Alexander Potapenko | 5015a30 | 2019-07-16 16:27:27 -0700 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Test cases for SL[AOU]B/page initialization at alloc/free time. |
| 4 | */ |
| 5 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 6 | |
| 7 | #include <linux/init.h> |
| 8 | #include <linux/kernel.h> |
| 9 | #include <linux/mm.h> |
| 10 | #include <linux/module.h> |
| 11 | #include <linux/slab.h> |
| 12 | #include <linux/string.h> |
| 13 | #include <linux/vmalloc.h> |
| 14 | |
| 15 | #define GARBAGE_INT (0x09A7BA9E) |
| 16 | #define GARBAGE_BYTE (0x9E) |
| 17 | |
| 18 | #define REPORT_FAILURES_IN_FN() \ |
| 19 | do { \ |
| 20 | if (failures) \ |
| 21 | pr_info("%s failed %d out of %d times\n", \ |
| 22 | __func__, failures, num_tests); \ |
| 23 | else \ |
| 24 | pr_info("all %d tests in %s passed\n", \ |
| 25 | num_tests, __func__); \ |
| 26 | } while (0) |
| 27 | |
| 28 | /* Calculate the number of uninitialized bytes in the buffer. */ |
| 29 | static int __init count_nonzero_bytes(void *ptr, size_t size) |
| 30 | { |
| 31 | int i, ret = 0; |
| 32 | unsigned char *p = (unsigned char *)ptr; |
| 33 | |
| 34 | for (i = 0; i < size; i++) |
| 35 | if (p[i]) |
| 36 | ret++; |
| 37 | return ret; |
| 38 | } |
| 39 | |
| 40 | /* Fill a buffer with garbage, skipping |skip| first bytes. */ |
Alexander Potapenko | 4ab7ace | 2019-07-16 16:27:42 -0700 | [diff] [blame] | 41 | static void __init fill_with_garbage_skip(void *ptr, int size, size_t skip) |
Alexander Potapenko | 5015a30 | 2019-07-16 16:27:27 -0700 | [diff] [blame] | 42 | { |
Alexander Potapenko | 4ab7ace | 2019-07-16 16:27:42 -0700 | [diff] [blame] | 43 | unsigned int *p = (unsigned int *)((char *)ptr + skip); |
Alexander Potapenko | 5015a30 | 2019-07-16 16:27:27 -0700 | [diff] [blame] | 44 | int i = 0; |
| 45 | |
Alexander Potapenko | 4ab7ace | 2019-07-16 16:27:42 -0700 | [diff] [blame] | 46 | WARN_ON(skip > size); |
| 47 | size -= skip; |
| 48 | |
Alexander Potapenko | 5015a30 | 2019-07-16 16:27:27 -0700 | [diff] [blame] | 49 | while (size >= sizeof(*p)) { |
| 50 | p[i] = GARBAGE_INT; |
| 51 | i++; |
| 52 | size -= sizeof(*p); |
| 53 | } |
| 54 | if (size) |
| 55 | memset(&p[i], GARBAGE_BYTE, size); |
| 56 | } |
| 57 | |
| 58 | static void __init fill_with_garbage(void *ptr, size_t size) |
| 59 | { |
| 60 | fill_with_garbage_skip(ptr, size, 0); |
| 61 | } |
| 62 | |
| 63 | static int __init do_alloc_pages_order(int order, int *total_failures) |
| 64 | { |
| 65 | struct page *page; |
| 66 | void *buf; |
| 67 | size_t size = PAGE_SIZE << order; |
| 68 | |
| 69 | page = alloc_pages(GFP_KERNEL, order); |
| 70 | buf = page_address(page); |
| 71 | fill_with_garbage(buf, size); |
| 72 | __free_pages(page, order); |
| 73 | |
| 74 | page = alloc_pages(GFP_KERNEL, order); |
| 75 | buf = page_address(page); |
| 76 | if (count_nonzero_bytes(buf, size)) |
