Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/fs/direct-io.c b/fs/direct-io.c
new file mode 100644
index 0000000..5a674a0
--- /dev/null
+++ b/fs/direct-io.c
@@ -0,0 +1,1258 @@
+/*
+ * fs/direct-io.c
+ *
+ * Copyright (C) 2002, Linus Torvalds.
+ *
+ * O_DIRECT
+ *
+ * 04Jul2002	akpm@zip.com.au
+ *		Initial version
+ * 11Sep2002	janetinc@us.ibm.com
+ * 		added readv/writev support.
+ * 29Oct2002	akpm@zip.com.au
+ *		rewrote bio_add_page() support.
+ * 30Oct2002	pbadari@us.ibm.com
+ *		added support for non-aligned IO.
+ * 06Nov2002	pbadari@us.ibm.com
+ *		added asynchronous IO support.
+ * 21Jul2003	nathans@sgi.com
+ *		added IO completion notifier.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/fs.h>
+#include <linux/mm.h>
+#include <linux/slab.h>
+#include <linux/highmem.h>
+#include <linux/pagemap.h>
+#include <linux/bio.h>
+#include <linux/wait.h>
+#include <linux/err.h>
+#include <linux/blkdev.h>
+#include <linux/buffer_head.h>
+#include <linux/rwsem.h>
+#include <linux/uio.h>
+#include <asm/atomic.h>
+
+/*
+ * How many user pages to map in one call to get_user_pages().  This determines
+ * the size of a structure on the stack.
+ */
+#define DIO_PAGES	64
+
+/*
+ * This code generally works in units of "dio_blocks".  A dio_block is
+ * somewhere between the hard sector size and the filesystem block size.  it
+ * is determined on a per-invocation basis.   When talking to the filesystem
+ * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
+ * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
+ * to bio_block quantities by shifting left by blkfactor.
+ *
+ * If blkfactor is zero then the user's request was aligned to the filesystem's
+ * blocksize.
+ *
+ * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems.
+ * This determines whether we need to do the fancy locking which prevents
+ * direct-IO from being able to read uninitialised disk blocks.  If its zero
+ * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_sem is
+ * not held for the entire direct write (taken briefly, initially, during a
+ * direct read though, but its never held for the duration of a direct-IO).
+ */
+
+struct dio {
+	/* BIO submission state */
+	struct bio *bio;		/* bio under assembly */
+	struct inode *inode;
+	int rw;
+	int lock_type;			/* doesn't change */
+	unsigned blkbits;		/* doesn't change */
+	unsigned blkfactor;		/* When we're using an alignment which
+					   is finer than the filesystem's soft
+					   blocksize, this specifies how much
+					   finer.  blkfactor=2 means 1/4-block
+					   alignment.  Does not change */
+	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
+					   been performed at the start of a
+					   write */
+	int pages_in_io;		/* approximate total IO pages */
+	size_t	size;			/* total request size (doesn't change)*/
+	sector_t block_in_file;		/* Current offset into the underlying
+					   file in dio_block units. */
+	unsigned blocks_available;	/* At block_in_file.  changes */
+	sector_t final_block_in_request;/* doesn't change */
+	unsigned first_block_in_page;	/* doesn't change, Used only once */
+	int boundary;			/* prev block is at a boundary */
+	int reap_counter;		/* rate limit reaping */
+	get_blocks_t *get_blocks;	/* block mapping function */
+	dio_iodone_t *end_io;		/* IO completion function */
+	sector_t final_block_in_bio;	/* current final block in bio + 1 */
+	sector_t next_block_for_io;	/* next block to be put under IO,
+					   in dio_blocks units */
+	struct buffer_head map_bh;	/* last get_blocks() result */
+
+	/*
+	 * Deferred addition of a page to the dio.  These variables are
+	 * private to dio_send_cur_page(), submit_page_section() and
+	 * dio_bio_add_page().
+	 */
+	struct page *cur_page;		/* The page */
+	unsigned cur_page_offset;	/* Offset into it, in bytes */
+	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
+	sector_t cur_page_block;	/* Where it starts */
+
+	/*
+	 * Page fetching state. These variables belong to dio_refill_pages().
+	 */
+	int curr_page;			/* changes */
+	int total_pages;		/* doesn't change */
+	unsigned long curr_user_address;/* changes */
+
+	/*
+	 * Page queue.  These variables belong to dio_refill_pages() and
+	 * dio_get_page().
+	 */
+	struct page *pages[DIO_PAGES];	/* page buffer */
+	unsigned head;			/* next page to process */
+	unsigned tail;			/* last valid page + 1 */
+	int page_errors;		/* errno from get_user_pages() */
+
+	/* BIO completion state */
+	spinlock_t bio_lock;		/* protects BIO fields below */
+	int bio_count;			/* nr bios to be completed */
+	int bios_in_flight;		/* nr bios in flight */
+	struct bio *bio_list;		/* singly linked via bi_private */
+	struct task_struct *waiter;	/* waiting task (NULL if none) */
+
+	/* AIO related stuff */
+	struct kiocb *iocb;		/* kiocb */
+	int is_async;			/* is IO async ? */
+	ssize_t result;                 /* IO result */
+};
+
+/*
+ * How many pages are in the queue?
