Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* asm/bitops.h for Linux/CRIS |
| 2 | * |
| 3 | * TODO: asm versions if speed is needed |
| 4 | * |
| 5 | * All bit operations return 0 if the bit was cleared before the |
| 6 | * operation and != 0 if it was not. |
| 7 | * |
| 8 | * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). |
| 9 | */ |
| 10 | |
| 11 | #ifndef _CRIS_BITOPS_H |
| 12 | #define _CRIS_BITOPS_H |
| 13 | |
| 14 | /* Currently this is unsuitable for consumption outside the kernel. */ |
| 15 | #ifdef __KERNEL__ |
| 16 | |
| 17 | #include <asm/arch/bitops.h> |
| 18 | #include <asm/system.h> |
| 19 | #include <linux/compiler.h> |
| 20 | |
| 21 | /* |
| 22 | * Some hacks to defeat gcc over-optimizations.. |
| 23 | */ |
| 24 | struct __dummy { unsigned long a[100]; }; |
| 25 | #define ADDR (*(struct __dummy *) addr) |
| 26 | #define CONST_ADDR (*(const struct __dummy *) addr) |
| 27 | |
| 28 | /* |
| 29 | * set_bit - Atomically set a bit in memory |
| 30 | * @nr: the bit to set |
| 31 | * @addr: the address to start counting from |
| 32 | * |
| 33 | * This function is atomic and may not be reordered. See __set_bit() |
| 34 | * if you do not require the atomic guarantees. |
| 35 | * Note that @nr may be almost arbitrarily large; this function is not |
| 36 | * restricted to acting on a single-word quantity. |
| 37 | */ |
| 38 | |
| 39 | #define set_bit(nr, addr) (void)test_and_set_bit(nr, addr) |
| 40 | |
| 41 | #define __set_bit(nr, addr) (void)__test_and_set_bit(nr, addr) |
| 42 | |
| 43 | /* |
| 44 | * clear_bit - Clears a bit in memory |
| 45 | * @nr: Bit to clear |
| 46 | * @addr: Address to start counting from |
| 47 | * |
| 48 | * clear_bit() is atomic and may not be reordered. However, it does |
| 49 | * not contain a memory barrier, so if it is used for locking purposes, |
| 50 | * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() |
| 51 | * in order to ensure changes are visible on other processors. |
| 52 | */ |
| 53 | |
| 54 | #define clear_bit(nr, addr) (void)test_and_clear_bit(nr, addr) |
| 55 | |
| 56 | #define __clear_bit(nr, addr) (void)__test_and_clear_bit(nr, addr) |
| 57 | |
| 58 | /* |
| 59 | * change_bit - Toggle a bit in memory |
| 60 | * @nr: Bit to change |
| 61 | * @addr: Address to start counting from |
| 62 | * |
| 63 | * change_bit() is atomic and may not be reordered. |
| 64 | * Note that @nr may be almost arbitrarily large; this function is not |
| 65 | * restricted to acting on a single-word quantity. |
| 66 | */ |
| 67 | |
| 68 | #define change_bit(nr, addr) (void)test_and_change_bit(nr, addr) |
| 69 | |
| 70 | /* |
| 71 | * __change_bit - Toggle a bit in memory |
| 72 | * @nr: the bit to change |
| 73 | * @addr: the address to start counting from |
| 74 | * |
| 75 | * Unlike change_bit(), this function is non-atomic and may be reordered. |
| 76 | * If it's called on the same region of memory simultaneously, the effect |
| 77 | * may be that only one operation succeeds. |
| 78 | */ |
| 79 | |
| 80 | #define __change_bit(nr, addr) (void)__test_and_change_bit(nr, addr) |
| 81 | |
| 82 | /** |
| 83 | * test_and_set_bit - Set a bit and return its old value |
| 84 | * @nr: Bit to set |
| 85 | * @addr: Address to count from |