| 77 | (*total_failures)++; |
| 78 | fill_with_garbage(buf, size); |
| 79 | __free_pages(page, order); |
| 80 | return 1; |
| 81 | } |
| 82 | |
| 83 | /* Test the page allocator by calling alloc_pages with different orders. */ |
| 84 | static int __init test_pages(int *total_failures) |
| 85 | { |
| 86 | int failures = 0, num_tests = 0; |
| 87 | int i; |
| 88 | |
| 89 | for (i = 0; i < 10; i++) |
| 90 | num_tests += do_alloc_pages_order(i, &failures); |
| 91 | |
| 92 | REPORT_FAILURES_IN_FN(); |
| 93 | *total_failures += failures; |
| 94 | return num_tests; |
| 95 | } |
| 96 | |
| 97 | /* Test kmalloc() with given parameters. */ |
| 98 | static int __init do_kmalloc_size(size_t size, int *total_failures) |
| 99 | { |
| 100 | void *buf; |
| 101 | |
| 102 | buf = kmalloc(size, GFP_KERNEL); |
| 103 | fill_with_garbage(buf, size); |
| 104 | kfree(buf); |
| 105 | |
| 106 | buf = kmalloc(size, GFP_KERNEL); |
| 107 | if (count_nonzero_bytes(buf, size)) |
| 108 | (*total_failures)++; |
| 109 | fill_with_garbage(buf, size); |
| 110 | kfree(buf); |
| 111 | return 1; |
| 112 | } |
| 113 | |
| 114 | /* Test vmalloc() with given parameters. */ |
| 115 | static int __init do_vmalloc_size(size_t size, int *total_failures) |
| 116 | { |
| 117 | void *buf; |
| 118 | |
| 119 | buf = vmalloc(size); |
| 120 | fill_with_garbage(buf, size); |
| 121 | vfree(buf); |
| 122 | |
| 123 | buf = vmalloc(size); |
| 124 | if (count_nonzero_bytes(buf, size)) |
| 125 | (*total_failures)++; |
| 126 | fill_with_garbage(buf, size); |
| 127 | vfree(buf); |
| 128 | return 1; |
| 129 | } |
| 130 | |
| 131 | /* Test kmalloc()/vmalloc() by allocating objects of different sizes. */ |
| 132 | static int __init test_kvmalloc(int *total_failures) |
| 133 | { |
| 134 | int failures = 0, num_tests = 0; |
| 135 | int i, size; |
| 136 | |
| 137 | for (i = 0; i < 20; i++) { |
| 138 | size = 1 << i; |
| 139 | num_tests += do_kmalloc_size(size, &failures); |
| 140 | num_tests += do_vmalloc_size(size, &failures); |
| 141 | } |
| 142 | |
| 143 | REPORT_FAILURES_IN_FN(); |
| 144 | *total_failures += failures; |
| 145 | return num_tests; |
| 146 | } |
| 147 | |
| 148 | #define CTOR_BYTES (sizeof(unsigned int)) |
| 149 | #define CTOR_PATTERN (0x41414141) |
| 150 | /* Initialize the first 4 bytes of the object. */ |
| 151 | static void test_ctor(void *obj) |
| 152 | { |
| 153 | *(unsigned int *)obj = CTOR_PATTERN; |
| 154 | } |
| 155 | |
| 156 | /* |
| 157 | * Check the invariants for the buffer allocated from a slab cache. |
| 158 | * If the cache has a test constructor, the first 4 bytes of the object must |
| 159 | * always remain equal to CTOR_PATTERN. |
| 160 | * If the cache isn't an RCU-typesafe one, or if the allocation is done with |
| 161 | * __GFP_ZERO, then the object contents must be zeroed after allocation. |
| 162 | * If the cache is an RCU-typesafe one, the object contents must never be |
