Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/mm/page_alloc.c |
| 3 | * |
| 4 | * Manages the free list, the system allocates free pages here. |
| 5 | * Note that kmalloc() lives in slab.c |
| 6 | * |
| 7 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| 8 | * Swap reorganised 29.12.95, Stephen Tweedie |
| 9 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 |
| 10 | * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 |
| 11 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 |
| 12 | * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 |
| 13 | * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 |
| 14 | * (lots of bits borrowed from Ingo Molnar & Andrew Morton) |
| 15 | */ |
| 16 | |
| 17 | #include <linux/config.h> |
| 18 | #include <linux/stddef.h> |
| 19 | #include <linux/mm.h> |
| 20 | #include <linux/swap.h> |
| 21 | #include <linux/interrupt.h> |
| 22 | #include <linux/pagemap.h> |
| 23 | #include <linux/bootmem.h> |
| 24 | #include <linux/compiler.h> |
| 25 | #include <linux/module.h> |
| 26 | #include <linux/suspend.h> |
| 27 | #include <linux/pagevec.h> |
| 28 | #include <linux/blkdev.h> |
| 29 | #include <linux/slab.h> |
| 30 | #include <linux/notifier.h> |
| 31 | #include <linux/topology.h> |
| 32 | #include <linux/sysctl.h> |
| 33 | #include <linux/cpu.h> |
| 34 | #include <linux/cpuset.h> |
| 35 | #include <linux/nodemask.h> |
| 36 | #include <linux/vmalloc.h> |
| 37 | |
| 38 | #include <asm/tlbflush.h> |
| 39 | #include "internal.h" |
| 40 | |
| 41 | /* |
| 42 | * MCD - HACK: Find somewhere to initialize this EARLY, or make this |
| 43 | * initializer cleaner |
| 44 | */ |
| 45 | nodemask_t node_online_map = { { [0] = 1UL } }; |
| 46 | nodemask_t node_possible_map = NODE_MASK_ALL; |
| 47 | struct pglist_data *pgdat_list; |
| 48 | unsigned long totalram_pages; |
| 49 | unsigned long totalhigh_pages; |
| 50 | long nr_swap_pages; |
| 51 | |
| 52 | /* |
| 53 | * results with 256, 32 in the lowmem_reserve sysctl: |
| 54 | * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) |
| 55 | * 1G machine -> (16M dma, 784M normal, 224M high) |
| 56 | * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA |
| 57 | * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL |
| 58 | * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA |
| 59 | */ |
| 60 | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 }; |
| 61 | |
| 62 | EXPORT_SYMBOL(totalram_pages); |
| 63 | EXPORT_SYMBOL(nr_swap_pages); |
| 64 | |
| 65 | /* |
| 66 | * Used by page_zone() to look up the address of the struct zone whose |
| 67 | * id is encoded in the upper bits of page->flags |
| 68 | */ |
| 69 | struct zone *zone_table[1 << (ZONES_SHIFT + NODES_SHIFT)]; |
| 70 | EXPORT_SYMBOL(zone_table); |
| 71 | |
| 72 | static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" }; |
| 73 | int min_free_kbytes = 1024; |
| 74 | |
| 75 | unsigned long __initdata nr_kernel_pages; |
| 76 | unsigned long __initdata nr_all_pages; |
| 77 | |
| 78 | /* |
| 79 | * Temporary debugging check for pages not lying within a given zone. |
| 80 | */ |
| 81 | static int bad_range(struct zone *zone, struct page *page) |
| 82 | { |
| 83 | if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages) |
| 84 | return 1; |
| 85 | if (page_to_pfn(page) < zone->zone_start_pfn) |
| 86 | return 1; |
| 87 | #ifdef CONFIG_HOLES_IN_ZONE |
| 88 | if (!pfn_valid(page_to_pfn(page))) |
| 89 | return 1; |
| 90 | #endif |
| 91 | if (zone != page_zone(page)) |
| 92 | return 1; |
| 93 | return 0; |
| 94 | } |
| 95 | |
| 96 | static void bad_page(const char *function, struct page *page) |
| 97 | { |
| 98 | printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n", |
| 99 | function, current->comm, page); |
| 100 | printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n", |
| 101 | (int)(2*sizeof(page_flags_t)), (unsigned long)page->flags, |
| 102 | page->mapping, page_mapcount(page), page_count(page)); |
| 103 | printk(KERN_EMERG "Backtrace:\n"); |
| 104 | dump_stack(); |
| 105 | printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"); |
| 106 | page->flags &= ~(1 << PG_private | |
| 107 | 1 << PG_locked | |
| 108 | 1 << PG_lru | |
| 109 | 1 << PG_active | |
| 110 | 1 << PG_dirty | |
| 111 | 1 << PG_swapcache | |
| 112 | 1 << PG_writeback); |
| 113 | set_page_count(page, 0); |
| 114 | reset_page_mapcount(page); |
| 115 | page->mapping = NULL; |
| 116 | tainted |= TAINT_BAD_PAGE; |
| 117 | } |
| 118 | |
| 119 | #ifndef CONFIG_HUGETLB_PAGE |
| 120 | #define prep_compound_page(page, order) do { } while (0) |
| 121 | #define destroy_compound_page(page, order) do { } while (0) |
| 122 | #else |
| 123 | /* |
| 124 | * Higher-order pages are called "compound pages". They are structured thusly: |
| 125 | * |
| 126 | * The first PAGE_SIZE page is called the "head page". |
| 127 | * |
| 128 | * The remaining PAGE_SIZE pages are called "tail pages". |
| 129 | * |
| 130 | * All pages have PG_compound set. All pages have their ->private pointing at |
| 131 | * the head page (even the head page has this). |
| 132 | * |
| 133 | * The first tail page's ->mapping, if non-zero, holds the address of the |
| 134 | * compound page's put_page() function. |
| 135 | * |
| 136 | * The order of the allocation is stored in the first tail page's ->index |
| 137 | * This is only for debug at present. This usage means that zero-order pages |
| 138 | * may not be compound. |
| 139 | */ |
| 140 | static void prep_compound_page(struct page *page, unsigned long order) |
| 141 | { |
| 142 | int i; |
| 143 | int nr_pages = 1 << order; |
| 144 | |
| 145 | page[1].mapping = NULL; |
| 146 | page[1].index = order; |
| 147 | for (i = 0; i < nr_pages; i++) { |
| 148 | struct page *p = page + i; |
| 149 | |
| 150 | SetPageCompound(p); |
| 151 | p->private = (unsigned long)page; |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | static void destroy_compound_page(struct page *page, unsigned long order) |
| 156 | { |
| 157 | int i; |
| 158 | int nr_pages = 1 << order; |
| 159 | |
| 160 | if (!PageCompound(page)) |
| 161 | return; |
| 162 | |
| 163 | if (page[1].index != order) |
| 164 | bad_page(__FUNCTION__, page); |
| 165 | |
| 166 | for (i = 0; i < nr_pages; i++) { |
| 167 | struct page *p = page + i; |
| 168 | |
| 169 | if (!PageCompound(p)) |
| 170 | bad_page(__FUNCTION__, page); |
| 171 | if (p->private != (unsigned long)page) |
| 172 | bad_page(__FUNCTION__, page); |
| 173 | ClearPageCompound(p); |
| 174 | } |
| 175 | } |
| 176 | #endif /* CONFIG_HUGETLB_PAGE */ |
| 177 | |
| 178 | /* |
| 179 | * function for dealing with page's order in buddy system. |
| 180 | * zone->lock is already acquired when we use these. |
| 181 | * So, we don't need atomic page->flags operations here. |
| 182 | */ |
| 183 | static inline unsigned long page_order(struct page *page) { |
| 184 | return page->private; |
| 185 | } |
| 186 | |
| 187 | static inline void set_page_order(struct page *page, int order) { |
| 188 | page->private = order; |
| 189 | __SetPagePrivate(page); |
| 190 | } |
| 191 | |
| 192 | static inline void rmv_page_order(struct page *page) |
| 193 | { |
| 194 | __ClearPagePrivate(page); |
| 195 | page->private = 0; |
| 196 | } |
| 197 | |
| 198 | /* |
| 199 | * Locate the struct page for both the matching buddy in our |
| 200 | * pair (buddy1) and the combined O(n+1) page they form (page). |
| 201 | * |
| 202 | * 1) Any buddy B1 will have an order O twin B2 which satisfies |
| 203 | * the following equation: |
| 204 | * B2 = B1 ^ (1 << O) |
| 205 | * For example, if the starting buddy (buddy2) is #8 its order |
| 206 | * 1 buddy is #10: |
| 207 | * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 |
| 208 | * |
| 209 | * 2) Any buddy B will have an order O+1 parent P which |
| 210 | * satisfies the following equation: |
| 211 | * P = B & ~(1 << O) |
| 212 | * |
| 213 | * Assumption: *_mem_map is contigious at least up to MAX_ORDER |
| 214 | */ |
| 215 | static inline struct page * |
| 216 | __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) |
| 217 | { |
| 218 | unsigned long buddy_idx = page_idx ^ (1 << order); |
| 219 | |
| 220 | return page + (buddy_idx - page_idx); |
| 221 | } |
| 222 | |
| 223 | static inline unsigned long |
| 224 | __find_combined_index(unsigned long page_idx, unsigned int order) |
| 225 | { |
| 226 | return (page_idx & ~(1 << order)); |
| 227 | } |
| 228 | |
| 229 | /* |
| 230 | * This function checks whether a page is free && is the buddy |
| 231 | * we can do coalesce a page and its buddy if |
| 232 | * (a) the buddy is free && |
| 233 | * (b) the buddy is on the buddy system && |
| 234 | * (c) a page and its buddy have the same order. |
| 235 | * for recording page's order, we use page->private and PG_private. |
| 236 | * |
| 237 | */ |
| 238 | static inline int page_is_buddy(struct page *page, int order) |
| 239 | { |
| 240 | if (PagePrivate(page) && |
| 241 | (page_order(page) == order) && |
| 242 | !PageReserved(page) && |
| 243 | page_count(page) == 0) |
| 244 | return 1; |
| 245 | return 0; |
| 246 | } |
| 247 | |
| 248 | /* |
| 249 | * Freeing function for a buddy system allocator. |
| 250 | * |
| 251 | * The concept of a buddy system is to maintain direct-mapped table |
| 252 | * (containing bit values) for memory blocks of various "orders". |
| 253 | * The bottom level table contains the map for the smallest allocatable |
| 254 | * units of memory (here, pages), and each level above it describes |
| 255 | * pairs of units from the levels below, hence, "buddies". |
