Omar Sandoval | 00e0439 | 2017-04-14 01:00:02 -0700 | [diff] [blame] | 1 | /* |
| 2 | * The Kyber I/O scheduler. Controls latency by throttling queue depths using |
| 3 | * scalable techniques. |
| 4 | * |
| 5 | * Copyright (C) 2017 Facebook |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or |
| 8 | * modify it under the terms of the GNU General Public |
| 9 | * License v2 as published by the Free Software Foundation. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | * General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License |
| 17 | * along with this program. If not, see <https://www.gnu.org/licenses/>. |
| 18 | */ |
| 19 | |
| 20 | #include <linux/kernel.h> |
| 21 | #include <linux/blkdev.h> |
| 22 | #include <linux/blk-mq.h> |
| 23 | #include <linux/elevator.h> |
| 24 | #include <linux/module.h> |
| 25 | #include <linux/sbitmap.h> |
| 26 | |
| 27 | #include "blk.h" |
| 28 | #include "blk-mq.h" |
| 29 | #include "blk-mq-sched.h" |
| 30 | #include "blk-mq-tag.h" |
| 31 | #include "blk-stat.h" |
| 32 | |
| 33 | /* Scheduling domains. */ |
| 34 | enum { |
| 35 | KYBER_READ, |
| 36 | KYBER_SYNC_WRITE, |
| 37 | KYBER_OTHER, /* Async writes, discard, etc. */ |
| 38 | KYBER_NUM_DOMAINS, |
| 39 | }; |
| 40 | |
| 41 | enum { |
| 42 | KYBER_MIN_DEPTH = 256, |
| 43 | |
| 44 | /* |
| 45 | * In order to prevent starvation of synchronous requests by a flood of |
| 46 | * asynchronous requests, we reserve 25% of requests for synchronous |
| 47 | * operations. |
| 48 | */ |
| 49 | KYBER_ASYNC_PERCENT = 75, |
| 50 | }; |
| 51 | |
| 52 | /* |
| 53 | * Initial device-wide depths for each scheduling domain. |
| 54 | * |
| 55 | * Even for fast devices with lots of tags like NVMe, you can saturate |
| 56 | * the device with only a fraction of the maximum possible queue depth. |
| 57 | * So, we cap these to a reasonable value. |
| 58 | */ |
| 59 | static const unsigned int kyber_depth[] = { |
| 60 | [KYBER_READ] = 256, |
| 61 | [KYBER_SYNC_WRITE] = 128, |
| 62 | [KYBER_OTHER] = 64, |
| 63 | }; |
| 64 | |
| 65 | /* |
| 66 | * Scheduling domain batch sizes. We favor reads. |
| 67 | */ |
| 68 | static const unsigned int kyber_batch_size[] = { |
| 69 | [KYBER_READ] = 16, |
| 70 | [KYBER_SYNC_WRITE] = 8, |
| 71 | [KYBER_OTHER] = 8, |
| 72 | }; |
| 73 | |
| 74 | struct kyber_queue_data { |
| 75 | struct request_queue *q; |
| 76 | |
| 77 | struct blk_stat_callback *cb; |
| 78 | |
| 79 | /* |
| 80 | * The device is divided into multiple scheduling domains based on the |
| 81 | * request type. Each domain has a fixed number of in-flight requests of |
| 82 | * that type device-wide, limited by these tokens. |
| 83 | */ |
| 84 | struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS]; |
| 85 | |
| 86 | /* |
| 87 | * Async request percentage, converted to per-word depth for |
| 88 | * sbitmap_get_shallow(). |
| 89 | */ |
| 90 | unsigned int async_depth; |
| 91 | |
| 92 | /* Target latencies in nanoseconds. */ |
| 93 | u64 read_lat_nsec, write_lat_nsec; |
| 94 | }; |
| 95 | |
| 96 | struct kyber_hctx_data { |
| 97 | spinlock_t lock; |
| 98 | struct list_head rqs[KYBER_NUM_DOMAINS]; |
| 99 | unsigned int cur_domain; |
| 100 | unsigned int batching; |
| 101 | wait_queue_t domain_wait[KYBER_NUM_DOMAINS]; |
| 102 | atomic_t wait_index[KYBER_NUM_DOMAINS]; |
| 103 | }; |
| 104 | |
