Luis R. Rodriguez | f078f20 | 2008-08-04 00:16:41 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2008 Atheros Communications Inc. |
| 3 | * |
| 4 | * Permission to use, copy, modify, and/or distribute this software for any |
| 5 | * purpose with or without fee is hereby granted, provided that the above |
| 6 | * copyright notice and this permission notice appear in all copies. |
| 7 | * |
| 8 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 9 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 10 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 11 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 12 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 13 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 14 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 15 | */ |
| 16 | |
| 17 | /* |
| 18 | * Implementation of transmit path. |
| 19 | */ |
| 20 | |
| 21 | #include "core.h" |
| 22 | |
| 23 | #define BITS_PER_BYTE 8 |
| 24 | #define OFDM_PLCP_BITS 22 |
| 25 | #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f) |
| 26 | #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) |
| 27 | #define L_STF 8 |
| 28 | #define L_LTF 8 |
| 29 | #define L_SIG 4 |
| 30 | #define HT_SIG 8 |
| 31 | #define HT_STF 4 |
| 32 | #define HT_LTF(_ns) (4 * (_ns)) |
| 33 | #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */ |
| 34 | #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */ |
| 35 | #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) |
| 36 | #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) |
| 37 | |
| 38 | #define OFDM_SIFS_TIME 16 |
| 39 | |
| 40 | static u32 bits_per_symbol[][2] = { |
| 41 | /* 20MHz 40MHz */ |
| 42 | { 26, 54 }, /* 0: BPSK */ |
| 43 | { 52, 108 }, /* 1: QPSK 1/2 */ |
| 44 | { 78, 162 }, /* 2: QPSK 3/4 */ |
| 45 | { 104, 216 }, /* 3: 16-QAM 1/2 */ |
| 46 | { 156, 324 }, /* 4: 16-QAM 3/4 */ |
| 47 | { 208, 432 }, /* 5: 64-QAM 2/3 */ |
| 48 | { 234, 486 }, /* 6: 64-QAM 3/4 */ |
| 49 | { 260, 540 }, /* 7: 64-QAM 5/6 */ |
| 50 | { 52, 108 }, /* 8: BPSK */ |
| 51 | { 104, 216 }, /* 9: QPSK 1/2 */ |
| 52 | { 156, 324 }, /* 10: QPSK 3/4 */ |
| 53 | { 208, 432 }, /* 11: 16-QAM 1/2 */ |
| 54 | { 312, 648 }, /* 12: 16-QAM 3/4 */ |
| 55 | { 416, 864 }, /* 13: 64-QAM 2/3 */ |
| 56 | { 468, 972 }, /* 14: 64-QAM 3/4 */ |
| 57 | { 520, 1080 }, /* 15: 64-QAM 5/6 */ |
| 58 | }; |
| 59 | |
| 60 | #define IS_HT_RATE(_rate) ((_rate) & 0x80) |
| 61 | |
| 62 | /* |
| 63 | * Insert a chain of ath_buf (descriptors) on a multicast txq |
| 64 | * but do NOT start tx DMA on this queue. |
| 65 | * NB: must be called with txq lock held |
| 66 | */ |
| 67 | |
| 68 | static void ath_tx_mcastqaddbuf(struct ath_softc *sc, |
| 69 | struct ath_txq *txq, |
| 70 | struct list_head *head) |
| 71 | { |
| 72 | struct ath_hal *ah = sc->sc_ah; |
| 73 | struct ath_buf *bf; |
| 74 | |
| 75 | if (list_empty(head)) |
| 76 | return; |
| 77 | |
| 78 | /* |
| 79 | * Insert the frame on the outbound list and |
| 80 | * pass it on to the hardware. |
| 81 | */ |
| 82 | bf = list_first_entry(head, struct ath_buf, list); |
| 83 | |
| 84 | /* |
| 85 | * The CAB queue is started from the SWBA handler since |
| 86 | * frames only go out on DTIM and to avoid possible races. |
| 87 | */ |
| 88 | ath9k_hw_set_interrupts(ah, 0); |
| 89 | |
| 90 | /* |
| 91 | * If there is anything in the mcastq, we want to set |
| 92 | * the "more data" bit in the last item in the queue to |
| 93 | * indicate that there is "more data". It makes sense to add |
| 94 | * it here since you are *always* going to have |
| 95 | * more data when adding to this queue, no matter where |
| 96 | * you call from. |
| 97 | */ |
| 98 | |
| 99 | if (txq->axq_depth) { |
| 100 | struct ath_buf *lbf; |
| 101 | struct ieee80211_hdr *hdr; |
| 102 | |
| 103 | /* |
| 104 | * Add the "more data flag" to the last frame |
| 105 | */ |
| 106 | |
| 107 | lbf = list_entry(txq->axq_q.prev, struct ath_buf, list); |
| 108 | hdr = (struct ieee80211_hdr *) |
| 109 | ((struct sk_buff *)(lbf->bf_mpdu))->data; |
| 110 | hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); |
| 111 | } |
| 112 | |
| 113 | /* |
| 114 | * Now, concat the frame onto the queue |
| 115 | */ |
| 116 | list_splice_tail_init(head, &txq->axq_q); |
| 117 | txq->axq_depth++; |
| 118 | txq->axq_totalqueued++; |
| 119 | txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list); |
| 120 | |
| 121 | DPRINTF(sc, ATH_DBG_QUEUE, |
| 122 | "%s: txq depth = %d\n", __func__, txq->axq_depth); |
| 123 | if (txq->axq_link != NULL) { |
| 124 | *txq->axq_link = bf->bf_daddr; |
| 125 | DPRINTF(sc, ATH_DBG_XMIT, |
| 126 | "%s: link[%u](%p)=%llx (%p)\n", |
| 127 | __func__, |
| 128 | txq->axq_qnum, txq->axq_link, |
| 129 | ito64(bf->bf_daddr), bf->bf_desc); |
| 130 | } |
| 131 | txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link); |
| 132 | ath9k_hw_set_interrupts(ah, sc->sc_imask); |
| 133 | } |
| 134 | |
| 135 | /* |
| 136 | * Insert a chain of ath_buf (descriptors) on a txq and |
| 137 | * assume the descriptors are already chained together by caller. |
| 138 | * NB: must be called with txq lock held |
| 139 | */ |
| 140 | |
| 141 | static void ath_tx_txqaddbuf(struct ath_softc *sc, |
| 142 | struct ath_txq *txq, struct list_head *head) |
| 143 | { |
| 144 | struct ath_hal *ah = sc->sc_ah; |
| 145 | struct ath_buf *bf; |
| 146 | /* |
| 147 | * Insert the frame on the outbound list and |
| 148 | * pass it on to the hardware. |
| 149 | */ |
| 150 | |
| 151 | if (list_empty(head)) |
| 152 | return; |
| 153 | |
| 154 | bf = list_first_entry(head, struct ath_buf, list); |
| 155 | |
| 156 | list_splice_tail_init(head, &txq->axq_q); |
| 157 | txq->axq_depth++; |
| 158 | txq->axq_totalqueued++; |
| 159 | txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list); |
| 160 | |
| 161 | DPRINTF(sc, ATH_DBG_QUEUE, |
| 162 | "%s: txq depth = %d\n", __func__, txq->axq_depth); |
| 163 | |
| 164 | if (txq->axq_link == NULL) { |
| 165 | ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); |
| 166 | DPRINTF(sc, ATH_DBG_XMIT, |
| 167 | "%s: TXDP[%u] = %llx (%p)\n", |
| 168 | __func__, txq->axq_qnum, |
| 169 | ito64(bf->bf_daddr), bf->bf_desc); |
| 170 | } else { |
| 171 | *txq->axq_link = bf->bf_daddr; |
| 172 | DPRINTF(sc, ATH_DBG_XMIT, "%s: link[%u] (%p)=%llx (%p)\n", |
| 173 | __func__, |
| 174 | txq->axq_qnum, txq->axq_link, |
| 175 | ito64(bf->bf_daddr), bf->bf_desc); |
| 176 | } |
| 177 | txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link); |
| 178 | ath9k_hw_txstart(ah, txq->axq_qnum); |
| 179 | } |
| 180 | |
| 181 | /* Get transmit rate index using rate in Kbps */ |
| 182 | |
| 183 | static int ath_tx_findindex(const struct ath9k_rate_table *rt, int rate) |
| 184 | { |
| 185 | int i; |
| 186 | int ndx = 0; |
| 187 | |
| 188 | for (i = 0; i < rt->rateCount; i++) { |
| 189 | if (rt->info[i].rateKbps == rate) { |
| 190 | ndx = i; |
| 191 | break; |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | return ndx; |
| 196 | } |
| 197 | |
| 198 | /* Check if it's okay to send out aggregates */ |
| 199 | |
| 200 | static int ath_aggr_query(struct ath_softc *sc, |
| 201 | struct ath_node *an, u8 tidno) |
| 202 | { |
| 203 | struct ath_atx_tid *tid; |
| 204 | tid = ATH_AN_2_TID(an, tidno); |
| 205 | |
| 206 | if (tid->addba_exchangecomplete || tid->addba_exchangeinprogress) |
| 207 | return 1; |
| 208 | else |
| 209 | return 0; |
| 210 | } |
| 211 | |
| 212 | static enum ath9k_pkt_type get_hal_packet_type(struct ieee80211_hdr *hdr) |
| 213 | { |
| 214 | enum ath9k_pkt_type htype; |
| 215 | __le16 fc; |
| 216 | |
| 217 | fc = hdr->frame_control; |
| 218 | |
| 219 | /* Calculate Atheros packet type from IEEE80211 packet header */ |
| 220 | |
| 221 | if (ieee80211_is_beacon(fc)) |
| 222 | htype = ATH9K_PKT_TYPE_BEACON; |
| 223 | else if (ieee80211_is_probe_resp(fc)) |
| 224 | htype = ATH9K_PKT_TYPE_PROBE_RESP; |
| 225 | else if (ieee80211_is_atim(fc)) |
| 226 | htype = ATH9K_PKT_TYPE_ATIM; |
| 227 | else if (ieee80211_is_pspoll(fc)) |
| 228 | htype = ATH9K_PKT_TYPE_PSPOLL; |
| 229 | else |
| 230 | htype = ATH9K_PKT_TYPE_NORMAL; |
| 231 | |
| 232 | return htype; |
| 233 | } |
| 234 | |
| 235 | static void fill_min_rates(struct sk_buff *skb, struct ath_tx_control *txctl) |
| 236 | { |
| 237 | struct ieee80211_hdr *hdr; |
| 238 | struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| 239 | struct ath_tx_info_priv *tx_info_priv; |
| 240 | __le16 fc; |
| 241 | |
| 242 | hdr = (struct ieee80211_hdr *)skb->data; |
| 243 | fc = hdr->frame_control; |
| 244 | tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; |
| 245 | |
| 246 | if (ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc)) { |
| 247 | txctl->use_minrate = 1; |
| 248 | txctl->min_rate = tx_info_priv->min_rate; |
| 249 | } else if (ieee80211_is_data(fc)) { |
| 250 | if (ieee80211_is_nullfunc(fc) || |
| 251 | /* Port Access Entity (IEEE 802.1X) */ |
| 252 | (skb->protocol == cpu_to_be16(0x888E))) { |
| 253 | txctl->use_minrate = 1; |
| 254 | txctl->min_rate = tx_info_priv->min_rate; |
| 255 | } |
| 256 | if (is_multicast_ether_addr(hdr->addr1)) |
| 257 | txctl->mcast_rate = tx_info_priv->min_rate; |
| 258 | } |
| 259 | |
| 260 | } |
| 261 | |
| 262 | /* This function will setup additional txctl information, mostly rate stuff */ |
| 263 | /* FIXME: seqno, ps */ |
| 264 | static int ath_tx_prepare(struct ath_softc *sc, |
| 265 | struct sk_buff *skb, |
| 266 | struct ath_tx_control *txctl) |
| 267 | { |
| 268 | struct ieee80211_hw *hw = sc->hw; |
| 269 | struct ieee80211_hdr *hdr; |
| 270 | struct ath_rc_series *rcs; |
| 271 | struct ath_txq *txq = NULL; |
| 272 | const struct ath9k_rate_table *rt; |
| 273 | struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| 274 | struct ath_tx_info_priv *tx_info_priv; |
| 275 | int hdrlen; |
| 276 | u8 rix, antenna; |
| 277 | __le16 fc; |
| 278 | u8 *qc; |
| 279 | |
| 280 | memset(txctl, 0, sizeof(struct ath_tx_control)); |
| 281 | |
| 282 | txctl->dev = sc; |
| 283 | hdr = (struct ieee80211_hdr *)skb->data; |
| 284 | hdrlen = ieee80211_get_hdrlen_from_skb(skb); |
| 285 | fc = hdr->frame_control; |
| 286 | |
| 287 | rt = sc->sc_currates; |
| 288 | BUG_ON(!rt); |
| 289 | |
| 290 | /* Fill misc fields */ |
| 291 | |
| 292 | spin_lock_bh(&sc->node_lock); |
| 293 | txctl->an = ath_node_get(sc, hdr->addr1); |
| 294 | /* create a temp node, if the node is not there already */ |
| 295 | if (!txctl->an) |
| 296 | txctl->an = ath_node_attach(sc, hdr->addr1, 0); |
| 297 | spin_unlock_bh(&sc->node_lock); |
| 298 | |
| 299 | if (ieee80211_is_data_qos(fc)) { |
| 300 | qc = ieee80211_get_qos_ctl(hdr); |
| 301 | txctl->tidno = qc[0] & 0xf; |
| 302 | } |
| 303 | |
| 304 | txctl->if_id = 0; |
| 305 | txctl->nextfraglen = 0; |
| 306 | txctl->frmlen = skb->len + FCS_LEN - (hdrlen & 3); |
| 307 | txctl->txpower = MAX_RATE_POWER; /* FIXME */ |
| 308 | |
| 309 | /* Fill Key related fields */ |
| 310 | |
| 311 | txctl->keytype = ATH9K_KEY_TYPE_CLEAR; |
| 312 | txctl->keyix = ATH9K_TXKEYIX_INVALID; |
| 313 | |
| 314 | if (tx_info->control.hw_key) { |
| 315 | txctl->keyix = tx_info->control.hw_key->hw_key_idx; |
| 316 | txctl->frmlen += tx_info->control.icv_len; |
| 317 | |
| 318 | if (sc->sc_keytype == ATH9K_CIPHER_WEP) |
| 319 | txctl->keytype = ATH9K_KEY_TYPE_WEP; |
| 320 | else if (sc->sc_keytype == ATH9K_CIPHER_TKIP) |
| 321 | txctl->keytype = ATH9K_KEY_TYPE_TKIP; |
| 322 | else if (sc->sc_keytype == ATH9K_CIPHER_AES_CCM) |
| 323 | txctl->keytype = ATH9K_KEY_TYPE_AES; |
| 324 | } |
| 325 | |
| 326 | /* Fill packet type */ |
| 327 | |
| 328 | txctl->atype = get_hal_packet_type(hdr); |
| 329 | |
| 330 | /* Fill qnum */ |
| 331 | |
| 332 | txctl->qnum = ath_get_hal_qnum(skb_get_queue_mapping(skb), sc); |
| 333 | txq = &sc->sc_txq[txctl->qnum]; |
| 334 | spin_lock_bh(&txq->axq_lock); |
| 335 | |
| 336 | /* Try to avoid running out of descriptors */ |
| 337 | if (txq->axq_depth >= (ATH_TXBUF - 20)) { |
| 338 | DPRINTF(sc, ATH_DBG_FATAL, |
| 339 | "%s: TX queue: %d is full, depth: %d\n", |
| 340 | __func__, |
| 341 | txctl->qnum, |
| 342 | txq->axq_depth); |
| 343 | ieee80211_stop_queue(hw, skb_get_queue_mapping(skb)); |
| 344 | txq->stopped = 1; |
| 345 | spin_unlock_bh(&txq->axq_lock); |
| 346 | return -1; |
| 347 | } |
| 348 | |
| 349 | spin_unlock_bh(&txq->axq_lock); |
| 350 | |
| 351 | /* Fill rate */ |
| 352 | |
| 353 | fill_min_rates(skb, txctl); |
| 354 | |
| 355 | /* Fill flags */ |
| 356 | |
| 357 | txctl->flags = ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */ |
| 358 | |
| 359 | if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) |
| 360 | tx_info->flags |= ATH9K_TXDESC_NOACK; |
| 361 | if (tx_info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) |
| 362 | tx_info->flags |= ATH9K_TXDESC_RTSENA; |
| 363 | |
| 364 | /* |
| 365 | * Setup for rate calculations. |
| 366 | */ |
| 367 | tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; |
| 368 | rcs = tx_info_priv->rcs; |
| 369 | |
| 370 | if (ieee80211_is_data(fc) && !txctl->use_minrate) { |
| 371 | |
| 372 | /* Enable HT only for DATA frames and not for EAPOL */ |
| 373 | txctl->ht = (hw->conf.ht_conf.ht_supported && |
| 374 | (tx_info->flags & IEEE80211_TX_CTL_AMPDU)); |
| 375 | |
| 376 | if (is_multicast_ether_addr(hdr->addr1)) { |
| 377 | rcs[0].rix = (u8) |
| 378 | ath_tx_findindex(rt, txctl->mcast_rate); |
| 379 | |
| 380 | /* |
| 381 | * mcast packets are not re-tried. |
| 382 | */ |
| 383 | rcs[0].tries = 1; |
| 384 | } |
| 385 | /* For HT capable stations, we save tidno for later use. |
| 386 | * We also override seqno set by upper layer with the one |
| 387 | * in tx aggregation state. |
| 388 | * |
| 389 | * First, the fragmentation stat is determined. |
| 390 | * If fragmentation is on, the sequence number is |
| 391 | * not overridden, since it has been |
| 392 | * incremented by the fragmentation routine. |
| 393 | */ |
| 394 | if (likely(!(txctl->flags & ATH9K_TXDESC_FRAG_IS_ON)) && |
| 395 | txctl->ht && sc->sc_txaggr) { |
| 396 | struct ath_atx_tid *tid; |
| 397 | |
| 398 | tid = ATH_AN_2_TID(txctl->an, txctl->tidno); |
| 399 | |
| 400 | hdr->seq_ctrl = cpu_to_le16(tid->seq_next << |
| 401 | IEEE80211_SEQ_SEQ_SHIFT); |
| 402 | txctl->seqno = tid->seq_next; |
| 403 | INCR(tid->seq_next, IEEE80211_SEQ_MAX); |
| 404 | } |
| 405 | } else { |
| 406 | /* for management and control frames, |
| 407 | * or for NULL and EAPOL frames */ |
| 408 | if (txctl->min_rate) |
| 409 | rcs[0].rix = ath_rate_findrateix(sc, txctl->min_rate); |
| 410 | else |
Sujith | 86b89ee | 2008-08-07 10:54:57 +0530 | [diff] [blame] | 411 | rcs[0].rix = 0; |
Luis R. Rodriguez | f078f20 | 2008-08-04 00:16:41 -0700 | [diff] [blame] | 412 | rcs[0].tries = ATH_MGT_TXMAXTRY; |
| 413 | } |
| 414 | rix = rcs[0].rix; |
| 415 | |
| 416 | /* |
| 417 | * Calculate duration. This logically belongs in the 802.11 |
| 418 | * layer but it lacks sufficient information to calculate it. |
| 419 | */ |
| 420 | if ((txctl->flags & ATH9K_TXDESC_NOACK) == 0 && !ieee80211_is_ctl(fc)) { |
| 421 | u16 dur; |
| 422 | /* |
| 423 | * XXX not right with fragmentation. |
| 424 | */ |
| 425 | if (sc->sc_flags & ATH_PREAMBLE_SHORT) |
| 426 | dur = rt->info[rix].spAckDuration; |
| 427 | else |
| 428 | dur = rt->info[rix].lpAckDuration; |
| 429 | |
| 430 | if (le16_to_cpu(hdr->frame_control) & |
| 431 | IEEE80211_FCTL_MOREFRAGS) { |
| 432 | dur += dur; /* Add additional 'SIFS + ACK' */ |
| 433 | |
| 434 | /* |
| 435 | ** Compute size of next fragment in order to compute |
| 436 | ** durations needed to update NAV. |
| 437 | ** The last fragment uses the ACK duration only. |
| 438 | ** Add time for next fragment. |
| 439 | */ |
| 440 | dur += ath9k_hw_computetxtime(sc->sc_ah, rt, |
| 441 | txctl->nextfraglen, |
| 442 | rix, sc->sc_flags & ATH_PREAMBLE_SHORT); |
| 443 | } |
| 444 | |
| 445 | if (ieee80211_has_morefrags(fc) || |
| 446 | (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) { |
| 447 | /* |
| 448 | ** Force hardware to use computed duration for next |
| 449 | ** fragment by disabling multi-rate retry, which |
| 450 | ** updates duration based on the multi-rate |
| 451 | ** duration table. |
| 452 | */ |
| 453 | rcs[1].tries = rcs[2].tries = rcs[3].tries = 0; |
| 454 | rcs[1].rix = rcs[2].rix = rcs[3].rix = 0; |
| 455 | /* reset tries but keep rate index */ |
| 456 | rcs[0].tries = ATH_TXMAXTRY; |
| 457 | } |
| 458 | |
| 459 | hdr->duration_id = cpu_to_le16(dur); |
| 460 | } |
| 461 | |
| 462 | /* |
| 463 | * Determine if a tx interrupt should be generated for |
| 464 | * this descriptor. We take a tx interrupt to reap |
| 465 | * descriptors when the h/w hits an EOL condition or |
| 466 | * when the descriptor is specifically marked to generate |
| 467 | * an interrupt. We periodically mark descriptors in this |
| 468 | * way to insure timely replenishing of the supply needed |
| 469 | * for sending frames. Defering interrupts reduces system |
| 470 | * load and potentially allows more concurrent work to be |
| 471 | * done but if done to aggressively can cause senders to |
| 472 | * backup. |
| 473 | * |
| 474 | * NB: use >= to deal with sc_txintrperiod changing |
| 475 | * dynamically through sysctl. |
| 476 | */ |
| 477 | spin_lock_bh(&txq->axq_lock); |
| 478 | if ((++txq->axq_intrcnt >= sc->sc_txintrperiod)) { |
| 479 | txctl->flags |= ATH9K_TXDESC_INTREQ; |
| 480 | txq->axq_intrcnt = 0; |
| 481 | } |
| 482 | spin_unlock_bh(&txq->axq_lock); |
| 483 | |
| 484 | if (is_multicast_ether_addr(hdr->addr1)) { |
| 485 | antenna = sc->sc_mcastantenna + 1; |
| 486 | sc->sc_mcastantenna = (sc->sc_mcastantenna + 1) & 0x1; |
| 487 | } else |
| 488 | antenna = sc->sc_txantenna; |
| 489 | |
| 490 | #ifdef USE_LEGACY_HAL |
| 491 | txctl->antenna = antenna; |
| 492 | #endif |
| 493 | return 0; |
| 494 | } |
| 495 | |
| 496 | /* To complete a chain of buffers associated a frame */ |
| 497 | |
| 498 | static void ath_tx_complete_buf(struct ath_softc *sc, |
| 499 | struct ath_buf *bf, |
| 500 | struct list_head *bf_q, |
| 501 | int txok, int sendbar) |
| 502 | { |
| 503 | struct sk_buff *skb = bf->bf_mpdu; |
| 504 | struct ath_xmit_status tx_status; |
| 505 | dma_addr_t *pa; |
| 506 | |
| 507 | /* |
| 508 | * Set retry information. |
| 509 | * NB: Don't use the information in the descriptor, because the frame |
| 510 | * could be software retried. |
| 511 | */ |
| 512 | tx_status.retries = bf->bf_retries; |
| 513 | tx_status.flags = 0; |
| 514 | |
| 515 | if (sendbar) |
| 516 | tx_status.flags = ATH_TX_BAR; |
| 517 | |
| 518 | if (!txok) { |
| 519 | tx_status.flags |= ATH_TX_ERROR; |
| 520 | |
| 521 | if (bf->bf_isxretried) |
| 522 | tx_status.flags |= ATH_TX_XRETRY; |
| 523 | } |
| 524 | /* Unmap this frame */ |
| 525 | pa = get_dma_mem_context(bf, bf_dmacontext); |
| 526 | pci_unmap_single(sc->pdev, |
| 527 | *pa, |
| 528 | skb->len, |
| 529 | PCI_DMA_TODEVICE); |
| 530 | /* complete this frame */ |
| 531 | ath_tx_complete(sc, skb, &tx_status, bf->bf_node); |
| 532 | |
| 533 | /* |
| 534 | * Return the list of ath_buf of this mpdu to free queue |
| 535 | */ |
| 536 | spin_lock_bh(&sc->sc_txbuflock); |
| 537 | list_splice_tail_init(bf_q, &sc->sc_txbuf); |
| 538 | spin_unlock_bh(&sc->sc_txbuflock); |
| 539 | } |
| 540 | |
| 541 | /* |
| 542 | * queue up a dest/ac pair for tx scheduling |
| 543 | * NB: must be called with txq lock held |
| 544 | */ |
| 545 | |
| 546 | static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid) |
| 547 | { |
| 548 | struct ath_atx_ac *ac = tid->ac; |
| 549 | |
| 550 | /* |
| 551 | * if tid is paused, hold off |
| 552 | */ |
| 553 | if (tid->paused) |
| 554 | return; |
| 555 | |
| 556 | /* |
| 557 | * add tid to ac atmost once |
| 558 | */ |
| 559 | if (tid->sched) |
| 560 | return; |
| 561 | |
| 562 | tid->sched = true; |
| 563 | list_add_tail(&tid->list, &ac->tid_q); |
| 564 | |
| 565 | /* |
| 566 | * add node ac to txq atmost once |
| 567 | */ |
| 568 | if (ac->sched) |
| 569 | return; |
| 570 | |
| 571 | ac->sched = true; |
| 572 | list_add_tail(&ac->list, &txq->axq_acq); |
| 573 | } |
| 574 | |
| 575 | /* pause a tid */ |
| 576 | |
| 577 | static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid) |
| 578 | { |
| 579 | struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum]; |
| 580 | |
| 581 | spin_lock_bh(&txq->axq_lock); |
| 582 | |
| 583 | tid->paused++; |
| 584 | |
| 585 | spin_unlock_bh(&txq->axq_lock); |
| 586 | } |
| 587 | |
| 588 | /* resume a tid and schedule aggregate */ |
| 589 | |
| 590 | void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid) |
| 591 | { |
| 592 | struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum]; |
| 593 | |
| 594 | ASSERT(tid->paused > 0); |
| 595 | spin_lock_bh(&txq->axq_lock); |
| 596 | |
| 597 | tid->paused--; |
| 598 | |
| 599 | if (tid->paused > 0) |
| 600 | goto unlock; |
| 601 | |
| 602 | if (list_empty(&tid->buf_q)) |
| 603 | goto unlock; |
| 604 | |
| 605 | /* |
| 606 | * Add this TID to scheduler and try to send out aggregates |
| 607 | */ |
| 608 | ath_tx_queue_tid(txq, tid); |
| 609 | ath_txq_schedule(sc, txq); |
| 610 | unlock: |
| 611 | spin_unlock_bh(&txq->axq_lock); |
| 612 | } |
| 613 | |
| 614 | /* Compute the number of bad frames */ |
| 615 | |
| 616 | static int ath_tx_num_badfrms(struct ath_softc *sc, |
| 617 | struct ath_buf *bf, int txok) |
| 618 | { |
| 619 | struct ath_node *an = bf->bf_node; |
| 620 | int isnodegone = (an->an_flags & ATH_NODE_CLEAN); |
| 621 | struct ath_buf *bf_last = bf->bf_lastbf; |
| 622 | struct ath_desc *ds = bf_last->bf_desc; |
| 623 | u16 seq_st = 0; |
| 624 | u32 ba[WME_BA_BMP_SIZE >> 5]; |
| 625 | int ba_index; |
| 626 | int nbad = 0; |
| 627 | int isaggr = 0; |
| 628 | |
| 629 | if (isnodegone || ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED) |
| 630 | return 0; |
| 631 | |
| 632 | isaggr = bf->bf_isaggr; |
| 633 | if (isaggr) { |
| 634 | seq_st = ATH_DS_BA_SEQ(ds); |
| 635 | memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3); |
| 636 | } |
| 637 | |
| 638 | while (bf) { |
| 639 | ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno); |
| 640 | if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) |
| 641 | nbad++; |
| 642 | |
| 643 | bf = bf->bf_next; |
| 644 | } |
| 645 | |
| 646 | return nbad; |
| 647 | } |
| 648 | |
| 649 | static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf) |
| 650 | { |
| 651 | struct sk_buff *skb; |
| 652 | struct ieee80211_hdr *hdr; |
| 653 | |
| 654 | bf->bf_isretried = 1; |
| 655 | bf->bf_retries++; |
| 656 | |
| 657 | skb = bf->bf_mpdu; |
| 658 | hdr = (struct ieee80211_hdr *)skb->data; |
| 659 | hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); |
| 660 | } |
| 661 | |
| 662 | /* Update block ack window */ |
| 663 | |
| 664 | static void ath_tx_update_baw(struct ath_softc *sc, |
| 665 | struct ath_atx_tid *tid, int seqno) |
| 666 | { |
| 667 | int index, cindex; |
| 668 | |
| 669 | index = ATH_BA_INDEX(tid->seq_start, seqno); |
| 670 | cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); |
| 671 | |
| 672 | tid->tx_buf[cindex] = NULL; |
| 673 | |
| 674 | while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) { |
| 675 | INCR(tid->seq_start, IEEE80211_SEQ_MAX); |
| 676 | INCR(tid->baw_head, ATH_TID_MAX_BUFS); |
| 677 | } |
| 678 | } |
| 679 | |
| 680 | /* |
| 681 | * ath_pkt_dur - compute packet duration (NB: not NAV) |
| 682 | * |
| 683 | * rix - rate index |
| 684 | * pktlen - total bytes (delims + data + fcs + pads + pad delims) |
| 685 | * width - 0 for 20 MHz, 1 for 40 MHz |
| 686 | * half_gi - to use 4us v/s 3.6 us for symbol time |
| 687 | */ |
| 688 | |
| 689 | static u32 ath_pkt_duration(struct ath_softc *sc, |
| 690 | u8 rix, |
| 691 | struct ath_buf *bf, |
| 692 | int width, |
| 693 | int half_gi, |
| 694 | bool shortPreamble) |
| 695 | { |
| 696 | const struct ath9k_rate_table *rt = sc->sc_currates; |
| 697 | u32 nbits, nsymbits, duration, nsymbols; |
| 698 | u8 rc; |
| 699 | int streams, pktlen; |
| 700 | |
| 701 | pktlen = bf->bf_isaggr ? bf->bf_al : bf->bf_frmlen; |
| 702 | rc = rt->info[rix].rateCode; |
| 703 | |
| 704 | /* |
| 705 | * for legacy rates, use old function to compute packet duration |
| 706 | */ |
| 707 | if (!IS_HT_RATE(rc)) |
| 708 | return ath9k_hw_computetxtime(sc->sc_ah, |
| 709 | rt, |
| 710 | pktlen, |
| 711 | rix, |
| 712 | shortPreamble); |
| 713 | /* |
| 714 | * find number of symbols: PLCP + data |
| 715 | */ |
| 716 | nbits = (pktlen << 3) + OFDM_PLCP_BITS; |
| 717 | nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width]; |
| 718 | nsymbols = (nbits + nsymbits - 1) / nsymbits; |
| 719 | |
| 720 | if (!half_gi) |
| 721 | duration = SYMBOL_TIME(nsymbols); |
| 722 | else |
| 723 | duration = SYMBOL_TIME_HALFGI(nsymbols); |
| 724 | |
| 725 | /* |
| 726 | * addup duration for legacy/ht training and signal fields |
| 727 | */ |
| 728 | streams = HT_RC_2_STREAMS(rc); |
| 729 | duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); |
| 730 | return duration; |
| 731 | } |
| 732 | |
| 733 | /* Rate module function to set rate related fields in tx descriptor */ |