| 163 | * zeroed after the first use. This is checked by memcmp() in |
| 164 | * do_kmem_cache_size(). |
| 165 | */ |
| 166 | static bool __init check_buf(void *buf, int size, bool want_ctor, |
| 167 | bool want_rcu, bool want_zero) |
| 168 | { |
| 169 | int bytes; |
| 170 | bool fail = false; |
| 171 | |
| 172 | bytes = count_nonzero_bytes(buf, size); |
| 173 | WARN_ON(want_ctor && want_zero); |
| 174 | if (want_zero) |
| 175 | return bytes; |
| 176 | if (want_ctor) { |
| 177 | if (*(unsigned int *)buf != CTOR_PATTERN) |
| 178 | fail = 1; |
| 179 | } else { |
| 180 | if (bytes) |
| 181 | fail = !want_rcu; |
| 182 | } |
| 183 | return fail; |
| 184 | } |
| 185 | |
| 186 | /* |
| 187 | * Test kmem_cache with given parameters: |
| 188 | * want_ctor - use a constructor; |
| 189 | * want_rcu - use SLAB_TYPESAFE_BY_RCU; |
| 190 | * want_zero - use __GFP_ZERO. |
| 191 | */ |
| 192 | static int __init do_kmem_cache_size(size_t size, bool want_ctor, |
| 193 | bool want_rcu, bool want_zero, |
| 194 | int *total_failures) |
| 195 | { |
| 196 | struct kmem_cache *c; |
| 197 | int iter; |
| 198 | bool fail = false; |
| 199 | gfp_t alloc_mask = GFP_KERNEL | (want_zero ? __GFP_ZERO : 0); |
| 200 | void *buf, *buf_copy; |
| 201 | |
| 202 | c = kmem_cache_create("test_cache", size, 1, |
| 203 | want_rcu ? SLAB_TYPESAFE_BY_RCU : 0, |
| 204 | want_ctor ? test_ctor : NULL); |
| 205 | for (iter = 0; iter < 10; iter++) { |
| 206 | buf = kmem_cache_alloc(c, alloc_mask); |
| 207 | /* Check that buf is zeroed, if it must be. */ |
| 208 | fail = check_buf(buf, size, want_ctor, want_rcu, want_zero); |
| 209 | fill_with_garbage_skip(buf, size, want_ctor ? CTOR_BYTES : 0); |
Arnd Bergmann | d3a8116 | 2019-07-16 16:27:39 -0700 | [diff] [blame] | 210 | |
| 211 | if (!want_rcu) { |
| 212 | kmem_cache_free(c, buf); |
| 213 | continue; |
| 214 | } |
| 215 | |
Alexander Potapenko | 5015a30 | 2019-07-16 16:27:27 -0700 | [diff] [blame] | 216 | /* |
| 217 | * If this is an RCU cache, use a critical section to ensure we |
| 218 | * can touch objects after they're freed. |
| 219 | */ |
Arnd Bergmann | d3a8116 | 2019-07-16 16:27:39 -0700 | [diff] [blame] | 220 | rcu_read_lock(); |
| 221 | /* |
| 222 | * Copy the buffer to check that it's not wiped on |
| 223 | * free(). |
| 224 | */ |
Alexander Potapenko | 733d1d1 | 2019-08-02 21:49:22 -0700 | [diff] [blame] | 225 | buf_copy = kmalloc(size, GFP_ATOMIC); |
Arnd Bergmann | d3a8116 | 2019-07-16 16:27:39 -0700 | [diff] [blame] | 226 | if (buf_copy) |
| 227 | memcpy(buf_copy, buf, size); |
| 228 | |
Alexander Potapenko | 4ab7ace | 2019-07-16 16:27:42 -0700 | [diff] [blame] | 229 | kmem_cache_free(c, buf); |
Arnd Bergmann | d3a8116 | 2019-07-16 16:27:39 -0700 | [diff] [blame] | 230 | /* |
| 231 | * Check that |buf| is intact after kmem_cache_free(). |
| 232 | * |want_zero| is false, because we wrote garbage to |