+ */
+static inline unsigned dio_pages_present(struct dio *dio)
+{
+	return dio->tail - dio->head;
+}
+
+/*
+ * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
+ */
+static int dio_refill_pages(struct dio *dio)
+{
+	int ret;
+	int nr_pages;
+
+	nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
+	down_read(&current->mm->mmap_sem);
+	ret = get_user_pages(
+		current,			/* Task for fault acounting */
+		current->mm,			/* whose pages? */
+		dio->curr_user_address,		/* Where from? */
+		nr_pages,			/* How many pages? */
+		dio->rw == READ,		/* Write to memory? */
+		0,				/* force (?) */
+		&dio->pages[0],
+		NULL);				/* vmas */
+	up_read(&current->mm->mmap_sem);
+
+	if (ret < 0 && dio->blocks_available && (dio->rw == WRITE)) {
+		/*
+		 * A memory fault, but the filesystem has some outstanding
+		 * mapped blocks.  We need to use those blocks up to avoid
+		 * leaking stale data in the file.
+		 */
+		if (dio->page_errors == 0)
+			dio->page_errors = ret;
+		dio->pages[0] = ZERO_PAGE(dio->curr_user_address);
+		dio->head = 0;
+		dio->tail = 1;
+		ret = 0;
+		goto out;
+	}
+
+	if (ret >= 0) {
+		dio->curr_user_address += ret * PAGE_SIZE;
+		dio->curr_page += ret;
+		dio->head = 0;
+		dio->tail = ret;
+		ret = 0;
+	}
+out:
+	return ret;	
+}
+
+/*
+ * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
+ * buffered inside the dio so that we can call get_user_pages() against a
+ * decent number of pages, less frequently.  To provide nicer use of the
+ * L1 cache.
+ */
+static struct page *dio_get_page(struct dio *dio)
+{
+	if (dio_pages_present(dio) == 0) {
+		int ret;
+
+		ret = dio_refill_pages(dio);
+		if (ret)
+			return ERR_PTR(ret);
+		BUG_ON(dio_pages_present(dio) == 0);
+	}
+	return dio->pages[dio->head++];
+}
+
+/*
+ * Called when all DIO BIO I/O has been completed - let the filesystem
+ * know, if it registered an interest earlier via get_blocks.  Pass the
+ * private field of the map buffer_head so that filesystems can use it
+ * to hold additional state between get_blocks calls and dio_complete.
+ */
+static void dio_complete(struct dio *dio, loff_t offset, ssize_t bytes)
+{
+	if (dio->end_io && dio->result)
+		dio->end_io(dio->inode, offset, bytes, dio->map_bh.b_private);
+	if (dio->lock_type == DIO_LOCKING)
+		up_read(&dio->inode->i_alloc_sem);
+}
+
+/*
+ * Called when a BIO has been processed.  If the count goes to zero then IO is
+ * complete and we can signal this to the AIO layer.
+ */
+static void finished_one_bio(struct dio *dio)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&dio->bio_lock, flags);
+	if (dio->bio_count == 1) {
+		if (dio->is_async) {
+			/*
+			 * Last reference to the dio is going away.
+			 * Drop spinlock and complete the DIO.
+			 */
+			spin_unlock_irqrestore(&dio->bio_lock, flags);
+			dio_complete(dio, dio->block_in_file << dio->blkbits,
+					dio->result);
+			/* Complete AIO later if falling back to buffered i/o */
+			if (dio->result == dio->size ||
+				((dio->rw == READ) && dio->result)) {
+				aio_complete(dio->iocb, dio->result, 0);
+				kfree(dio);
+				return;
+			} else {
+				/*
+				 * Falling back to buffered
+				 */
+				spin_lock_irqsave(&dio->bio_lock, flags);
+				dio->bio_count--;
+				if (dio->waiter)
+					wake_up_process(dio->waiter);
+				spin_unlock_irqrestore(&dio->bio_lock, flags);
+				return;
+			}
+		}
+	}
+	dio->bio_count--;
+	spin_unlock_irqrestore(&dio->bio_lock, flags);
+}
+
+static int dio_bio_complete(struct dio *dio, struct bio *bio);
+/*
+ * Asynchronous IO callback. 
+ */
+static int dio_bio_end_aio(struct bio *bio, unsigned int bytes_done, int error)
+{
+	struct dio *dio = bio->bi_private;
+
+	if (bio->bi_size)
+		return 1;
+
+	/* cleanup the bio */
+	dio_bio_complete(dio, bio);
+	return 0;
+}
+
+/*
+ * The BIO completion handler simply queues the BIO up for the process-context
+ * handler.
+ *
+ * During I/O bi_private points at the dio.  After I/O, bi_private is used to
+ * implement a singly-linked list of completed BIOs, at dio->bio_list.