| 734 | |
| 735 | static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf) |
| 736 | { |
| 737 | struct ath_hal *ah = sc->sc_ah; |
| 738 | const struct ath9k_rate_table *rt; |
| 739 | struct ath_desc *ds = bf->bf_desc; |
| 740 | struct ath_desc *lastds = bf->bf_lastbf->bf_desc; |
| 741 | struct ath9k_11n_rate_series series[4]; |
| 742 | int i, flags, rtsctsena = 0, dynamic_mimops = 0; |
| 743 | u32 ctsduration = 0; |
| 744 | u8 rix = 0, cix, ctsrate = 0; |
| 745 | u32 aggr_limit_with_rts = sc->sc_rtsaggrlimit; |
| 746 | struct ath_node *an = (struct ath_node *) bf->bf_node; |
| 747 | |
| 748 | /* |
| 749 | * get the cix for the lowest valid rix. |
| 750 | */ |
| 751 | rt = sc->sc_currates; |
| 752 | for (i = 4; i--;) { |
| 753 | if (bf->bf_rcs[i].tries) { |
| 754 | rix = bf->bf_rcs[i].rix; |
| 755 | break; |
| 756 | } |
| 757 | } |
| 758 | flags = (bf->bf_flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA)); |
| 759 | cix = rt->info[rix].controlRate; |
| 760 | |
| 761 | /* |
| 762 | * If 802.11g protection is enabled, determine whether |
| 763 | * to use RTS/CTS or just CTS. Note that this is only |
| 764 | * done for OFDM/HT unicast frames. |
| 765 | */ |
| 766 | if (sc->sc_protmode != PROT_M_NONE && |
| 767 | (rt->info[rix].phy == PHY_OFDM || |
| 768 | rt->info[rix].phy == PHY_HT) && |
| 769 | (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) { |
| 770 | if (sc->sc_protmode == PROT_M_RTSCTS) |
| 771 | flags = ATH9K_TXDESC_RTSENA; |
| 772 | else if (sc->sc_protmode == PROT_M_CTSONLY) |
| 773 | flags = ATH9K_TXDESC_CTSENA; |
| 774 | |
| 775 | cix = rt->info[sc->sc_protrix].controlRate; |
| 776 | rtsctsena = 1; |
| 777 | } |
| 778 | |
| 779 | /* For 11n, the default behavior is to enable RTS for |
| 780 | * hw retried frames. We enable the global flag here and |
| 781 | * let rate series flags determine which rates will actually |
| 782 | * use RTS. |
| 783 | */ |
Sujith | 60b67f5 | 2008-08-07 10:52:38 +0530 | [diff] [blame] | 784 | if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) && bf->bf_isdata) { |
Luis R. Rodriguez | f078f20 | 2008-08-04 00:16:41 -0700 | [diff] [blame] | 785 | BUG_ON(!an); |
| 786 | /* |
| 787 | * 802.11g protection not needed, use our default behavior |
| 788 | */ |
| 789 | if (!rtsctsena) |
| 790 | flags = ATH9K_TXDESC_RTSENA; |
| 791 | /* |
| 792 | * For dynamic MIMO PS, RTS needs to precede the first aggregate |
| 793 | * and the second aggregate should have any protection at all. |
| 794 | */ |
| 795 | if (an->an_smmode == ATH_SM_PWRSAV_DYNAMIC) { |
| 796 | if (!bf->bf_aggrburst) { |
| 797 | flags = ATH9K_TXDESC_RTSENA; |
| 798 | dynamic_mimops = 1; |
| 799 | } else { |
| 800 | flags = 0; |
| 801 | } |
| 802 | } |
| 803 | } |
| 804 | |
| 805 | /* |
| 806 | * Set protection if aggregate protection on |
| 807 | */ |
| 808 | if (sc->sc_config.ath_aggr_prot && |
| 809 | (!bf->bf_isaggr || (bf->bf_isaggr && bf->bf_al < 8192))) { |
| 810 | flags = ATH9K_TXDESC_RTSENA; |
| 811 | cix = rt->info[sc->sc_protrix].controlRate; |
| 812 | rtsctsena = 1; |
| 813 | } |
| 814 | |
| 815 | /* |
| 816 | * For AR5416 - RTS cannot be followed by a frame larger than 8K. |
| 817 | */ |
| 818 | if (bf->bf_isaggr && (bf->bf_al > aggr_limit_with_rts)) { |
| 819 | /* |
| 820 | * Ensure that in the case of SM Dynamic power save |
| 821 | * while we are bursting the second aggregate the |
| 822 | * RTS is cleared. |
| 823 | */ |
| 824 | flags &= ~(ATH9K_TXDESC_RTSENA); |
| 825 | } |
| 826 | |
| 827 | /* |
| 828 | * CTS transmit rate is derived from the transmit rate |
| 829 | * by looking in the h/w rate table. We must also factor |
| 830 | * in whether or not a short preamble is to be used. |
| 831 | */ |
| 832 | /* NB: cix is set above where RTS/CTS is enabled */ |
| 833 | BUG_ON(cix == 0xff); |
| 834 | ctsrate = rt->info[cix].rateCode | |
| 835 | (bf->bf_shpreamble ? rt->info[cix].shortPreamble : 0); |
| 836 | |
| 837 | /* |
| 838 | * Setup HAL rate series |
| 839 | */ |
| 840 | memzero(series, sizeof(struct ath9k_11n_rate_series) * 4); |
| 841 | |
| 842 | for (i = 0; i < 4; i++) { |
| 843 | if (!bf->bf_rcs[i].tries) |
| 844 | continue; |
| 845 | |
| 846 | rix = bf->bf_rcs[i].rix; |
| 847 | |
| 848 | series[i].Rate = rt->info[rix].rateCode | |
| 849 | (bf->bf_shpreamble ? rt->info[rix].shortPreamble : 0); |
| 850 | |
| 851 | series[i].Tries = bf->bf_rcs[i].tries; |
| 852 | |
| 853 | series[i].RateFlags = ( |
| 854 | (bf->bf_rcs[i].flags & ATH_RC_RTSCTS_FLAG) ? |
| 855 | ATH9K_RATESERIES_RTS_CTS : 0) | |
| 856 | ((bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) ? |
| 857 | ATH9K_RATESERIES_2040 : 0) | |
| 858 | ((bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG) ? |
| 859 | ATH9K_RATESERIES_HALFGI : 0); |
| 860 | |
| 861 | series[i].PktDuration = ath_pkt_duration( |
| 862 | sc, rix, bf, |
| 863 | (bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) != 0, |
| 864 | (bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG), |
| 865 | bf->bf_shpreamble); |
| 866 | |
| 867 | if ((an->an_smmode == ATH_SM_PWRSAV_STATIC) && |
| 868 | (bf->bf_rcs[i].flags & ATH_RC_DS_FLAG) == 0) { |
| 869 | /* |
| 870 | * When sending to an HT node that has enabled static |
| 871 | * SM/MIMO power save, send at single stream rates but |
| 872 | * use maximum allowed transmit chains per user, |
| 873 | * hardware, regulatory, or country limits for |
| 874 | * better range. |
| 875 | */ |
| 876 | series[i].ChSel = sc->sc_tx_chainmask; |
| 877 | } else { |
| 878 | if (bf->bf_ht) |
| 879 | series[i].ChSel = |
| 880 | ath_chainmask_sel_logic(sc, an); |
| 881 | else |
| 882 | series[i].ChSel = sc->sc_tx_chainmask; |
| 883 | } |
| 884 | |
| 885 | if (rtsctsena) |
| 886 | series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; |
| 887 | |
| 888 | /* |
| 889 | * Set RTS for all rates if node is in dynamic powersave |
| 890 | * mode and we are using dual stream rates. |
| 891 | */ |
| 892 | if (dynamic_mimops && (bf->bf_rcs[i].flags & ATH_RC_DS_FLAG)) |
| 893 | series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; |
| 894 | } |
| 895 | |
| 896 | /* |
| 897 | * For non-HT devices, calculate RTS/CTS duration in software |
| 898 | * and disable multi-rate retry. |
| 899 | */ |
Sujith | 60b67f5 | 2008-08-07 10:52:38 +0530 | [diff] [blame] | 900 | if (flags && !(ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)) { |
Luis R. Rodriguez | f078f20 | 2008-08-04 00:16:41 -0700 | [diff] [blame] | 901 | /* |
| 902 | * Compute the transmit duration based on the frame |
| 903 | * size and the size of an ACK frame. We call into the |
| 904 | * HAL to do the computation since it depends on the |
| 905 | * characteristics of the actual PHY being used. |
| 906 | * |
| 907 | * NB: CTS is assumed the same size as an ACK so we can |
| 908 | * use the precalculated ACK durations. |
| 909 | */ |
| 910 | if (flags & ATH9K_TXDESC_RTSENA) { /* SIFS + CTS */ |
| 911 | ctsduration += bf->bf_shpreamble ? |
| 912 | rt->info[cix].spAckDuration : |
| 913 | rt->info[cix].lpAckDuration; |
| 914 | } |
| 915 | |
| 916 | ctsduration += series[0].PktDuration; |
| 917 | |
| 918 | if ((bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) { /* SIFS + ACK */ |
| 919 | ctsduration += bf->bf_shpreamble ? |
| 920 | rt->info[rix].spAckDuration : |
| 921 | rt->info[rix].lpAckDuration; |
| 922 | } |
| 923 | |
| 924 | /* |
| 925 | * Disable multi-rate retry when using RTS/CTS by clearing |
| 926 | * series 1, 2 and 3. |
| 927 | */ |
| 928 | memzero(&series[1], sizeof(struct ath9k_11n_rate_series) * 3); |
| 929 | } |
| 930 | |
| 931 | /* |
| 932 | * set dur_update_en for l-sig computation except for PS-Poll frames |
| 933 | */ |
| 934 | ath9k_hw_set11n_ratescenario(ah, ds, lastds, |
| 935 | !bf->bf_ispspoll, |
| 936 | ctsrate, |
| 937 | ctsduration, |
| 938 | series, 4, flags); |
| 939 | if (sc->sc_config.ath_aggr_prot && flags) |
| 940 | ath9k_hw_set11n_burstduration(ah, ds, 8192); |
| 941 | } |
| 942 | |
| 943 | /* |
| 944 | * Function to send a normal HT (non-AMPDU) frame |
| 945 | * NB: must be called with txq lock held |
| 946 | */ |
| 947 | |
| 948 | static int ath_tx_send_normal(struct ath_softc *sc, |
| 949 | struct ath_txq *txq, |
| 950 | struct ath_atx_tid *tid, |
| 951 | struct list_head *bf_head) |
| 952 | { |
| 953 | struct ath_buf *bf; |
| 954 | struct sk_buff *skb; |
| 955 | struct ieee80211_tx_info *tx_info; |
| 956 | struct ath_tx_info_priv *tx_info_priv; |
| 957 | |
| 958 | BUG_ON(list_empty(bf_head)); |
| 959 | |
| 960 | bf = list_first_entry(bf_head, struct ath_buf, list); |
| 961 | bf->bf_isampdu = 0; /* regular HT frame */ |
| 962 | |
| 963 | skb = (struct sk_buff *)bf->bf_mpdu; |
| 964 | tx_info = IEEE80211_SKB_CB(skb); |
| 965 | tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; |
| 966 | memcpy(bf->bf_rcs, tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0])); |
| 967 | |
| 968 | /* update starting sequence number for subsequent ADDBA request */ |
| 969 | INCR(tid->seq_start, IEEE80211_SEQ_MAX); |
| 970 | |
| 971 | /* Queue to h/w without aggregation */ |
| 972 | bf->bf_nframes = 1; |
| 973 | bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */ |
| 974 | ath_buf_set_rate(sc, bf); |
| 975 | ath_tx_txqaddbuf(sc, txq, bf_head); |
| 976 | |
| 977 | return 0; |
| 978 | } |
| 979 | |
| 980 | /* flush tid's software queue and send frames as non-ampdu's */ |
| 981 | |
| 982 | static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) |
| 983 | { |
| 984 | struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum]; |
| 985 | struct ath_buf *bf; |
| 986 | struct list_head bf_head; |
| 987 | INIT_LIST_HEAD(&bf_head); |
| 988 | |
| 989 | ASSERT(tid->paused > 0); |
| 990 | spin_lock_bh(&txq->axq_lock); |
| 991 | |
| 992 | tid->paused--; |
| 993 | |
| 994 | if (tid->paused > 0) { |
| 995 | spin_unlock_bh(&txq->axq_lock); |
| 996 | return; |
| 997 | } |
| 998 | |
| 999 | while (!list_empty(&tid->buf_q)) { |
| 1000 | bf = list_first_entry(&tid->buf_q, struct ath_buf, list); |
| 1001 | ASSERT(!bf->bf_isretried); |
| 1002 | list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list); |
| 1003 | ath_tx_send_normal(sc, txq, tid, &bf_head); |
| 1004 | } |
| 1005 | |
| 1006 | spin_unlock_bh(&txq->axq_lock); |
| 1007 | } |
| 1008 | |
| 1009 | /* Completion routine of an aggregate */ |
| 1010 | |
| 1011 | static void ath_tx_complete_aggr_rifs(struct ath_softc *sc, |
| 1012 | struct ath_txq *txq, |
| 1013 | struct ath_buf *bf, |
| 1014 | struct list_head *bf_q, |
| 1015 | int txok) |
| 1016 | { |
| 1017 | struct ath_node *an = bf->bf_node; |
| 1018 | struct ath_atx_tid *tid = ATH_AN_2_TID(an, bf->bf_tidno); |
| 1019 | struct ath_buf *bf_last = bf->bf_lastbf; |
| 1020 | struct ath_desc *ds = bf_last->bf_desc; |
| 1021 | struct ath_buf *bf_next, *bf_lastq = NULL; |
| 1022 | struct list_head bf_head, bf_pending; |
| 1023 | u16 seq_st = 0; |
| 1024 | u32 ba[WME_BA_BMP_SIZE >> 5]; |
| 1025 | int isaggr, txfail, txpending, sendbar = 0, needreset = 0; |
| 1026 | int isnodegone = (an->an_flags & ATH_NODE_CLEAN); |
| 1027 | |
| 1028 | isaggr = bf->bf_isaggr; |
| 1029 | if (isaggr) { |
| 1030 | if (txok) { |
| 1031 | if (ATH_DS_TX_BA(ds)) { |
| 1032 | /* |
| 1033 | * extract starting sequence and |
| 1034 | * block-ack bitmap |
| 1035 | */ |
| 1036 | seq_st = ATH_DS_BA_SEQ(ds); |
| 1037 | memcpy(ba, |
| 1038 | ATH_DS_BA_BITMAP(ds), |
| 1039 | WME_BA_BMP_SIZE >> 3); |
| 1040 | } else { |
| 1041 | memzero(ba, WME_BA_BMP_SIZE >> 3); |
| 1042 | |
| 1043 | /* |
| 1044 | * AR5416 can become deaf/mute when BA |
| 1045 | * issue happens. Chip needs to be reset. |
| 1046 | * But AP code may have sychronization issues |
| 1047 | * when perform internal reset in this routine. |
| 1048 | * Only enable reset in STA mode for now. |
| 1049 | */ |
| 1050 | if (sc->sc_opmode == ATH9K_M_STA) |
| 1051 | needreset = 1; |
| 1052 | } |
| 1053 | } else { |
| 1054 | memzero(ba, WME_BA_BMP_SIZE >> 3); |
| 1055 | } |
| 1056 | } |
| 1057 | |
| 1058 | INIT_LIST_HEAD(&bf_pending); |
| 1059 | INIT_LIST_HEAD(&bf_head); |
| 1060 | |
| 1061 | while (bf) { |
| 1062 | txfail = txpending = 0; |
| 1063 | bf_next = bf->bf_next; |
| 1064 | |
| 1065 | if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) { |
| 1066 | /* transmit completion, subframe is |
| 1067 | * acked by block ack */ |
| 1068 | } else if (!isaggr && txok) { |
| 1069 | /* transmit completion */ |
| 1070 | } else { |
| 1071 | |
| 1072 | if (!tid->cleanup_inprogress && !isnodegone && |
| 1073 | ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) { |