Stephen Bates | a37244e | 2017-04-20 15:29:16 -0600 | [diff] [blame] | 105 | static int rq_sched_domain(const struct request *rq) |
Omar Sandoval | 00e0439 | 2017-04-14 01:00:02 -0700 | [diff] [blame] | 106 | { |
| 107 | unsigned int op = rq->cmd_flags; |
| 108 | |
| 109 | if ((op & REQ_OP_MASK) == REQ_OP_READ) |
| 110 | return KYBER_READ; |
| 111 | else if ((op & REQ_OP_MASK) == REQ_OP_WRITE && op_is_sync(op)) |
| 112 | return KYBER_SYNC_WRITE; |
| 113 | else |
| 114 | return KYBER_OTHER; |
| 115 | } |
| 116 | |
| 117 | enum { |
| 118 | NONE = 0, |
| 119 | GOOD = 1, |
| 120 | GREAT = 2, |
| 121 | BAD = -1, |
| 122 | AWFUL = -2, |
| 123 | }; |
| 124 | |
| 125 | #define IS_GOOD(status) ((status) > 0) |
| 126 | #define IS_BAD(status) ((status) < 0) |
| 127 | |
| 128 | static int kyber_lat_status(struct blk_stat_callback *cb, |
| 129 | unsigned int sched_domain, u64 target) |
| 130 | { |
| 131 | u64 latency; |
| 132 | |
| 133 | if (!cb->stat[sched_domain].nr_samples) |
| 134 | return NONE; |
| 135 | |
| 136 | latency = cb->stat[sched_domain].mean; |
| 137 | if (latency >= 2 * target) |
| 138 | return AWFUL; |
| 139 | else if (latency > target) |
| 140 | return BAD; |
| 141 | else if (latency <= target / 2) |
| 142 | return GREAT; |
| 143 | else /* (latency <= target) */ |
| 144 | return GOOD; |
| 145 | } |
| 146 | |
| 147 | /* |
| 148 | * Adjust the read or synchronous write depth given the status of reads and |
| 149 | * writes. The goal is that the latencies of the two domains are fair (i.e., if |
| 150 | * one is good, then the other is good). |
| 151 | */ |
| 152 | static void kyber_adjust_rw_depth(struct kyber_queue_data *kqd, |
| 153 | unsigned int sched_domain, int this_status, |
| 154 | int other_status) |
| 155 | { |
| 156 | unsigned int orig_depth, depth; |
| 157 | |
| 158 | /* |
| 159 | * If this domain had no samples, or reads and writes are both good or |
| 160 | * both bad, don't adjust the depth. |
| 161 | */ |
| 162 | if (this_status == NONE || |
| 163 | (IS_GOOD(this_status) && IS_GOOD(other_status)) || |
| 164 | (IS_BAD(this_status) && IS_BAD(other_status))) |
| 165 | return; |
| 166 | |
| 167 | orig_depth = depth = kqd->domain_tokens[sched_domain].sb.depth; |
| 168 | |
| 169 | if (other_status == NONE) { |
| 170 | depth++; |
| 171 | } else { |
| 172 | switch (this_status) { |
| 173 | case GOOD: |
| 174 | if (other_status == AWFUL) |
| 175 | depth -= max(depth / 4, 1U); |
| 176 | else |
| 177 | depth -= max(depth / 8, 1U); |
| 178 | break; |
| 179 | case GREAT: |
| 180 | if (other_status == AWFUL) |
| 181 | depth /= 2; |
| 182 | else |
| 183 | depth -= max(depth / 4, 1U); |
| 184 | break; |
| 185 | case BAD: |
| 186 | depth++; |
| 187 | break; |
| 188 | case AWFUL: |
| 189 | if (other_status == GREAT) |
| 190 | depth += 2; |
| 191 | else |
| 192 | depth++; |
| 193 | break; |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | depth = clamp(depth, 1U, kyber_depth[sched_domain]); |
| 198 | if (depth != orig_depth) |
| 199 | sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth); |
| 200 | } |
| 201 | |
| 202 | /* |
| 203 | * Adjust the depth of other requests given the status of reads and synchronous |
| 204 | * writes. As long as either domain is doing fine, we don't throttle, but if |
| 205 | * both domains are doing badly, we throttle heavily. |
| 206 | */ |