| 256 | * At a high level, all that happens here is marking the table entry |
| 257 | * at the bottom level available, and propagating the changes upward |
| 258 | * as necessary, plus some accounting needed to play nicely with other |
| 259 | * parts of the VM system. |
| 260 | * At each level, we keep a list of pages, which are heads of continuous |
| 261 | * free pages of length of (1 << order) and marked with PG_Private.Page's |
| 262 | * order is recorded in page->private field. |
| 263 | * So when we are allocating or freeing one, we can derive the state of the |
| 264 | * other. That is, if we allocate a small block, and both were |
| 265 | * free, the remainder of the region must be split into blocks. |
| 266 | * If a block is freed, and its buddy is also free, then this |
| 267 | * triggers coalescing into a block of larger size. |
| 268 | * |
| 269 | * -- wli |
| 270 | */ |
| 271 | |
| 272 | static inline void __free_pages_bulk (struct page *page, |
| 273 | struct zone *zone, unsigned int order) |
| 274 | { |
| 275 | unsigned long page_idx; |
| 276 | int order_size = 1 << order; |
| 277 | |
| 278 | if (unlikely(order)) |
| 279 | destroy_compound_page(page, order); |
| 280 | |
| 281 | page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); |
| 282 | |
| 283 | BUG_ON(page_idx & (order_size - 1)); |
| 284 | BUG_ON(bad_range(zone, page)); |
| 285 | |
| 286 | zone->free_pages += order_size; |
| 287 | while (order < MAX_ORDER-1) { |
| 288 | unsigned long combined_idx; |
| 289 | struct free_area *area; |
| 290 | struct page *buddy; |
| 291 | |
| 292 | combined_idx = __find_combined_index(page_idx, order); |
| 293 | buddy = __page_find_buddy(page, page_idx, order); |
| 294 | |
| 295 | if (bad_range(zone, buddy)) |
| 296 | break; |
| 297 | if (!page_is_buddy(buddy, order)) |
| 298 | break; /* Move the buddy up one level. */ |
| 299 | list_del(&buddy->lru); |
| 300 | area = zone->free_area + order; |
| 301 | area->nr_free--; |
| 302 | rmv_page_order(buddy); |
| 303 | page = page + (combined_idx - page_idx); |
| 304 | page_idx = combined_idx; |
| 305 | order++; |
| 306 | } |
| 307 | set_page_order(page, order); |
| 308 | list_add(&page->lru, &zone->free_area[order].free_list); |
| 309 | zone->free_area[order].nr_free++; |
| 310 | } |
| 311 | |
| 312 | static inline void free_pages_check(const char *function, struct page *page) |
| 313 | { |
| 314 | if ( page_mapcount(page) || |
| 315 | page->mapping != NULL || |
| 316 | page_count(page) != 0 || |
| 317 | (page->flags & ( |
| 318 | 1 << PG_lru | |
| 319 | 1 << PG_private | |
| 320 | 1 << PG_locked | |
| 321 | 1 << PG_active | |
| 322 | 1 << PG_reclaim | |
| 323 | 1 << PG_slab | |
| 324 | 1 << PG_swapcache | |
| 325 | 1 << PG_writeback ))) |
| 326 | bad_page(function, page); |
| 327 | if (PageDirty(page)) |
| 328 | ClearPageDirty(page); |
| 329 | } |
| 330 | |
| 331 | /* |
| 332 | * Frees a list of pages. |
| 333 | * Assumes all pages on list are in same zone, and of same order. |
| 334 | * count is the number of pages to free, or 0 for all on the list. |
| 335 | * |
| 336 | * If the zone was previously in an "all pages pinned" state then look to |
| 337 | * see if this freeing clears that state. |
| 338 | * |
| 339 | * And clear the zone's pages_scanned counter, to hold off the "all pages are |
| 340 | * pinned" detection logic. |
| 341 | */ |
| 342 | static int |
| 343 | free_pages_bulk(struct zone *zone, int count, |
| 344 | struct list_head *list, unsigned int order) |
| 345 | { |
| 346 | unsigned long flags; |
| 347 | struct page *page = NULL; |
| 348 | int ret = 0; |
| 349 | |
| 350 | spin_lock_irqsave(&zone->lock, flags); |
| 351 | zone->all_unreclaimable = 0; |
| 352 | zone->pages_scanned = 0; |
| 353 | while (!list_empty(list) && count--) { |
| 354 | page = list_entry(list->prev, struct page, lru); |
| 355 | /* have to delete it as __free_pages_bulk list manipulates */ |
| 356 | list_del(&page->lru); |
| 357 | __free_pages_bulk(page, zone, order); |
| 358 | ret++; |
| 359 | } |
| 360 | spin_unlock_irqrestore(&zone->lock, flags); |
| 361 | return ret; |
| 362 | } |
| 363 | |
| 364 | void __free_pages_ok(struct page *page, unsigned int order) |
| 365 | { |
| 366 | LIST_HEAD(list); |
| 367 | int i; |
| 368 | |
| 369 | arch_free_page(page, order); |
| 370 | |
| 371 | mod_page_state(pgfree, 1 << order); |
| 372 | |
| 373 | #ifndef CONFIG_MMU |
| 374 | if (order > 0) |
| 375 | for (i = 1 ; i < (1 << order) ; ++i) |
| 376 | __put_page(page + i); |
| 377 | #endif |
| 378 | |
| 379 | for (i = 0 ; i < (1 << order) ; ++i) |
| 380 | free_pages_check(__FUNCTION__, page + i); |
| 381 | list_add(&page->lru, &list); |
| 382 | kernel_map_pages(page, 1<<order, 0); |
| 383 | free_pages_bulk(page_zone(page), 1, &list, order); |
| 384 | } |
| 385 | |
| 386 | |
| 387 | /* |
| 388 | * The order of subdivision here is critical for the IO subsystem. |
| 389 | * Please do not alter this order without good reasons and regression |
| 390 | * testing. Specifically, as large blocks of memory are subdivided, |
| 391 | * the order in which smaller blocks are delivered depends on the order |
| 392 | * they're subdivided in this function. This is the primary factor |
| 393 | * influencing the order in which pages are delivered to the IO |
| 394 | * subsystem according to empirical testing, and this is also justified |
| 395 | * by considering the behavior of a buddy system containing a single |
| 396 | * large block of memory acted on by a series of small allocations. |
| 397 | * This behavior is a critical factor in sglist merging's success. |
| 398 | * |
| 399 | * -- wli |
| 400 | */ |
| 401 | static inline struct page * |
| 402 | expand(struct zone *zone, struct page *page, |
| 403 | int low, int high, struct free_area *area) |
| 404 | { |
| 405 | unsigned long size = 1 << high; |
| 406 | |
| 407 | while (high > low) { |
| 408 | area--; |
| 409 | high--; |
| 410 | size >>= 1; |
| 411 | BUG_ON(bad_range(zone, &page[size])); |
| 412 | list_add(&page[size].lru, &area->free_list); |
| 413 | area->nr_free++; |
| 414 | set_page_order(&page[size], high); |
| 415 | } |
| 416 | return page; |
| 417 | } |
| 418 | |
| 419 | void set_page_refs(struct page *page, int order) |
| 420 | { |
| 421 | #ifdef CONFIG_MMU |
| 422 | set_page_count(page, 1); |
| 423 | #else |
| 424 | int i; |
| 425 | |
| 426 | /* |
| 427 | * We need to reference all the pages for this order, otherwise if |
| 428 | * anyone accesses one of the pages with (get/put) it will be freed. |
| 429 | * - eg: access_process_vm() |
| 430 | */ |
| 431 | for (i = 0; i < (1 << order); i++) |
| 432 | set_page_count(page + i, 1); |
| 433 | #endif /* CONFIG_MMU */ |
| 434 | } |
| 435 | |
| 436 | /* |
| 437 | * This page is about to be returned from the page allocator |
| 438 | */ |
| 439 | static void prep_new_page(struct page *page, int order) |
| 440 | { |
| 441 | if (page->mapping || page_mapcount(page) || |
| 442 | (page->flags & ( |
| 443 | 1 << PG_private | |
| 444 | 1 << PG_locked | |
| 445 | 1 << PG_lru | |
| 446 | 1 << PG_active | |
| 447 | 1 << PG_dirty | |
| 448 | 1 << PG_reclaim | |
| 449 | 1 << PG_swapcache | |
| 450 | 1 << PG_writeback ))) |
| 451 | bad_page(__FUNCTION__, page); |
| 452 | |
| 453 | page->flags &= ~(1 << PG_uptodate | 1 << PG_error | |
| 454 | 1 << PG_referenced | 1 << PG_arch_1 | |
| 455 | 1 << PG_checked | 1 << PG_mappedtodisk); |
| 456 | page->private = 0; |
| 457 | set_page_refs(page, order); |
| 458 | kernel_map_pages(page, 1 << order, 1); |
| 459 | } |
| 460 | |
| 461 | /* |
| 462 | * Do the hard work of removing an element from the buddy allocator. |
| 463 | * Call me with the zone->lock already held. |
| 464 | */ |
| 465 | static struct page *__rmqueue(struct zone *zone, unsigned int order) |
| 466 | { |
| 467 | struct free_area * area; |
| 468 | unsigned int current_order; |
| 469 | struct page *page; |
| 470 | |
| 471 | for (current_order = order; current_order < MAX_ORDER; ++current_order) { |
| 472 | area = zone->free_area + current_order; |
| 473 | if (list_empty(&area->free_list)) |
| 474 | continue; |
| 475 | |
| 476 | page = list_entry(area->free_list.next, struct page, lru); |
| 477 | list_del(&page->lru); |
| 478 | rmv_page_order(page); |
| 479 | area->nr_free--; |
| 480 | zone->free_pages -= 1UL << order; |
| 481 | return expand(zone, page, order, current_order, area); |
| 482 | } |
| 483 | |
| 484 | return NULL; |
| 485 | } |
| 486 | |
| 487 | /* |
| 488 | * Obtain a specified number of elements from the buddy allocator, all under |
| 489 | * a single hold of the lock, for efficiency. Add them to the supplied list. |
| 490 | * Returns the number of new pages which were placed at *list. |
| 491 | */ |
| 492 | static int rmqueue_bulk(struct zone *zone, unsigned int order, |
| 493 | unsigned long count, struct list_head *list) |
| 494 | { |
| 495 | unsigned long flags; |
| 496 | int i; |
| 497 | int allocated = 0; |
| 498 | struct page *page; |
| 499 | |
| 500 | spin_lock_irqsave(&zone->lock, flags); |
| 501 | for (i = 0; i < count; ++i) { |
| 502 | page = __rmqueue(zone, order); |
| 503 | if (page == NULL) |
| 504 | break; |
| 505 | allocated++; |
| 506 | list_add_tail(&page->lru, list); |
| 507 | } |
| 508 | spin_unlock_irqrestore(&zone->lock, flags); |
| 509 | return allocated; |
| 510 | } |
| 511 | |
| 512 | #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) |
| 513 | static void __drain_pages(unsigned int cpu) |
| 514 | { |
| 515 | struct zone *zone; |
| 516 | int i; |
| 517 | |
| 518 | for_each_zone(zone) { |
| 519 | struct per_cpu_pageset *pset; |