| 1074 | if (bf->bf_retries < ATH_MAX_SW_RETRIES) { |
| 1075 | ath_tx_set_retry(sc, bf); |
| 1076 | txpending = 1; |
| 1077 | } else { |
| 1078 | bf->bf_isxretried = 1; |
| 1079 | txfail = 1; |
| 1080 | sendbar = 1; |
| 1081 | } |
| 1082 | } else { |
| 1083 | /* |
| 1084 | * cleanup in progress, just fail |
| 1085 | * the un-acked sub-frames |
| 1086 | */ |
| 1087 | txfail = 1; |
| 1088 | } |
| 1089 | } |
| 1090 | /* |
| 1091 | * Remove ath_buf's of this sub-frame from aggregate queue. |
| 1092 | */ |
| 1093 | if (bf_next == NULL) { /* last subframe in the aggregate */ |
| 1094 | ASSERT(bf->bf_lastfrm == bf_last); |
| 1095 | |
| 1096 | /* |
| 1097 | * The last descriptor of the last sub frame could be |
| 1098 | * a holding descriptor for h/w. If that's the case, |
| 1099 | * bf->bf_lastfrm won't be in the bf_q. |
| 1100 | * Make sure we handle bf_q properly here. |
| 1101 | */ |
| 1102 | |
| 1103 | if (!list_empty(bf_q)) { |
| 1104 | bf_lastq = list_entry(bf_q->prev, |
| 1105 | struct ath_buf, list); |
| 1106 | list_cut_position(&bf_head, |
| 1107 | bf_q, &bf_lastq->list); |
| 1108 | } else { |
| 1109 | /* |
| 1110 | * XXX: if the last subframe only has one |
| 1111 | * descriptor which is also being used as |
| 1112 | * a holding descriptor. Then the ath_buf |
| 1113 | * is not in the bf_q at all. |
| 1114 | */ |
| 1115 | INIT_LIST_HEAD(&bf_head); |
| 1116 | } |
| 1117 | } else { |
| 1118 | ASSERT(!list_empty(bf_q)); |
| 1119 | list_cut_position(&bf_head, |
| 1120 | bf_q, &bf->bf_lastfrm->list); |
| 1121 | } |
| 1122 | |
| 1123 | if (!txpending) { |
| 1124 | /* |
| 1125 | * complete the acked-ones/xretried ones; update |
| 1126 | * block-ack window |
| 1127 | */ |
| 1128 | spin_lock_bh(&txq->axq_lock); |
| 1129 | ath_tx_update_baw(sc, tid, bf->bf_seqno); |
| 1130 | spin_unlock_bh(&txq->axq_lock); |
| 1131 | |
| 1132 | /* complete this sub-frame */ |
| 1133 | ath_tx_complete_buf(sc, bf, &bf_head, !txfail, sendbar); |
| 1134 | } else { |
| 1135 | /* |
| 1136 | * retry the un-acked ones |
| 1137 | */ |
| 1138 | /* |
| 1139 | * XXX: if the last descriptor is holding descriptor, |
| 1140 | * in order to requeue the frame to software queue, we |
| 1141 | * need to allocate a new descriptor and |
| 1142 | * copy the content of holding descriptor to it. |
| 1143 | */ |
| 1144 | if (bf->bf_next == NULL && |
| 1145 | bf_last->bf_status & ATH_BUFSTATUS_STALE) { |
| 1146 | struct ath_buf *tbf; |
| 1147 | |
| 1148 | /* allocate new descriptor */ |
| 1149 | spin_lock_bh(&sc->sc_txbuflock); |
| 1150 | ASSERT(!list_empty((&sc->sc_txbuf))); |
| 1151 | tbf = list_first_entry(&sc->sc_txbuf, |
| 1152 | struct ath_buf, list); |
| 1153 | list_del(&tbf->list); |
| 1154 | spin_unlock_bh(&sc->sc_txbuflock); |
| 1155 | |
| 1156 | ATH_TXBUF_RESET(tbf); |
| 1157 | |
| 1158 | /* copy descriptor content */ |
| 1159 | tbf->bf_mpdu = bf_last->bf_mpdu; |
| 1160 | tbf->bf_node = bf_last->bf_node; |
| 1161 | tbf->bf_buf_addr = bf_last->bf_buf_addr; |
| 1162 | *(tbf->bf_desc) = *(bf_last->bf_desc); |
| 1163 | |
| 1164 | /* link it to the frame */ |
| 1165 | if (bf_lastq) { |
| 1166 | bf_lastq->bf_desc->ds_link = |
| 1167 | tbf->bf_daddr; |
| 1168 | bf->bf_lastfrm = tbf; |
| 1169 | ath9k_hw_cleartxdesc(sc->sc_ah, |
| 1170 | bf->bf_lastfrm->bf_desc); |
| 1171 | } else { |
| 1172 | tbf->bf_state = bf_last->bf_state; |
| 1173 | tbf->bf_lastfrm = tbf; |
| 1174 | ath9k_hw_cleartxdesc(sc->sc_ah, |
| 1175 | tbf->bf_lastfrm->bf_desc); |
| 1176 | |
| 1177 | /* copy the DMA context */ |
| 1178 | copy_dma_mem_context( |
| 1179 | get_dma_mem_context(tbf, |
| 1180 | bf_dmacontext), |
| 1181 | get_dma_mem_context(bf_last, |
| 1182 | bf_dmacontext)); |
| 1183 | } |
| 1184 | list_add_tail(&tbf->list, &bf_head); |
| 1185 | } else { |
| 1186 | /* |
| 1187 | * Clear descriptor status words for |
| 1188 | * software retry |
| 1189 | */ |
| 1190 | ath9k_hw_cleartxdesc(sc->sc_ah, |
| 1191 | bf->bf_lastfrm->bf_desc); |
| 1192 | } |
| 1193 | |
| 1194 | /* |
| 1195 | * Put this buffer to the temporary pending |
| 1196 | * queue to retain ordering |
| 1197 | */ |
| 1198 | list_splice_tail_init(&bf_head, &bf_pending); |
| 1199 | } |
| 1200 | |
| 1201 | bf = bf_next; |
| 1202 | } |
| 1203 | |
| 1204 | /* |
| 1205 | * node is already gone. no more assocication |
| 1206 | * with the node. the node might have been freed |
| 1207 | * any node acces can result in panic.note tid |
| 1208 | * is part of the node. |
| 1209 | */ |
| 1210 | if (isnodegone) |
| 1211 | return; |
| 1212 | |
| 1213 | if (tid->cleanup_inprogress) { |
| 1214 | /* check to see if we're done with cleaning the h/w queue */ |
| 1215 | spin_lock_bh(&txq->axq_lock); |
| 1216 | |
| 1217 | if (tid->baw_head == tid->baw_tail) { |
| 1218 | tid->addba_exchangecomplete = 0; |
| 1219 | tid->addba_exchangeattempts = 0; |
| 1220 | spin_unlock_bh(&txq->axq_lock); |
| 1221 | |
| 1222 | tid->cleanup_inprogress = false; |
| 1223 | |
| 1224 | /* send buffered frames as singles */ |
| 1225 | ath_tx_flush_tid(sc, tid); |
| 1226 | } else |
| 1227 | spin_unlock_bh(&txq->axq_lock); |
| 1228 | |
| 1229 | return; |
| 1230 | } |
| 1231 | |
| 1232 | /* |
| 1233 | * prepend un-acked frames to the beginning of the pending frame queue |
| 1234 | */ |
| 1235 | if (!list_empty(&bf_pending)) { |
| 1236 | spin_lock_bh(&txq->axq_lock); |
| 1237 | /* Note: we _prepend_, we _do_not_ at to |
| 1238 | * the end of the queue ! */ |
| 1239 | list_splice(&bf_pending, &tid->buf_q); |
| 1240 | ath_tx_queue_tid(txq, tid); |
| 1241 | spin_unlock_bh(&txq->axq_lock); |
| 1242 | } |
| 1243 | |
| 1244 | if (needreset) |
| 1245 | ath_internal_reset(sc); |
| 1246 | |
| 1247 | return; |
| 1248 | } |
| 1249 | |
| 1250 | /* Process completed xmit descriptors from the specified queue */ |
| 1251 | |
| 1252 | static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) |
| 1253 | { |
| 1254 | struct ath_hal *ah = sc->sc_ah; |
| 1255 | struct ath_buf *bf, *lastbf, *bf_held = NULL; |
| 1256 | struct list_head bf_head; |
| 1257 | struct ath_desc *ds, *tmp_ds; |
| 1258 | struct sk_buff *skb; |
| 1259 | struct ieee80211_tx_info *tx_info; |
| 1260 | struct ath_tx_info_priv *tx_info_priv; |
| 1261 | int nacked, txok, nbad = 0, isrifs = 0; |
| 1262 | int status; |
| 1263 | |
| 1264 | DPRINTF(sc, ATH_DBG_QUEUE, |
| 1265 | "%s: tx queue %d (%x), link %p\n", __func__, |
| 1266 | txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), |
| 1267 | txq->axq_link); |
| 1268 | |
| 1269 | nacked = 0; |
| 1270 | for (;;) { |
| 1271 | spin_lock_bh(&txq->axq_lock); |
| 1272 | txq->axq_intrcnt = 0; /* reset periodic desc intr count */ |
| 1273 | if (list_empty(&txq->axq_q)) { |
| 1274 | txq->axq_link = NULL; |
| 1275 | txq->axq_linkbuf = NULL; |
| 1276 | spin_unlock_bh(&txq->axq_lock); |
| 1277 | break; |
| 1278 | } |
| 1279 | bf = list_first_entry(&txq->axq_q, struct ath_buf, list); |
| 1280 | |
| 1281 | /* |
| 1282 | * There is a race condition that a BH gets scheduled |
| 1283 | * after sw writes TxE and before hw re-load the last |
| 1284 | * descriptor to get the newly chained one. |
| 1285 | * Software must keep the last DONE descriptor as a |
| 1286 | * holding descriptor - software does so by marking |
| 1287 | * it with the STALE flag. |
| 1288 | */ |
| 1289 | bf_held = NULL; |
| 1290 | if (bf->bf_status & ATH_BUFSTATUS_STALE) { |
| 1291 | bf_held = bf; |
| 1292 | if (list_is_last(&bf_held->list, &txq->axq_q)) { |
| 1293 | /* FIXME: |
| 1294 | * The holding descriptor is the last |
| 1295 | * descriptor in queue. It's safe to remove |
| 1296 | * the last holding descriptor in BH context. |
| 1297 | */ |
| 1298 | spin_unlock_bh(&txq->axq_lock); |
| 1299 | break; |
| 1300 | } else { |
| 1301 | /* Lets work with the next buffer now */ |
| 1302 | bf = list_entry(bf_held->list.next, |
| 1303 | struct ath_buf, list); |
| 1304 | } |
| 1305 | } |
| 1306 | |
| 1307 | lastbf = bf->bf_lastbf; |
| 1308 | ds = lastbf->bf_desc; /* NB: last decriptor */ |
| 1309 | |
| 1310 | status = ath9k_hw_txprocdesc(ah, ds); |
| 1311 | if (status == -EINPROGRESS) { |
| 1312 | spin_unlock_bh(&txq->axq_lock); |
| 1313 | break; |
| 1314 | } |
| 1315 | if (bf->bf_desc == txq->axq_lastdsWithCTS) |
| 1316 | txq->axq_lastdsWithCTS = NULL; |
| 1317 | if (ds == txq->axq_gatingds) |
| 1318 | txq->axq_gatingds = NULL; |
| 1319 | |
| 1320 | /* |
| 1321 | * Remove ath_buf's of the same transmit unit from txq, |
| 1322 | * however leave the last descriptor back as the holding |
| 1323 | * descriptor for hw. |
| 1324 | */ |
| 1325 | lastbf->bf_status |= ATH_BUFSTATUS_STALE; |
| 1326 | INIT_LIST_HEAD(&bf_head); |
| 1327 | |
| 1328 | if (!list_is_singular(&lastbf->list)) |
| 1329 | list_cut_position(&bf_head, |
| 1330 | &txq->axq_q, lastbf->list.prev); |
| 1331 | |
| 1332 | txq->axq_depth--; |
| 1333 | |
| 1334 | if (bf->bf_isaggr) |
| 1335 | txq->axq_aggr_depth--; |
| 1336 | |
| 1337 | txok = (ds->ds_txstat.ts_status == 0); |
| 1338 | |
| 1339 | spin_unlock_bh(&txq->axq_lock); |
| 1340 | |
| 1341 | if (bf_held) { |
| 1342 | list_del(&bf_held->list); |
| 1343 | spin_lock_bh(&sc->sc_txbuflock); |
| 1344 | list_add_tail(&bf_held->list, &sc->sc_txbuf); |
| 1345 | spin_unlock_bh(&sc->sc_txbuflock); |
| 1346 | } |
| 1347 | |
| 1348 | if (!bf->bf_isampdu) { |
| 1349 | /* |
| 1350 | * This frame is sent out as a single frame. |
| 1351 | * Use hardware retry status for this frame. |
| 1352 | */ |
| 1353 | bf->bf_retries = ds->ds_txstat.ts_longretry; |
| 1354 | if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY) |
| 1355 | bf->bf_isxretried = 1; |
| 1356 | nbad = 0; |
| 1357 | } else { |
| 1358 | nbad = ath_tx_num_badfrms(sc, bf, txok); |
| 1359 | } |
| 1360 | skb = bf->bf_mpdu; |
| 1361 | tx_info = IEEE80211_SKB_CB(skb); |
| 1362 | tx_info_priv = (struct ath_tx_info_priv *) |
| 1363 | tx_info->driver_data[0]; |
| 1364 | if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) |
| 1365 | tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; |
| 1366 | if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 && |
| 1367 | (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) { |
| 1368 | if (ds->ds_txstat.ts_status == 0) |
| 1369 | nacked++; |
| 1370 | |
| 1371 | if (bf->bf_isdata) { |
| 1372 | if (isrifs) |
| 1373 | tmp_ds = bf->bf_rifslast->bf_desc; |
| 1374 | else |
| 1375 | tmp_ds = ds; |
| 1376 | memcpy(&tx_info_priv->tx, |
| 1377 | &tmp_ds->ds_txstat, |
| 1378 | sizeof(tx_info_priv->tx)); |
| 1379 | tx_info_priv->n_frames = bf->bf_nframes; |
| 1380 | tx_info_priv->n_bad_frames = nbad; |
| 1381 | } |
| 1382 | } |
| 1383 | |
| 1384 | /* |
| 1385 | * Complete this transmit unit |
| 1386 | */ |
| 1387 | if (bf->bf_isampdu) |
| 1388 | ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, txok); |
| 1389 | else |
| 1390 | ath_tx_complete_buf(sc, bf, &bf_head, txok, 0); |
| 1391 | |
| 1392 | /* Wake up mac80211 queue */ |
| 1393 | |
| 1394 | spin_lock_bh(&txq->axq_lock); |
| 1395 | if (txq->stopped && ath_txq_depth(sc, txq->axq_qnum) <= |
| 1396 | (ATH_TXBUF - 20)) { |
| 1397 | int qnum; |
| 1398 | qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc); |
| 1399 | if (qnum != -1) { |
| 1400 | ieee80211_wake_queue(sc->hw, qnum); |
| 1401 | txq->stopped = 0; |
| 1402 | } |
| 1403 | |
| 1404 | } |
| 1405 | |
| 1406 | /* |
| 1407 | * schedule any pending packets if aggregation is enabled |
| 1408 | */ |
| 1409 | if (sc->sc_txaggr) |
| 1410 | ath_txq_schedule(sc, txq); |
| 1411 | spin_unlock_bh(&txq->axq_lock); |
| 1412 | } |
| 1413 | return nacked; |
| 1414 | } |
| 1415 | |
| 1416 | static void ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) |
| 1417 | { |
| 1418 | struct ath_hal *ah = sc->sc_ah; |
| 1419 | |
| 1420 | (void) ath9k_hw_stoptxdma(ah, txq->axq_qnum); |
| 1421 | DPRINTF(sc, ATH_DBG_XMIT, "%s: tx queue [%u] %x, link %p\n", |
| 1422 | __func__, txq->axq_qnum, |
| 1423 | ath9k_hw_gettxbuf(ah, txq->axq_qnum), txq->axq_link); |
| 1424 | } |
| 1425 | |
| 1426 | /* Drain only the data queues */ |
| 1427 | |
| 1428 | static void ath_drain_txdataq(struct ath_softc *sc, bool retry_tx) |
| 1429 | { |
| 1430 | struct ath_hal *ah = sc->sc_ah; |
| 1431 | int i; |
| 1432 | int npend = 0; |
| 1433 | enum ath9k_ht_macmode ht_macmode = ath_cwm_macmode(sc); |
| 1434 | |
| 1435 | /* XXX return value */ |
| 1436 | if (!sc->sc_invalid) { |
| 1437 | for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { |
| 1438 | if (ATH_TXQ_SETUP(sc, i)) { |
| 1439 | ath_tx_stopdma(sc, &sc->sc_txq[i]); |
| 1440 | |
| 1441 | /* The TxDMA may not really be stopped. |