+ */
+static int dio_bio_end_io(struct bio *bio, unsigned int bytes_done, int error)
+{
+	struct dio *dio = bio->bi_private;
+	unsigned long flags;
+
+	if (bio->bi_size)
+		return 1;
+
+	spin_lock_irqsave(&dio->bio_lock, flags);
+	bio->bi_private = dio->bio_list;
+	dio->bio_list = bio;
+	dio->bios_in_flight--;
+	if (dio->waiter && dio->bios_in_flight == 0)
+		wake_up_process(dio->waiter);
+	spin_unlock_irqrestore(&dio->bio_lock, flags);
+	return 0;
+}
+
+static int
+dio_bio_alloc(struct dio *dio, struct block_device *bdev,
+		sector_t first_sector, int nr_vecs)
+{
+	struct bio *bio;
+
+	bio = bio_alloc(GFP_KERNEL, nr_vecs);
+	if (bio == NULL)
+		return -ENOMEM;
+
+	bio->bi_bdev = bdev;
+	bio->bi_sector = first_sector;
+	if (dio->is_async)
+		bio->bi_end_io = dio_bio_end_aio;
+	else
+		bio->bi_end_io = dio_bio_end_io;
+
+	dio->bio = bio;
+	return 0;
+}
+
+/*
+ * In the AIO read case we speculatively dirty the pages before starting IO.
+ * During IO completion, any of these pages which happen to have been written
+ * back will be redirtied by bio_check_pages_dirty().
+ */
+static void dio_bio_submit(struct dio *dio)
+{
+	struct bio *bio = dio->bio;
+	unsigned long flags;
+
+	bio->bi_private = dio;
+	spin_lock_irqsave(&dio->bio_lock, flags);
+	dio->bio_count++;
+	dio->bios_in_flight++;
+	spin_unlock_irqrestore(&dio->bio_lock, flags);
+	if (dio->is_async && dio->rw == READ)
+		bio_set_pages_dirty(bio);
+	submit_bio(dio->rw, bio);
+
+	dio->bio = NULL;
+	dio->boundary = 0;
+}
+
+/*
+ * Release any resources in case of a failure
+ */
+static void dio_cleanup(struct dio *dio)
+{
+	while (dio_pages_present(dio))
+		page_cache_release(dio_get_page(dio));
+}
+
+/*
+ * Wait for the next BIO to complete.  Remove it and return it.
+ */
+static struct bio *dio_await_one(struct dio *dio)
+{
+	unsigned long flags;
+	struct bio *bio;
+
+	spin_lock_irqsave(&dio->bio_lock, flags);
+	while (dio->bio_list == NULL) {
+		set_current_state(TASK_UNINTERRUPTIBLE);
+		if (dio->bio_list == NULL) {
+			dio->waiter = current;
+			spin_unlock_irqrestore(&dio->bio_lock, flags);
+			blk_run_address_space(dio->inode->i_mapping);
+			io_schedule();
+			spin_lock_irqsave(&dio->bio_lock, flags);
+			dio->waiter = NULL;
+		}
+		set_current_state(TASK_RUNNING);
+	}
+	bio = dio->bio_list;
+	dio->bio_list = bio->bi_private;
+	spin_unlock_irqrestore(&dio->bio_lock, flags);
+	return bio;
+}
+
+/*
+ * Process one completed BIO.  No locks are held.
+ */
+static int dio_bio_complete(struct dio *dio, struct bio *bio)
+{
+	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
+	struct bio_vec *bvec = bio->bi_io_vec;
+	int page_no;
+
+	if (!uptodate)
+		dio->result = -EIO;
+
+	if (dio->is_async && dio->rw == READ) {
+		bio_check_pages_dirty(bio);	/* transfers ownership */
+	} else {
+		for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
+			struct page *page = bvec[page_no].bv_page;
+
+			if (dio->rw == READ && !PageCompound(page))
+				set_page_dirty_lock(page);
+			page_cache_release(page);
+		}
+		bio_put(bio);
+	}
+	finished_one_bio(dio);
+	return uptodate ? 0 : -EIO;
+}
+
+/*
+ * Wait on and process all in-flight BIOs.
+ */
+static int dio_await_completion(struct dio *dio)
+{
+	int ret = 0;
+
+	if (dio->bio)
+		dio_bio_submit(dio);
+
+	/*
+	 * The bio_lock is not held for the read of bio_count.
+	 * This is ok since it is the dio_bio_complete() that changes
+	 * bio_count.
+	 */
+	while (dio->bio_count) {
+		struct bio *bio = dio_await_one(dio);
+		int ret2;
+
+		ret2 = dio_bio_complete(dio, bio);
+		if (ret == 0)
+			ret = ret2;
+	}
+	return ret;
+}
+
+/*
+ * A really large O_DIRECT read or write can generate a lot of BIOs.  So
+ * to keep the memory consumption sane we periodically reap any completed BIOs
+ * during the BIO generation phase.
+ *
+ * This also helps to limit the peak amount of pinned userspace memory.
+ */
+static int dio_bio_reap(struct dio *dio)
+{
+	int ret = 0;
+
+	if (dio->reap_counter++ >= 64) {
+		while (dio->bio_list) {
+			unsigned long flags;
+			struct bio *bio;
+			int ret2;
+
+			spin_lock_irqsave(&dio->bio_lock, flags);
+			bio = dio->bio_list;
+			dio->bio_list = bio->bi_private;
+			spin_unlock_irqrestore(&dio->bio_lock, flags);
+			ret2 = dio_bio_complete(dio, bio);
+			if (ret == 0)
+				ret = ret2;
+		}
+		dio->reap_counter = 0;
+	}
+	return ret;
+}
+
+/*
+ * Call into the fs to map some more disk blocks.  We record the current number
+ * of available blocks at dio->blocks_available.  These are in units of the
+ * fs blocksize, (1 << inode->i_blkbits).
+ *
+ * The fs is allowed to map lots of blocks at once.  If it wants to do that,
+ * it uses the passed inode-relative block number as the file offset, as usual.