| 233 | * the buffer already. |
| 234 | */ |
| 235 | fail |= check_buf(buf, size, want_ctor, want_rcu, |
| 236 | false); |
| 237 | if (buf_copy) { |
| 238 | fail |= (bool)memcmp(buf, buf_copy, size); |
| 239 | kfree(buf_copy); |
Alexander Potapenko | 5015a30 | 2019-07-16 16:27:27 -0700 | [diff] [blame] | 240 | } |
Arnd Bergmann | d3a8116 | 2019-07-16 16:27:39 -0700 | [diff] [blame] | 241 | rcu_read_unlock(); |
Alexander Potapenko | 5015a30 | 2019-07-16 16:27:27 -0700 | [diff] [blame] | 242 | } |
| 243 | kmem_cache_destroy(c); |
| 244 | |
| 245 | *total_failures += fail; |
| 246 | return 1; |
| 247 | } |
| 248 | |
| 249 | /* |
| 250 | * Check that the data written to an RCU-allocated object survives |
| 251 | * reallocation. |
| 252 | */ |
| 253 | static int __init do_kmem_cache_rcu_persistent(int size, int *total_failures) |
| 254 | { |
| 255 | struct kmem_cache *c; |
| 256 | void *buf, *buf_contents, *saved_ptr; |
| 257 | void **used_objects; |
| 258 | int i, iter, maxiter = 1024; |
| 259 | bool fail = false; |
| 260 | |
| 261 | c = kmem_cache_create("test_cache", size, size, SLAB_TYPESAFE_BY_RCU, |
| 262 | NULL); |
| 263 | buf = kmem_cache_alloc(c, GFP_KERNEL); |
| 264 | saved_ptr = buf; |
| 265 | fill_with_garbage(buf, size); |
| 266 | buf_contents = kmalloc(size, GFP_KERNEL); |
| 267 | if (!buf_contents) |
| 268 | goto out; |
| 269 | used_objects = kmalloc_array(maxiter, sizeof(void *), GFP_KERNEL); |
| 270 | if (!used_objects) { |
| 271 | kfree(buf_contents); |
| 272 | goto out; |
| 273 | } |
| 274 | memcpy(buf_contents, buf, size); |
| 275 | kmem_cache_free(c, buf); |
| 276 | /* |
| 277 | * Run for a fixed number of iterations. If we never hit saved_ptr, |
| 278 | * assume the test passes. |
| 279 | */ |
| 280 | for (iter = 0; iter < maxiter; iter++) { |
| 281 | buf = kmem_cache_alloc(c, GFP_KERNEL); |
| 282 | used_objects[iter] = buf; |
| 283 | if (buf == saved_ptr) { |
| 284 | fail = memcmp(buf_contents, buf, size); |
| 285 | for (i = 0; i <= iter; i++) |
| 286 | kmem_cache_free(c, used_objects[i]); |
| 287 | goto free_out; |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | free_out: |
| 292 | kmem_cache_destroy(c); |
| 293 | kfree(buf_contents); |
| 294 | kfree(used_objects); |
| 295 | out: |
| 296 | *total_failures += fail; |
| 297 | return 1; |
| 298 | } |
| 299 | |
Alexander Potapenko | 03a9349 | 2019-10-14 14:12:00 -0700 | [diff] [blame] | 300 | static int __init do_kmem_cache_size_bulk(int size, int *total_failures) |
| 301 | { |
| 302 | struct kmem_cache *c; |
| 303 | int i, iter, maxiter = 1024; |
| 304 | int num, bytes; |
| 305 | bool fail = false; |
| 306 | void *objects[10]; |
| 307 | |
| 308 | c = kmem_cache_create("test_cache", size, size, 0, NULL); |
| 309 | for (iter = 0; (iter < maxiter) && !fail; iter++) { |
| 310 | num = kmem_cache_alloc_bulk(c, GFP_KERNEL, ARRAY_SIZE(objects), |
