Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/drivers/scsi/cyberstorm.c b/drivers/scsi/cyberstorm.c
new file mode 100644
index 0000000..bdbca85d
--- /dev/null
+++ b/drivers/scsi/cyberstorm.c
@@ -0,0 +1,377 @@
+/* cyberstorm.c: Driver for CyberStorm SCSI Controller.
+ *
+ * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk)
+ *
+ * The CyberStorm SCSI driver is based on David S. Miller's ESP driver
+ * for the Sparc computers. 
+ * 
+ * This work was made possible by Phase5 who willingly (and most generously)
+ * supported me with hardware and all the information I needed.
+ */
+
+/* TODO:
+ *
+ * 1) Figure out how to make a cleaner merge with the sparc driver with regard
+ *    to the caches and the Sparc MMU mapping.
+ * 2) Make as few routines required outside the generic driver. A lot of the
+ *    routines in this file used to be inline!
+ */
+
+#include <linux/module.h>
+
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/delay.h>
+#include <linux/types.h>
+#include <linux/string.h>
+#include <linux/slab.h>
+#include <linux/blkdev.h>
+#include <linux/proc_fs.h>
+#include <linux/stat.h>
+#include <linux/interrupt.h>
+
+#include "scsi.h"
+#include <scsi/scsi_host.h>
+#include "NCR53C9x.h"
+
+#include <linux/zorro.h>
+#include <asm/irq.h>
+#include <asm/amigaints.h>
+#include <asm/amigahw.h>
+
+#include <asm/pgtable.h>
+
+/* The controller registers can be found in the Z2 config area at these
+ * offsets:
+ */
+#define CYBER_ESP_ADDR 0xf400
+#define CYBER_DMA_ADDR 0xf800
+
+
+/* The CyberStorm DMA interface */
+struct cyber_dma_registers {
+	volatile unsigned char dma_addr0;	/* DMA address (MSB) [0x000] */
+	unsigned char dmapad1[1];
+	volatile unsigned char dma_addr1;	/* DMA address       [0x002] */
+	unsigned char dmapad2[1];
+	volatile unsigned char dma_addr2;	/* DMA address       [0x004] */
+	unsigned char dmapad3[1];
+	volatile unsigned char dma_addr3;	/* DMA address (LSB) [0x006] */
+	unsigned char dmapad4[0x3fb];
+	volatile unsigned char cond_reg;        /* DMA cond    (ro)  [0x402] */
+#define ctrl_reg  cond_reg			/* DMA control (wo)  [0x402] */
+};
+
+/* DMA control bits */
+#define CYBER_DMA_LED    0x80	/* HD led control 1 = on */
+#define CYBER_DMA_WRITE  0x40	/* DMA direction. 1 = write */
+#define CYBER_DMA_Z3     0x20	/* 16 (Z2) or 32 (CHIP/Z3) bit DMA transfer */
+
+/* DMA status bits */
+#define CYBER_DMA_HNDL_INTR 0x80	/* DMA IRQ pending? */
+
+/* The bits below appears to be Phase5 Debug bits only; they were not
+ * described by Phase5 so using them may seem a bit stupid...
+ */
+#define CYBER_HOST_ID 0x02	/* If set, host ID should be 7, otherwise
+				 * it should be 6.
+				 */
+#define CYBER_SLOW_CABLE 0x08	/* If *not* set, assume SLOW_CABLE */
+
+static int  dma_bytes_sent(struct NCR_ESP *esp, int fifo_count);
+static int  dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp);
+static void dma_dump_state(struct NCR_ESP *esp);
+static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length);
+static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length);
+static void dma_ints_off(struct NCR_ESP *esp);
+static void dma_ints_on(struct NCR_ESP *esp);
+static int  dma_irq_p(struct NCR_ESP *esp);
+static void dma_led_off(struct NCR_ESP *esp);
+static void dma_led_on(struct NCR_ESP *esp);
+static int  dma_ports_p(struct NCR_ESP *esp);
+static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write);
+
+static unsigned char ctrl_data = 0;	/* Keep backup of the stuff written
+				 * to ctrl_reg. Always write a copy
+				 * to this register when writing to
+				 * the hardware register!
+				 */
+
+static volatile unsigned char cmd_buffer[16];
+				/* This is where all commands are put
+				 * before they are transferred to the ESP chip
+				 * via PIO.
+				 */
+
+/***************************************************************** Detection */
+int __init cyber_esp_detect(Scsi_Host_Template *tpnt)
+{
+	struct NCR_ESP *esp;
+	struct zorro_dev *z = NULL;
+	unsigned long address;
+
+	while ((z = zorro_find_device(ZORRO_WILDCARD, z))) {
+	    unsigned long board = z->resource.start;
+	    if ((z->id == ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM ||
+		 z->id == ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060) &&
+		request_mem_region(board+CYBER_ESP_ADDR,
+		    		   sizeof(struct ESP_regs), "NCR53C9x")) {
+		/* Figure out if this is a CyberStorm or really a 
+		 * Fastlane/Blizzard Mk II by looking at the board size.