+ *
+ * get_blocks() is passed the number of i_blkbits-sized blocks which direct_io
+ * has remaining to do.  The fs should not map more than this number of blocks.
+ *
+ * If the fs has mapped a lot of blocks, it should populate bh->b_size to
+ * indicate how much contiguous disk space has been made available at
+ * bh->b_blocknr.
+ *
+ * If *any* of the mapped blocks are new, then the fs must set buffer_new().
+ * This isn't very efficient...
+ *
+ * In the case of filesystem holes: the fs may return an arbitrarily-large
+ * hole by returning an appropriate value in b_size and by clearing
+ * buffer_mapped().  However the direct-io code will only process holes one
+ * block at a time - it will repeatedly call get_blocks() as it walks the hole.
+ */
+static int get_more_blocks(struct dio *dio)
+{
+	int ret;
+	struct buffer_head *map_bh = &dio->map_bh;
+	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
+	unsigned long fs_count;	/* Number of filesystem-sized blocks */
+	unsigned long dio_count;/* Number of dio_block-sized blocks */
+	unsigned long blkmask;
+	int create;
+
+	/*
+	 * If there was a memory error and we've overwritten all the
+	 * mapped blocks then we can now return that memory error
+	 */
+	ret = dio->page_errors;
+	if (ret == 0) {
+		map_bh->b_state = 0;
+		map_bh->b_size = 0;
+		BUG_ON(dio->block_in_file >= dio->final_block_in_request);
+		fs_startblk = dio->block_in_file >> dio->blkfactor;
+		dio_count = dio->final_block_in_request - dio->block_in_file;
+		fs_count = dio_count >> dio->blkfactor;
+		blkmask = (1 << dio->blkfactor) - 1;
+		if (dio_count & blkmask)	
+			fs_count++;
+
+		create = dio->rw == WRITE;
+		if (dio->lock_type == DIO_LOCKING) {
+			if (dio->block_in_file < (i_size_read(dio->inode) >>
+							dio->blkbits))
+				create = 0;
+		} else if (dio->lock_type == DIO_NO_LOCKING) {
+			create = 0;
+		}
+		/*
+		 * For writes inside i_size we forbid block creations: only
+		 * overwrites are permitted.  We fall back to buffered writes
+		 * at a higher level for inside-i_size block-instantiating
+		 * writes.
+		 */
+		ret = (*dio->get_blocks)(dio->inode, fs_startblk, fs_count,
+						map_bh, create);
+	}
+	return ret;
+}
+
+/*
+ * There is no bio.  Make one now.
+ */
+static int dio_new_bio(struct dio *dio, sector_t start_sector)
+{
+	sector_t sector;
+	int ret, nr_pages;
+
+	ret = dio_bio_reap(dio);
+	if (ret)
+		goto out;
+	sector = start_sector << (dio->blkbits - 9);
+	nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
+	BUG_ON(nr_pages <= 0);
+	ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
+	dio->boundary = 0;
+out:
+	return ret;
+}
+
+/*
+ * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
+ * that was successful then update final_block_in_bio and take a ref against
+ * the just-added page.
+ *
+ * Return zero on success.  Non-zero means the caller needs to start a new BIO.
+ */
+static int dio_bio_add_page(struct dio *dio)
+{
+	int ret;
+
+	ret = bio_add_page(dio->bio, dio->cur_page,
+			dio->cur_page_len, dio->cur_page_offset);
+	if (ret == dio->cur_page_len) {
+		/*
+		 * Decrement count only, if we are done with this page
+		 */
+		if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
+			dio->pages_in_io--;
+		page_cache_get(dio->cur_page);
+		dio->final_block_in_bio = dio->cur_page_block +
+			(dio->cur_page_len >> dio->blkbits);
+		ret = 0;
+	} else {
+		ret = 1;
+	}
+	return ret;
+}
+		
+/*
+ * Put cur_page under IO.  The section of cur_page which is described by
+ * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
+ * starts on-disk at cur_page_block.
+ *
+ * We take a ref against the page here (on behalf of its presence in the bio).
+ *
+ * The caller of this function is responsible for removing cur_page from the
+ * dio, and for dropping the refcount which came from that presence.
+ */
+static int dio_send_cur_page(struct dio *dio)
+{
+	int ret = 0;
+
+	if (dio->bio) {
+		/*
+		 * See whether this new request is contiguous with the old
+		 */
+		if (dio->final_block_in_bio != dio->cur_page_block)
+			dio_bio_submit(dio);
+		/*
+		 * Submit now if the underlying fs is about to perform a
+		 * metadata read
+		 */
+		if (dio->boundary)
+			dio_bio_submit(dio);
+	}
+
+	if (dio->bio == NULL) {
+		ret = dio_new_bio(dio, dio->cur_page_block);
+		if (ret)
+			goto out;
+	}
+
+	if (dio_bio_add_page(dio) != 0) {
+		dio_bio_submit(dio);
+		ret = dio_new_bio(dio, dio->cur_page_block);
+		if (ret == 0) {
+			ret = dio_bio_add_page(dio);
+			BUG_ON(ret != 0);
+		}
+	}
+out:
+	return ret;
+}
+
+/*
+ * An autonomous function to put a chunk of a page under deferred IO.