| 207 | static void kyber_adjust_other_depth(struct kyber_queue_data *kqd, |
| 208 | int read_status, int write_status, |
| 209 | bool have_samples) |
| 210 | { |
| 211 | unsigned int orig_depth, depth; |
| 212 | int status; |
| 213 | |
| 214 | orig_depth = depth = kqd->domain_tokens[KYBER_OTHER].sb.depth; |
| 215 | |
| 216 | if (read_status == NONE && write_status == NONE) { |
| 217 | depth += 2; |
| 218 | } else if (have_samples) { |
| 219 | if (read_status == NONE) |
| 220 | status = write_status; |
| 221 | else if (write_status == NONE) |
| 222 | status = read_status; |
| 223 | else |
| 224 | status = max(read_status, write_status); |
| 225 | switch (status) { |
| 226 | case GREAT: |
| 227 | depth += 2; |
| 228 | break; |
| 229 | case GOOD: |
| 230 | depth++; |
| 231 | break; |
| 232 | case BAD: |
| 233 | depth -= max(depth / 4, 1U); |
| 234 | break; |
| 235 | case AWFUL: |
| 236 | depth /= 2; |
| 237 | break; |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | depth = clamp(depth, 1U, kyber_depth[KYBER_OTHER]); |
| 242 | if (depth != orig_depth) |
| 243 | sbitmap_queue_resize(&kqd->domain_tokens[KYBER_OTHER], depth); |
| 244 | } |
| 245 | |
| 246 | /* |
| 247 | * Apply heuristics for limiting queue depths based on gathered latency |
| 248 | * statistics. |
| 249 | */ |
| 250 | static void kyber_stat_timer_fn(struct blk_stat_callback *cb) |
| 251 | { |
| 252 | struct kyber_queue_data *kqd = cb->data; |
| 253 | int read_status, write_status; |
| 254 | |
| 255 | read_status = kyber_lat_status(cb, KYBER_READ, kqd->read_lat_nsec); |
| 256 | write_status = kyber_lat_status(cb, KYBER_SYNC_WRITE, kqd->write_lat_nsec); |
| 257 | |
| 258 | kyber_adjust_rw_depth(kqd, KYBER_READ, read_status, write_status); |
| 259 | kyber_adjust_rw_depth(kqd, KYBER_SYNC_WRITE, write_status, read_status); |
| 260 | kyber_adjust_other_depth(kqd, read_status, write_status, |
| 261 | cb->stat[KYBER_OTHER].nr_samples != 0); |
| 262 | |
| 263 | /* |
| 264 | * Continue monitoring latencies if we aren't hitting the targets or |
| 265 | * we're still throttling other requests. |
| 266 | */ |
| 267 | if (!blk_stat_is_active(kqd->cb) && |
| 268 | ((IS_BAD(read_status) || IS_BAD(write_status) || |
| 269 | kqd->domain_tokens[KYBER_OTHER].sb.depth < kyber_depth[KYBER_OTHER]))) |
| 270 | blk_stat_activate_msecs(kqd->cb, 100); |
| 271 | } |
| 272 | |
| 273 | static unsigned int kyber_sched_tags_shift(struct kyber_queue_data *kqd) |
| 274 | { |
| 275 | /* |
| 276 | * All of the hardware queues have the same depth, so we can just grab |
| 277 | * the shift of the first one. |
| 278 | */ |
| 279 | return kqd->q->queue_hw_ctx[0]->sched_tags->bitmap_tags.sb.shift; |
| 280 | } |
| 281 | |
| 282 | static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q) |
| 283 | { |
| 284 | struct kyber_queue_data *kqd; |
| 285 | unsigned int max_tokens; |
| 286 | unsigned int shift; |
| 287 | int ret = -ENOMEM; |
| 288 | int i; |
| 289 | |
| 290 | kqd = kmalloc_node(sizeof(*kqd), GFP_KERNEL, q->node); |
| 291 | if (!kqd) |
| 292 | goto err; |
| 293 | kqd->q = q; |
| 294 | |
| 295 | kqd->cb = blk_stat_alloc_callback(kyber_stat_timer_fn, rq_sched_domain, |
| 296 | KYBER_NUM_DOMAINS, kqd); |
| 297 | if (!kqd->cb) |
| 298 | goto err_kqd; |
| 299 | |
| 300 | /* |
| 301 | * The maximum number of tokens for any scheduling domain is at least |