| 1442 | * Double check the hal tx pending count */ |
| 1443 | npend += ath9k_hw_numtxpending(ah, |
| 1444 | sc->sc_txq[i].axq_qnum); |
| 1445 | } |
| 1446 | } |
| 1447 | } |
| 1448 | |
| 1449 | if (npend) { |
| 1450 | int status; |
| 1451 | |
| 1452 | /* TxDMA not stopped, reset the hal */ |
| 1453 | DPRINTF(sc, ATH_DBG_XMIT, |
| 1454 | "%s: Unable to stop TxDMA. Reset HAL!\n", __func__); |
| 1455 | |
| 1456 | spin_lock_bh(&sc->sc_resetlock); |
| 1457 | if (!ath9k_hw_reset(ah, sc->sc_opmode, |
| 1458 | &sc->sc_curchan, ht_macmode, |
| 1459 | sc->sc_tx_chainmask, sc->sc_rx_chainmask, |
| 1460 | sc->sc_ht_extprotspacing, true, &status)) { |
| 1461 | |
| 1462 | DPRINTF(sc, ATH_DBG_FATAL, |
| 1463 | "%s: unable to reset hardware; hal status %u\n", |
| 1464 | __func__, |
| 1465 | status); |
| 1466 | } |
| 1467 | spin_unlock_bh(&sc->sc_resetlock); |
| 1468 | } |
| 1469 | |
| 1470 | for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { |
| 1471 | if (ATH_TXQ_SETUP(sc, i)) |
| 1472 | ath_tx_draintxq(sc, &sc->sc_txq[i], retry_tx); |
| 1473 | } |
| 1474 | } |
| 1475 | |
| 1476 | /* Add a sub-frame to block ack window */ |
| 1477 | |
| 1478 | static void ath_tx_addto_baw(struct ath_softc *sc, |
| 1479 | struct ath_atx_tid *tid, |
| 1480 | struct ath_buf *bf) |
| 1481 | { |
| 1482 | int index, cindex; |
| 1483 | |
| 1484 | if (bf->bf_isretried) |
| 1485 | return; |
| 1486 | |
| 1487 | index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno); |
| 1488 | cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); |
| 1489 | |
| 1490 | ASSERT(tid->tx_buf[cindex] == NULL); |
| 1491 | tid->tx_buf[cindex] = bf; |
| 1492 | |
| 1493 | if (index >= ((tid->baw_tail - tid->baw_head) & |
| 1494 | (ATH_TID_MAX_BUFS - 1))) { |
| 1495 | tid->baw_tail = cindex; |
| 1496 | INCR(tid->baw_tail, ATH_TID_MAX_BUFS); |
| 1497 | } |
| 1498 | } |
| 1499 | |
| 1500 | /* |
| 1501 | * Function to send an A-MPDU |
| 1502 | * NB: must be called with txq lock held |
| 1503 | */ |
| 1504 | |
| 1505 | static int ath_tx_send_ampdu(struct ath_softc *sc, |
| 1506 | struct ath_txq *txq, |
| 1507 | struct ath_atx_tid *tid, |
| 1508 | struct list_head *bf_head, |
| 1509 | struct ath_tx_control *txctl) |
| 1510 | { |
| 1511 | struct ath_buf *bf; |
| 1512 | struct sk_buff *skb; |
| 1513 | struct ieee80211_tx_info *tx_info; |
| 1514 | struct ath_tx_info_priv *tx_info_priv; |
| 1515 | |
| 1516 | BUG_ON(list_empty(bf_head)); |
| 1517 | |
| 1518 | bf = list_first_entry(bf_head, struct ath_buf, list); |
| 1519 | bf->bf_isampdu = 1; |
| 1520 | bf->bf_seqno = txctl->seqno; /* save seqno and tidno in buffer */ |
| 1521 | bf->bf_tidno = txctl->tidno; |
| 1522 | |
| 1523 | /* |
| 1524 | * Do not queue to h/w when any of the following conditions is true: |
| 1525 | * - there are pending frames in software queue |
| 1526 | * - the TID is currently paused for ADDBA/BAR request |
| 1527 | * - seqno is not within block-ack window |
| 1528 | * - h/w queue depth exceeds low water mark |
| 1529 | */ |
| 1530 | if (!list_empty(&tid->buf_q) || tid->paused || |
| 1531 | !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) || |
| 1532 | txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) { |
| 1533 | /* |
| 1534 | * Add this frame to software queue for scheduling later |
| 1535 | * for aggregation. |
| 1536 | */ |
| 1537 | list_splice_tail_init(bf_head, &tid->buf_q); |
| 1538 | ath_tx_queue_tid(txq, tid); |
| 1539 | return 0; |
| 1540 | } |
| 1541 | |
| 1542 | skb = (struct sk_buff *)bf->bf_mpdu; |
| 1543 | tx_info = IEEE80211_SKB_CB(skb); |
| 1544 | tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; |
| 1545 | memcpy(bf->bf_rcs, tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0])); |
| 1546 | |
| 1547 | /* Add sub-frame to BAW */ |
| 1548 | ath_tx_addto_baw(sc, tid, bf); |
| 1549 | |
| 1550 | /* Queue to h/w without aggregation */ |
| 1551 | bf->bf_nframes = 1; |
| 1552 | bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */ |
| 1553 | ath_buf_set_rate(sc, bf); |
| 1554 | ath_tx_txqaddbuf(sc, txq, bf_head); |
| 1555 | return 0; |
| 1556 | } |
| 1557 | |
| 1558 | /* |
| 1559 | * looks up the rate |
| 1560 | * returns aggr limit based on lowest of the rates |
| 1561 | */ |
| 1562 | |
| 1563 | static u32 ath_lookup_rate(struct ath_softc *sc, |
| 1564 | struct ath_buf *bf) |
| 1565 | { |
| 1566 | const struct ath9k_rate_table *rt = sc->sc_currates; |
| 1567 | struct sk_buff *skb; |
| 1568 | struct ieee80211_tx_info *tx_info; |
| 1569 | struct ath_tx_info_priv *tx_info_priv; |
| 1570 | u32 max_4ms_framelen, frame_length; |
| 1571 | u16 aggr_limit, legacy = 0, maxampdu; |
| 1572 | int i; |
| 1573 | |
| 1574 | |
| 1575 | skb = (struct sk_buff *)bf->bf_mpdu; |
| 1576 | tx_info = IEEE80211_SKB_CB(skb); |
| 1577 | tx_info_priv = (struct ath_tx_info_priv *) |
| 1578 | tx_info->driver_data[0]; |
| 1579 | memcpy(bf->bf_rcs, |
| 1580 | tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0])); |
| 1581 | |
| 1582 | /* |
| 1583 | * Find the lowest frame length among the rate series that will have a |
| 1584 | * 4ms transmit duration. |
| 1585 | * TODO - TXOP limit needs to be considered. |
| 1586 | */ |
| 1587 | max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; |
| 1588 | |
| 1589 | for (i = 0; i < 4; i++) { |
| 1590 | if (bf->bf_rcs[i].tries) { |
| 1591 | frame_length = bf->bf_rcs[i].max_4ms_framelen; |
| 1592 | |
| 1593 | if (rt->info[bf->bf_rcs[i].rix].phy != PHY_HT) { |
| 1594 | legacy = 1; |
| 1595 | break; |
| 1596 | } |
| 1597 | |
| 1598 | max_4ms_framelen = min(max_4ms_framelen, frame_length); |
| 1599 | } |
| 1600 | } |
| 1601 | |
| 1602 | /* |
| 1603 | * limit aggregate size by the minimum rate if rate selected is |
| 1604 | * not a probe rate, if rate selected is a probe rate then |
| 1605 | * avoid aggregation of this packet. |
| 1606 | */ |
| 1607 | if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) |
| 1608 | return 0; |
| 1609 | |
| 1610 | aggr_limit = min(max_4ms_framelen, |
| 1611 | (u32)ATH_AMPDU_LIMIT_DEFAULT); |
| 1612 | |
| 1613 | /* |
| 1614 | * h/w can accept aggregates upto 16 bit lengths (65535). |
| 1615 | * The IE, however can hold upto 65536, which shows up here |
| 1616 | * as zero. Ignore 65536 since we are constrained by hw. |
| 1617 | */ |
| 1618 | maxampdu = sc->sc_ht_info.maxampdu; |
| 1619 | if (maxampdu) |
| 1620 | aggr_limit = min(aggr_limit, maxampdu); |
| 1621 | |
| 1622 | return aggr_limit; |
| 1623 | } |
| 1624 | |
| 1625 | /* |
| 1626 | * returns the number of delimiters to be added to |
| 1627 | * meet the minimum required mpdudensity. |
| 1628 | * caller should make sure that the rate is HT rate . |
| 1629 | */ |
| 1630 | |
| 1631 | static int ath_compute_num_delims(struct ath_softc *sc, |
| 1632 | struct ath_buf *bf, |
| 1633 | u16 frmlen) |
| 1634 | { |
| 1635 | const struct ath9k_rate_table *rt = sc->sc_currates; |
| 1636 | u32 nsymbits, nsymbols, mpdudensity; |
| 1637 | u16 minlen; |
| 1638 | u8 rc, flags, rix; |
| 1639 | int width, half_gi, ndelim, mindelim; |
| 1640 | |
| 1641 | /* Select standard number of delimiters based on frame length alone */ |
| 1642 | ndelim = ATH_AGGR_GET_NDELIM(frmlen); |
| 1643 | |
| 1644 | /* |
| 1645 | * If encryption enabled, hardware requires some more padding between |
| 1646 | * subframes. |
| 1647 | * TODO - this could be improved to be dependent on the rate. |
| 1648 | * The hardware can keep up at lower rates, but not higher rates |
| 1649 | */ |
| 1650 | if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) |
| 1651 | ndelim += ATH_AGGR_ENCRYPTDELIM; |
| 1652 | |
| 1653 | /* |
| 1654 | * Convert desired mpdu density from microeconds to bytes based |
| 1655 | * on highest rate in rate series (i.e. first rate) to determine |
| 1656 | * required minimum length for subframe. Take into account |
| 1657 | * whether high rate is 20 or 40Mhz and half or full GI. |
| 1658 | */ |
| 1659 | mpdudensity = sc->sc_ht_info.mpdudensity; |
| 1660 | |
| 1661 | /* |
| 1662 | * If there is no mpdu density restriction, no further calculation |
| 1663 | * is needed. |
| 1664 | */ |
| 1665 | if (mpdudensity == 0) |
| 1666 | return ndelim; |
| 1667 | |
| 1668 | rix = bf->bf_rcs[0].rix; |
| 1669 | flags = bf->bf_rcs[0].flags; |
| 1670 | rc = rt->info[rix].rateCode; |
| 1671 | width = (flags & ATH_RC_CW40_FLAG) ? 1 : 0; |
| 1672 | half_gi = (flags & ATH_RC_SGI_FLAG) ? 1 : 0; |
| 1673 | |
| 1674 | if (half_gi) |
| 1675 | nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(mpdudensity); |
| 1676 | else |
| 1677 | nsymbols = NUM_SYMBOLS_PER_USEC(mpdudensity); |
| 1678 | |
| 1679 | if (nsymbols == 0) |
| 1680 | nsymbols = 1; |
| 1681 | |
| 1682 | nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width]; |
| 1683 | minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; |
| 1684 | |
| 1685 | /* Is frame shorter than required minimum length? */ |
| 1686 | if (frmlen < minlen) { |
| 1687 | /* Get the minimum number of delimiters required. */ |
| 1688 | mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; |
| 1689 | ndelim = max(mindelim, ndelim); |
| 1690 | } |
| 1691 | |
| 1692 | return ndelim; |
| 1693 | } |
| 1694 | |
| 1695 | /* |
| 1696 | * For aggregation from software buffer queue. |
| 1697 | * NB: must be called with txq lock held |
| 1698 | */ |
| 1699 | |
| 1700 | static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc, |
| 1701 | struct ath_atx_tid *tid, |
| 1702 | struct list_head *bf_q, |
| 1703 | struct ath_buf **bf_last, |
| 1704 | struct aggr_rifs_param *param, |
| 1705 | int *prev_frames) |
| 1706 | { |
| 1707 | #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) |
| 1708 | struct ath_buf *bf, *tbf, *bf_first, *bf_prev = NULL; |
| 1709 | struct list_head bf_head; |
| 1710 | int rl = 0, nframes = 0, ndelim; |
| 1711 | u16 aggr_limit = 0, al = 0, bpad = 0, |
| 1712 | al_delta, h_baw = tid->baw_size / 2; |
| 1713 | enum ATH_AGGR_STATUS status = ATH_AGGR_DONE; |
| 1714 | int prev_al = 0, is_ds_rate = 0; |
| 1715 | INIT_LIST_HEAD(&bf_head); |
| 1716 | |
| 1717 | BUG_ON(list_empty(&tid->buf_q)); |
| 1718 | |
| 1719 | bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list); |
| 1720 | |
| 1721 | do { |
| 1722 | bf = list_first_entry(&tid->buf_q, struct ath_buf, list); |
| 1723 | |
| 1724 | /* |
| 1725 | * do not step over block-ack window |
| 1726 | */ |
| 1727 | if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) { |
| 1728 | status = ATH_AGGR_BAW_CLOSED; |
| 1729 | break; |
| 1730 | } |
| 1731 | |
| 1732 | if (!rl) { |
| 1733 | aggr_limit = ath_lookup_rate(sc, bf); |
| 1734 | rl = 1; |
| 1735 | /* |
| 1736 | * Is rate dual stream |
| 1737 | */ |
| 1738 | is_ds_rate = |
| 1739 | (bf->bf_rcs[0].flags & ATH_RC_DS_FLAG) ? 1 : 0; |
| 1740 | } |
| 1741 | |
| 1742 | /* |
| 1743 | * do not exceed aggregation limit |
| 1744 | */ |
| 1745 | al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen; |
| 1746 | |
| 1747 | if (nframes && (aggr_limit < |
| 1748 | (al + bpad + al_delta + prev_al))) { |
| 1749 | status = ATH_AGGR_LIMITED; |
| 1750 | break; |
| 1751 | } |
| 1752 | |
| 1753 | /* |
| 1754 | * do not exceed subframe limit |
| 1755 | */ |
| 1756 | if ((nframes + *prev_frames) >= |
| 1757 | min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) { |
| 1758 | status = ATH_AGGR_LIMITED; |
| 1759 | break; |
| 1760 | } |
| 1761 | |
| 1762 | /* |
| 1763 | * add padding for previous frame to aggregation length |
| 1764 | */ |
| 1765 | al += bpad + al_delta; |
| 1766 | |
| 1767 | /* |
| 1768 | * Get the delimiters needed to meet the MPDU |
| 1769 | * density for this node. |
| 1770 | */ |
| 1771 | ndelim = ath_compute_num_delims(sc, bf_first, bf->bf_frmlen); |
| 1772 | |
| 1773 | bpad = PADBYTES(al_delta) + (ndelim << 2); |
| 1774 | |
| 1775 | bf->bf_next = NULL; |
| 1776 | bf->bf_lastfrm->bf_desc->ds_link = 0; |
| 1777 | |
| 1778 | /* |
| 1779 | * this packet is part of an aggregate |
| 1780 | * - remove all descriptors belonging to this frame from |
| 1781 | * software queue |
| 1782 | * - add it to block ack window |
| 1783 | * - set up descriptors for aggregation |
| 1784 | */ |
| 1785 | list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list); |
| 1786 | ath_tx_addto_baw(sc, tid, bf); |
| 1787 | |
| 1788 | list_for_each_entry(tbf, &bf_head, list) { |
| 1789 | ath9k_hw_set11n_aggr_middle(sc->sc_ah, |
| 1790 | tbf->bf_desc, ndelim); |
| 1791 | } |
| 1792 | |
| 1793 | /* |
| 1794 | * link buffers of this frame to the aggregate |
| 1795 | */ |
| 1796 | list_splice_tail_init(&bf_head, bf_q); |
| 1797 | nframes++; |