+ *
+ * The caller doesn't actually know (or care) whether this piece of page is in
+ * a BIO, or is under IO or whatever.  We just take care of all possible 
+ * situations here.  The separation between the logic of do_direct_IO() and
+ * that of submit_page_section() is important for clarity.  Please don't break.
+ *
+ * The chunk of page starts on-disk at blocknr.
+ *
+ * We perform deferred IO, by recording the last-submitted page inside our
+ * private part of the dio structure.  If possible, we just expand the IO
+ * across that page here.
+ *
+ * If that doesn't work out then we put the old page into the bio and add this
+ * page to the dio instead.
+ */
+static int
+submit_page_section(struct dio *dio, struct page *page,
+		unsigned offset, unsigned len, sector_t blocknr)
+{
+	int ret = 0;
+
+	/*
+	 * Can we just grow the current page's presence in the dio?
+	 */
+	if (	(dio->cur_page == page) &&
+		(dio->cur_page_offset + dio->cur_page_len == offset) &&
+		(dio->cur_page_block +
+			(dio->cur_page_len >> dio->blkbits) == blocknr)) {
+		dio->cur_page_len += len;
+
+		/*
+		 * If dio->boundary then we want to schedule the IO now to
+		 * avoid metadata seeks.
+		 */
+		if (dio->boundary) {
+			ret = dio_send_cur_page(dio);
+			page_cache_release(dio->cur_page);
+			dio->cur_page = NULL;
+		}
+		goto out;
+	}
+
+	/*
+	 * If there's a deferred page already there then send it.
+	 */
+	if (dio->cur_page) {
+		ret = dio_send_cur_page(dio);
+		page_cache_release(dio->cur_page);
+		dio->cur_page = NULL;
+		if (ret)
+			goto out;
+	}
+
+	page_cache_get(page);		/* It is in dio */
+	dio->cur_page = page;
+	dio->cur_page_offset = offset;
+	dio->cur_page_len = len;
+	dio->cur_page_block = blocknr;
+out:
+	return ret;
+}
+
+/*
+ * Clean any dirty buffers in the blockdev mapping which alias newly-created
+ * file blocks.  Only called for S_ISREG files - blockdevs do not set
+ * buffer_new
+ */
+static void clean_blockdev_aliases(struct dio *dio)
+{
+	unsigned i;
+	unsigned nblocks;
+
+	nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
+
+	for (i = 0; i < nblocks; i++) {
+		unmap_underlying_metadata(dio->map_bh.b_bdev,
+					dio->map_bh.b_blocknr + i);
+	}
+}
+
+/*
+ * If we are not writing the entire block and get_block() allocated
+ * the block for us, we need to fill-in the unused portion of the
+ * block with zeros. This happens only if user-buffer, fileoffset or
+ * io length is not filesystem block-size multiple.
+ *
+ * `end' is zero if we're doing the start of the IO, 1 at the end of the
+ * IO.
+ */
+static void dio_zero_block(struct dio *dio, int end)
+{
+	unsigned dio_blocks_per_fs_block;
+	unsigned this_chunk_blocks;	/* In dio_blocks */
+	unsigned this_chunk_bytes;
+	struct page *page;
+
+	dio->start_zero_done = 1;
+	if (!dio->blkfactor || !buffer_new(&dio->map_bh))
+		return;
+
+	dio_blocks_per_fs_block = 1 << dio->blkfactor;
+	this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
+
+	if (!this_chunk_blocks)
+		return;
+
+	/*
+	 * We need to zero out part of an fs block.  It is either at the
+	 * beginning or the end of the fs block.
+	 */
+	if (end) 
+		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
+
+	this_chunk_bytes = this_chunk_blocks << dio->blkbits;
+
+	page = ZERO_PAGE(dio->curr_user_address);
+	if (submit_page_section(dio, page, 0, this_chunk_bytes, 
+				dio->next_block_for_io))
+		return;
+
+	dio->next_block_for_io += this_chunk_blocks;
+}
+
+/*
+ * Walk the user pages, and the file, mapping blocks to disk and generating
+ * a sequence of (page,offset,len,block) mappings.  These mappings are injected
+ * into submit_page_section(), which takes care of the next stage of submission
+ *
+ * Direct IO against a blockdev is different from a file.  Because we can
+ * happily perform page-sized but 512-byte aligned IOs.  It is important that
+ * blockdev IO be able to have fine alignment and large sizes.
+ *
+ * So what we do is to permit the ->get_blocks function to populate bh.b_size
+ * with the size of IO which is permitted at this offset and this i_blkbits.
+ *
+ * For best results, the blockdev should be set up with 512-byte i_blkbits and
+ * it should set b_size to PAGE_SIZE or more inside get_blocks().  This gives
+ * fine alignment but still allows this function to work in PAGE_SIZE units.