| 520 | |
| 521 | pset = &zone->pageset[cpu]; |
| 522 | for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { |
| 523 | struct per_cpu_pages *pcp; |
| 524 | |
| 525 | pcp = &pset->pcp[i]; |
| 526 | pcp->count -= free_pages_bulk(zone, pcp->count, |
| 527 | &pcp->list, 0); |
| 528 | } |
| 529 | } |
| 530 | } |
| 531 | #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ |
| 532 | |
| 533 | #ifdef CONFIG_PM |
| 534 | |
| 535 | void mark_free_pages(struct zone *zone) |
| 536 | { |
| 537 | unsigned long zone_pfn, flags; |
| 538 | int order; |
| 539 | struct list_head *curr; |
| 540 | |
| 541 | if (!zone->spanned_pages) |
| 542 | return; |
| 543 | |
| 544 | spin_lock_irqsave(&zone->lock, flags); |
| 545 | for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) |
| 546 | ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); |
| 547 | |
| 548 | for (order = MAX_ORDER - 1; order >= 0; --order) |
| 549 | list_for_each(curr, &zone->free_area[order].free_list) { |
| 550 | unsigned long start_pfn, i; |
| 551 | |
| 552 | start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); |
| 553 | |
| 554 | for (i=0; i < (1<<order); i++) |
| 555 | SetPageNosaveFree(pfn_to_page(start_pfn+i)); |
| 556 | } |
| 557 | spin_unlock_irqrestore(&zone->lock, flags); |
| 558 | } |
| 559 | |
| 560 | /* |
| 561 | * Spill all of this CPU's per-cpu pages back into the buddy allocator. |
| 562 | */ |
| 563 | void drain_local_pages(void) |
| 564 | { |
| 565 | unsigned long flags; |
| 566 | |
| 567 | local_irq_save(flags); |
| 568 | __drain_pages(smp_processor_id()); |
| 569 | local_irq_restore(flags); |
| 570 | } |
| 571 | #endif /* CONFIG_PM */ |
| 572 | |
| 573 | static void zone_statistics(struct zonelist *zonelist, struct zone *z) |
| 574 | { |
| 575 | #ifdef CONFIG_NUMA |
| 576 | unsigned long flags; |
| 577 | int cpu; |
| 578 | pg_data_t *pg = z->zone_pgdat; |
| 579 | pg_data_t *orig = zonelist->zones[0]->zone_pgdat; |
| 580 | struct per_cpu_pageset *p; |
| 581 | |
| 582 | local_irq_save(flags); |
| 583 | cpu = smp_processor_id(); |
| 584 | p = &z->pageset[cpu]; |
| 585 | if (pg == orig) { |
| 586 | z->pageset[cpu].numa_hit++; |
| 587 | } else { |
| 588 | p->numa_miss++; |
| 589 | zonelist->zones[0]->pageset[cpu].numa_foreign++; |
| 590 | } |
| 591 | if (pg == NODE_DATA(numa_node_id())) |
| 592 | p->local_node++; |
| 593 | else |
| 594 | p->other_node++; |
| 595 | local_irq_restore(flags); |
| 596 | #endif |
| 597 | } |
| 598 | |
| 599 | /* |
| 600 | * Free a 0-order page |
| 601 | */ |
| 602 | static void FASTCALL(free_hot_cold_page(struct page *page, int cold)); |
| 603 | static void fastcall free_hot_cold_page(struct page *page, int cold) |
| 604 | { |
| 605 | struct zone *zone = page_zone(page); |
| 606 | struct per_cpu_pages *pcp; |
| 607 | unsigned long flags; |
| 608 | |
| 609 | arch_free_page(page, 0); |
| 610 | |
| 611 | kernel_map_pages(page, 1, 0); |
| 612 | inc_page_state(pgfree); |
| 613 | if (PageAnon(page)) |
| 614 | page->mapping = NULL; |
| 615 | free_pages_check(__FUNCTION__, page); |
| 616 | pcp = &zone->pageset[get_cpu()].pcp[cold]; |
| 617 | local_irq_save(flags); |
| 618 | if (pcp->count >= pcp->high) |
| 619 | pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0); |
| 620 | list_add(&page->lru, &pcp->list); |
| 621 | pcp->count++; |
| 622 | local_irq_restore(flags); |
| 623 | put_cpu(); |
| 624 | } |
| 625 | |
| 626 | void fastcall free_hot_page(struct page *page) |
| 627 | { |
| 628 | free_hot_cold_page(page, 0); |
| 629 | } |
| 630 | |
| 631 | void fastcall free_cold_page(struct page *page) |
| 632 | { |
| 633 | free_hot_cold_page(page, 1); |
| 634 | } |
| 635 | |
| 636 | static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags) |
| 637 | { |
| 638 | int i; |
| 639 | |
| 640 | BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); |
| 641 | for(i = 0; i < (1 << order); i++) |
| 642 | clear_highpage(page + i); |
| 643 | } |
| 644 | |
| 645 | /* |
| 646 | * Really, prep_compound_page() should be called from __rmqueue_bulk(). But |
| 647 | * we cheat by calling it from here, in the order > 0 path. Saves a branch |
| 648 | * or two. |
| 649 | */ |
| 650 | static struct page * |
| 651 | buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags) |
| 652 | { |
| 653 | unsigned long flags; |
| 654 | struct page *page = NULL; |
| 655 | int cold = !!(gfp_flags & __GFP_COLD); |
| 656 | |
| 657 | if (order == 0) { |
| 658 | struct per_cpu_pages *pcp; |
| 659 | |
| 660 | pcp = &zone->pageset[get_cpu()].pcp[cold]; |
| 661 | local_irq_save(flags); |
| 662 | if (pcp->count <= pcp->low) |
| 663 | pcp->count += rmqueue_bulk(zone, 0, |
| 664 | pcp->batch, &pcp->list); |
| 665 | if (pcp->count) { |
| 666 | page = list_entry(pcp->list.next, struct page, lru); |
| 667 | list_del(&page->lru); |
| 668 | pcp->count--; |
| 669 | } |
| 670 | local_irq_restore(flags); |
| 671 | put_cpu(); |
| 672 | } |
| 673 | |
| 674 | if (page == NULL) { |
| 675 | spin_lock_irqsave(&zone->lock, flags); |
| 676 | page = __rmqueue(zone, order); |
| 677 | spin_unlock_irqrestore(&zone->lock, flags); |
| 678 | } |
| 679 | |
| 680 | if (page != NULL) { |
| 681 | BUG_ON(bad_range(zone, page)); |
| 682 | mod_page_state_zone(zone, pgalloc, 1 << order); |
| 683 | prep_new_page(page, order); |
| 684 | |
| 685 | if (gfp_flags & __GFP_ZERO) |
| 686 | prep_zero_page(page, order, gfp_flags); |
| 687 | |
| 688 | if (order && (gfp_flags & __GFP_COMP)) |
| 689 | prep_compound_page(page, order); |
| 690 | } |
| 691 | return page; |
| 692 | } |
| 693 | |
| 694 | /* |
| 695 | * Return 1 if free pages are above 'mark'. This takes into account the order |
| 696 | * of the allocation. |
| 697 | */ |
| 698 | int zone_watermark_ok(struct zone *z, int order, unsigned long mark, |
| 699 | int classzone_idx, int can_try_harder, int gfp_high) |
| 700 | { |
| 701 | /* free_pages my go negative - that's OK */ |
| 702 | long min = mark, free_pages = z->free_pages - (1 << order) + 1; |
| 703 | int o; |
| 704 | |
| 705 | if (gfp_high) |
| 706 | min -= min / 2; |
| 707 | if (can_try_harder) |
| 708 | min -= min / 4; |
| 709 | |
| 710 | if (free_pages <= min + z->lowmem_reserve[classzone_idx]) |
| 711 | return 0; |
| 712 | for (o = 0; o < order; o++) { |
| 713 | /* At the next order, this order's pages become unavailable */ |
| 714 | free_pages -= z->free_area[o].nr_free << o; |
| 715 | |
| 716 | /* Require fewer higher order pages to be free */ |
| 717 | min >>= 1; |
| 718 | |
| 719 | if (free_pages <= min) |
| 720 | return 0; |
| 721 | } |
| 722 | return 1; |
| 723 | } |
| 724 | |
| 725 | /* |
| 726 | * This is the 'heart' of the zoned buddy allocator. |
| 727 | */ |
| 728 | struct page * fastcall |
| 729 | __alloc_pages(unsigned int __nocast gfp_mask, unsigned int order, |
| 730 | struct zonelist *zonelist) |
| 731 | { |
| 732 | const int wait = gfp_mask & __GFP_WAIT; |
| 733 | struct zone **zones, *z; |
| 734 | struct page *page; |
| 735 | struct reclaim_state reclaim_state; |
| 736 | struct task_struct *p = current; |
| 737 | int i; |
| 738 | int classzone_idx; |
| 739 | int do_retry; |
| 740 | int can_try_harder; |
| 741 | int did_some_progress; |
| 742 | |
| 743 | might_sleep_if(wait); |
| 744 | |
| 745 | /* |
| 746 | * The caller may dip into page reserves a bit more if the caller |
| 747 | * cannot run direct reclaim, or is the caller has realtime scheduling |
| 748 | * policy |
| 749 | */ |
| 750 | can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait; |
| 751 | |
| 752 | zones = zonelist->zones; /* the list of zones suitable for gfp_mask */ |
| 753 | |
| 754 | if (unlikely(zones[0] == NULL)) { |
| 755 | /* Should this ever happen?? */ |
| 756 | return NULL; |
| 757 | } |
| 758 | |
| 759 | classzone_idx = zone_idx(zones[0]); |
| 760 | |
| 761 | restart: |
| 762 | /* Go through the zonelist once, looking for a zone with enough free */ |
| 763 | for (i = 0; (z = zones[i]) != NULL; i++) { |
| 764 | |
| 765 | if (!zone_watermark_ok(z, order, z->pages_low, |
| 766 | classzone_idx, 0, 0)) |
| 767 | continue; |
| 768 | |
| 769 | if (!cpuset_zone_allowed(z)) |
| 770 | continue; |
| 771 | |
| 772 | page = buffered_rmqueue(z, order, gfp_mask); |
| 773 | if (page) |
| 774 | goto got_pg; |
| 775 | } |
| 776 | |
| 777 | for (i = 0; (z = zones[i]) != NULL; i++) |
| 778 | wakeup_kswapd(z, order); |
| 779 | |
| 780 | /* |
| 781 | * Go through the zonelist again. Let __GFP_HIGH and allocations |
| 782 | * coming from realtime tasks to go deeper into reserves |
| 783 | * |
| 784 | * This is the last chance, in general, before the goto nopage. |
| 785 | * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. |
| 786 | */ |
| 787 | for (i = 0; (z = zones[i]) != NULL; i++) { |
| 788 | if (!zone_watermark_ok(z, order, z->pages_min, |
| 789 | classzone_idx, can_try_harder, |
| 790 | gfp_mask & __GFP_HIGH)) |
| 791 | continue; |
| 792 | |
| 793 | if (wait && !cpuset_zone_allowed(z)) |
| 794 | continue; |
| 795 | |
| 796 | page = buffered_rmqueue(z, order, gfp_mask); |
| 797 | if (page) |
| 798 | goto got_pg; |
| 799 | } |
| 800 | |
| 801 | /* This allocation should allow future memory freeing. */ |
Nick Piggin | b84a35b | 2005-05-01 08:58:36 -0700 | [diff] [blame] | 802 | |
| 803 | if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) |
| 804 | && !in_interrupt()) { |
| 805 | if (!(gfp_mask & __GFP_NOMEMALLOC)) { |
| 806 | /* go through the zonelist yet again, ignoring mins */ |
| 807 | for (i = 0; (z = zones[i]) != NULL; i++) { |
| 808 | if (!cpuset_zone_allowed(z)) |
| 809 | continue; |