+		 * CyberStorm maps 64kB
+		 * (ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM does anyway)
+		 */
+		if(z->resource.end-board != 0xffff) {
+			release_mem_region(board+CYBER_ESP_ADDR,
+					   sizeof(struct ESP_regs));
+			return 0;
+		}
+		esp = esp_allocate(tpnt, (void *)board+CYBER_ESP_ADDR);
+
+		/* Do command transfer with programmed I/O */
+		esp->do_pio_cmds = 1;
+
+		/* Required functions */
+		esp->dma_bytes_sent = &dma_bytes_sent;
+		esp->dma_can_transfer = &dma_can_transfer;
+		esp->dma_dump_state = &dma_dump_state;
+		esp->dma_init_read = &dma_init_read;
+		esp->dma_init_write = &dma_init_write;
+		esp->dma_ints_off = &dma_ints_off;
+		esp->dma_ints_on = &dma_ints_on;
+		esp->dma_irq_p = &dma_irq_p;
+		esp->dma_ports_p = &dma_ports_p;
+		esp->dma_setup = &dma_setup;
+
+		/* Optional functions */
+		esp->dma_barrier = 0;
+		esp->dma_drain = 0;
+		esp->dma_invalidate = 0;
+		esp->dma_irq_entry = 0;
+		esp->dma_irq_exit = 0;
+		esp->dma_led_on = &dma_led_on;
+		esp->dma_led_off = &dma_led_off;
+		esp->dma_poll = 0;
+		esp->dma_reset = 0;
+
+		/* SCSI chip speed */
+		esp->cfreq = 40000000;
+
+		/* The DMA registers on the CyberStorm are mapped
+		 * relative to the device (i.e. in the same Zorro
+		 * I/O block).
+		 */
+		address = (unsigned long)ZTWO_VADDR(board);
+		esp->dregs = (void *)(address + CYBER_DMA_ADDR);
+
+		/* ESP register base */
+		esp->eregs = (struct ESP_regs *)(address + CYBER_ESP_ADDR);
+		
+		/* Set the command buffer */
+		esp->esp_command = cmd_buffer;
+		esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer);
+
+		esp->irq = IRQ_AMIGA_PORTS;
+		request_irq(IRQ_AMIGA_PORTS, esp_intr, SA_SHIRQ,
+			    "CyberStorm SCSI", esp->ehost);
+		/* Figure out our scsi ID on the bus */
+		/* The DMA cond flag contains a hardcoded jumper bit
+		 * which can be used to select host number 6 or 7.
+		 * However, even though it may change, we use a hardcoded
+		 * value of 7.
+		 */
+		esp->scsi_id = 7;
+		
+		/* We don't have a differential SCSI-bus. */
+		esp->diff = 0;
+
+		esp_initialize(esp);
+
+		printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use);
+		esps_running = esps_in_use;
+		return esps_in_use;
+	    }
+	}
+	return 0;
+}
+
+/************************************************************* DMA Functions */
+static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count)
+{
+	/* Since the CyberStorm DMA is fully dedicated to the ESP chip,
+	 * the number of bytes sent (to the ESP chip) equals the number
+	 * of bytes in the FIFO - there is no buffering in the DMA controller.
+	 * XXXX Do I read this right? It is from host to ESP, right?
+	 */
+	return fifo_count;
+}
+
+static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp)
+{
+	/* I don't think there's any limit on the CyberDMA. So we use what
+	 * the ESP chip can handle (24 bit).
+	 */
+	unsigned long sz = sp->SCp.this_residual;
+	if(sz > 0x1000000)
+		sz = 0x1000000;
+	return sz;
+}
+
+static void dma_dump_state(struct NCR_ESP *esp)
+{
+	ESPLOG(("esp%d: dma -- cond_reg<%02x>\n",
+		esp->esp_id, ((struct cyber_dma_registers *)
+			      (esp->dregs))->cond_reg));
+	ESPLOG(("intreq:<%04x>, intena:<%04x>\n",
+		custom.intreqr, custom.intenar));
+}
+
+static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length)
+{
+	struct cyber_dma_registers *dregs = 
+		(struct cyber_dma_registers *) esp->dregs;
+
+	cache_clear(addr, length);
+
+	addr &= ~(1);
+	dregs->dma_addr0 = (addr >> 24) & 0xff;
+	dregs->dma_addr1 = (addr >> 16) & 0xff;
+	dregs->dma_addr2 = (addr >>  8) & 0xff;
+	dregs->dma_addr3 = (addr      ) & 0xff;
+	ctrl_data &= ~(CYBER_DMA_WRITE);
+
+	/* Check if physical address is outside Z2 space and of
+	 * block length/block aligned in memory. If this is the
+	 * case, enable 32 bit transfer. In all other cases, fall back
+	 * to 16 bit transfer.