| 1798 | |
| 1799 | if (bf_prev) { |
| 1800 | bf_prev->bf_next = bf; |
| 1801 | bf_prev->bf_lastfrm->bf_desc->ds_link = bf->bf_daddr; |
| 1802 | } |
| 1803 | bf_prev = bf; |
| 1804 | |
| 1805 | #ifdef AGGR_NOSHORT |
| 1806 | /* |
| 1807 | * terminate aggregation on a small packet boundary |
| 1808 | */ |
| 1809 | if (bf->bf_frmlen < ATH_AGGR_MINPLEN) { |
| 1810 | status = ATH_AGGR_SHORTPKT; |
| 1811 | break; |
| 1812 | } |
| 1813 | #endif |
| 1814 | } while (!list_empty(&tid->buf_q)); |
| 1815 | |
| 1816 | bf_first->bf_al = al; |
| 1817 | bf_first->bf_nframes = nframes; |
| 1818 | *bf_last = bf_prev; |
| 1819 | return status; |
| 1820 | #undef PADBYTES |
| 1821 | } |
| 1822 | |
| 1823 | /* |
| 1824 | * process pending frames possibly doing a-mpdu aggregation |
| 1825 | * NB: must be called with txq lock held |
| 1826 | */ |
| 1827 | |
| 1828 | static void ath_tx_sched_aggr(struct ath_softc *sc, |
| 1829 | struct ath_txq *txq, struct ath_atx_tid *tid) |
| 1830 | { |
| 1831 | struct ath_buf *bf, *tbf, *bf_last, *bf_lastaggr = NULL; |
| 1832 | enum ATH_AGGR_STATUS status; |
| 1833 | struct list_head bf_q; |
| 1834 | struct aggr_rifs_param param = {0, 0, 0, 0, NULL}; |
| 1835 | int prev_frames = 0; |
| 1836 | |
| 1837 | do { |
| 1838 | if (list_empty(&tid->buf_q)) |
| 1839 | return; |
| 1840 | |
| 1841 | INIT_LIST_HEAD(&bf_q); |
| 1842 | |
| 1843 | status = ath_tx_form_aggr(sc, tid, &bf_q, &bf_lastaggr, ¶m, |
| 1844 | &prev_frames); |
| 1845 | |
| 1846 | /* |
| 1847 | * no frames picked up to be aggregated; block-ack |
| 1848 | * window is not open |
| 1849 | */ |
| 1850 | if (list_empty(&bf_q)) |
| 1851 | break; |
| 1852 | |
| 1853 | bf = list_first_entry(&bf_q, struct ath_buf, list); |
| 1854 | bf_last = list_entry(bf_q.prev, struct ath_buf, list); |
| 1855 | bf->bf_lastbf = bf_last; |
| 1856 | |
| 1857 | /* |
| 1858 | * if only one frame, send as non-aggregate |
| 1859 | */ |
| 1860 | if (bf->bf_nframes == 1) { |
| 1861 | ASSERT(bf->bf_lastfrm == bf_last); |
| 1862 | |
| 1863 | bf->bf_isaggr = 0; |
| 1864 | /* |
| 1865 | * clear aggr bits for every descriptor |
| 1866 | * XXX TODO: is there a way to optimize it? |
| 1867 | */ |
| 1868 | list_for_each_entry(tbf, &bf_q, list) { |
| 1869 | ath9k_hw_clr11n_aggr(sc->sc_ah, tbf->bf_desc); |
| 1870 | } |
| 1871 | |
| 1872 | ath_buf_set_rate(sc, bf); |
| 1873 | ath_tx_txqaddbuf(sc, txq, &bf_q); |
| 1874 | continue; |
| 1875 | } |
| 1876 | |
| 1877 | /* |
| 1878 | * setup first desc with rate and aggr info |
| 1879 | */ |
| 1880 | bf->bf_isaggr = 1; |
| 1881 | ath_buf_set_rate(sc, bf); |
| 1882 | ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al); |
| 1883 | |
| 1884 | /* |
| 1885 | * anchor last frame of aggregate correctly |
| 1886 | */ |
| 1887 | ASSERT(bf_lastaggr); |
| 1888 | ASSERT(bf_lastaggr->bf_lastfrm == bf_last); |
| 1889 | tbf = bf_lastaggr; |
| 1890 | ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc); |
| 1891 | |
| 1892 | /* XXX: We don't enter into this loop, consider removing this */ |
| 1893 | while (!list_empty(&bf_q) && !list_is_last(&tbf->list, &bf_q)) { |
| 1894 | tbf = list_entry(tbf->list.next, struct ath_buf, list); |
| 1895 | ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc); |
| 1896 | } |
| 1897 | |
| 1898 | txq->axq_aggr_depth++; |
| 1899 | |
| 1900 | /* |
| 1901 | * Normal aggregate, queue to hardware |
| 1902 | */ |
| 1903 | ath_tx_txqaddbuf(sc, txq, &bf_q); |
| 1904 | |
| 1905 | } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH && |
| 1906 | status != ATH_AGGR_BAW_CLOSED); |
| 1907 | } |
| 1908 | |
| 1909 | /* Called with txq lock held */ |
| 1910 | |
| 1911 | static void ath_tid_drain(struct ath_softc *sc, |
| 1912 | struct ath_txq *txq, |
| 1913 | struct ath_atx_tid *tid, |
| 1914 | bool bh_flag) |
| 1915 | { |
| 1916 | struct ath_buf *bf; |
| 1917 | struct list_head bf_head; |
| 1918 | INIT_LIST_HEAD(&bf_head); |
| 1919 | |
| 1920 | for (;;) { |
| 1921 | if (list_empty(&tid->buf_q)) |
| 1922 | break; |
| 1923 | bf = list_first_entry(&tid->buf_q, struct ath_buf, list); |
| 1924 | |
| 1925 | list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list); |
| 1926 | |
| 1927 | /* update baw for software retried frame */ |
| 1928 | if (bf->bf_isretried) |
| 1929 | ath_tx_update_baw(sc, tid, bf->bf_seqno); |
| 1930 | |
| 1931 | /* |
| 1932 | * do not indicate packets while holding txq spinlock. |
| 1933 | * unlock is intentional here |
| 1934 | */ |
| 1935 | if (likely(bh_flag)) |
| 1936 | spin_unlock_bh(&txq->axq_lock); |
| 1937 | else |
| 1938 | spin_unlock(&txq->axq_lock); |
| 1939 | |
| 1940 | /* complete this sub-frame */ |
| 1941 | ath_tx_complete_buf(sc, bf, &bf_head, 0, 0); |
| 1942 | |
| 1943 | if (likely(bh_flag)) |
| 1944 | spin_lock_bh(&txq->axq_lock); |
| 1945 | else |
| 1946 | spin_lock(&txq->axq_lock); |
| 1947 | } |
| 1948 | |
| 1949 | /* |
| 1950 | * TODO: For frame(s) that are in the retry state, we will reuse the |
| 1951 | * sequence number(s) without setting the retry bit. The |
| 1952 | * alternative is to give up on these and BAR the receiver's window |
| 1953 | * forward. |
| 1954 | */ |
| 1955 | tid->seq_next = tid->seq_start; |
| 1956 | tid->baw_tail = tid->baw_head; |
| 1957 | } |
| 1958 | |
| 1959 | /* |
| 1960 | * Drain all pending buffers |
| 1961 | * NB: must be called with txq lock held |
| 1962 | */ |
| 1963 | |
| 1964 | static void ath_txq_drain_pending_buffers(struct ath_softc *sc, |
| 1965 | struct ath_txq *txq, |
| 1966 | bool bh_flag) |
| 1967 | { |
| 1968 | struct ath_atx_ac *ac, *ac_tmp; |
| 1969 | struct ath_atx_tid *tid, *tid_tmp; |
| 1970 | |
| 1971 | list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) { |
| 1972 | list_del(&ac->list); |
| 1973 | ac->sched = false; |
| 1974 | list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) { |
| 1975 | list_del(&tid->list); |
| 1976 | tid->sched = false; |
| 1977 | ath_tid_drain(sc, txq, tid, bh_flag); |
| 1978 | } |
| 1979 | } |
| 1980 | } |
| 1981 | |
| 1982 | static int ath_tx_start_dma(struct ath_softc *sc, |
| 1983 | struct sk_buff *skb, |
| 1984 | struct scatterlist *sg, |
| 1985 | u32 n_sg, |
| 1986 | struct ath_tx_control *txctl) |
| 1987 | { |
| 1988 | struct ath_node *an = txctl->an; |
| 1989 | struct ath_buf *bf = NULL; |
| 1990 | struct list_head bf_head; |
| 1991 | struct ath_desc *ds; |
| 1992 | struct ath_hal *ah = sc->sc_ah; |
| 1993 | struct ath_txq *txq = &sc->sc_txq[txctl->qnum]; |
| 1994 | struct ath_tx_info_priv *tx_info_priv; |
| 1995 | struct ath_rc_series *rcs; |
| 1996 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| 1997 | struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| 1998 | __le16 fc = hdr->frame_control; |
| 1999 | |
| 2000 | /* For each sglist entry, allocate an ath_buf for DMA */ |
| 2001 | INIT_LIST_HEAD(&bf_head); |
| 2002 | spin_lock_bh(&sc->sc_txbuflock); |
| 2003 | if (unlikely(list_empty(&sc->sc_txbuf))) { |
| 2004 | spin_unlock_bh(&sc->sc_txbuflock); |
| 2005 | return -ENOMEM; |
| 2006 | } |
| 2007 | |
| 2008 | bf = list_first_entry(&sc->sc_txbuf, struct ath_buf, list); |
| 2009 | list_del(&bf->list); |
| 2010 | spin_unlock_bh(&sc->sc_txbuflock); |
| 2011 | |
| 2012 | list_add_tail(&bf->list, &bf_head); |
| 2013 | |
| 2014 | /* set up this buffer */ |
| 2015 | ATH_TXBUF_RESET(bf); |
| 2016 | bf->bf_frmlen = txctl->frmlen; |
| 2017 | bf->bf_isdata = ieee80211_is_data(fc); |
| 2018 | bf->bf_isbar = ieee80211_is_back_req(fc); |
| 2019 | bf->bf_ispspoll = ieee80211_is_pspoll(fc); |
| 2020 | bf->bf_flags = txctl->flags; |
| 2021 | bf->bf_shpreamble = sc->sc_flags & ATH_PREAMBLE_SHORT; |
| 2022 | bf->bf_keytype = txctl->keytype; |
| 2023 | tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; |
| 2024 | rcs = tx_info_priv->rcs; |
| 2025 | bf->bf_rcs[0] = rcs[0]; |
| 2026 | bf->bf_rcs[1] = rcs[1]; |
| 2027 | bf->bf_rcs[2] = rcs[2]; |
| 2028 | bf->bf_rcs[3] = rcs[3]; |
| 2029 | bf->bf_node = an; |
| 2030 | bf->bf_mpdu = skb; |
| 2031 | bf->bf_buf_addr = sg_dma_address(sg); |
| 2032 | |
| 2033 | /* setup descriptor */ |
| 2034 | ds = bf->bf_desc; |
| 2035 | ds->ds_link = 0; |
| 2036 | ds->ds_data = bf->bf_buf_addr; |
| 2037 | |
| 2038 | /* |
| 2039 | * Save the DMA context in the first ath_buf |
| 2040 | */ |
| 2041 | copy_dma_mem_context(get_dma_mem_context(bf, bf_dmacontext), |
| 2042 | get_dma_mem_context(txctl, dmacontext)); |
| 2043 | |
| 2044 | /* |
| 2045 | * Formulate first tx descriptor with tx controls. |
| 2046 | */ |
| 2047 | ath9k_hw_set11n_txdesc(ah, |
| 2048 | ds, |
| 2049 | bf->bf_frmlen, /* frame length */ |
| 2050 | txctl->atype, /* Atheros packet type */ |
| 2051 | min(txctl->txpower, (u16)60), /* txpower */ |
| 2052 | txctl->keyix, /* key cache index */ |
| 2053 | txctl->keytype, /* key type */ |
| 2054 | txctl->flags); /* flags */ |
| 2055 | ath9k_hw_filltxdesc(ah, |
| 2056 | ds, |
| 2057 | sg_dma_len(sg), /* segment length */ |
| 2058 | true, /* first segment */ |
| 2059 | (n_sg == 1) ? true : false, /* last segment */ |
| 2060 | ds); /* first descriptor */ |
| 2061 | |
| 2062 | bf->bf_lastfrm = bf; |
| 2063 | bf->bf_ht = txctl->ht; |
| 2064 | |
| 2065 | spin_lock_bh(&txq->axq_lock); |
| 2066 | |
| 2067 | if (txctl->ht && sc->sc_txaggr) { |
| 2068 | struct ath_atx_tid *tid = ATH_AN_2_TID(an, txctl->tidno); |
| 2069 | if (ath_aggr_query(sc, an, txctl->tidno)) { |
| 2070 | /* |
| 2071 | * Try aggregation if it's a unicast data frame |
| 2072 | * and the destination is HT capable. |
| 2073 | */ |
| 2074 | ath_tx_send_ampdu(sc, txq, tid, &bf_head, txctl); |
| 2075 | } else { |
| 2076 | /* |
| 2077 | * Send this frame as regular when ADDBA exchange |
| 2078 | * is neither complete nor pending. |
| 2079 | */ |
| 2080 | ath_tx_send_normal(sc, txq, tid, &bf_head); |
| 2081 | } |
| 2082 | } else { |
| 2083 | bf->bf_lastbf = bf; |
| 2084 | bf->bf_nframes = 1; |
| 2085 | ath_buf_set_rate(sc, bf); |
| 2086 | |
| 2087 | if (ieee80211_is_back_req(fc)) { |
| 2088 | /* This is required for resuming tid |
| 2089 | * during BAR completion */ |
| 2090 | bf->bf_tidno = txctl->tidno; |
| 2091 | } |
| 2092 | |
| 2093 | if (is_multicast_ether_addr(hdr->addr1)) { |
| 2094 | struct ath_vap *avp = sc->sc_vaps[txctl->if_id]; |
| 2095 | |
| 2096 | /* |
| 2097 | * When servicing one or more stations in power-save |
| 2098 | * mode (or) if there is some mcast data waiting on |
| 2099 | * mcast queue (to prevent out of order delivery of |
| 2100 | * mcast,bcast packets) multicast frames must be |
| 2101 | * buffered until after the beacon. We use the private |
| 2102 | * mcast queue for that. |
| 2103 | */ |
| 2104 | /* XXX? more bit in 802.11 frame header */ |
| 2105 | spin_lock_bh(&avp->av_mcastq.axq_lock); |
| 2106 | if (txctl->ps || avp->av_mcastq.axq_depth) |
| 2107 | ath_tx_mcastqaddbuf(sc, |
| 2108 | &avp->av_mcastq, &bf_head); |
| 2109 | else |
| 2110 | ath_tx_txqaddbuf(sc, txq, &bf_head); |
| 2111 | spin_unlock_bh(&avp->av_mcastq.axq_lock); |
| 2112 | } else |
| 2113 | ath_tx_txqaddbuf(sc, txq, &bf_head); |
| 2114 | } |
| 2115 | spin_unlock_bh(&txq->axq_lock); |
| 2116 | return 0; |
| 2117 | } |
| 2118 | |
| 2119 | static void xmit_map_sg(struct ath_softc *sc, |
| 2120 | struct sk_buff *skb, |
| 2121 | dma_addr_t *pa, |
| 2122 | struct ath_tx_control *txctl) |
| 2123 | { |
| 2124 | struct ath_xmit_status tx_status; |
| 2125 | struct ath_atx_tid *tid; |
| 2126 | struct scatterlist sg; |
| 2127 | |
| 2128 | *pa = pci_map_single(sc->pdev, skb->data, skb->len, PCI_DMA_TODEVICE); |
| 2129 | |
| 2130 | /* setup S/G list */ |
| 2131 | memset(&sg, 0, sizeof(struct scatterlist)); |
| 2132 | sg_dma_address(&sg) = *pa; |
| 2133 | sg_dma_len(&sg) = skb->len; |
| 2134 | |
| 2135 | if (ath_tx_start_dma(sc, skb, &sg, 1, txctl) != 0) { |
| 2136 | /* |
| 2137 | * We have to do drop frame here. |
| 2138 | */ |
| 2139 | pci_unmap_single(sc->pdev, *pa, skb->len, PCI_DMA_TODEVICE); |
| 2140 | |
| 2141 | tx_status.retries = 0; |
| 2142 | tx_status.flags = ATH_TX_ERROR; |
| 2143 | |
| 2144 | if (txctl->ht && sc->sc_txaggr) { |
| 2145 | /* Reclaim the seqno. */ |
| 2146 | tid = ATH_AN_2_TID((struct ath_node *) |
| 2147 | txctl->an, txctl->tidno); |
| 2148 | DECR(tid->seq_next, IEEE80211_SEQ_MAX); |
| 2149 | } |
| 2150 | ath_tx_complete(sc, skb, &tx_status, txctl->an); |
| 2151 | } |
| 2152 | } |
| 2153 | |
| 2154 | /* Initialize TX queue and h/w */ |
| 2155 | |
| 2156 | int ath_tx_init(struct ath_softc *sc, int nbufs) |
| 2157 | { |
| 2158 | int error = 0; |
| 2159 | |
| 2160 | do { |
| 2161 | spin_lock_init(&sc->sc_txbuflock); |
| 2162 | |