| 810 | page = buffered_rmqueue(z, order, gfp_mask); |
| 811 | if (page) |
| 812 | goto got_pg; |
| 813 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 814 | } |
| 815 | goto nopage; |
| 816 | } |
| 817 | |
| 818 | /* Atomic allocations - we can't balance anything */ |
| 819 | if (!wait) |
| 820 | goto nopage; |
| 821 | |
| 822 | rebalance: |
| 823 | cond_resched(); |
| 824 | |
| 825 | /* We now go into synchronous reclaim */ |
| 826 | p->flags |= PF_MEMALLOC; |
| 827 | reclaim_state.reclaimed_slab = 0; |
| 828 | p->reclaim_state = &reclaim_state; |
| 829 | |
| 830 | did_some_progress = try_to_free_pages(zones, gfp_mask, order); |
| 831 | |
| 832 | p->reclaim_state = NULL; |
| 833 | p->flags &= ~PF_MEMALLOC; |
| 834 | |
| 835 | cond_resched(); |
| 836 | |
| 837 | if (likely(did_some_progress)) { |
| 838 | /* |
| 839 | * Go through the zonelist yet one more time, keep |
| 840 | * very high watermark here, this is only to catch |
| 841 | * a parallel oom killing, we must fail if we're still |
| 842 | * under heavy pressure. |
| 843 | */ |
| 844 | for (i = 0; (z = zones[i]) != NULL; i++) { |
| 845 | if (!zone_watermark_ok(z, order, z->pages_min, |
| 846 | classzone_idx, can_try_harder, |
| 847 | gfp_mask & __GFP_HIGH)) |
| 848 | continue; |
| 849 | |
| 850 | if (!cpuset_zone_allowed(z)) |
| 851 | continue; |
| 852 | |
| 853 | page = buffered_rmqueue(z, order, gfp_mask); |
| 854 | if (page) |
| 855 | goto got_pg; |
| 856 | } |
| 857 | } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { |
| 858 | /* |
| 859 | * Go through the zonelist yet one more time, keep |
| 860 | * very high watermark here, this is only to catch |
| 861 | * a parallel oom killing, we must fail if we're still |
| 862 | * under heavy pressure. |
| 863 | */ |
| 864 | for (i = 0; (z = zones[i]) != NULL; i++) { |
| 865 | if (!zone_watermark_ok(z, order, z->pages_high, |
| 866 | classzone_idx, 0, 0)) |
| 867 | continue; |
| 868 | |
| 869 | if (!cpuset_zone_allowed(z)) |
| 870 | continue; |
| 871 | |
| 872 | page = buffered_rmqueue(z, order, gfp_mask); |
| 873 | if (page) |
| 874 | goto got_pg; |
| 875 | } |
| 876 | |
| 877 | out_of_memory(gfp_mask); |
| 878 | goto restart; |
| 879 | } |
| 880 | |
| 881 | /* |
| 882 | * Don't let big-order allocations loop unless the caller explicitly |
| 883 | * requests that. Wait for some write requests to complete then retry. |
| 884 | * |
| 885 | * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order |
| 886 | * <= 3, but that may not be true in other implementations. |
| 887 | */ |
| 888 | do_retry = 0; |
| 889 | if (!(gfp_mask & __GFP_NORETRY)) { |
| 890 | if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) |
| 891 | do_retry = 1; |
| 892 | if (gfp_mask & __GFP_NOFAIL) |
| 893 | do_retry = 1; |
| 894 | } |
| 895 | if (do_retry) { |
| 896 | blk_congestion_wait(WRITE, HZ/50); |
| 897 | goto rebalance; |
| 898 | } |
| 899 | |
| 900 | nopage: |
| 901 | if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { |
| 902 | printk(KERN_WARNING "%s: page allocation failure." |
| 903 | " order:%d, mode:0x%x\n", |
| 904 | p->comm, order, gfp_mask); |
| 905 | dump_stack(); |
| 906 | } |
| 907 | return NULL; |
| 908 | got_pg: |
| 909 | zone_statistics(zonelist, z); |
| 910 | return page; |
| 911 | } |
| 912 | |
| 913 | EXPORT_SYMBOL(__alloc_pages); |
| 914 | |
| 915 | /* |
| 916 | * Common helper functions. |
| 917 | */ |
| 918 | fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order) |
| 919 | { |
| 920 | struct page * page; |
| 921 | page = alloc_pages(gfp_mask, order); |
| 922 | if (!page) |
| 923 | return 0; |
| 924 | return (unsigned long) page_address(page); |
| 925 | } |
| 926 | |
| 927 | EXPORT_SYMBOL(__get_free_pages); |
| 928 | |
| 929 | fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask) |
| 930 | { |
| 931 | struct page * page; |
| 932 | |
| 933 | /* |
| 934 | * get_zeroed_page() returns a 32-bit address, which cannot represent |
| 935 | * a highmem page |
| 936 | */ |
| 937 | BUG_ON(gfp_mask & __GFP_HIGHMEM); |
| 938 | |
| 939 | page = alloc_pages(gfp_mask | __GFP_ZERO, 0); |
| 940 | if (page) |
| 941 | return (unsigned long) page_address(page); |
| 942 | return 0; |
| 943 | } |
| 944 | |
| 945 | EXPORT_SYMBOL(get_zeroed_page); |
| 946 | |
| 947 | void __pagevec_free(struct pagevec *pvec) |
| 948 | { |
| 949 | int i = pagevec_count(pvec); |
| 950 | |
| 951 | while (--i >= 0) |
| 952 | free_hot_cold_page(pvec->pages[i], pvec->cold); |
| 953 | } |
| 954 | |
| 955 | fastcall void __free_pages(struct page *page, unsigned int order) |
| 956 | { |
| 957 | if (!PageReserved(page) && put_page_testzero(page)) { |
| 958 | if (order == 0) |
| 959 | free_hot_page(page); |
| 960 | else |
| 961 | __free_pages_ok(page, order); |
| 962 | } |
| 963 | } |
| 964 | |
| 965 | EXPORT_SYMBOL(__free_pages); |
| 966 | |
| 967 | fastcall void free_pages(unsigned long addr, unsigned int order) |
| 968 | { |
| 969 | if (addr != 0) { |
| 970 | BUG_ON(!virt_addr_valid((void *)addr)); |
| 971 | __free_pages(virt_to_page((void *)addr), order); |
| 972 | } |
| 973 | } |
| 974 | |
| 975 | EXPORT_SYMBOL(free_pages); |
| 976 | |
| 977 | /* |
| 978 | * Total amount of free (allocatable) RAM: |
| 979 | */ |
| 980 | unsigned int nr_free_pages(void) |
| 981 | { |
| 982 | unsigned int sum = 0; |
| 983 | struct zone *zone; |
| 984 | |
| 985 | for_each_zone(zone) |
| 986 | sum += zone->free_pages; |
| 987 | |
| 988 | return sum; |
| 989 | } |
| 990 | |
| 991 | EXPORT_SYMBOL(nr_free_pages); |
| 992 | |
| 993 | #ifdef CONFIG_NUMA |
| 994 | unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) |
| 995 | { |
| 996 | unsigned int i, sum = 0; |
| 997 | |
| 998 | for (i = 0; i < MAX_NR_ZONES; i++) |
| 999 | sum += pgdat->node_zones[i].free_pages; |
| 1000 | |
| 1001 | return sum; |
| 1002 | } |
| 1003 | #endif |
| 1004 | |
| 1005 | static unsigned int nr_free_zone_pages(int offset) |
| 1006 | { |
| 1007 | pg_data_t *pgdat; |
| 1008 | unsigned int sum = 0; |
| 1009 | |
| 1010 | for_each_pgdat(pgdat) { |
| 1011 | struct zonelist *zonelist = pgdat->node_zonelists + offset; |
| 1012 | struct zone **zonep = zonelist->zones; |
| 1013 | struct zone *zone; |
| 1014 | |
| 1015 | for (zone = *zonep++; zone; zone = *zonep++) { |
| 1016 | unsigned long size = zone->present_pages; |
| 1017 | unsigned long high = zone->pages_high; |
| 1018 | if (size > high) |
| 1019 | sum += size - high; |
| 1020 | } |
| 1021 | } |
| 1022 | |
| 1023 | return sum; |
| 1024 | } |
| 1025 | |
| 1026 | /* |
| 1027 | * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL |
| 1028 | */ |
| 1029 | unsigned int nr_free_buffer_pages(void) |
| 1030 | { |
| 1031 | return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK); |
| 1032 | } |
| 1033 | |
| 1034 | /* |
| 1035 | * Amount of free RAM allocatable within all zones |
| 1036 | */ |
| 1037 | unsigned int nr_free_pagecache_pages(void) |
| 1038 | { |
| 1039 | return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK); |
| 1040 | } |
| 1041 | |
| 1042 | #ifdef CONFIG_HIGHMEM |
| 1043 | unsigned int nr_free_highpages (void) |
| 1044 | { |
| 1045 | pg_data_t *pgdat; |
| 1046 | unsigned int pages = 0; |
| 1047 | |
| 1048 | for_each_pgdat(pgdat) |
| 1049 | pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; |
| 1050 | |
| 1051 | return pages; |
| 1052 | } |
| 1053 | #endif |
| 1054 | |
| 1055 | #ifdef CONFIG_NUMA |
| 1056 | static void show_node(struct zone *zone) |
| 1057 | { |
| 1058 | printk("Node %d ", zone->zone_pgdat->node_id); |
| 1059 | } |
| 1060 | #else |
| 1061 | #define show_node(zone) do { } while (0) |
| 1062 | #endif |
| 1063 | |
| 1064 | /* |
| 1065 | * Accumulate the page_state information across all CPUs. |
| 1066 | * The result is unavoidably approximate - it can change |
| 1067 | * during and after execution of this function. |
| 1068 | */ |
| 1069 | static DEFINE_PER_CPU(struct page_state, page_states) = {0}; |
| 1070 | |
| 1071 | atomic_t nr_pagecache = ATOMIC_INIT(0); |
| 1072 | EXPORT_SYMBOL(nr_pagecache); |
| 1073 | #ifdef CONFIG_SMP |
| 1074 | DEFINE_PER_CPU(long, nr_pagecache_local) = 0; |
| 1075 | #endif |
| 1076 | |
| 1077 | void __get_page_state(struct page_state *ret, int nr) |
| 1078 | { |
| 1079 | int cpu = 0; |
| 1080 | |
| 1081 | memset(ret, 0, sizeof(*ret)); |
| 1082 | |
| 1083 | cpu = first_cpu(cpu_online_map); |
| 1084 | while (cpu < NR_CPUS) { |
| 1085 | unsigned long *in, *out, off; |
| 1086 | |
| 1087 | in = (unsigned long *)&per_cpu(page_states, cpu); |
| 1088 | |
| 1089 | cpu = next_cpu(cpu, cpu_online_map); |
| 1090 | |
| 1091 | if (cpu < NR_CPUS) |
| 1092 | prefetch(&per_cpu(page_states, cpu)); |
| 1093 | |
| 1094 | out = (unsigned long *)ret; |
| 1095 | for (off = 0; off < nr; off++) |
| 1096 | *out++ += *in++; |
| 1097 | } |
| 1098 | } |
| 1099 | |
| 1100 | void get_page_state(struct page_state *ret) |
| 1101 | { |
| 1102 | int nr; |
| 1103 | |
| 1104 | nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); |
| 1105 | nr /= sizeof(unsigned long); |
| 1106 | |
| 1107 | __get_page_state(ret, nr + 1); |
| 1108 | } |
| 1109 | |
| 1110 | void get_full_page_state(struct page_state *ret) |
| 1111 | { |
| 1112 | __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long)); |
| 1113 | } |
| 1114 | |
| 1115 | unsigned long __read_page_state(unsigned offset) |
| 1116 | { |
| 1117 | unsigned long ret = 0; |
| 1118 | int cpu; |
| 1119 | |
| 1120 | for_each_online_cpu(cpu) { |
| 1121 | unsigned long in; |
| 1122 | |
| 1123 | in = (unsigned long)&per_cpu(page_states, cpu) + offset; |
| 1124 | ret += *((unsigned long *)in); |
| 1125 | } |