+ */
+static int do_direct_IO(struct dio *dio)
+{
+	const unsigned blkbits = dio->blkbits;
+	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
+	struct page *page;
+	unsigned block_in_page;
+	struct buffer_head *map_bh = &dio->map_bh;
+	int ret = 0;
+
+	/* The I/O can start at any block offset within the first page */
+	block_in_page = dio->first_block_in_page;
+
+	while (dio->block_in_file < dio->final_block_in_request) {
+		page = dio_get_page(dio);
+		if (IS_ERR(page)) {
+			ret = PTR_ERR(page);
+			goto out;
+		}
+
+		while (block_in_page < blocks_per_page) {
+			unsigned offset_in_page = block_in_page << blkbits;
+			unsigned this_chunk_bytes;	/* # of bytes mapped */
+			unsigned this_chunk_blocks;	/* # of blocks */
+			unsigned u;
+
+			if (dio->blocks_available == 0) {
+				/*
+				 * Need to go and map some more disk
+				 */
+				unsigned long blkmask;
+				unsigned long dio_remainder;
+
+				ret = get_more_blocks(dio);
+				if (ret) {
+					page_cache_release(page);
+					goto out;
+				}
+				if (!buffer_mapped(map_bh))
+					goto do_holes;
+
+				dio->blocks_available =
+						map_bh->b_size >> dio->blkbits;
+				dio->next_block_for_io =
+					map_bh->b_blocknr << dio->blkfactor;
+				if (buffer_new(map_bh))
+					clean_blockdev_aliases(dio);
+
+				if (!dio->blkfactor)
+					goto do_holes;
+
+				blkmask = (1 << dio->blkfactor) - 1;
+				dio_remainder = (dio->block_in_file & blkmask);
+
+				/*
+				 * If we are at the start of IO and that IO
+				 * starts partway into a fs-block,
+				 * dio_remainder will be non-zero.  If the IO
+				 * is a read then we can simply advance the IO
+				 * cursor to the first block which is to be
+				 * read.  But if the IO is a write and the
+				 * block was newly allocated we cannot do that;
+				 * the start of the fs block must be zeroed out
+				 * on-disk
+				 */
+				if (!buffer_new(map_bh))
+					dio->next_block_for_io += dio_remainder;
+				dio->blocks_available -= dio_remainder;
+			}
+do_holes:
+			/* Handle holes */
+			if (!buffer_mapped(map_bh)) {
+				char *kaddr;
+
+				/* AKPM: eargh, -ENOTBLK is a hack */
+				if (dio->rw == WRITE) {
+					page_cache_release(page);
+					return -ENOTBLK;
+				}
+
+				if (dio->block_in_file >=
+					i_size_read(dio->inode)>>blkbits) {
+					/* We hit eof */
+					page_cache_release(page);
+					goto out;
+				}
+				kaddr = kmap_atomic(page, KM_USER0);
+				memset(kaddr + (block_in_page << blkbits),
+						0, 1 << blkbits);
+				flush_dcache_page(page);
+				kunmap_atomic(kaddr, KM_USER0);
+				dio->block_in_file++;
+				block_in_page++;
+				goto next_block;
+			}
+
+			/*
+			 * If we're performing IO which has an alignment which
+			 * is finer than the underlying fs, go check to see if
+			 * we must zero out the start of this block.
+			 */
+			if (unlikely(dio->blkfactor && !dio->start_zero_done))
+				dio_zero_block(dio, 0);
+
+			/*
+			 * Work out, in this_chunk_blocks, how much disk we
+			 * can add to this page
+			 */
+			this_chunk_blocks = dio->blocks_available;
+			u = (PAGE_SIZE - offset_in_page) >> blkbits;
+			if (this_chunk_blocks > u)
+				this_chunk_blocks = u;
+			u = dio->final_block_in_request - dio->block_in_file;
+			if (this_chunk_blocks > u)
+				this_chunk_blocks = u;
+			this_chunk_bytes = this_chunk_blocks << blkbits;
+			BUG_ON(this_chunk_bytes == 0);
+
+			dio->boundary = buffer_boundary(map_bh);
+			ret = submit_page_section(dio, page, offset_in_page,
+				this_chunk_bytes, dio->next_block_for_io);
+			if (ret) {
+				page_cache_release(page);
+				goto out;
+			}
+			dio->next_block_for_io += this_chunk_blocks;
+
+			dio->block_in_file += this_chunk_blocks;
+			block_in_page += this_chunk_blocks;
+			dio->blocks_available -= this_chunk_blocks;
+next_block:
+			if (dio->block_in_file > dio->final_block_in_request)
+				BUG();
+			if (dio->block_in_file == dio->final_block_in_request)
+				break;
+		}
+
+		/* Drop the ref which was taken in get_user_pages() */
+		page_cache_release(page);
+		block_in_page = 0;
+	}
+out:
+	return ret;
+}
+
+/*
+ * Releases both i_sem and i_alloc_sem
+ */
+static ssize_t
+direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode, 
+	const struct iovec *iov, loff_t offset, unsigned long nr_segs, 
+	unsigned blkbits, get_blocks_t get_blocks, dio_iodone_t end_io,
+	struct dio *dio)
+{
+	unsigned long user_addr; 
+	int seg;
+	ssize_t ret = 0;
+	ssize_t ret2;
+	size_t bytes;
+
+	dio->bio = NULL;
+	dio->inode = inode;
+	dio->rw = rw;
+	dio->blkbits = blkbits;
+	dio->blkfactor = inode->i_blkbits - blkbits;
+	dio->start_zero_done = 0;
+	dio->size = 0;
+	dio->block_in_file = offset >> blkbits;
+	dio->blocks_available = 0;
+	dio->cur_page = NULL;
+
+	dio->boundary = 0;
+	dio->reap_counter = 0;
+	dio->get_blocks = get_blocks;
+	dio->end_io = end_io;
+	dio->map_bh.b_private = NULL;
+	dio->final_block_in_bio = -1;
+	dio->next_block_for_io = -1;
+
+	dio->page_errors = 0;
+	dio->result = 0;
+	dio->iocb = iocb;
+
+	/*
+	 * BIO completion state.