| 302 | * the queue depth of a single hardware queue. If the hardware doesn't |
| 303 | * have many tags, still provide a reasonable number. |
| 304 | */ |
| 305 | max_tokens = max_t(unsigned int, q->tag_set->queue_depth, |
| 306 | KYBER_MIN_DEPTH); |
| 307 | for (i = 0; i < KYBER_NUM_DOMAINS; i++) { |
| 308 | WARN_ON(!kyber_depth[i]); |
| 309 | WARN_ON(!kyber_batch_size[i]); |
| 310 | ret = sbitmap_queue_init_node(&kqd->domain_tokens[i], |
| 311 | max_tokens, -1, false, GFP_KERNEL, |
| 312 | q->node); |
| 313 | if (ret) { |
| 314 | while (--i >= 0) |
| 315 | sbitmap_queue_free(&kqd->domain_tokens[i]); |
| 316 | goto err_cb; |
| 317 | } |
| 318 | sbitmap_queue_resize(&kqd->domain_tokens[i], kyber_depth[i]); |
| 319 | } |
| 320 | |
| 321 | shift = kyber_sched_tags_shift(kqd); |
| 322 | kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U; |
| 323 | |
| 324 | kqd->read_lat_nsec = 2000000ULL; |
| 325 | kqd->write_lat_nsec = 10000000ULL; |
| 326 | |
| 327 | return kqd; |
| 328 | |
| 329 | err_cb: |
| 330 | blk_stat_free_callback(kqd->cb); |
| 331 | err_kqd: |
| 332 | kfree(kqd); |
| 333 | err: |
| 334 | return ERR_PTR(ret); |
| 335 | } |
| 336 | |
| 337 | static int kyber_init_sched(struct request_queue *q, struct elevator_type *e) |
| 338 | { |
| 339 | struct kyber_queue_data *kqd; |
| 340 | struct elevator_queue *eq; |
| 341 | |
| 342 | eq = elevator_alloc(q, e); |
| 343 | if (!eq) |
| 344 | return -ENOMEM; |
| 345 | |
| 346 | kqd = kyber_queue_data_alloc(q); |
| 347 | if (IS_ERR(kqd)) { |
| 348 | kobject_put(&eq->kobj); |
| 349 | return PTR_ERR(kqd); |
| 350 | } |
| 351 | |
| 352 | eq->elevator_data = kqd; |
| 353 | q->elevator = eq; |
| 354 | |
| 355 | blk_stat_add_callback(q, kqd->cb); |
| 356 | |
| 357 | return 0; |
| 358 | } |
| 359 | |
| 360 | static void kyber_exit_sched(struct elevator_queue *e) |
| 361 | { |
| 362 | struct kyber_queue_data *kqd = e->elevator_data; |
| 363 | struct request_queue *q = kqd->q; |
| 364 | int i; |
| 365 | |
| 366 | blk_stat_remove_callback(q, kqd->cb); |
| 367 | |
| 368 | for (i = 0; i < KYBER_NUM_DOMAINS; i++) |
| 369 | sbitmap_queue_free(&kqd->domain_tokens[i]); |
| 370 | blk_stat_free_callback(kqd->cb); |
| 371 | kfree(kqd); |
| 372 | } |
| 373 | |
| 374 | static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) |
| 375 | { |
| 376 | struct kyber_hctx_data *khd; |
| 377 | int i; |
| 378 | |
| 379 | khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node); |
| 380 | if (!khd) |
| 381 | return -ENOMEM; |
| 382 | |
| 383 | spin_lock_init(&khd->lock); |
| 384 | |
| 385 | for (i = 0; i < KYBER_NUM_DOMAINS; i++) { |
| 386 | INIT_LIST_HEAD(&khd->rqs[i]); |
| 387 | INIT_LIST_HEAD(&khd->domain_wait[i].task_list); |
| 388 | atomic_set(&khd->wait_index[i], 0); |
| 389 | } |
| 390 | |
| 391 | khd->cur_domain = 0; |
| 392 | khd->batching = 0; |
| 393 | |
| 394 | hctx->sched_data = khd; |
| 395 | |
| 396 | return 0; |
| 397 | } |
| 398 | |
| 399 | static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) |
| 400 | { |
| 401 | kfree(hctx->sched_data); |
| 402 | } |
| 403 | |
| 404 | static int rq_get_domain_token(struct request *rq) |
| 405 | { |
| 406 | return (long)rq->elv.priv[0]; |
| 407 | } |
| 408 | |
| 409 | static void rq_set_domain_token(struct request *rq, int token) |
| 410 | { |
| 411 | rq->elv.priv[0] = (void *)(long)token; |
| 412 | } |
| 413 | |