| 1126 | return ret; |
| 1127 | } |
| 1128 | |
| 1129 | void __mod_page_state(unsigned offset, unsigned long delta) |
| 1130 | { |
| 1131 | unsigned long flags; |
| 1132 | void* ptr; |
| 1133 | |
| 1134 | local_irq_save(flags); |
| 1135 | ptr = &__get_cpu_var(page_states); |
| 1136 | *(unsigned long*)(ptr + offset) += delta; |
| 1137 | local_irq_restore(flags); |
| 1138 | } |
| 1139 | |
| 1140 | EXPORT_SYMBOL(__mod_page_state); |
| 1141 | |
| 1142 | void __get_zone_counts(unsigned long *active, unsigned long *inactive, |
| 1143 | unsigned long *free, struct pglist_data *pgdat) |
| 1144 | { |
| 1145 | struct zone *zones = pgdat->node_zones; |
| 1146 | int i; |
| 1147 | |
| 1148 | *active = 0; |
| 1149 | *inactive = 0; |
| 1150 | *free = 0; |
| 1151 | for (i = 0; i < MAX_NR_ZONES; i++) { |
| 1152 | *active += zones[i].nr_active; |
| 1153 | *inactive += zones[i].nr_inactive; |
| 1154 | *free += zones[i].free_pages; |
| 1155 | } |
| 1156 | } |
| 1157 | |
| 1158 | void get_zone_counts(unsigned long *active, |
| 1159 | unsigned long *inactive, unsigned long *free) |
| 1160 | { |
| 1161 | struct pglist_data *pgdat; |
| 1162 | |
| 1163 | *active = 0; |
| 1164 | *inactive = 0; |
| 1165 | *free = 0; |
| 1166 | for_each_pgdat(pgdat) { |
| 1167 | unsigned long l, m, n; |
| 1168 | __get_zone_counts(&l, &m, &n, pgdat); |
| 1169 | *active += l; |
| 1170 | *inactive += m; |
| 1171 | *free += n; |
| 1172 | } |
| 1173 | } |
| 1174 | |
| 1175 | void si_meminfo(struct sysinfo *val) |
| 1176 | { |
| 1177 | val->totalram = totalram_pages; |
| 1178 | val->sharedram = 0; |
| 1179 | val->freeram = nr_free_pages(); |
| 1180 | val->bufferram = nr_blockdev_pages(); |
| 1181 | #ifdef CONFIG_HIGHMEM |
| 1182 | val->totalhigh = totalhigh_pages; |
| 1183 | val->freehigh = nr_free_highpages(); |
| 1184 | #else |
| 1185 | val->totalhigh = 0; |
| 1186 | val->freehigh = 0; |
| 1187 | #endif |
| 1188 | val->mem_unit = PAGE_SIZE; |
| 1189 | } |
| 1190 | |
| 1191 | EXPORT_SYMBOL(si_meminfo); |
| 1192 | |
| 1193 | #ifdef CONFIG_NUMA |
| 1194 | void si_meminfo_node(struct sysinfo *val, int nid) |
| 1195 | { |
| 1196 | pg_data_t *pgdat = NODE_DATA(nid); |
| 1197 | |
| 1198 | val->totalram = pgdat->node_present_pages; |
| 1199 | val->freeram = nr_free_pages_pgdat(pgdat); |
| 1200 | val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; |
| 1201 | val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; |
| 1202 | val->mem_unit = PAGE_SIZE; |
| 1203 | } |
| 1204 | #endif |
| 1205 | |
| 1206 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
| 1207 | |
| 1208 | /* |
| 1209 | * Show free area list (used inside shift_scroll-lock stuff) |
| 1210 | * We also calculate the percentage fragmentation. We do this by counting the |
| 1211 | * memory on each free list with the exception of the first item on the list. |
| 1212 | */ |
| 1213 | void show_free_areas(void) |
| 1214 | { |
| 1215 | struct page_state ps; |
| 1216 | int cpu, temperature; |
| 1217 | unsigned long active; |
| 1218 | unsigned long inactive; |
| 1219 | unsigned long free; |
| 1220 | struct zone *zone; |
| 1221 | |
| 1222 | for_each_zone(zone) { |
| 1223 | show_node(zone); |
| 1224 | printk("%s per-cpu:", zone->name); |
| 1225 | |
| 1226 | if (!zone->present_pages) { |
| 1227 | printk(" empty\n"); |
| 1228 | continue; |
| 1229 | } else |
| 1230 | printk("\n"); |
| 1231 | |
| 1232 | for (cpu = 0; cpu < NR_CPUS; ++cpu) { |
| 1233 | struct per_cpu_pageset *pageset; |
| 1234 | |
| 1235 | if (!cpu_possible(cpu)) |
| 1236 | continue; |
| 1237 | |
| 1238 | pageset = zone->pageset + cpu; |
| 1239 | |
| 1240 | for (temperature = 0; temperature < 2; temperature++) |
| 1241 | printk("cpu %d %s: low %d, high %d, batch %d\n", |
| 1242 | cpu, |
| 1243 | temperature ? "cold" : "hot", |
| 1244 | pageset->pcp[temperature].low, |
| 1245 | pageset->pcp[temperature].high, |
| 1246 | pageset->pcp[temperature].batch); |
| 1247 | } |
| 1248 | } |
| 1249 | |
| 1250 | get_page_state(&ps); |
| 1251 | get_zone_counts(&active, &inactive, &free); |
| 1252 | |
| 1253 | printk("\nFree pages: %11ukB (%ukB HighMem)\n", |
| 1254 | K(nr_free_pages()), |
| 1255 | K(nr_free_highpages())); |
| 1256 | |
| 1257 | printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " |
| 1258 | "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", |
| 1259 | active, |
| 1260 | inactive, |
| 1261 | ps.nr_dirty, |
| 1262 | ps.nr_writeback, |
| 1263 | ps.nr_unstable, |
| 1264 | nr_free_pages(), |
| 1265 | ps.nr_slab, |
| 1266 | ps.nr_mapped, |
| 1267 | ps.nr_page_table_pages); |
| 1268 | |
| 1269 | for_each_zone(zone) { |
| 1270 | int i; |
| 1271 | |
| 1272 | show_node(zone); |
| 1273 | printk("%s" |
| 1274 | " free:%lukB" |
| 1275 | " min:%lukB" |
| 1276 | " low:%lukB" |
| 1277 | " high:%lukB" |
| 1278 | " active:%lukB" |
| 1279 | " inactive:%lukB" |
| 1280 | " present:%lukB" |
| 1281 | " pages_scanned:%lu" |
| 1282 | " all_unreclaimable? %s" |
| 1283 | "\n", |
| 1284 | zone->name, |
| 1285 | K(zone->free_pages), |
| 1286 | K(zone->pages_min), |
| 1287 | K(zone->pages_low), |
| 1288 | K(zone->pages_high), |
| 1289 | K(zone->nr_active), |
| 1290 | K(zone->nr_inactive), |
| 1291 | K(zone->present_pages), |
| 1292 | zone->pages_scanned, |
| 1293 | (zone->all_unreclaimable ? "yes" : "no") |
| 1294 | ); |
| 1295 | printk("lowmem_reserve[]:"); |
| 1296 | for (i = 0; i < MAX_NR_ZONES; i++) |
| 1297 | printk(" %lu", zone->lowmem_reserve[i]); |
| 1298 | printk("\n"); |
| 1299 | } |
| 1300 | |
| 1301 | for_each_zone(zone) { |
| 1302 | unsigned long nr, flags, order, total = 0; |
| 1303 | |
| 1304 | show_node(zone); |
| 1305 | printk("%s: ", zone->name); |
| 1306 | if (!zone->present_pages) { |
| 1307 | printk("empty\n"); |
| 1308 | continue; |
| 1309 | } |
| 1310 | |
| 1311 | spin_lock_irqsave(&zone->lock, flags); |
| 1312 | for (order = 0; order < MAX_ORDER; order++) { |
| 1313 | nr = zone->free_area[order].nr_free; |
| 1314 | total += nr << order; |
| 1315 | printk("%lu*%lukB ", nr, K(1UL) << order); |
| 1316 | } |
| 1317 | spin_unlock_irqrestore(&zone->lock, flags); |
| 1318 | printk("= %lukB\n", K(total)); |
| 1319 | } |
| 1320 | |
| 1321 | show_swap_cache_info(); |
| 1322 | } |
| 1323 | |
| 1324 | /* |
| 1325 | * Builds allocation fallback zone lists. |
| 1326 | */ |
| 1327 | static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k) |
| 1328 | { |
| 1329 | switch (k) { |
| 1330 | struct zone *zone; |
| 1331 | default: |
| 1332 | BUG(); |
| 1333 | case ZONE_HIGHMEM: |
| 1334 | zone = pgdat->node_zones + ZONE_HIGHMEM; |
| 1335 | if (zone->present_pages) { |
| 1336 | #ifndef CONFIG_HIGHMEM |
| 1337 | BUG(); |
| 1338 | #endif |
| 1339 | zonelist->zones[j++] = zone; |
| 1340 | } |
| 1341 | case ZONE_NORMAL: |
| 1342 | zone = pgdat->node_zones + ZONE_NORMAL; |
| 1343 | if (zone->present_pages) |
| 1344 | zonelist->zones[j++] = zone; |
| 1345 | case ZONE_DMA: |
| 1346 | zone = pgdat->node_zones + ZONE_DMA; |
| 1347 | if (zone->present_pages) |
| 1348 | zonelist->zones[j++] = zone; |
| 1349 | } |
| 1350 | |
| 1351 | return j; |
| 1352 | } |
| 1353 | |
| 1354 | #ifdef CONFIG_NUMA |
| 1355 | #define MAX_NODE_LOAD (num_online_nodes()) |
| 1356 | static int __initdata node_load[MAX_NUMNODES]; |
| 1357 | /** |
| 1358 | * find_next_best_node - find the next node that should appear in a given |
| 1359 | * node's fallback list |
| 1360 | * @node: node whose fallback list we're appending |
| 1361 | * @used_node_mask: nodemask_t of already used nodes |
| 1362 | * |
| 1363 | * We use a number of factors to determine which is the next node that should |
| 1364 | * appear on a given node's fallback list. The node should not have appeared |
| 1365 | * already in @node's fallback list, and it should be the next closest node |
| 1366 | * according to the distance array (which contains arbitrary distance values |
| 1367 | * from each node to each node in the system), and should also prefer nodes |
| 1368 | * with no CPUs, since presumably they'll have very little allocation pressure |
| 1369 | * on them otherwise. |
| 1370 | * It returns -1 if no node is found. |
| 1371 | */ |
| 1372 | static int __init find_next_best_node(int node, nodemask_t *used_node_mask) |
| 1373 | { |
| 1374 | int i, n, val; |
| 1375 | int min_val = INT_MAX; |
| 1376 | int best_node = -1; |
| 1377 | |
| 1378 | for_each_online_node(i) { |
| 1379 | cpumask_t tmp; |
| 1380 | |
| 1381 | /* Start from local node */ |
| 1382 | n = (node+i) % num_online_nodes(); |
| 1383 | |
| 1384 | /* Don't want a node to appear more than once */ |
| 1385 | if (node_isset(n, *used_node_mask)) |
| 1386 | continue; |
| 1387 | |
| 1388 | /* Use the local node if we haven't already */ |
| 1389 | if (!node_isset(node, *used_node_mask)) { |
| 1390 | best_node = node; |
| 1391 | break; |
| 1392 | } |
| 1393 | |
| 1394 | /* Use the distance array to find the distance */ |
| 1395 | val = node_distance(node, n); |
| 1396 | |
| 1397 | /* Give preference to headless and unused nodes */ |
| 1398 | tmp = node_to_cpumask(n); |
| 1399 | if (!cpus_empty(tmp)) |
| 1400 | val += PENALTY_FOR_NODE_WITH_CPUS; |
| 1401 | |
| 1402 | /* Slight preference for less loaded node */ |
| 1403 | val *= (MAX_NODE_LOAD*MAX_NUMNODES); |
| 1404 | val += node_load[n]; |
| 1405 | |
| 1406 | if (val < min_val) { |
| 1407 | min_val = val; |
| 1408 | best_node = n; |
| 1409 | } |
| 1410 | } |
| 1411 | |
| 1412 | if (best_node >= 0) |
| 1413 | node_set(best_node, *used_node_mask); |
| 1414 | |
| 1415 | return best_node; |
| 1416 | } |
| 1417 | |
| 1418 | static void __init build_zonelists(pg_data_t *pgdat) |