| 2163 | /* Setup tx descriptors */ |
| 2164 | error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, |
| 2165 | "tx", nbufs * ATH_FRAG_PER_MSDU, ATH_TXDESC); |
| 2166 | if (error != 0) { |
| 2167 | DPRINTF(sc, ATH_DBG_FATAL, |
| 2168 | "%s: failed to allocate tx descriptors: %d\n", |
| 2169 | __func__, error); |
| 2170 | break; |
| 2171 | } |
| 2172 | |
| 2173 | /* XXX allocate beacon state together with vap */ |
| 2174 | error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, |
| 2175 | "beacon", ATH_BCBUF, 1); |
| 2176 | if (error != 0) { |
| 2177 | DPRINTF(sc, ATH_DBG_FATAL, |
| 2178 | "%s: failed to allocate " |
| 2179 | "beacon descripotrs: %d\n", |
| 2180 | __func__, error); |
| 2181 | break; |
| 2182 | } |
| 2183 | |
| 2184 | } while (0); |
| 2185 | |
| 2186 | if (error != 0) |
| 2187 | ath_tx_cleanup(sc); |
| 2188 | |
| 2189 | return error; |
| 2190 | } |
| 2191 | |
| 2192 | /* Reclaim all tx queue resources */ |
| 2193 | |
| 2194 | int ath_tx_cleanup(struct ath_softc *sc) |
| 2195 | { |
| 2196 | /* cleanup beacon descriptors */ |
| 2197 | if (sc->sc_bdma.dd_desc_len != 0) |
| 2198 | ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); |
| 2199 | |
| 2200 | /* cleanup tx descriptors */ |
| 2201 | if (sc->sc_txdma.dd_desc_len != 0) |
| 2202 | ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); |
| 2203 | |
| 2204 | return 0; |
| 2205 | } |
| 2206 | |
| 2207 | /* Setup a h/w transmit queue */ |
| 2208 | |
| 2209 | struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) |
| 2210 | { |
| 2211 | struct ath_hal *ah = sc->sc_ah; |
Sujith | ea9880f | 2008-08-07 10:53:10 +0530 | [diff] [blame] | 2212 | struct ath9k_tx_queue_info qi; |
Luis R. Rodriguez | f078f20 | 2008-08-04 00:16:41 -0700 | [diff] [blame] | 2213 | int qnum; |
| 2214 | |
| 2215 | memzero(&qi, sizeof(qi)); |
| 2216 | qi.tqi_subtype = subtype; |
| 2217 | qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; |
| 2218 | qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; |
| 2219 | qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; |
Sujith | ea9880f | 2008-08-07 10:53:10 +0530 | [diff] [blame] | 2220 | qi.tqi_physCompBuf = 0; |
Luis R. Rodriguez | f078f20 | 2008-08-04 00:16:41 -0700 | [diff] [blame] | 2221 | |
| 2222 | /* |
| 2223 | * Enable interrupts only for EOL and DESC conditions. |
| 2224 | * We mark tx descriptors to receive a DESC interrupt |
| 2225 | * when a tx queue gets deep; otherwise waiting for the |
| 2226 | * EOL to reap descriptors. Note that this is done to |
| 2227 | * reduce interrupt load and this only defers reaping |
| 2228 | * descriptors, never transmitting frames. Aside from |
| 2229 | * reducing interrupts this also permits more concurrency. |
| 2230 | * The only potential downside is if the tx queue backs |
| 2231 | * up in which case the top half of the kernel may backup |
| 2232 | * due to a lack of tx descriptors. |
| 2233 | * |
| 2234 | * The UAPSD queue is an exception, since we take a desc- |
| 2235 | * based intr on the EOSP frames. |
| 2236 | */ |
| 2237 | if (qtype == ATH9K_TX_QUEUE_UAPSD) |
| 2238 | qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; |
| 2239 | else |
| 2240 | qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | |
| 2241 | TXQ_FLAG_TXDESCINT_ENABLE; |
| 2242 | qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); |
| 2243 | if (qnum == -1) { |
| 2244 | /* |
| 2245 | * NB: don't print a message, this happens |
| 2246 | * normally on parts with too few tx queues |
| 2247 | */ |
| 2248 | return NULL; |
| 2249 | } |
| 2250 | if (qnum >= ARRAY_SIZE(sc->sc_txq)) { |
| 2251 | DPRINTF(sc, ATH_DBG_FATAL, |
| 2252 | "%s: hal qnum %u out of range, max %u!\n", |
| 2253 | __func__, qnum, (unsigned int)ARRAY_SIZE(sc->sc_txq)); |
| 2254 | ath9k_hw_releasetxqueue(ah, qnum); |
| 2255 | return NULL; |
| 2256 | } |
| 2257 | if (!ATH_TXQ_SETUP(sc, qnum)) { |
| 2258 | struct ath_txq *txq = &sc->sc_txq[qnum]; |
| 2259 | |
| 2260 | txq->axq_qnum = qnum; |
| 2261 | txq->axq_link = NULL; |
| 2262 | INIT_LIST_HEAD(&txq->axq_q); |
| 2263 | INIT_LIST_HEAD(&txq->axq_acq); |
| 2264 | spin_lock_init(&txq->axq_lock); |
| 2265 | txq->axq_depth = 0; |
| 2266 | txq->axq_aggr_depth = 0; |
| 2267 | txq->axq_totalqueued = 0; |
| 2268 | txq->axq_intrcnt = 0; |
| 2269 | txq->axq_linkbuf = NULL; |
| 2270 | sc->sc_txqsetup |= 1<<qnum; |
| 2271 | } |
| 2272 | return &sc->sc_txq[qnum]; |
| 2273 | } |
| 2274 | |
| 2275 | /* Reclaim resources for a setup queue */ |
| 2276 | |
| 2277 | void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) |
| 2278 | { |
| 2279 | ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); |
| 2280 | sc->sc_txqsetup &= ~(1<<txq->axq_qnum); |
| 2281 | } |
| 2282 | |
| 2283 | /* |
| 2284 | * Setup a hardware data transmit queue for the specified |
| 2285 | * access control. The hal may not support all requested |
| 2286 | * queues in which case it will return a reference to a |
| 2287 | * previously setup queue. We record the mapping from ac's |
| 2288 | * to h/w queues for use by ath_tx_start and also track |
| 2289 | * the set of h/w queues being used to optimize work in the |
| 2290 | * transmit interrupt handler and related routines. |
| 2291 | */ |
| 2292 | |
| 2293 | int ath_tx_setup(struct ath_softc *sc, int haltype) |
| 2294 | { |
| 2295 | struct ath_txq *txq; |
| 2296 | |
| 2297 | if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) { |
| 2298 | DPRINTF(sc, ATH_DBG_FATAL, |
| 2299 | "%s: HAL AC %u out of range, max %zu!\n", |
| 2300 | __func__, haltype, ARRAY_SIZE(sc->sc_haltype2q)); |
| 2301 | return 0; |
| 2302 | } |
| 2303 | txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype); |
| 2304 | if (txq != NULL) { |
| 2305 | sc->sc_haltype2q[haltype] = txq->axq_qnum; |
| 2306 | return 1; |
| 2307 | } else |
| 2308 | return 0; |
| 2309 | } |
| 2310 | |
| 2311 | int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype) |
| 2312 | { |
| 2313 | int qnum; |
| 2314 | |
| 2315 | switch (qtype) { |
| 2316 | case ATH9K_TX_QUEUE_DATA: |
| 2317 | if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) { |
| 2318 | DPRINTF(sc, ATH_DBG_FATAL, |
| 2319 | "%s: HAL AC %u out of range, max %zu!\n", |
| 2320 | __func__, |
| 2321 | haltype, ARRAY_SIZE(sc->sc_haltype2q)); |
| 2322 | return -1; |
| 2323 | } |
| 2324 | qnum = sc->sc_haltype2q[haltype]; |
| 2325 | break; |
| 2326 | case ATH9K_TX_QUEUE_BEACON: |
| 2327 | qnum = sc->sc_bhalq; |
| 2328 | break; |
| 2329 | case ATH9K_TX_QUEUE_CAB: |
| 2330 | qnum = sc->sc_cabq->axq_qnum; |
| 2331 | break; |
| 2332 | default: |
| 2333 | qnum = -1; |
| 2334 | } |
| 2335 | return qnum; |
| 2336 | } |
| 2337 | |
| 2338 | /* Update parameters for a transmit queue */ |
| 2339 | |
Sujith | ea9880f | 2008-08-07 10:53:10 +0530 | [diff] [blame] | 2340 | int ath_txq_update(struct ath_softc *sc, int qnum, |
| 2341 | struct ath9k_tx_queue_info *qinfo) |
Luis R. Rodriguez | f078f20 | 2008-08-04 00:16:41 -0700 | [diff] [blame] | 2342 | { |
| 2343 | struct ath_hal *ah = sc->sc_ah; |
| 2344 | int error = 0; |
Sujith | ea9880f | 2008-08-07 10:53:10 +0530 | [diff] [blame] | 2345 | struct ath9k_tx_queue_info qi; |
Luis R. Rodriguez | f078f20 | 2008-08-04 00:16:41 -0700 | [diff] [blame] | 2346 | |
| 2347 | if (qnum == sc->sc_bhalq) { |
| 2348 | /* |
| 2349 | * XXX: for beacon queue, we just save the parameter. |
| 2350 | * It will be picked up by ath_beaconq_config when |
| 2351 | * it's necessary. |
| 2352 | */ |
Sujith | ea9880f | 2008-08-07 10:53:10 +0530 | [diff] [blame] | 2353 | sc->sc_beacon_qi = *qinfo; |
Luis R. Rodriguez | f078f20 | 2008-08-04 00:16:41 -0700 | [diff] [blame] | 2354 | return 0; |
| 2355 | } |
| 2356 | |
| 2357 | ASSERT(sc->sc_txq[qnum].axq_qnum == qnum); |
| 2358 | |
Sujith | ea9880f | 2008-08-07 10:53:10 +0530 | [diff] [blame] | 2359 | ath9k_hw_get_txq_props(ah, qnum, &qi); |
| 2360 | qi.tqi_aifs = qinfo->tqi_aifs; |
| 2361 | qi.tqi_cwmin = qinfo->tqi_cwmin; |
| 2362 | qi.tqi_cwmax = qinfo->tqi_cwmax; |
| 2363 | qi.tqi_burstTime = qinfo->tqi_burstTime; |
| 2364 | qi.tqi_readyTime = qinfo->tqi_readyTime; |
Luis R. Rodriguez | f078f20 | 2008-08-04 00:16:41 -0700 | [diff] [blame] | 2365 | |
Sujith | ea9880f | 2008-08-07 10:53:10 +0530 | [diff] [blame] | 2366 | if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { |
Luis R. Rodriguez | f078f20 | 2008-08-04 00:16:41 -0700 | [diff] [blame] | 2367 | DPRINTF(sc, ATH_DBG_FATAL, |
| 2368 | "%s: unable to update hardware queue %u!\n", |
| 2369 | __func__, qnum); |
| 2370 | error = -EIO; |
| 2371 | } else { |
| 2372 | ath9k_hw_resettxqueue(ah, qnum); /* push to h/w */ |
| 2373 | } |
| 2374 | |
| 2375 | return error; |
| 2376 | } |
| 2377 | |
| 2378 | int ath_cabq_update(struct ath_softc *sc) |
| 2379 | { |
Sujith | ea9880f | 2008-08-07 10:53:10 +0530 | [diff] [blame] | 2380 | struct ath9k_tx_queue_info qi; |
Luis R. Rodriguez | f078f20 | 2008-08-04 00:16:41 -0700 | [diff] [blame] | 2381 | int qnum = sc->sc_cabq->axq_qnum; |
| 2382 | struct ath_beacon_config conf; |
| 2383 | |
Sujith | ea9880f | 2008-08-07 10:53:10 +0530 | [diff] [blame] | 2384 | ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); |
Luis R. Rodriguez | f078f20 | 2008-08-04 00:16:41 -0700 | [diff] [blame] | 2385 | /* |
| 2386 | * Ensure the readytime % is within the bounds. |
| 2387 | */ |
| 2388 | if (sc->sc_config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND) |
| 2389 | sc->sc_config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND; |
| 2390 | else if (sc->sc_config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND) |
| 2391 | sc->sc_config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND; |
| 2392 | |
| 2393 | ath_get_beaconconfig(sc, ATH_IF_ID_ANY, &conf); |
| 2394 | qi.tqi_readyTime = |
| 2395 | (conf.beacon_interval * sc->sc_config.cabqReadytime) / 100; |
| 2396 | ath_txq_update(sc, qnum, &qi); |
| 2397 | |
| 2398 | return 0; |
| 2399 | } |
| 2400 | |
| 2401 | int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb) |
| 2402 | { |
| 2403 | struct ath_tx_control txctl; |
| 2404 | int error = 0; |
| 2405 | |
| 2406 | error = ath_tx_prepare(sc, skb, &txctl); |
| 2407 | if (error == 0) |
| 2408 | /* |
| 2409 | * Start DMA mapping. |
| 2410 | * ath_tx_start_dma() will be called either synchronously |
| 2411 | * or asynchrounsly once DMA is complete. |
| 2412 | */ |
| 2413 | xmit_map_sg(sc, skb, |
| 2414 | get_dma_mem_context(&txctl, dmacontext), |
| 2415 | &txctl); |
| 2416 | else |
| 2417 | ath_node_put(sc, txctl.an, ATH9K_BH_STATUS_CHANGE); |
| 2418 | |
| 2419 | /* failed packets will be dropped by the caller */ |
| 2420 | return error; |
| 2421 | } |
| 2422 | |
| 2423 | /* Deferred processing of transmit interrupt */ |
| 2424 | |
| 2425 | void ath_tx_tasklet(struct ath_softc *sc) |
| 2426 | { |
| 2427 | u64 tsf = ath9k_hw_gettsf64(sc->sc_ah); |
| 2428 | int i, nacked = 0; |
| 2429 | u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1); |
| 2430 | |
| 2431 | ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask); |
| 2432 | |
| 2433 | /* |
| 2434 | * Process each active queue. |
| 2435 | */ |
| 2436 | for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { |
| 2437 | if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) |
| 2438 | nacked += ath_tx_processq(sc, &sc->sc_txq[i]); |
| 2439 | } |
| 2440 | if (nacked) |
| 2441 | sc->sc_lastrx = tsf; |
| 2442 | } |
| 2443 | |
| 2444 | void ath_tx_draintxq(struct ath_softc *sc, |
| 2445 | struct ath_txq *txq, bool retry_tx) |
| 2446 | { |
| 2447 | struct ath_buf *bf, *lastbf; |
| 2448 | struct list_head bf_head; |
| 2449 | |
| 2450 | INIT_LIST_HEAD(&bf_head); |
| 2451 | |
| 2452 | /* |
| 2453 | * NB: this assumes output has been stopped and |
| 2454 | * we do not need to block ath_tx_tasklet |
| 2455 | */ |
| 2456 | for (;;) { |
| 2457 | spin_lock_bh(&txq->axq_lock); |
| 2458 | |
| 2459 | if (list_empty(&txq->axq_q)) { |
| 2460 | txq->axq_link = NULL; |
| 2461 | txq->axq_linkbuf = NULL; |
| 2462 | spin_unlock_bh(&txq->axq_lock); |
| 2463 | break; |
| 2464 | } |
| 2465 | |
| 2466 | bf = list_first_entry(&txq->axq_q, struct ath_buf, list); |
| 2467 | |
| 2468 | if (bf->bf_status & ATH_BUFSTATUS_STALE) { |
| 2469 | list_del(&bf->list); |
| 2470 | spin_unlock_bh(&txq->axq_lock); |
| 2471 | |
| 2472 | spin_lock_bh(&sc->sc_txbuflock); |
| 2473 | list_add_tail(&bf->list, &sc->sc_txbuf); |
| 2474 | spin_unlock_bh(&sc->sc_txbuflock); |
| 2475 | continue; |
| 2476 | } |
| 2477 | |
| 2478 | lastbf = bf->bf_lastbf; |
| 2479 | if (!retry_tx) |
| 2480 | lastbf->bf_desc->ds_txstat.ts_flags = |