| 414 | static void rq_clear_domain_token(struct kyber_queue_data *kqd, |
| 415 | struct request *rq) |
| 416 | { |
| 417 | unsigned int sched_domain; |
| 418 | int nr; |
| 419 | |
| 420 | nr = rq_get_domain_token(rq); |
| 421 | if (nr != -1) { |
| 422 | sched_domain = rq_sched_domain(rq); |
| 423 | sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr, |
| 424 | rq->mq_ctx->cpu); |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | static struct request *kyber_get_request(struct request_queue *q, |
| 429 | unsigned int op, |
| 430 | struct blk_mq_alloc_data *data) |
| 431 | { |
| 432 | struct kyber_queue_data *kqd = q->elevator->elevator_data; |
| 433 | struct request *rq; |
| 434 | |
| 435 | /* |
| 436 | * We use the scheduler tags as per-hardware queue queueing tokens. |
| 437 | * Async requests can be limited at this stage. |
| 438 | */ |
| 439 | if (!op_is_sync(op)) |
| 440 | data->shallow_depth = kqd->async_depth; |
| 441 | |
| 442 | rq = __blk_mq_alloc_request(data, op); |
| 443 | if (rq) |
| 444 | rq_set_domain_token(rq, -1); |
| 445 | return rq; |
| 446 | } |
| 447 | |
| 448 | static void kyber_put_request(struct request *rq) |
| 449 | { |
| 450 | struct request_queue *q = rq->q; |
| 451 | struct kyber_queue_data *kqd = q->elevator->elevator_data; |
| 452 | |
| 453 | rq_clear_domain_token(kqd, rq); |
| 454 | blk_mq_finish_request(rq); |
| 455 | } |
| 456 | |
| 457 | static void kyber_completed_request(struct request *rq) |
| 458 | { |
| 459 | struct request_queue *q = rq->q; |
| 460 | struct kyber_queue_data *kqd = q->elevator->elevator_data; |
| 461 | unsigned int sched_domain; |
| 462 | u64 now, latency, target; |
| 463 | |
| 464 | /* |
| 465 | * Check if this request met our latency goal. If not, quickly gather |
| 466 | * some statistics and start throttling. |
| 467 | */ |
| 468 | sched_domain = rq_sched_domain(rq); |
| 469 | switch (sched_domain) { |
| 470 | case KYBER_READ: |
| 471 | target = kqd->read_lat_nsec; |
| 472 | break; |
| 473 | case KYBER_SYNC_WRITE: |
| 474 | target = kqd->write_lat_nsec; |
| 475 | break; |
| 476 | default: |
| 477 | return; |
| 478 | } |
| 479 | |
| 480 | /* If we are already monitoring latencies, don't check again. */ |
| 481 | if (blk_stat_is_active(kqd->cb)) |
| 482 | return; |
| 483 | |
| 484 | now = __blk_stat_time(ktime_to_ns(ktime_get())); |
| 485 | if (now < blk_stat_time(&rq->issue_stat)) |
| 486 | return; |
| 487 | |
| 488 | latency = now - blk_stat_time(&rq->issue_stat); |
| 489 | |
| 490 | if (latency > target) |
| 491 | blk_stat_activate_msecs(kqd->cb, 10); |
| 492 | } |
| 493 | |
| 494 | static void kyber_flush_busy_ctxs(struct kyber_hctx_data *khd, |
| 495 | struct blk_mq_hw_ctx *hctx) |
| 496 | { |
| 497 | LIST_HEAD(rq_list); |
| 498 | struct request *rq, *next; |
| 499 | |
| 500 | blk_mq_flush_busy_ctxs(hctx, &rq_list); |
| 501 | list_for_each_entry_safe(rq, next, &rq_list, queuelist) { |
| 502 | unsigned int sched_domain; |
| 503 | |
| 504 | sched_domain = rq_sched_domain(rq); |
| 505 | list_move_tail(&rq->queuelist, &khd->rqs[sched_domain]); |
| 506 | } |
| 507 | } |
| 508 | |
| 509 | static int kyber_domain_wake(wait_queue_t *wait, unsigned mode, int flags, |
| 510 | void *key) |
| 511 | { |
| 512 | struct blk_mq_hw_ctx *hctx = READ_ONCE(wait->private); |
| 513 | |
| 514 | list_del_init(&wait->task_list); |
| 515 | blk_mq_run_hw_queue(hctx, true); |