| 1419 | { |
| 1420 | int i, j, k, node, local_node; |
| 1421 | int prev_node, load; |
| 1422 | struct zonelist *zonelist; |
| 1423 | nodemask_t used_mask; |
| 1424 | |
| 1425 | /* initialize zonelists */ |
| 1426 | for (i = 0; i < GFP_ZONETYPES; i++) { |
| 1427 | zonelist = pgdat->node_zonelists + i; |
| 1428 | zonelist->zones[0] = NULL; |
| 1429 | } |
| 1430 | |
| 1431 | /* NUMA-aware ordering of nodes */ |
| 1432 | local_node = pgdat->node_id; |
| 1433 | load = num_online_nodes(); |
| 1434 | prev_node = local_node; |
| 1435 | nodes_clear(used_mask); |
| 1436 | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { |
| 1437 | /* |
| 1438 | * We don't want to pressure a particular node. |
| 1439 | * So adding penalty to the first node in same |
| 1440 | * distance group to make it round-robin. |
| 1441 | */ |
| 1442 | if (node_distance(local_node, node) != |
| 1443 | node_distance(local_node, prev_node)) |
| 1444 | node_load[node] += load; |
| 1445 | prev_node = node; |
| 1446 | load--; |
| 1447 | for (i = 0; i < GFP_ZONETYPES; i++) { |
| 1448 | zonelist = pgdat->node_zonelists + i; |
| 1449 | for (j = 0; zonelist->zones[j] != NULL; j++); |
| 1450 | |
| 1451 | k = ZONE_NORMAL; |
| 1452 | if (i & __GFP_HIGHMEM) |
| 1453 | k = ZONE_HIGHMEM; |
| 1454 | if (i & __GFP_DMA) |
| 1455 | k = ZONE_DMA; |
| 1456 | |
| 1457 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); |
| 1458 | zonelist->zones[j] = NULL; |
| 1459 | } |
| 1460 | } |
| 1461 | } |
| 1462 | |
| 1463 | #else /* CONFIG_NUMA */ |
| 1464 | |
| 1465 | static void __init build_zonelists(pg_data_t *pgdat) |
| 1466 | { |
| 1467 | int i, j, k, node, local_node; |
| 1468 | |
| 1469 | local_node = pgdat->node_id; |
| 1470 | for (i = 0; i < GFP_ZONETYPES; i++) { |
| 1471 | struct zonelist *zonelist; |
| 1472 | |
| 1473 | zonelist = pgdat->node_zonelists + i; |
| 1474 | |
| 1475 | j = 0; |
| 1476 | k = ZONE_NORMAL; |
| 1477 | if (i & __GFP_HIGHMEM) |
| 1478 | k = ZONE_HIGHMEM; |
| 1479 | if (i & __GFP_DMA) |
| 1480 | k = ZONE_DMA; |
| 1481 | |
| 1482 | j = build_zonelists_node(pgdat, zonelist, j, k); |
| 1483 | /* |
| 1484 | * Now we build the zonelist so that it contains the zones |
| 1485 | * of all the other nodes. |
| 1486 | * We don't want to pressure a particular node, so when |
| 1487 | * building the zones for node N, we make sure that the |
| 1488 | * zones coming right after the local ones are those from |
| 1489 | * node N+1 (modulo N) |
| 1490 | */ |
| 1491 | for (node = local_node + 1; node < MAX_NUMNODES; node++) { |
| 1492 | if (!node_online(node)) |
| 1493 | continue; |
| 1494 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); |
| 1495 | } |
| 1496 | for (node = 0; node < local_node; node++) { |
| 1497 | if (!node_online(node)) |
| 1498 | continue; |
| 1499 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); |
| 1500 | } |
| 1501 | |
| 1502 | zonelist->zones[j] = NULL; |
| 1503 | } |
| 1504 | } |
| 1505 | |
| 1506 | #endif /* CONFIG_NUMA */ |
| 1507 | |
| 1508 | void __init build_all_zonelists(void) |
| 1509 | { |
| 1510 | int i; |
| 1511 | |
| 1512 | for_each_online_node(i) |
| 1513 | build_zonelists(NODE_DATA(i)); |
| 1514 | printk("Built %i zonelists\n", num_online_nodes()); |
| 1515 | cpuset_init_current_mems_allowed(); |
| 1516 | } |
| 1517 | |
| 1518 | /* |
| 1519 | * Helper functions to size the waitqueue hash table. |
| 1520 | * Essentially these want to choose hash table sizes sufficiently |
| 1521 | * large so that collisions trying to wait on pages are rare. |
| 1522 | * But in fact, the number of active page waitqueues on typical |
| 1523 | * systems is ridiculously low, less than 200. So this is even |
| 1524 | * conservative, even though it seems large. |
| 1525 | * |
| 1526 | * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to |
| 1527 | * waitqueues, i.e. the size of the waitq table given the number of pages. |
| 1528 | */ |
| 1529 | #define PAGES_PER_WAITQUEUE 256 |
| 1530 | |
| 1531 | static inline unsigned long wait_table_size(unsigned long pages) |
| 1532 | { |
| 1533 | unsigned long size = 1; |
| 1534 | |
| 1535 | pages /= PAGES_PER_WAITQUEUE; |
| 1536 | |
| 1537 | while (size < pages) |
| 1538 | size <<= 1; |
| 1539 | |
| 1540 | /* |
| 1541 | * Once we have dozens or even hundreds of threads sleeping |
| 1542 | * on IO we've got bigger problems than wait queue collision. |
| 1543 | * Limit the size of the wait table to a reasonable size. |
| 1544 | */ |
| 1545 | size = min(size, 4096UL); |
| 1546 | |
| 1547 | return max(size, 4UL); |
| 1548 | } |
| 1549 | |
| 1550 | /* |
| 1551 | * This is an integer logarithm so that shifts can be used later |
| 1552 | * to extract the more random high bits from the multiplicative |
| 1553 | * hash function before the remainder is taken. |
| 1554 | */ |
| 1555 | static inline unsigned long wait_table_bits(unsigned long size) |
| 1556 | { |
| 1557 | return ffz(~size); |
| 1558 | } |
| 1559 | |
| 1560 | #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) |
| 1561 | |
| 1562 | static void __init calculate_zone_totalpages(struct pglist_data *pgdat, |
| 1563 | unsigned long *zones_size, unsigned long *zholes_size) |
| 1564 | { |
| 1565 | unsigned long realtotalpages, totalpages = 0; |
| 1566 | int i; |
| 1567 | |
| 1568 | for (i = 0; i < MAX_NR_ZONES; i++) |
| 1569 | totalpages += zones_size[i]; |
| 1570 | pgdat->node_spanned_pages = totalpages; |
| 1571 | |
| 1572 | realtotalpages = totalpages; |
| 1573 | if (zholes_size) |
| 1574 | for (i = 0; i < MAX_NR_ZONES; i++) |
| 1575 | realtotalpages -= zholes_size[i]; |
| 1576 | pgdat->node_present_pages = realtotalpages; |
| 1577 | printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); |
| 1578 | } |
| 1579 | |
| 1580 | |
| 1581 | /* |
| 1582 | * Initially all pages are reserved - free ones are freed |
| 1583 | * up by free_all_bootmem() once the early boot process is |
| 1584 | * done. Non-atomic initialization, single-pass. |
| 1585 | */ |
| 1586 | void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone, |
| 1587 | unsigned long start_pfn) |
| 1588 | { |
| 1589 | struct page *start = pfn_to_page(start_pfn); |
| 1590 | struct page *page; |
| 1591 | |
| 1592 | for (page = start; page < (start + size); page++) { |
| 1593 | set_page_zone(page, NODEZONE(nid, zone)); |
| 1594 | set_page_count(page, 0); |
| 1595 | reset_page_mapcount(page); |
| 1596 | SetPageReserved(page); |
| 1597 | INIT_LIST_HEAD(&page->lru); |
| 1598 | #ifdef WANT_PAGE_VIRTUAL |
| 1599 | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ |
| 1600 | if (!is_highmem_idx(zone)) |
| 1601 | set_page_address(page, __va(start_pfn << PAGE_SHIFT)); |
| 1602 | #endif |
| 1603 | start_pfn++; |
| 1604 | } |
| 1605 | } |
| 1606 | |
| 1607 | void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, |
| 1608 | unsigned long size) |
| 1609 | { |
| 1610 | int order; |
| 1611 | for (order = 0; order < MAX_ORDER ; order++) { |
| 1612 | INIT_LIST_HEAD(&zone->free_area[order].free_list); |
| 1613 | zone->free_area[order].nr_free = 0; |
| 1614 | } |
| 1615 | } |
| 1616 | |
| 1617 | #ifndef __HAVE_ARCH_MEMMAP_INIT |
| 1618 | #define memmap_init(size, nid, zone, start_pfn) \ |
| 1619 | memmap_init_zone((size), (nid), (zone), (start_pfn)) |
| 1620 | #endif |
| 1621 | |
| 1622 | /* |
| 1623 | * Set up the zone data structures: |
| 1624 | * - mark all pages reserved |
| 1625 | * - mark all memory queues empty |
| 1626 | * - clear the memory bitmaps |
| 1627 | */ |
| 1628 | static void __init free_area_init_core(struct pglist_data *pgdat, |
| 1629 | unsigned long *zones_size, unsigned long *zholes_size) |
| 1630 | { |
| 1631 | unsigned long i, j; |
| 1632 | const unsigned long zone_required_alignment = 1UL << (MAX_ORDER-1); |
| 1633 | int cpu, nid = pgdat->node_id; |
| 1634 | unsigned long zone_start_pfn = pgdat->node_start_pfn; |
| 1635 | |
| 1636 | pgdat->nr_zones = 0; |
| 1637 | init_waitqueue_head(&pgdat->kswapd_wait); |
| 1638 | pgdat->kswapd_max_order = 0; |
| 1639 | |
| 1640 | for (j = 0; j < MAX_NR_ZONES; j++) { |
| 1641 | struct zone *zone = pgdat->node_zones + j; |
| 1642 | unsigned long size, realsize; |
| 1643 | unsigned long batch; |
| 1644 | |
| 1645 | zone_table[NODEZONE(nid, j)] = zone; |
| 1646 | realsize = size = zones_size[j]; |
| 1647 | if (zholes_size) |
| 1648 | realsize -= zholes_size[j]; |
| 1649 | |
| 1650 | if (j == ZONE_DMA || j == ZONE_NORMAL) |
| 1651 | nr_kernel_pages += realsize; |
| 1652 | nr_all_pages += realsize; |
| 1653 | |
| 1654 | zone->spanned_pages = size; |
| 1655 | zone->present_pages = realsize; |
| 1656 | zone->name = zone_names[j]; |
| 1657 | spin_lock_init(&zone->lock); |
| 1658 | spin_lock_init(&zone->lru_lock); |
| 1659 | zone->zone_pgdat = pgdat; |
| 1660 | zone->free_pages = 0; |
| 1661 | |
| 1662 | zone->temp_priority = zone->prev_priority = DEF_PRIORITY; |
| 1663 | |
| 1664 | /* |
| 1665 | * The per-cpu-pages pools are set to around 1000th of the |
| 1666 | * size of the zone. But no more than 1/4 of a meg - there's |
| 1667 | * no point in going beyond the size of L2 cache. |
| 1668 | * |
| 1669 | * OK, so we don't know how big the cache is. So guess. |
| 1670 | */ |
| 1671 | batch = zone->present_pages / 1024; |
| 1672 | if (batch * PAGE_SIZE > 256 * 1024) |
| 1673 | batch = (256 * 1024) / PAGE_SIZE; |
| 1674 | batch /= 4; /* We effectively *= 4 below */ |
| 1675 | if (batch < 1) |
| 1676 | batch = 1; |
| 1677 | |
Nick Piggin | 8e30f27 | 2005-05-01 08:58:36 -0700 | [diff] [blame] | 1678 | /* |
| 1679 | * Clamp the batch to a 2^n - 1 value. Having a power |