| 86 | * |
| 87 | * This operation is atomic and cannot be reordered. |
| 88 | * It also implies a memory barrier. |
| 89 | */ |
| 90 | |
| 91 | extern inline int test_and_set_bit(int nr, void *addr) |
| 92 | { |
| 93 | unsigned int mask, retval; |
| 94 | unsigned long flags; |
| 95 | unsigned int *adr = (unsigned int *)addr; |
| 96 | |
| 97 | adr += nr >> 5; |
| 98 | mask = 1 << (nr & 0x1f); |
| 99 | local_save_flags(flags); |
| 100 | local_irq_disable(); |
| 101 | retval = (mask & *adr) != 0; |
| 102 | *adr |= mask; |
| 103 | local_irq_restore(flags); |
| 104 | return retval; |
| 105 | } |
| 106 | |
| 107 | extern inline int __test_and_set_bit(int nr, void *addr) |
| 108 | { |
| 109 | unsigned int mask, retval; |
| 110 | unsigned int *adr = (unsigned int *)addr; |
| 111 | |
| 112 | adr += nr >> 5; |
| 113 | mask = 1 << (nr & 0x1f); |
| 114 | retval = (mask & *adr) != 0; |
| 115 | *adr |= mask; |
| 116 | return retval; |
| 117 | } |
| 118 | |
| 119 | /* |
| 120 | * clear_bit() doesn't provide any barrier for the compiler. |
| 121 | */ |
| 122 | #define smp_mb__before_clear_bit() barrier() |
| 123 | #define smp_mb__after_clear_bit() barrier() |
| 124 | |
| 125 | /** |
| 126 | * test_and_clear_bit - Clear a bit and return its old value |
| 127 | * @nr: Bit to clear |
| 128 | * @addr: Address to count from |
| 129 | * |
| 130 | * This operation is atomic and cannot be reordered. |
| 131 | * It also implies a memory barrier. |
| 132 | */ |
| 133 | |
| 134 | extern inline int test_and_clear_bit(int nr, void *addr) |
| 135 | { |
| 136 | unsigned int mask, retval; |
| 137 | unsigned long flags; |
| 138 | unsigned int *adr = (unsigned int *)addr; |
| 139 | |
| 140 | adr += nr >> 5; |
| 141 | mask = 1 << (nr & 0x1f); |
| 142 | local_save_flags(flags); |
| 143 | local_irq_disable(); |
| 144 | retval = (mask & *adr) != 0; |
| 145 | *adr &= ~mask; |
| 146 | local_irq_restore(flags); |
| 147 | return retval; |
| 148 | } |
| 149 | |
| 150 | /** |
| 151 | * __test_and_clear_bit - Clear a bit and return its old value |
| 152 | * @nr: Bit to clear |
| 153 | * @addr: Address to count from |
| 154 | * |
| 155 | * This operation is non-atomic and can be reordered. |
| 156 | * If two examples of this operation race, one can appear to succeed |
| 157 | * but actually fail. You must protect multiple accesses with a lock. |
| 158 | */ |
| 159 | |
| 160 | extern inline int __test_and_clear_bit(int nr, void *addr) |
| 161 | { |
| 162 | unsigned int mask, retval; |
| 163 | unsigned int *adr = (unsigned int *)addr; |
| 164 | |
| 165 | adr += nr >> 5; |
| 166 | mask = 1 << (nr & 0x1f); |
| 167 | retval = (mask & *adr) != 0; |
| 168 | *adr &= ~mask; |
| 169 | return retval; |
| 170 | } |
| 171 | /** |
| 172 | * test_and_change_bit - Change a bit and return its old value |
| 173 | * @nr: Bit to change |
| 174 | * @addr: Address to count from |
| 175 | * |
| 176 | * This operation is atomic and cannot be reordered. |
| 177 | * It also implies a memory barrier. |
| 178 | */ |
| 179 | |
| 180 | extern inline int test_and_change_bit(int nr, void *addr) |
| 181 | { |
| 182 | unsigned int mask, retval; |
| 183 | unsigned long flags; |
| 184 | unsigned int *adr = (unsigned int *)addr; |
