_termios = stli_settermios,
5183 .throttle = stli_throttle,
5184 .unthrottle = stli_unthrottle,
5185 .stop = stli_stop,
5186 .start = stli_start,
5187 .hangup = stli_hangup,
5188 .flush_buffer = stli_flushbuffer,
5189 .break_ctl = stli_breakctl,
5190 .wait_until_sent = stli_waituntilsent,
5191 .send_xchar = stli_sendxchar,
5192 .read_proc = stli_readproc,
5193 .tiocmget = stli_tiocmget,
5194 .tiocmset = stli_tiocmset,
5195};
5196
5197/*****************************************************************************/
5198
5199int __init stli_init(void)
5200{
5201 int i;
5202 printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
5203
5204 stli_initbrds();
5205
5206 stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
5207 if (!stli_serial)
5208 return -ENOMEM;
5209
5210/*
5211 * Allocate a temporary write buffer.
5212 */
5213 stli_tmpwritebuf = (char *) stli_memalloc(STLI_TXBUFSIZE);
5214 if (stli_tmpwritebuf == (char *) NULL)
5215 printk(KERN_ERR "STALLION: failed to allocate memory "
5216 "(size=%d)\n", STLI_TXBUFSIZE);
5217 stli_txcookbuf = stli_memalloc(STLI_TXBUFSIZE);
5218 if (stli_txcookbuf == (char *) NULL)
5219 printk(KERN_ERR "STALLION: failed to allocate memory "
5220 "(size=%d)\n", STLI_TXBUFSIZE);
5221
5222/*
5223 * Set up a character driver for the shared memory region. We need this
5224 * to down load the slave code image. Also it is a useful debugging tool.
5225 */
5226 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem))
5227 printk(KERN_ERR "STALLION: failed to register serial memory "
5228 "device\n");
5229
5230 devfs_mk_dir("staliomem");
gregkh@suse.deca8eca62005-03-23 09:53:09 -08005231 istallion_class = class_create(THIS_MODULE, "staliomem");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005232 for (i = 0; i < 4; i++) {
5233 devfs_mk_cdev(MKDEV(STL_SIOMEMMAJOR, i),
5234 S_IFCHR | S_IRUSR | S_IWUSR,
5235 "staliomem/%d", i);
Greg Kroah-Hartman53f46542005-10-27 22:25:43 -07005236 class_device_create(istallion_class, NULL,
5237 MKDEV(STL_SIOMEMMAJOR, i),
Linus Torvalds1da177e2005-04-16 15:20:36 -07005238 NULL, "staliomem%d", i);
5239 }
5240
5241/*
5242 * Set up the tty driver structure and register us as a driver.
5243 */
5244 stli_serial->owner = THIS_MODULE;
5245 stli_serial->driver_name = stli_drvname;
5246 stli_serial->name = stli_serialname;
5247 stli_serial->major = STL_SERIALMAJOR;
5248 stli_serial->minor_start = 0;
5249 stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
5250 stli_serial->subtype = SERIAL_TYPE_NORMAL;
5251 stli_serial->init_termios = stli_deftermios;
5252 stli_serial->flags = TTY_DRIVER_REAL_RAW;
5253 tty_set_operations(stli_serial, &stli_ops);
5254
5255 if (tty_register_driver(stli_serial)) {
5256 put_tty_driver(stli_serial);
5257 printk(KERN_ERR "STALLION: failed to register serial driver\n");
5258 return -EBUSY;
5259 }
5260 return(0);
5261}
5262
5263/*****************************************************************************/