| 1680 | * of 2 value was found to be more likely to have |
| 1681 | * suboptimal cache aliasing properties in some cases. |
| 1682 | * |
| 1683 | * For example if 2 tasks are alternately allocating |
| 1684 | * batches of pages, one task can end up with a lot |
| 1685 | * of pages of one half of the possible page colors |
| 1686 | * and the other with pages of the other colors. |
| 1687 | */ |
| 1688 | batch = (1 << fls(batch + batch/2)) - 1; |
| 1689 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1690 | for (cpu = 0; cpu < NR_CPUS; cpu++) { |
| 1691 | struct per_cpu_pages *pcp; |
| 1692 | |
| 1693 | pcp = &zone->pageset[cpu].pcp[0]; /* hot */ |
| 1694 | pcp->count = 0; |
| 1695 | pcp->low = 2 * batch; |
| 1696 | pcp->high = 6 * batch; |
| 1697 | pcp->batch = 1 * batch; |
| 1698 | INIT_LIST_HEAD(&pcp->list); |
| 1699 | |
| 1700 | pcp = &zone->pageset[cpu].pcp[1]; /* cold */ |
| 1701 | pcp->count = 0; |
| 1702 | pcp->low = 0; |
| 1703 | pcp->high = 2 * batch; |
| 1704 | pcp->batch = 1 * batch; |
| 1705 | INIT_LIST_HEAD(&pcp->list); |
| 1706 | } |
| 1707 | printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", |
| 1708 | zone_names[j], realsize, batch); |
| 1709 | INIT_LIST_HEAD(&zone->active_list); |
| 1710 | INIT_LIST_HEAD(&zone->inactive_list); |
| 1711 | zone->nr_scan_active = 0; |
| 1712 | zone->nr_scan_inactive = 0; |
| 1713 | zone->nr_active = 0; |
| 1714 | zone->nr_inactive = 0; |
| 1715 | if (!size) |
| 1716 | continue; |
| 1717 | |
| 1718 | /* |
| 1719 | * The per-page waitqueue mechanism uses hashed waitqueues |
| 1720 | * per zone. |
| 1721 | */ |
| 1722 | zone->wait_table_size = wait_table_size(size); |
| 1723 | zone->wait_table_bits = |
| 1724 | wait_table_bits(zone->wait_table_size); |
| 1725 | zone->wait_table = (wait_queue_head_t *) |
| 1726 | alloc_bootmem_node(pgdat, zone->wait_table_size |
| 1727 | * sizeof(wait_queue_head_t)); |
| 1728 | |
| 1729 | for(i = 0; i < zone->wait_table_size; ++i) |
| 1730 | init_waitqueue_head(zone->wait_table + i); |
| 1731 | |
| 1732 | pgdat->nr_zones = j+1; |
| 1733 | |
| 1734 | zone->zone_mem_map = pfn_to_page(zone_start_pfn); |
| 1735 | zone->zone_start_pfn = zone_start_pfn; |
| 1736 | |
| 1737 | if ((zone_start_pfn) & (zone_required_alignment-1)) |
| 1738 | printk(KERN_CRIT "BUG: wrong zone alignment, it will crash\n"); |
| 1739 | |
| 1740 | memmap_init(size, nid, j, zone_start_pfn); |
| 1741 | |
| 1742 | zone_start_pfn += size; |
| 1743 | |
| 1744 | zone_init_free_lists(pgdat, zone, zone->spanned_pages); |
| 1745 | } |
| 1746 | } |
| 1747 | |
| 1748 | static void __init alloc_node_mem_map(struct pglist_data *pgdat) |
| 1749 | { |
| 1750 | unsigned long size; |
| 1751 | |
| 1752 | /* Skip empty nodes */ |
| 1753 | if (!pgdat->node_spanned_pages) |
| 1754 | return; |
| 1755 | |
| 1756 | /* ia64 gets its own node_mem_map, before this, without bootmem */ |
| 1757 | if (!pgdat->node_mem_map) { |
| 1758 | size = (pgdat->node_spanned_pages + 1) * sizeof(struct page); |
| 1759 | pgdat->node_mem_map = alloc_bootmem_node(pgdat, size); |
| 1760 | } |
| 1761 | #ifndef CONFIG_DISCONTIGMEM |
| 1762 | /* |
| 1763 | * With no DISCONTIG, the global mem_map is just set as node 0's |
| 1764 | */ |
| 1765 | if (pgdat == NODE_DATA(0)) |
| 1766 | mem_map = NODE_DATA(0)->node_mem_map; |
| 1767 | #endif |
| 1768 | } |
| 1769 | |
| 1770 | void __init free_area_init_node(int nid, struct pglist_data *pgdat, |
| 1771 | unsigned long *zones_size, unsigned long node_start_pfn, |
| 1772 | unsigned long *zholes_size) |
| 1773 | { |
| 1774 | pgdat->node_id = nid; |
| 1775 | pgdat->node_start_pfn = node_start_pfn; |
| 1776 | calculate_zone_totalpages(pgdat, zones_size, zholes_size); |
| 1777 | |
| 1778 | alloc_node_mem_map(pgdat); |
| 1779 | |
| 1780 | free_area_init_core(pgdat, zones_size, zholes_size); |
| 1781 | } |
| 1782 | |
| 1783 | #ifndef CONFIG_DISCONTIGMEM |
| 1784 | static bootmem_data_t contig_bootmem_data; |
| 1785 | struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; |
| 1786 | |
| 1787 | EXPORT_SYMBOL(contig_page_data); |
| 1788 | |
| 1789 | void __init free_area_init(unsigned long *zones_size) |
| 1790 | { |
| 1791 | free_area_init_node(0, &contig_page_data, zones_size, |
| 1792 | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); |
| 1793 | } |
| 1794 | #endif |
| 1795 | |
| 1796 | #ifdef CONFIG_PROC_FS |
| 1797 | |
| 1798 | #include <linux/seq_file.h> |
| 1799 | |
| 1800 | static void *frag_start(struct seq_file *m, loff_t *pos) |
| 1801 | { |
| 1802 | pg_data_t *pgdat; |
| 1803 | loff_t node = *pos; |
| 1804 | |
| 1805 | for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next) |
| 1806 | --node; |
| 1807 | |
| 1808 | return pgdat; |
| 1809 | } |
| 1810 | |
| 1811 | static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) |
| 1812 | { |
| 1813 | pg_data_t *pgdat = (pg_data_t *)arg; |
| 1814 | |
| 1815 | (*pos)++; |
| 1816 | return pgdat->pgdat_next; |
| 1817 | } |
| 1818 | |
| 1819 | static void frag_stop(struct seq_file *m, void *arg) |
| 1820 | { |
| 1821 | } |
| 1822 | |
| 1823 | /* |
| 1824 | * This walks the free areas for each zone. |
| 1825 | */ |
| 1826 | static int frag_show(struct seq_file *m, void *arg) |
| 1827 | { |
| 1828 | pg_data_t *pgdat = (pg_data_t *)arg; |
| 1829 | struct zone *zone; |
| 1830 | struct zone *node_zones = pgdat->node_zones; |
| 1831 | unsigned long flags; |
| 1832 | int order; |
| 1833 | |
| 1834 | for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { |
| 1835 | if (!zone->present_pages) |
| 1836 | continue; |
| 1837 | |
| 1838 | spin_lock_irqsave(&zone->lock, flags); |
| 1839 | seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); |
| 1840 | for (order = 0; order < MAX_ORDER; ++order) |
| 1841 | seq_printf(m, "%6lu ", zone->free_area[order].nr_free); |
| 1842 | spin_unlock_irqrestore(&zone->lock, flags); |
| 1843 | seq_putc(m, '\n'); |
| 1844 | } |
| 1845 | return 0; |
| 1846 | } |
| 1847 | |
| 1848 | struct seq_operations fragmentation_op = { |
| 1849 | .start = frag_start, |
| 1850 | .next = frag_next, |
| 1851 | .stop = frag_stop, |
| 1852 | .show = frag_show, |
| 1853 | }; |
| 1854 | |
| 1855 | static char *vmstat_text[] = { |
| 1856 | "nr_dirty", |
| 1857 | "nr_writeback", |
| 1858 | "nr_unstable", |
| 1859 | "nr_page_table_pages", |
| 1860 | "nr_mapped", |
| 1861 | "nr_slab", |
| 1862 | |
| 1863 | "pgpgin", |
| 1864 | "pgpgout", |
| 1865 | "pswpin", |
| 1866 | "pswpout", |
| 1867 | "pgalloc_high", |
| 1868 | |
| 1869 | "pgalloc_normal", |
| 1870 | "pgalloc_dma", |
| 1871 | "pgfree", |
| 1872 | "pgactivate", |
| 1873 | "pgdeactivate", |
| 1874 | |
| 1875 | "pgfault", |
| 1876 | "pgmajfault", |
| 1877 | "pgrefill_high", |
| 1878 | "pgrefill_normal", |
| 1879 | "pgrefill_dma", |
| 1880 | |
| 1881 | "pgsteal_high", |
| 1882 | "pgsteal_normal", |
| 1883 | "pgsteal_dma", |
| 1884 | "pgscan_kswapd_high", |
| 1885 | "pgscan_kswapd_normal", |
| 1886 | |
| 1887 | "pgscan_kswapd_dma", |
| 1888 | "pgscan_direct_high", |
| 1889 | "pgscan_direct_normal", |
| 1890 | "pgscan_direct_dma", |
| 1891 | "pginodesteal", |
| 1892 | |
| 1893 | "slabs_scanned", |
| 1894 | "kswapd_steal", |
| 1895 | "kswapd_inodesteal", |
| 1896 | "pageoutrun", |
| 1897 | "allocstall", |
| 1898 | |
| 1899 | "pgrotated", |
KAMEZAWA Hiroyuki | edfbe2b | 2005-05-01 08:58:37 -0700 | [diff] [blame] | 1900 | "nr_bounce", |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1901 | }; |
| 1902 | |
| 1903 | static void *vmstat_start(struct seq_file *m, loff_t *pos) |
| 1904 | { |
| 1905 | struct page_state *ps; |
| 1906 | |
| 1907 | if (*pos >= ARRAY_SIZE(vmstat_text)) |
| 1908 | return NULL; |
| 1909 | |
| 1910 | ps = kmalloc(sizeof(*ps), GFP_KERNEL); |
| 1911 | m->private = ps; |
| 1912 | if (!ps) |
| 1913 | return ERR_PTR(-ENOMEM); |
| 1914 | get_full_page_state(ps); |
| 1915 | ps->pgpgin /= 2; /* sectors -> kbytes */ |
| 1916 | ps->pgpgout /= 2; |
| 1917 | return (unsigned long *)ps + *pos; |
| 1918 | } |
| 1919 | |
| 1920 | static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) |
| 1921 | { |
| 1922 | (*pos)++; |
| 1923 | if (*pos >= ARRAY_SIZE(vmstat_text)) |
| 1924 | return NULL; |
| 1925 | return (unsigned long *)m->private + *pos; |
| 1926 | } |
| 1927 | |
| 1928 | static int vmstat_show(struct seq_file *m, void *arg) |
| 1929 | { |
| 1930 | unsigned long *l = arg; |
| 1931 | unsigned long off = l - (unsigned long *)m->private; |
| 1932 | |
| 1933 | seq_printf(m, "%s %lu\n", vmstat_text[off], *l); |
| 1934 | return 0; |
| 1935 | } |
| 1936 | |
| 1937 | static void vmstat_stop(struct seq_file *m, void *arg) |
| 1938 | { |
| 1939 | kfree(m->private); |
| 1940 | m->private = NULL; |
| 1941 | } |
| 1942 | |
| 1943 | struct seq_operations vmstat_op = { |
| 1944 | .start = vmstat_start, |
| 1945 | .next = vmstat_next, |
| 1946 | .stop = vmstat_stop, |
| 1947 | .show = vmstat_show, |
| 1948 | }; |
| 1949 | |
| 1950 | #endif /* CONFIG_PROC_FS */ |
| 1951 | |
| 1952 | #ifdef CONFIG_HOTPLUG_CPU |
| 1953 | static int page_alloc_cpu_notify(struct notifier_block *self, |
| 1954 | unsigned long action, void *hcpu) |
| 1955 | { |
| 1956 | int cpu = (unsigned long)hcpu; |
| 1957 | long *count; |
| 1958 | unsigned long *src, *dest; |
| 1959 | |
| 1960 | if (action == CPU_DEAD) { |
| 1961 | int i; |
| 1962 | |
| 1963 | /* Drain local pagecache count. */ |
| 1964 | count = &per_cpu(nr_pagecache_local, cpu); |
| 1965 | atomic_add(*count, &nr_pagecache); |
| 1966 | *count = 0; |
| 1967 | local_irq_disable(); |
| 1968 | __drain_pages(cpu); |
| 1969 | |
| 1970 | /* Add dead cpu's page_states to our own. */ |