| 2481 | ATH9K_TX_SW_ABORTED; |
| 2482 | |
| 2483 | /* remove ath_buf's of the same mpdu from txq */ |
| 2484 | list_cut_position(&bf_head, &txq->axq_q, &lastbf->list); |
| 2485 | txq->axq_depth--; |
| 2486 | |
| 2487 | spin_unlock_bh(&txq->axq_lock); |
| 2488 | |
| 2489 | if (bf->bf_isampdu) |
| 2490 | ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, 0); |
| 2491 | else |
| 2492 | ath_tx_complete_buf(sc, bf, &bf_head, 0, 0); |
| 2493 | } |
| 2494 | |
| 2495 | /* flush any pending frames if aggregation is enabled */ |
| 2496 | if (sc->sc_txaggr) { |
| 2497 | if (!retry_tx) { |
| 2498 | spin_lock_bh(&txq->axq_lock); |
| 2499 | ath_txq_drain_pending_buffers(sc, txq, |
| 2500 | ATH9K_BH_STATUS_CHANGE); |
| 2501 | spin_unlock_bh(&txq->axq_lock); |
| 2502 | } |
| 2503 | } |
| 2504 | } |
| 2505 | |
| 2506 | /* Drain the transmit queues and reclaim resources */ |
| 2507 | |
| 2508 | void ath_draintxq(struct ath_softc *sc, bool retry_tx) |
| 2509 | { |
| 2510 | /* stop beacon queue. The beacon will be freed when |
| 2511 | * we go to INIT state */ |
| 2512 | if (!sc->sc_invalid) { |
| 2513 | (void) ath9k_hw_stoptxdma(sc->sc_ah, sc->sc_bhalq); |
| 2514 | DPRINTF(sc, ATH_DBG_XMIT, "%s: beacon queue %x\n", __func__, |
| 2515 | ath9k_hw_gettxbuf(sc->sc_ah, sc->sc_bhalq)); |
| 2516 | } |
| 2517 | |
| 2518 | ath_drain_txdataq(sc, retry_tx); |
| 2519 | } |
| 2520 | |
| 2521 | u32 ath_txq_depth(struct ath_softc *sc, int qnum) |
| 2522 | { |
| 2523 | return sc->sc_txq[qnum].axq_depth; |
| 2524 | } |
| 2525 | |
| 2526 | u32 ath_txq_aggr_depth(struct ath_softc *sc, int qnum) |
| 2527 | { |
| 2528 | return sc->sc_txq[qnum].axq_aggr_depth; |
| 2529 | } |
| 2530 | |
| 2531 | /* Check if an ADDBA is required. A valid node must be passed. */ |
| 2532 | enum ATH_AGGR_CHECK ath_tx_aggr_check(struct ath_softc *sc, |
| 2533 | struct ath_node *an, |
| 2534 | u8 tidno) |
| 2535 | { |
| 2536 | struct ath_atx_tid *txtid; |
| 2537 | DECLARE_MAC_BUF(mac); |
| 2538 | |
| 2539 | if (!sc->sc_txaggr) |
| 2540 | return AGGR_NOT_REQUIRED; |
| 2541 | |
| 2542 | /* ADDBA exchange must be completed before sending aggregates */ |
| 2543 | txtid = ATH_AN_2_TID(an, tidno); |
| 2544 | |
| 2545 | if (txtid->addba_exchangecomplete) |
| 2546 | return AGGR_EXCHANGE_DONE; |
| 2547 | |
| 2548 | if (txtid->cleanup_inprogress) |
| 2549 | return AGGR_CLEANUP_PROGRESS; |
| 2550 | |
| 2551 | if (txtid->addba_exchangeinprogress) |
| 2552 | return AGGR_EXCHANGE_PROGRESS; |
| 2553 | |
| 2554 | if (!txtid->addba_exchangecomplete) { |
| 2555 | if (!txtid->addba_exchangeinprogress && |
| 2556 | (txtid->addba_exchangeattempts < ADDBA_EXCHANGE_ATTEMPTS)) { |
| 2557 | txtid->addba_exchangeattempts++; |
| 2558 | return AGGR_REQUIRED; |
| 2559 | } |
| 2560 | } |
| 2561 | |
| 2562 | return AGGR_NOT_REQUIRED; |
| 2563 | } |
| 2564 | |
| 2565 | /* Start TX aggregation */ |
| 2566 | |
| 2567 | int ath_tx_aggr_start(struct ath_softc *sc, |
| 2568 | const u8 *addr, |
| 2569 | u16 tid, |
| 2570 | u16 *ssn) |
| 2571 | { |
| 2572 | struct ath_atx_tid *txtid; |
| 2573 | struct ath_node *an; |
| 2574 | |
| 2575 | spin_lock_bh(&sc->node_lock); |
| 2576 | an = ath_node_find(sc, (u8 *) addr); |
| 2577 | spin_unlock_bh(&sc->node_lock); |
| 2578 | |
| 2579 | if (!an) { |
| 2580 | DPRINTF(sc, ATH_DBG_AGGR, |
| 2581 | "%s: Node not found to initialize " |
| 2582 | "TX aggregation\n", __func__); |
| 2583 | return -1; |
| 2584 | } |
| 2585 | |
| 2586 | if (sc->sc_txaggr) { |
| 2587 | txtid = ATH_AN_2_TID(an, tid); |
| 2588 | txtid->addba_exchangeinprogress = 1; |
| 2589 | ath_tx_pause_tid(sc, txtid); |
| 2590 | } |
| 2591 | |
| 2592 | return 0; |
| 2593 | } |
| 2594 | |
| 2595 | /* Stop tx aggregation */ |
| 2596 | |
| 2597 | int ath_tx_aggr_stop(struct ath_softc *sc, |
| 2598 | const u8 *addr, |
| 2599 | u16 tid) |
| 2600 | { |
| 2601 | struct ath_node *an; |
| 2602 | |
| 2603 | spin_lock_bh(&sc->node_lock); |
| 2604 | an = ath_node_find(sc, (u8 *) addr); |
| 2605 | spin_unlock_bh(&sc->node_lock); |
| 2606 | |
| 2607 | if (!an) { |
| 2608 | DPRINTF(sc, ATH_DBG_AGGR, |
| 2609 | "%s: TX aggr stop for non-existent node\n", __func__); |
| 2610 | return -1; |
| 2611 | } |
| 2612 | |
| 2613 | ath_tx_aggr_teardown(sc, an, tid); |
| 2614 | return 0; |
| 2615 | } |
| 2616 | |
| 2617 | /* |
| 2618 | * Performs transmit side cleanup when TID changes from aggregated to |
| 2619 | * unaggregated. |
| 2620 | * - Pause the TID and mark cleanup in progress |
| 2621 | * - Discard all retry frames from the s/w queue. |
| 2622 | */ |
| 2623 | |
| 2624 | void ath_tx_aggr_teardown(struct ath_softc *sc, |
| 2625 | struct ath_node *an, u8 tid) |
| 2626 | { |
| 2627 | struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); |
| 2628 | struct ath_txq *txq = &sc->sc_txq[txtid->ac->qnum]; |
| 2629 | struct ath_buf *bf; |
| 2630 | struct list_head bf_head; |
| 2631 | INIT_LIST_HEAD(&bf_head); |
| 2632 | |
| 2633 | DPRINTF(sc, ATH_DBG_AGGR, "%s: teardown TX aggregation\n", __func__); |
| 2634 | |
| 2635 | if (txtid->cleanup_inprogress) /* cleanup is in progress */ |
| 2636 | return; |
| 2637 | |
| 2638 | if (!txtid->addba_exchangecomplete) { |
| 2639 | txtid->addba_exchangeattempts = 0; |
| 2640 | return; |
| 2641 | } |
| 2642 | |
| 2643 | /* TID must be paused first */ |
| 2644 | ath_tx_pause_tid(sc, txtid); |
| 2645 | |
| 2646 | /* drop all software retried frames and mark this TID */ |
| 2647 | spin_lock_bh(&txq->axq_lock); |
| 2648 | while (!list_empty(&txtid->buf_q)) { |
| 2649 | bf = list_first_entry(&txtid->buf_q, struct ath_buf, list); |
| 2650 | if (!bf->bf_isretried) { |
| 2651 | /* |
| 2652 | * NB: it's based on the assumption that |
| 2653 | * software retried frame will always stay |
| 2654 | * at the head of software queue. |
| 2655 | */ |
| 2656 | break; |
| 2657 | } |
| 2658 | list_cut_position(&bf_head, |
| 2659 | &txtid->buf_q, &bf->bf_lastfrm->list); |
| 2660 | ath_tx_update_baw(sc, txtid, bf->bf_seqno); |
| 2661 | |
| 2662 | /* complete this sub-frame */ |
| 2663 | ath_tx_complete_buf(sc, bf, &bf_head, 0, 0); |
| 2664 | } |
| 2665 | |
| 2666 | if (txtid->baw_head != txtid->baw_tail) { |
| 2667 | spin_unlock_bh(&txq->axq_lock); |
| 2668 | txtid->cleanup_inprogress = true; |
| 2669 | } else { |
| 2670 | txtid->addba_exchangecomplete = 0; |
| 2671 | txtid->addba_exchangeattempts = 0; |
| 2672 | spin_unlock_bh(&txq->axq_lock); |
| 2673 | ath_tx_flush_tid(sc, txtid); |
| 2674 | } |
| 2675 | } |
| 2676 | |
| 2677 | /* |
| 2678 | * Tx scheduling logic |
| 2679 | * NB: must be called with txq lock held |
| 2680 | */ |
| 2681 | |
| 2682 | void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) |
| 2683 | { |
| 2684 | struct ath_atx_ac *ac; |
| 2685 | struct ath_atx_tid *tid; |
| 2686 | |
| 2687 | /* nothing to schedule */ |
| 2688 | if (list_empty(&txq->axq_acq)) |
| 2689 | return; |
| 2690 | /* |
| 2691 | * get the first node/ac pair on the queue |
| 2692 | */ |
| 2693 | ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list); |
| 2694 | list_del(&ac->list); |
| 2695 | ac->sched = false; |
| 2696 | |
| 2697 | /* |
| 2698 | * process a single tid per destination |
| 2699 | */ |
| 2700 | do { |
| 2701 | /* nothing to schedule */ |
| 2702 | if (list_empty(&ac->tid_q)) |
| 2703 | return; |
| 2704 | |
| 2705 | tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list); |
| 2706 | list_del(&tid->list); |
| 2707 | tid->sched = false; |
| 2708 | |
| 2709 | if (tid->paused) /* check next tid to keep h/w busy */ |
| 2710 | continue; |
| 2711 | |
| 2712 | if (!(tid->an->an_smmode == ATH_SM_PWRSAV_DYNAMIC) || |
| 2713 | ((txq->axq_depth % 2) == 0)) { |
| 2714 | ath_tx_sched_aggr(sc, txq, tid); |
| 2715 | } |
| 2716 | |
| 2717 | /* |
| 2718 | * add tid to round-robin queue if more frames |
| 2719 | * are pending for the tid |
| 2720 | */ |
| 2721 | if (!list_empty(&tid->buf_q)) |
| 2722 | ath_tx_queue_tid(txq, tid); |
| 2723 | |
| 2724 | /* only schedule one TID at a time */ |
| 2725 | break; |
| 2726 | } while (!list_empty(&ac->tid_q)); |
| 2727 | |
| 2728 | /* |
| 2729 | * schedule AC if more TIDs need processing |
| 2730 | */ |
| 2731 | if (!list_empty(&ac->tid_q)) { |
| 2732 | /* |
| 2733 | * add dest ac to txq if not already added |
| 2734 | */ |
| 2735 | if (!ac->sched) { |
| 2736 | ac->sched = true; |
| 2737 | list_add_tail(&ac->list, &txq->axq_acq); |
| 2738 | } |
| 2739 | } |
| 2740 | } |
| 2741 | |
| 2742 | /* Initialize per-node transmit state */ |
| 2743 | |
| 2744 | void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) |
| 2745 | { |
| 2746 | if (sc->sc_txaggr) { |
| 2747 | struct ath_atx_tid *tid; |
| 2748 | struct ath_atx_ac *ac; |
| 2749 | int tidno, acno; |
| 2750 | |
| 2751 | sc->sc_ht_info.maxampdu = ATH_AMPDU_LIMIT_DEFAULT; |
| 2752 | |
| 2753 | /* |
| 2754 | * Init per tid tx state |
| 2755 | */ |
| 2756 | for (tidno = 0, tid = &an->an_aggr.tx.tid[tidno]; |
| 2757 | tidno < WME_NUM_TID; |
| 2758 | tidno++, tid++) { |
| 2759 | tid->an = an; |
| 2760 | tid->tidno = tidno; |
| 2761 | tid->seq_start = tid->seq_next = 0; |
| 2762 | tid->baw_size = WME_MAX_BA; |
| 2763 | tid->baw_head = tid->baw_tail = 0; |
| 2764 | tid->sched = false; |
| 2765 | tid->paused = false; |
| 2766 | tid->cleanup_inprogress = false; |
| 2767 | INIT_LIST_HEAD(&tid->buf_q); |
| 2768 | |
| 2769 | acno = TID_TO_WME_AC(tidno); |
| 2770 | tid->ac = &an->an_aggr.tx.ac[acno]; |
| 2771 | |
| 2772 | /* ADDBA state */ |
| 2773 | tid->addba_exchangecomplete = 0; |
| 2774 | tid->addba_exchangeinprogress = 0; |
| 2775 | tid->addba_exchangeattempts = 0; |
| 2776 | } |
| 2777 | |
| 2778 | /* |
| 2779 | * Init per ac tx state |
| 2780 | */ |
| 2781 | for (acno = 0, ac = &an->an_aggr.tx.ac[acno]; |
| 2782 | acno < WME_NUM_AC; acno++, ac++) { |
| 2783 | ac->sched = false; |
| 2784 | INIT_LIST_HEAD(&ac->tid_q); |
| 2785 | |
| 2786 | switch (acno) { |
| 2787 | case WME_AC_BE: |
| 2788 | ac->qnum = ath_tx_get_qnum(sc, |
| 2789 | ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE); |
| 2790 | break; |
| 2791 | case WME_AC_BK: |
| 2792 | ac->qnum = ath_tx_get_qnum(sc, |
| 2793 | ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK); |
| 2794 | break; |
| 2795 | case WME_AC_VI: |
| 2796 | ac->qnum = ath_tx_get_qnum(sc, |
| 2797 | ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI); |
| 2798 | break; |
| 2799 | case WME_AC_VO: |
| 2800 | ac->qnum = ath_tx_get_qnum(sc, |
| 2801 | ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO); |
| 2802 | break; |
| 2803 | } |
| 2804 | } |
| 2805 | } |
| 2806 | } |
| 2807 | |
| 2808 | /* Cleanupthe pending buffers for the node. */ |
| 2809 | |
| 2810 | void ath_tx_node_cleanup(struct ath_softc *sc, |
| 2811 | struct ath_node *an, bool bh_flag) |
| 2812 | { |
| 2813 | int i; |
| 2814 | struct ath_atx_ac *ac, *ac_tmp; |
| 2815 | struct ath_atx_tid *tid, *tid_tmp; |
| 2816 | struct ath_txq *txq; |
| 2817 | for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { |
| 2818 | if (ATH_TXQ_SETUP(sc, i)) { |
| 2819 | txq = &sc->sc_txq[i]; |
| 2820 | |
| 2821 | if (likely(bh_flag)) |
| 2822 | spin_lock_bh(&txq->axq_lock); |
| 2823 | else |
| 2824 | spin_lock(&txq->axq_lock); |
| 2825 | |
| 2826 | list_for_each_entry_safe(ac, |
| 2827 | ac_tmp, &txq->axq_acq, list) { |
| 2828 | tid = list_first_entry(&ac->tid_q, |
| 2829 | struct ath_atx_tid, list); |
| 2830 | if (tid && tid->an != an) |
| 2831 | continue; |
| 2832 | list_del(&ac->list); |
| 2833 | ac->sched = false; |
| 2834 | |
| 2835 | list_for_each_entry_safe(tid, |
| 2836 | tid_tmp, &ac->tid_q, list) { |
| 2837 | list_del(&tid->list); |
| 2838 | tid->sched = false; |
| 2839 | ath_tid_drain(sc, txq, tid, bh_flag); |
| 2840 | tid->addba_exchangecomplete = 0; |
| 2841 | tid->addba_exchangeattempts = 0; |
| 2842 | tid->cleanup_inprogress = false; |
| 2843 | } |
| 2844 | } |
| 2845 | |
| 2846 | if (likely(bh_flag)) |
| 2847 | spin_unlock_bh(&txq->axq_lock); |
| 2848 | else |
| 2849 | spin_unlock(&txq->axq_lock); |
| 2850 | } |
| 2851 | } |
| 2852 | } |
| 2853 | |
| 2854 | /* Cleanup per node transmit state */ |
| 2855 | |
| 2856 | void ath_tx_node_free(struct ath_softc *sc, struct ath_node *an) |
| 2857 | { |
| 2858 | if (sc->sc_txaggr) { |
| 2859 | struct ath_atx_tid *tid; |
| 2860 | int tidno, i; |
| 2861 | |
| 2862 | /* Init per tid rx state */ |
| 2863 | for (tidno = 0, tid = &an->an_aggr.tx.tid[tidno]; |
| 2864 | tidno < WME_NUM_TID; |
| 2865 | tidno++, tid++) { |
| 2866 | |
| 2867 | for (i = 0; i < ATH_TID_MAX_BUFS; i++) |
| 2868 | ASSERT(tid->tx_buf[i] == NULL); |
| 2869 | } |
| 2870 | } |
| 2871 | } |