| 185 | adr += nr >> 5; |
| 186 | mask = 1 << (nr & 0x1f); |
| 187 | local_save_flags(flags); |
| 188 | local_irq_disable(); |
| 189 | retval = (mask & *adr) != 0; |
| 190 | *adr ^= mask; |
| 191 | local_irq_restore(flags); |
| 192 | return retval; |
| 193 | } |
| 194 | |
| 195 | /* WARNING: non atomic and it can be reordered! */ |
| 196 | |
| 197 | extern inline int __test_and_change_bit(int nr, void *addr) |
| 198 | { |
| 199 | unsigned int mask, retval; |
| 200 | unsigned int *adr = (unsigned int *)addr; |
| 201 | |
| 202 | adr += nr >> 5; |
| 203 | mask = 1 << (nr & 0x1f); |
| 204 | retval = (mask & *adr) != 0; |
| 205 | *adr ^= mask; |
| 206 | |
| 207 | return retval; |
| 208 | } |
| 209 | |
| 210 | /** |
| 211 | * test_bit - Determine whether a bit is set |
| 212 | * @nr: bit number to test |
| 213 | * @addr: Address to start counting from |
| 214 | * |
| 215 | * This routine doesn't need to be atomic. |
| 216 | */ |
| 217 | |
| 218 | extern inline int test_bit(int nr, const void *addr) |
| 219 | { |
| 220 | unsigned int mask; |
| 221 | unsigned int *adr = (unsigned int *)addr; |
| 222 | |
| 223 | adr += nr >> 5; |
| 224 | mask = 1 << (nr & 0x1f); |
| 225 | return ((mask & *adr) != 0); |
| 226 | } |
| 227 | |
| 228 | /* |
| 229 | * Find-bit routines.. |
| 230 | */ |
| 231 | |
| 232 | /* |
| 233 | * Since we define it "external", it collides with the built-in |
| 234 | * definition, which doesn't have the same semantics. We don't want to |
| 235 | * use -fno-builtin, so just hide the name ffs. |
| 236 | */ |
| 237 | #define ffs kernel_ffs |
| 238 | |
| 239 | /* |
| 240 | * fls: find last bit set. |
| 241 | */ |
| 242 | |
| 243 | #define fls(x) generic_fls(x) |
| 244 | |
| 245 | /* |
| 246 | * hweightN - returns the hamming weight of a N-bit word |
| 247 | * @x: the word to weigh |
| 248 | * |
| 249 | * The Hamming Weight of a number is the total number of bits set in it. |
| 250 | */ |
| 251 | |
| 252 | #define hweight32(x) generic_hweight32(x) |
| 253 | #define hweight16(x) generic_hweight16(x) |
| 254 | #define hweight8(x) generic_hweight8(x) |
| 255 | |
| 256 | /** |
| 257 | * find_next_zero_bit - find the first zero bit in a memory region |
| 258 | * @addr: The address to base the search on |
| 259 | * @offset: The bitnumber to start searching at |
| 260 | * @size: The maximum size to search |
| 261 | */ |
| 262 | extern inline int find_next_zero_bit (void * addr, int size, int offset) |
| 263 | { |
| 264 | unsigned long *p = ((unsigned long *) addr) + (offset >> 5); |
| 265 | unsigned long result = offset & ~31UL; |
| 266 | unsigned long tmp; |
| 267 | |
| 268 | if (offset >= size) |
| 269 | return size; |
| 270 | size -= result; |
| 271 | offset &= 31UL; |
| 272 | if (offset) { |
| 273 | tmp = *(p++); |
| 274 | tmp |= ~0UL >> (32-offset); |
| 275 | if (size < 32) |
| 276 | goto found_first; |
| 277 | if (~tmp) |
| 278 | goto found_middle; |
| 279 | size -= 32; |
| 280 | result += 32; |
| 281 | } |
| 282 | while (size & ~31UL) { |
| 283 | if (~(tmp = *(p++))) |
| 284 | goto found_middle; |
| 285 | result += 32; |
| 286 | size -= 32; |
| 287 | } |
| 288 | if (!size) |
| 289 | return result; |
| 290 | tmp = *p; |
| 291 | |
| 292 | found_first: |
| 293 | tmp |= ~0UL >> size; |