| 1971 | dest = (unsigned long *)&__get_cpu_var(page_states); |
| 1972 | src = (unsigned long *)&per_cpu(page_states, cpu); |
| 1973 | |
| 1974 | for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long); |
| 1975 | i++) { |
| 1976 | dest[i] += src[i]; |
| 1977 | src[i] = 0; |
| 1978 | } |
| 1979 | |
| 1980 | local_irq_enable(); |
| 1981 | } |
| 1982 | return NOTIFY_OK; |
| 1983 | } |
| 1984 | #endif /* CONFIG_HOTPLUG_CPU */ |
| 1985 | |
| 1986 | void __init page_alloc_init(void) |
| 1987 | { |
| 1988 | hotcpu_notifier(page_alloc_cpu_notify, 0); |
| 1989 | } |
| 1990 | |
| 1991 | /* |
| 1992 | * setup_per_zone_lowmem_reserve - called whenever |
| 1993 | * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone |
| 1994 | * has a correct pages reserved value, so an adequate number of |
| 1995 | * pages are left in the zone after a successful __alloc_pages(). |
| 1996 | */ |
| 1997 | static void setup_per_zone_lowmem_reserve(void) |
| 1998 | { |
| 1999 | struct pglist_data *pgdat; |
| 2000 | int j, idx; |
| 2001 | |
| 2002 | for_each_pgdat(pgdat) { |
| 2003 | for (j = 0; j < MAX_NR_ZONES; j++) { |
| 2004 | struct zone *zone = pgdat->node_zones + j; |
| 2005 | unsigned long present_pages = zone->present_pages; |
| 2006 | |
| 2007 | zone->lowmem_reserve[j] = 0; |
| 2008 | |
| 2009 | for (idx = j-1; idx >= 0; idx--) { |
| 2010 | struct zone *lower_zone; |
| 2011 | |
| 2012 | if (sysctl_lowmem_reserve_ratio[idx] < 1) |
| 2013 | sysctl_lowmem_reserve_ratio[idx] = 1; |
| 2014 | |
| 2015 | lower_zone = pgdat->node_zones + idx; |
| 2016 | lower_zone->lowmem_reserve[j] = present_pages / |
| 2017 | sysctl_lowmem_reserve_ratio[idx]; |
| 2018 | present_pages += lower_zone->present_pages; |
| 2019 | } |
| 2020 | } |
| 2021 | } |
| 2022 | } |
| 2023 | |
| 2024 | /* |
| 2025 | * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures |
| 2026 | * that the pages_{min,low,high} values for each zone are set correctly |
| 2027 | * with respect to min_free_kbytes. |
| 2028 | */ |
| 2029 | static void setup_per_zone_pages_min(void) |
| 2030 | { |
| 2031 | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); |
| 2032 | unsigned long lowmem_pages = 0; |
| 2033 | struct zone *zone; |
| 2034 | unsigned long flags; |
| 2035 | |
| 2036 | /* Calculate total number of !ZONE_HIGHMEM pages */ |
| 2037 | for_each_zone(zone) { |
| 2038 | if (!is_highmem(zone)) |
| 2039 | lowmem_pages += zone->present_pages; |
| 2040 | } |
| 2041 | |
| 2042 | for_each_zone(zone) { |
| 2043 | spin_lock_irqsave(&zone->lru_lock, flags); |
| 2044 | if (is_highmem(zone)) { |
| 2045 | /* |
| 2046 | * Often, highmem doesn't need to reserve any pages. |
| 2047 | * But the pages_min/low/high values are also used for |
| 2048 | * batching up page reclaim activity so we need a |
| 2049 | * decent value here. |
| 2050 | */ |
| 2051 | int min_pages; |
| 2052 | |
| 2053 | min_pages = zone->present_pages / 1024; |
| 2054 | if (min_pages < SWAP_CLUSTER_MAX) |
| 2055 | min_pages = SWAP_CLUSTER_MAX; |
| 2056 | if (min_pages > 128) |
| 2057 | min_pages = 128; |
| 2058 | zone->pages_min = min_pages; |
| 2059 | } else { |
| 2060 | /* if it's a lowmem zone, reserve a number of pages |
| 2061 | * proportionate to the zone's size. |
| 2062 | */ |
| 2063 | zone->pages_min = (pages_min * zone->present_pages) / |
| 2064 | lowmem_pages; |
| 2065 | } |
| 2066 | |
| 2067 | /* |
| 2068 | * When interpreting these watermarks, just keep in mind that: |
| 2069 | * zone->pages_min == (zone->pages_min * 4) / 4; |
| 2070 | */ |
| 2071 | zone->pages_low = (zone->pages_min * 5) / 4; |
| 2072 | zone->pages_high = (zone->pages_min * 6) / 4; |
| 2073 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
| 2074 | } |
| 2075 | } |
| 2076 | |
| 2077 | /* |
| 2078 | * Initialise min_free_kbytes. |
| 2079 | * |
| 2080 | * For small machines we want it small (128k min). For large machines |
| 2081 | * we want it large (64MB max). But it is not linear, because network |
| 2082 | * bandwidth does not increase linearly with machine size. We use |
| 2083 | * |
| 2084 | * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: |
| 2085 | * min_free_kbytes = sqrt(lowmem_kbytes * 16) |
| 2086 | * |
| 2087 | * which yields |
| 2088 | * |
| 2089 | * 16MB: 512k |
| 2090 | * 32MB: 724k |
| 2091 | * 64MB: 1024k |
| 2092 | * 128MB: 1448k |
| 2093 | * 256MB: 2048k |
| 2094 | * 512MB: 2896k |
| 2095 | * 1024MB: 4096k |
| 2096 | * 2048MB: 5792k |
| 2097 | * 4096MB: 8192k |
| 2098 | * 8192MB: 11584k |
| 2099 | * 16384MB: 16384k |
| 2100 | */ |
| 2101 | static int __init init_per_zone_pages_min(void) |
| 2102 | { |
| 2103 | unsigned long lowmem_kbytes; |
| 2104 | |
| 2105 | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); |
| 2106 | |
| 2107 | min_free_kbytes = int_sqrt(lowmem_kbytes * 16); |
| 2108 | if (min_free_kbytes < 128) |
| 2109 | min_free_kbytes = 128; |
| 2110 | if (min_free_kbytes > 65536) |
| 2111 | min_free_kbytes = 65536; |
| 2112 | setup_per_zone_pages_min(); |
| 2113 | setup_per_zone_lowmem_reserve(); |
| 2114 | return 0; |
| 2115 | } |
| 2116 | module_init(init_per_zone_pages_min) |
| 2117 | |
| 2118 | /* |
| 2119 | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so |
| 2120 | * that we can call two helper functions whenever min_free_kbytes |
| 2121 | * changes. |
| 2122 | */ |
| 2123 | int min_free_kbytes_sysctl_handler(ctl_table *table, int write, |
| 2124 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) |
| 2125 | { |
| 2126 | proc_dointvec(table, write, file, buffer, length, ppos); |
| 2127 | setup_per_zone_pages_min(); |
| 2128 | return 0; |
| 2129 | } |
| 2130 | |
| 2131 | /* |
| 2132 | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around |
| 2133 | * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() |
| 2134 | * whenever sysctl_lowmem_reserve_ratio changes. |
| 2135 | * |
| 2136 | * The reserve ratio obviously has absolutely no relation with the |
| 2137 | * pages_min watermarks. The lowmem reserve ratio can only make sense |
| 2138 | * if in function of the boot time zone sizes. |
| 2139 | */ |
| 2140 | int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, |
| 2141 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) |
| 2142 | { |
| 2143 | proc_dointvec_minmax(table, write, file, buffer, length, ppos); |
| 2144 | setup_per_zone_lowmem_reserve(); |
| 2145 | return 0; |
| 2146 | } |
| 2147 | |
| 2148 | __initdata int hashdist = HASHDIST_DEFAULT; |
| 2149 | |
| 2150 | #ifdef CONFIG_NUMA |
| 2151 | static int __init set_hashdist(char *str) |
| 2152 | { |
| 2153 | if (!str) |
| 2154 | return 0; |
| 2155 | hashdist = simple_strtoul(str, &str, 0); |
| 2156 | return 1; |
| 2157 | } |
| 2158 | __setup("hashdist=", set_hashdist); |
| 2159 | #endif |
| 2160 | |
| 2161 | /* |
| 2162 | * allocate a large system hash table from bootmem |
| 2163 | * - it is assumed that the hash table must contain an exact power-of-2 |
| 2164 | * quantity of entries |
| 2165 | * - limit is the number of hash buckets, not the total allocation size |
| 2166 | */ |
| 2167 | void *__init alloc_large_system_hash(const char *tablename, |
| 2168 | unsigned long bucketsize, |
| 2169 | unsigned long numentries, |
| 2170 | int scale, |
| 2171 | int flags, |
| 2172 | unsigned int *_hash_shift, |
| 2173 | unsigned int *_hash_mask, |
| 2174 | unsigned long limit) |
| 2175 | { |
| 2176 | unsigned long long max = limit; |
| 2177 | unsigned long log2qty, size; |
| 2178 | void *table = NULL; |
| 2179 | |
| 2180 | /* allow the kernel cmdline to have a say */ |
| 2181 | if (!numentries) { |
| 2182 | /* round applicable memory size up to nearest megabyte */ |
| 2183 | numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; |
| 2184 | numentries += (1UL << (20 - PAGE_SHIFT)) - 1; |
| 2185 | numentries >>= 20 - PAGE_SHIFT; |
| 2186 | numentries <<= 20 - PAGE_SHIFT; |
| 2187 | |
| 2188 | /* limit to 1 bucket per 2^scale bytes of low memory */ |
| 2189 | if (scale > PAGE_SHIFT) |
| 2190 | numentries >>= (scale - PAGE_SHIFT); |
| 2191 | else |
| 2192 | numentries <<= (PAGE_SHIFT - scale); |
| 2193 | } |
| 2194 | /* rounded up to nearest power of 2 in size */ |
| 2195 | numentries = 1UL << (long_log2(numentries) + 1); |
| 2196 | |
| 2197 | /* limit allocation size to 1/16 total memory by default */ |
| 2198 | if (max == 0) { |
| 2199 | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; |
| 2200 | do_div(max, bucketsize); |
| 2201 | } |
| 2202 | |
| 2203 | if (numentries > max) |
| 2204 | numentries = max; |
| 2205 | |
| 2206 | log2qty = long_log2(numentries); |
| 2207 | |
| 2208 | do { |
| 2209 | size = bucketsize << log2qty; |
| 2210 | if (flags & HASH_EARLY) |
| 2211 | table = alloc_bootmem(size); |
| 2212 | else if (hashdist) |
| 2213 | table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); |
| 2214 | else { |
| 2215 | unsigned long order; |
| 2216 | for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) |
| 2217 | ; |
| 2218 | table = (void*) __get_free_pages(GFP_ATOMIC, order); |
| 2219 | } |
| 2220 | } while (!table && size > PAGE_SIZE && --log2qty); |
| 2221 | |
| 2222 | if (!table) |
| 2223 | panic("Failed to allocate %s hash table\n", tablename); |
| 2224 | |
| 2225 | printk("%s hash table entries: %d (order: %d, %lu bytes)\n", |
| 2226 | tablename, |
| 2227 | (1U << log2qty), |
| 2228 | long_log2(size) - PAGE_SHIFT, |
| 2229 | size); |
| 2230 | |
| 2231 | if (_hash_shift) |
| 2232 | *_hash_shift = log2qty; |
| 2233 | if (_hash_mask) |
| 2234 | *_hash_mask = (1 << log2qty) - 1; |
| 2235 | |
| 2236 | return table; |
| 2237 | } |