| 516 | return 1; |
| 517 | } |
| 518 | |
| 519 | static int kyber_get_domain_token(struct kyber_queue_data *kqd, |
| 520 | struct kyber_hctx_data *khd, |
| 521 | struct blk_mq_hw_ctx *hctx) |
| 522 | { |
| 523 | unsigned int sched_domain = khd->cur_domain; |
| 524 | struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain]; |
| 525 | wait_queue_t *wait = &khd->domain_wait[sched_domain]; |
| 526 | struct sbq_wait_state *ws; |
| 527 | int nr; |
| 528 | |
| 529 | nr = __sbitmap_queue_get(domain_tokens); |
| 530 | if (nr >= 0) |
| 531 | return nr; |
| 532 | |
| 533 | /* |
| 534 | * If we failed to get a domain token, make sure the hardware queue is |
| 535 | * run when one becomes available. Note that this is serialized on |
| 536 | * khd->lock, but we still need to be careful about the waker. |
| 537 | */ |
| 538 | if (list_empty_careful(&wait->task_list)) { |
| 539 | init_waitqueue_func_entry(wait, kyber_domain_wake); |
| 540 | wait->private = hctx; |
| 541 | ws = sbq_wait_ptr(domain_tokens, |
| 542 | &khd->wait_index[sched_domain]); |
| 543 | add_wait_queue(&ws->wait, wait); |
| 544 | |
| 545 | /* |
| 546 | * Try again in case a token was freed before we got on the wait |
| 547 | * queue. |
| 548 | */ |
| 549 | nr = __sbitmap_queue_get(domain_tokens); |
| 550 | } |
| 551 | return nr; |
| 552 | } |
| 553 | |
| 554 | static struct request * |
| 555 | kyber_dispatch_cur_domain(struct kyber_queue_data *kqd, |
| 556 | struct kyber_hctx_data *khd, |
| 557 | struct blk_mq_hw_ctx *hctx, |
| 558 | bool *flushed) |
| 559 | { |
| 560 | struct list_head *rqs; |
| 561 | struct request *rq; |
| 562 | int nr; |
| 563 | |
| 564 | rqs = &khd->rqs[khd->cur_domain]; |
| 565 | rq = list_first_entry_or_null(rqs, struct request, queuelist); |
| 566 | |
| 567 | /* |
| 568 | * If there wasn't already a pending request and we haven't flushed the |
| 569 | * software queues yet, flush the software queues and check again. |
| 570 | */ |
| 571 | if (!rq && !*flushed) { |
| 572 | kyber_flush_busy_ctxs(khd, hctx); |
| 573 | *flushed = true; |
| 574 | rq = list_first_entry_or_null(rqs, struct request, queuelist); |
| 575 | } |
| 576 | |
| 577 | if (rq) { |
| 578 | nr = kyber_get_domain_token(kqd, khd, hctx); |
| 579 | if (nr >= 0) { |
| 580 | khd->batching++; |
| 581 | rq_set_domain_token(rq, nr); |
| 582 | list_del_init(&rq->queuelist); |
| 583 | return rq; |
| 584 | } |
| 585 | } |
| 586 | |
| 587 | /* There were either no pending requests or no tokens. */ |
| 588 | return NULL; |
| 589 | } |
| 590 | |
| 591 | static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx) |
| 592 | { |
| 593 | struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data; |
| 594 | struct kyber_hctx_data *khd = hctx->sched_data; |
| 595 | bool flushed = false; |
| 596 | struct request *rq; |
| 597 | int i; |
| 598 | |
| 599 | spin_lock(&khd->lock); |
| 600 | |
| 601 | /* |
| 602 | * First, if we are still entitled to batch, try to dispatch a request |
| 603 | * from the batch. |
| 604 | */ |
| 605 | if (khd->batching < kyber_batch_size[khd->cur_domain]) { |
| 606 | rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed); |
| 607 | if (rq) |
| 608 | goto out; |
| 609 | } |
| 610 | |
| 611 | /* |
| 612 | * Either, |
| 613 | * 1. We were no longer entitled to a batch. |
| 614 | * 2. The domain we were batching didn't have any requests. |