+	 *
+	 * ->bio_count starts out at one, and we decrement it to zero after all
+	 * BIOs are submitted.  This to avoid the situation where a really fast
+	 * (or synchronous) device could take the count to zero while we're
+	 * still submitting BIOs.
+	 */
+	dio->bio_count = 1;
+	dio->bios_in_flight = 0;
+	spin_lock_init(&dio->bio_lock);
+	dio->bio_list = NULL;
+	dio->waiter = NULL;
+
+	/*
+	 * In case of non-aligned buffers, we may need 2 more
+	 * pages since we need to zero out first and last block.
+	 */
+	if (unlikely(dio->blkfactor))
+		dio->pages_in_io = 2;
+	else
+		dio->pages_in_io = 0;
+
+	for (seg = 0; seg < nr_segs; seg++) {
+		user_addr = (unsigned long)iov[seg].iov_base;
+		dio->pages_in_io +=
+			((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
+				- user_addr/PAGE_SIZE);
+	}
+
+	for (seg = 0; seg < nr_segs; seg++) {
+		user_addr = (unsigned long)iov[seg].iov_base;
+		dio->size += bytes = iov[seg].iov_len;
+
+		/* Index into the first page of the first block */
+		dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
+		dio->final_block_in_request = dio->block_in_file +
+						(bytes >> blkbits);
+		/* Page fetching state */
+		dio->head = 0;
+		dio->tail = 0;
+		dio->curr_page = 0;
+
+		dio->total_pages = 0;
+		if (user_addr & (PAGE_SIZE-1)) {
+			dio->total_pages++;
+			bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
+		}
+		dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
+		dio->curr_user_address = user_addr;
+	
+		ret = do_direct_IO(dio);
+
+		dio->result += iov[seg].iov_len -
+			((dio->final_block_in_request - dio->block_in_file) <<
+					blkbits);
+
+		if (ret) {
+			dio_cleanup(dio);
+			break;
+		}
+	} /* end iovec loop */
+
+	if (ret == -ENOTBLK && rw == WRITE) {
+		/*
+		 * The remaining part of the request will be
+		 * be handled by buffered I/O when we return
+		 */
+		ret = 0;
+	}
+	/*
+	 * There may be some unwritten disk at the end of a part-written
+	 * fs-block-sized block.  Go zero that now.
+	 */
+	dio_zero_block(dio, 1);
+
+	if (dio->cur_page) {
+		ret2 = dio_send_cur_page(dio);
+		if (ret == 0)
+			ret = ret2;
+		page_cache_release(dio->cur_page);
+		dio->cur_page = NULL;
+	}
+	if (dio->bio)
+		dio_bio_submit(dio);
+
+	/*
+	 * It is possible that, we return short IO due to end of file.
+	 * In that case, we need to release all the pages we got hold on.
+	 */
+	dio_cleanup(dio);
+
+	/*
+	 * All block lookups have been performed. For READ requests
+	 * we can let i_sem go now that its achieved its purpose
+	 * of protecting us from looking up uninitialized blocks.
+	 */
+	if ((rw == READ) && (dio->lock_type == DIO_LOCKING))
+		up(&dio->inode->i_sem);
+
+	/*
+	 * OK, all BIOs are submitted, so we can decrement bio_count to truly
+	 * reflect the number of to-be-processed BIOs.
+	 */
+	if (dio->is_async) {
+		int should_wait = 0;
+
+		if (dio->result < dio->size && rw == WRITE) {
+			dio->waiter = current;
+			should_wait = 1;
+		}
+		if (ret == 0)
+			ret = dio->result;
+		finished_one_bio(dio);		/* This can free the dio */
+		blk_run_address_space(inode->i_mapping);
+		if (should_wait) {
+			unsigned long flags;
+			/*
+			 * Wait for already issued I/O to drain out and
+			 * release its references to user-space pages
+			 * before returning to fallback on buffered I/O
+			 */
+
+			spin_lock_irqsave(&dio->bio_lock, flags);
+			set_current_state(TASK_UNINTERRUPTIBLE);
+			while (dio->bio_count) {
+				spin_unlock_irqrestore(&dio->bio_lock, flags);
+				io_schedule();
+				spin_lock_irqsave(&dio->bio_lock, flags);
+				set_current_state(TASK_UNINTERRUPTIBLE);
+			}
+			spin_unlock_irqrestore(&dio->bio_lock, flags);
+			set_current_state(TASK_RUNNING);
+			kfree(dio);
+		}
+	} else {
+		ssize_t transferred = 0;
+
+		finished_one_bio(dio);
+		ret2 = dio_await_completion(dio);
+		if (ret == 0)
+			ret = ret2;
+		if (ret == 0)
+			ret = dio->page_errors;
+		if (dio->result) {
+			loff_t i_size = i_size_read(inode);
+
+			transferred = dio->result;
+			/*
+			 * Adjust the return value if the read crossed a
+			 * non-block-aligned EOF.