+	 * Obviously 32 bit transfer should be enabled if the DMA address
+	 * and length are 32 bit aligned. However, this leads to some
+	 * strange behavior. Even 64 bit aligned addr/length fails.
+	 * Until I've found a reason for this, 32 bit transfer is only
+	 * used for full-block transfers (1kB).
+	 *							-jskov
+	 */
+#if 0
+	if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) &&
+						(addr < 0xff0000)))
+		ctrl_data &= ~(CYBER_DMA_Z3);	/* Z2, do 16 bit DMA */
+	else
+		ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */
+#else
+	ctrl_data &= ~(CYBER_DMA_Z3);	/* Z2, do 16 bit DMA */
+#endif
+	dregs->ctrl_reg = ctrl_data;
+}
+
+static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length)
+{
+	struct cyber_dma_registers *dregs = 
+		(struct cyber_dma_registers *) esp->dregs;
+
+	cache_push(addr, length);
+
+	addr |= 1;
+	dregs->dma_addr0 = (addr >> 24) & 0xff;
+	dregs->dma_addr1 = (addr >> 16) & 0xff;
+	dregs->dma_addr2 = (addr >>  8) & 0xff;
+	dregs->dma_addr3 = (addr      ) & 0xff;
+	ctrl_data |= CYBER_DMA_WRITE;
+
+	/* See comment above */
+#if 0
+	if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) &&
+						(addr < 0xff0000)))
+		ctrl_data &= ~(CYBER_DMA_Z3);	/* Z2, do 16 bit DMA */
+	else
+		ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */
+#else
+	ctrl_data &= ~(CYBER_DMA_Z3);	/* Z2, do 16 bit DMA */
+#endif
+	dregs->ctrl_reg = ctrl_data;
+}
+
+static void dma_ints_off(struct NCR_ESP *esp)
+{
+	disable_irq(esp->irq);
+}
+
+static void dma_ints_on(struct NCR_ESP *esp)
+{
+	enable_irq(esp->irq);
+}
+
+static int dma_irq_p(struct NCR_ESP *esp)
+{
+	/* It's important to check the DMA IRQ bit in the correct way! */
+	return ((esp_read(esp->eregs->esp_status) & ESP_STAT_INTR) &&
+		((((struct cyber_dma_registers *)(esp->dregs))->cond_reg) &
+		 CYBER_DMA_HNDL_INTR));
+}
+
+static void dma_led_off(struct NCR_ESP *esp)
+{
+	ctrl_data &= ~CYBER_DMA_LED;
+	((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data;
+}
+
+static void dma_led_on(struct NCR_ESP *esp)
+{
+	ctrl_data |= CYBER_DMA_LED;
+	((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data;
+}
+
+static int dma_ports_p(struct NCR_ESP *esp)
+{
+	return ((custom.intenar) & IF_PORTS);
+}
+
+static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write)
+{
+	/* On the Sparc, DMA_ST_WRITE means "move data from device to memory"
+	 * so when (write) is true, it actually means READ!
+	 */
+	if(write){
+		dma_init_read(esp, addr, count);
+	} else {
+		dma_init_write(esp, addr, count);
+	}
+}
+
+#define HOSTS_C
+
+int cyber_esp_release(struct Scsi_Host *instance)
+{
+#ifdef MODULE
+	unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev;
+
+	esp_deallocate((struct NCR_ESP *)instance->hostdata);
+	esp_release();
+	release_mem_region(address, sizeof(struct ESP_regs));
+	free_irq(IRQ_AMIGA_PORTS, esp_intr);
+#endif
+	return 1;
+}
+
+
+static Scsi_Host_Template driver_template = {
+	.proc_name		= "esp-cyberstorm",
+	.proc_info		= esp_proc_info,
+	.name			= "CyberStorm SCSI",
+	.detect			= cyber_esp_detect,
+	.slave_alloc		= esp_slave_alloc,
+	.slave_destroy		= esp_slave_destroy,
+	.release		= cyber_esp_release,
+	.queuecommand		= esp_queue,
+	.eh_abort_handler	= esp_abort,
+	.eh_bus_reset_handler	= esp_reset,
+	.can_queue		= 7,
+	.this_id		= 7,
+	.sg_tablesize		= SG_ALL,
+	.cmd_per_lun		= 1,
+	.use_clustering		= ENABLE_CLUSTERING
+};
+
+
+#include "scsi_module.c"
+
+MODULE_LICENSE("GPL");