| 615 | * 3. The domain we were batching was out of tokens. |
| 616 | * |
| 617 | * Start another batch. Note that this wraps back around to the original |
| 618 | * domain if no other domains have requests or tokens. |
| 619 | */ |
| 620 | khd->batching = 0; |
| 621 | for (i = 0; i < KYBER_NUM_DOMAINS; i++) { |
| 622 | if (khd->cur_domain == KYBER_NUM_DOMAINS - 1) |
| 623 | khd->cur_domain = 0; |
| 624 | else |
| 625 | khd->cur_domain++; |
| 626 | |
| 627 | rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed); |
| 628 | if (rq) |
| 629 | goto out; |
| 630 | } |
| 631 | |
| 632 | rq = NULL; |
| 633 | out: |
| 634 | spin_unlock(&khd->lock); |
| 635 | return rq; |
| 636 | } |
| 637 | |
| 638 | static bool kyber_has_work(struct blk_mq_hw_ctx *hctx) |
| 639 | { |
| 640 | struct kyber_hctx_data *khd = hctx->sched_data; |
| 641 | int i; |
| 642 | |
| 643 | for (i = 0; i < KYBER_NUM_DOMAINS; i++) { |
| 644 | if (!list_empty_careful(&khd->rqs[i])) |
| 645 | return true; |
| 646 | } |
| 647 | return false; |
| 648 | } |
| 649 | |
| 650 | #define KYBER_LAT_SHOW_STORE(op) \ |
| 651 | static ssize_t kyber_##op##_lat_show(struct elevator_queue *e, \ |
| 652 | char *page) \ |
| 653 | { \ |
| 654 | struct kyber_queue_data *kqd = e->elevator_data; \ |
| 655 | \ |
| 656 | return sprintf(page, "%llu\n", kqd->op##_lat_nsec); \ |
| 657 | } \ |
| 658 | \ |
| 659 | static ssize_t kyber_##op##_lat_store(struct elevator_queue *e, \ |
| 660 | const char *page, size_t count) \ |
| 661 | { \ |
| 662 | struct kyber_queue_data *kqd = e->elevator_data; \ |
| 663 | unsigned long long nsec; \ |
| 664 | int ret; \ |
| 665 | \ |
| 666 | ret = kstrtoull(page, 10, &nsec); \ |
| 667 | if (ret) \ |
| 668 | return ret; \ |
| 669 | \ |
| 670 | kqd->op##_lat_nsec = nsec; \ |
| 671 | \ |
| 672 | return count; \ |
| 673 | } |
| 674 | KYBER_LAT_SHOW_STORE(read); |
| 675 | KYBER_LAT_SHOW_STORE(write); |
| 676 | #undef KYBER_LAT_SHOW_STORE |
| 677 | |
| 678 | #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store) |
| 679 | static struct elv_fs_entry kyber_sched_attrs[] = { |
| 680 | KYBER_LAT_ATTR(read), |
| 681 | KYBER_LAT_ATTR(write), |
| 682 | __ATTR_NULL |
| 683 | }; |
| 684 | #undef KYBER_LAT_ATTR |
| 685 | |
| 686 | static struct elevator_type kyber_sched = { |
| 687 | .ops.mq = { |
| 688 | .init_sched = kyber_init_sched, |
| 689 | .exit_sched = kyber_exit_sched, |
| 690 | .init_hctx = kyber_init_hctx, |
| 691 | .exit_hctx = kyber_exit_hctx, |
| 692 | .get_request = kyber_get_request, |
| 693 | .put_request = kyber_put_request, |
| 694 | .completed_request = kyber_completed_request, |
| 695 | .dispatch_request = kyber_dispatch_request, |
| 696 | .has_work = kyber_has_work, |
| 697 | }, |
| 698 | .uses_mq = true, |
| 699 | .elevator_attrs = kyber_sched_attrs, |
| 700 | .elevator_name = "kyber", |
| 701 | .elevator_owner = THIS_MODULE, |
| 702 | }; |
| 703 | |
| 704 | static int __init kyber_init(void) |
| 705 | { |
| 706 | return elv_register(&kyber_sched); |
| 707 | } |
| 708 | |
| 709 | static void __exit kyber_exit(void) |
| 710 | { |
| 711 | elv_unregister(&kyber_sched); |
| 712 | } |
| 713 | |
| 714 | module_init(kyber_init); |
| 715 | module_exit(kyber_exit); |
| 716 | |
| 717 | MODULE_AUTHOR("Omar Sandoval"); |
| 718 | MODULE_LICENSE("GPL"); |
| 719 | MODULE_DESCRIPTION("Kyber I/O scheduler"); |