| 294 | found_middle: |
| 295 | return result + ffz(tmp); |
| 296 | } |
| 297 | |
| 298 | /** |
| 299 | * find_next_bit - find the first set bit in a memory region |
| 300 | * @addr: The address to base the search on |
| 301 | * @offset: The bitnumber to start searching at |
| 302 | * @size: The maximum size to search |
| 303 | */ |
| 304 | static __inline__ int find_next_bit(void *addr, int size, int offset) |
| 305 | { |
| 306 | unsigned long *p = ((unsigned long *) addr) + (offset >> 5); |
| 307 | unsigned long result = offset & ~31UL; |
| 308 | unsigned long tmp; |
| 309 | |
| 310 | if (offset >= size) |
| 311 | return size; |
| 312 | size -= result; |
| 313 | offset &= 31UL; |
| 314 | if (offset) { |
| 315 | tmp = *(p++); |
| 316 | tmp &= (~0UL << offset); |
| 317 | if (size < 32) |
| 318 | goto found_first; |
| 319 | if (tmp) |
| 320 | goto found_middle; |
| 321 | size -= 32; |
| 322 | result += 32; |
| 323 | } |
| 324 | while (size & ~31UL) { |
| 325 | if ((tmp = *(p++))) |
| 326 | goto found_middle; |
| 327 | result += 32; |
| 328 | size -= 32; |
| 329 | } |
| 330 | if (!size) |
| 331 | return result; |
| 332 | tmp = *p; |
| 333 | |
| 334 | found_first: |
| 335 | tmp &= (~0UL >> (32 - size)); |
| 336 | if (tmp == 0UL) /* Are any bits set? */ |
| 337 | return result + size; /* Nope. */ |
| 338 | found_middle: |
| 339 | return result + __ffs(tmp); |
| 340 | } |
| 341 | |
| 342 | /** |
| 343 | * find_first_zero_bit - find the first zero bit in a memory region |
| 344 | * @addr: The address to start the search at |
| 345 | * @size: The maximum size to search |
| 346 | * |
| 347 | * Returns the bit-number of the first zero bit, not the number of the byte |
| 348 | * containing a bit. |
| 349 | */ |
| 350 | |
| 351 | #define find_first_zero_bit(addr, size) \ |
| 352 | find_next_zero_bit((addr), (size), 0) |
| 353 | #define find_first_bit(addr, size) \ |
| 354 | find_next_bit((addr), (size), 0) |
| 355 | |
| 356 | #define ext2_set_bit test_and_set_bit |
| 357 | #define ext2_set_bit_atomic(l,n,a) test_and_set_bit(n,a) |
| 358 | #define ext2_clear_bit test_and_clear_bit |
| 359 | #define ext2_clear_bit_atomic(l,n,a) test_and_clear_bit(n,a) |
| 360 | #define ext2_test_bit test_bit |
| 361 | #define ext2_find_first_zero_bit find_first_zero_bit |
| 362 | #define ext2_find_next_zero_bit find_next_zero_bit |
| 363 | |
| 364 | /* Bitmap functions for the minix filesystem. */ |
| 365 | #define minix_set_bit(nr,addr) test_and_set_bit(nr,addr) |
| 366 | #define minix_clear_bit(nr,addr) test_and_clear_bit(nr,addr) |
| 367 | #define minix_test_bit(nr,addr) test_bit(nr,addr) |
| 368 | #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) |
| 369 | |
| 370 | extern inline int sched_find_first_bit(unsigned long *b) |
| 371 | { |
| 372 | if (unlikely(b[0])) |
| 373 | return __ffs(b[0]); |
| 374 | if (unlikely(b[1])) |
| 375 | return __ffs(b[1]) + 32; |
| 376 | if (unlikely(b[2])) |
| 377 | return __ffs(b[2]) + 64; |
| 378 | if (unlikely(b[3])) |
| 379 | return __ffs(b[3]) + 96; |
| 380 | if (b[4]) |
| 381 | return __ffs(b[4]) + 128; |
| 382 | return __ffs(b[5]) + 32 + 128; |
| 383 | } |
| 384 | |
| 385 | #endif /* __KERNEL__ */ |
| 386 | |
| 387 | #endif /* _CRIS_BITOPS_H */ |