+			 */
+			if (rw == READ && (offset + transferred > i_size))
+				transferred = i_size - offset;
+		}
+		dio_complete(dio, offset, transferred);
+		if (ret == 0)
+			ret = transferred;
+
+		/* We could have also come here on an AIO file extend */
+		if (!is_sync_kiocb(iocb) && rw == WRITE &&
+		    ret >= 0 && dio->result == dio->size)
+			/*
+			 * For AIO writes where we have completed the
+			 * i/o, we have to mark the the aio complete.
+			 */
+			aio_complete(iocb, ret, 0);
+		kfree(dio);
+	}
+	return ret;
+}
+
+/*
+ * This is a library function for use by filesystem drivers.
+ * The locking rules are governed by the dio_lock_type parameter.
+ *
+ * DIO_NO_LOCKING (no locking, for raw block device access)
+ * For writes, i_sem is not held on entry; it is never taken.
+ *
+ * DIO_LOCKING (simple locking for regular files)
+ * For writes we are called under i_sem and return with i_sem held, even though
+ * it is internally dropped.
+ * For reads, i_sem is not held on entry, but it is taken and dropped before
+ * returning.
+ *
+ * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of
+ *	uninitialised data, allowing parallel direct readers and writers)
+ * For writes we are called without i_sem, return without it, never touch it.
+ * For reads, i_sem is held on entry and will be released before returning.
+ *
+ * Additional i_alloc_sem locking requirements described inline below.
+ */
+ssize_t
+__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
+	struct block_device *bdev, const struct iovec *iov, loff_t offset, 
+	unsigned long nr_segs, get_blocks_t get_blocks, dio_iodone_t end_io,
+	int dio_lock_type)
+{
+	int seg;
+	size_t size;
+	unsigned long addr;
+	unsigned blkbits = inode->i_blkbits;
+	unsigned bdev_blkbits = 0;
+	unsigned blocksize_mask = (1 << blkbits) - 1;
+	ssize_t retval = -EINVAL;
+	loff_t end = offset;
+	struct dio *dio;
+	int reader_with_isem = (rw == READ && dio_lock_type == DIO_OWN_LOCKING);
+
+	if (rw & WRITE)
+		current->flags |= PF_SYNCWRITE;
+
+	if (bdev)
+		bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev));
+
+	if (offset & blocksize_mask) {
+		if (bdev)
+			 blkbits = bdev_blkbits;
+		blocksize_mask = (1 << blkbits) - 1;
+		if (offset & blocksize_mask)
+			goto out;
+	}
+
+	/* Check the memory alignment.  Blocks cannot straddle pages */
+	for (seg = 0; seg < nr_segs; seg++) {
+		addr = (unsigned long)iov[seg].iov_base;
+		size = iov[seg].iov_len;
+		end += size;
+		if ((addr & blocksize_mask) || (size & blocksize_mask))  {
+			if (bdev)
+				 blkbits = bdev_blkbits;
+			blocksize_mask = (1 << blkbits) - 1;
+			if ((addr & blocksize_mask) || (size & blocksize_mask))  
+				goto out;
+		}
+	}
+
+	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
+	retval = -ENOMEM;
+	if (!dio)
+		goto out;
+
+	/*
+	 * For block device access DIO_NO_LOCKING is used,
+	 *	neither readers nor writers do any locking at all
+	 * For regular files using DIO_LOCKING,
+	 *	readers need to grab i_sem and i_alloc_sem
+	 *	writers need to grab i_alloc_sem only (i_sem is already held)
+	 * For regular files using DIO_OWN_LOCKING,
+	 *	neither readers nor writers take any locks here
+	 *	(i_sem is already held and release for writers here)
+	 */
+	dio->lock_type = dio_lock_type;
+	if (dio_lock_type != DIO_NO_LOCKING) {
+		/* watch out for a 0 len io from a tricksy fs */
+		if (rw == READ && end > offset) {
+			struct address_space *mapping;
+
+			mapping = iocb->ki_filp->f_mapping;
+			if (dio_lock_type != DIO_OWN_LOCKING) {
+				down(&inode->i_sem);
+				reader_with_isem = 1;
+			}
+
+			retval = filemap_write_and_wait_range(mapping, offset,
+							      end - 1);
+			if (retval) {
+				kfree(dio);
+				goto out;
+			}
+
+			if (dio_lock_type == DIO_OWN_LOCKING) {
+				up(&inode->i_sem);
+				reader_with_isem = 0;
+			}
+		}
+
+		if (dio_lock_type == DIO_LOCKING)
+			down_read(&inode->i_alloc_sem);
+	}
+
+	/*
+	 * For file extending writes updating i_size before data
+	 * writeouts complete can expose uninitialized blocks. So
+	 * even for AIO, we need to wait for i/o to complete before
+	 * returning in this case.
+	 */
+	dio->is_async = !is_sync_kiocb(iocb) && !((rw == WRITE) &&
+		(end > i_size_read(inode)));
+
+	retval = direct_io_worker(rw, iocb, inode, iov, offset,
+				nr_segs, blkbits, get_blocks, end_io, dio);
+
+	if (rw == READ && dio_lock_type == DIO_LOCKING)
+		reader_with_isem = 0;
+
+out:
+	if (reader_with_isem)
+		up(&inode->i_sem);
+	if (rw & WRITE)
+		current->flags &= ~PF_SYNCWRITE;
+	return retval;
+}
+EXPORT_SYMBOL(__blockdev_direct_IO);