| 311 | objects); |
| 312 | for (i = 0; i < num; i++) { |
| 313 | bytes = count_nonzero_bytes(objects[i], size); |
| 314 | if (bytes) |
| 315 | fail = true; |
| 316 | fill_with_garbage(objects[i], size); |
| 317 | } |
| 318 | |
| 319 | if (num) |
| 320 | kmem_cache_free_bulk(c, num, objects); |
| 321 | } |
| 322 | *total_failures += fail; |
| 323 | return 1; |
| 324 | } |
| 325 | |
Alexander Potapenko | 5015a30 | 2019-07-16 16:27:27 -0700 | [diff] [blame] | 326 | /* |
| 327 | * Test kmem_cache allocation by creating caches of different sizes, with and |
| 328 | * without constructors, with and without SLAB_TYPESAFE_BY_RCU. |
| 329 | */ |
| 330 | static int __init test_kmemcache(int *total_failures) |
| 331 | { |
| 332 | int failures = 0, num_tests = 0; |
| 333 | int i, flags, size; |
| 334 | bool ctor, rcu, zero; |
| 335 | |
| 336 | for (i = 0; i < 10; i++) { |
| 337 | size = 8 << i; |
| 338 | for (flags = 0; flags < 8; flags++) { |
| 339 | ctor = flags & 1; |
| 340 | rcu = flags & 2; |
| 341 | zero = flags & 4; |
| 342 | if (ctor & zero) |
| 343 | continue; |
| 344 | num_tests += do_kmem_cache_size(size, ctor, rcu, zero, |
| 345 | &failures); |
| 346 | } |
Alexander Potapenko | 03a9349 | 2019-10-14 14:12:00 -0700 | [diff] [blame] | 347 | num_tests += do_kmem_cache_size_bulk(size, &failures); |
Alexander Potapenko | 5015a30 | 2019-07-16 16:27:27 -0700 | [diff] [blame] | 348 | } |
| 349 | REPORT_FAILURES_IN_FN(); |
| 350 | *total_failures += failures; |
| 351 | return num_tests; |
| 352 | } |
| 353 | |
| 354 | /* Test the behavior of SLAB_TYPESAFE_BY_RCU caches of different sizes. */ |
| 355 | static int __init test_rcu_persistent(int *total_failures) |
| 356 | { |
| 357 | int failures = 0, num_tests = 0; |
| 358 | int i, size; |
| 359 | |
| 360 | for (i = 0; i < 10; i++) { |
| 361 | size = 8 << i; |
| 362 | num_tests += do_kmem_cache_rcu_persistent(size, &failures); |
| 363 | } |
| 364 | REPORT_FAILURES_IN_FN(); |
| 365 | *total_failures += failures; |
| 366 | return num_tests; |
| 367 | } |
| 368 | |
| 369 | /* |
| 370 | * Run the tests. Each test function returns the number of executed tests and |
| 371 | * updates |failures| with the number of failed tests. |
| 372 | */ |
| 373 | static int __init test_meminit_init(void) |
| 374 | { |
| 375 | int failures = 0, num_tests = 0; |
| 376 | |
| 377 | num_tests += test_pages(&failures); |
| 378 | num_tests += test_kvmalloc(&failures); |
| 379 | num_tests += test_kmemcache(&failures); |
| 380 | num_tests += test_rcu_persistent(&failures); |
| 381 | |
| 382 | if (failures == 0) |
| 383 | pr_info("all %d tests passed!\n", num_tests); |
| 384 | else |
| 385 | pr_info("failures: %d out of %d\n", failures, num_tests); |
| 386 | |
| 387 | return failures ? -EINVAL : 0; |
| 388 | } |
| 389 | module_init(test_meminit_init); |
| 390 | |
| 391 | MODULE_LICENSE("GPL"); |