blob: 73abe6d8218c0629152bab23344e5b1bb3edeba3 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
Linus Torvalds1da177e2005-04-16 15:20:36 -070021#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
Randy Dunlap16f7e0f2006-01-11 12:17:46 -080027#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070028#include <linux/blkdev.h>
29#include <linux/file.h>
30#include <linux/quotaops.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
33#include <linux/writeback.h>
34#include <linux/hash.h>
35#include <linux/suspend.h>
36#include <linux/buffer_head.h>
Andrew Morton55e829a2006-12-10 02:19:27 -080037#include <linux/task_io_accounting_ops.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070038#include <linux/bio.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/bitops.h>
42#include <linux/mpage.h>
Ingo Molnarfb1c8f92005-09-10 00:25:56 -070043#include <linux/bit_spinlock.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070044
45static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
Linus Torvalds1da177e2005-04-16 15:20:36 -070046
47#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49inline void
50init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51{
52 bh->b_end_io = handler;
53 bh->b_private = private;
54}
55
56static int sync_buffer(void *word)
57{
58 struct block_device *bd;
59 struct buffer_head *bh
60 = container_of(word, struct buffer_head, b_state);
61
62 smp_mb();
63 bd = bh->b_bdev;
64 if (bd)
65 blk_run_address_space(bd->bd_inode->i_mapping);
66 io_schedule();
67 return 0;
68}
69
Harvey Harrisonfc9b52c2008-02-08 04:19:52 -080070void __lock_buffer(struct buffer_head *bh)
Linus Torvalds1da177e2005-04-16 15:20:36 -070071{
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 TASK_UNINTERRUPTIBLE);
74}
75EXPORT_SYMBOL(__lock_buffer);
76
Harvey Harrisonfc9b52c2008-02-08 04:19:52 -080077void unlock_buffer(struct buffer_head *bh)
Linus Torvalds1da177e2005-04-16 15:20:36 -070078{
Nick Piggin51b07fc2008-10-18 20:27:00 -070079 clear_bit_unlock(BH_Lock, &bh->b_state);
Linus Torvalds1da177e2005-04-16 15:20:36 -070080 smp_mb__after_clear_bit();
81 wake_up_bit(&bh->b_state, BH_Lock);
82}
83
84/*
85 * Block until a buffer comes unlocked. This doesn't stop it
86 * from becoming locked again - you have to lock it yourself
87 * if you want to preserve its state.
88 */
89void __wait_on_buffer(struct buffer_head * bh)
90{
91 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
92}
93
94static void
95__clear_page_buffers(struct page *page)
96{
97 ClearPagePrivate(page);
Hugh Dickins4c21e2f2005-10-29 18:16:40 -070098 set_page_private(page, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -070099 page_cache_release(page);
100}
101
Keith Mannthey08bafc02008-11-25 10:24:35 +0100102
103static int quiet_error(struct buffer_head *bh)
104{
105 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
106 return 0;
107 return 1;
108}
109
110
Linus Torvalds1da177e2005-04-16 15:20:36 -0700111static void buffer_io_error(struct buffer_head *bh)
112{
113 char b[BDEVNAME_SIZE];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700114 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
115 bdevname(bh->b_bdev, b),
116 (unsigned long long)bh->b_blocknr);
117}
118
119/*
Dmitry Monakhov68671f32007-10-16 01:24:47 -0700120 * End-of-IO handler helper function which does not touch the bh after
121 * unlocking it.
122 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
123 * a race there is benign: unlock_buffer() only use the bh's address for
124 * hashing after unlocking the buffer, so it doesn't actually touch the bh
125 * itself.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700126 */
Dmitry Monakhov68671f32007-10-16 01:24:47 -0700127static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700128{
129 if (uptodate) {
130 set_buffer_uptodate(bh);
131 } else {
132 /* This happens, due to failed READA attempts. */
133 clear_buffer_uptodate(bh);
134 }
135 unlock_buffer(bh);
Dmitry Monakhov68671f32007-10-16 01:24:47 -0700136}
137
138/*
139 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
140 * unlock the buffer. This is what ll_rw_block uses too.
141 */
142void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
143{
144 __end_buffer_read_notouch(bh, uptodate);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700145 put_bh(bh);
146}
147
148void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
149{
150 char b[BDEVNAME_SIZE];
151
152 if (uptodate) {
153 set_buffer_uptodate(bh);
154 } else {
Keith Mannthey08bafc02008-11-25 10:24:35 +0100155 if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700156 buffer_io_error(bh);
157 printk(KERN_WARNING "lost page write due to "
158 "I/O error on %s\n",
159 bdevname(bh->b_bdev, b));
160 }
161 set_buffer_write_io_error(bh);
162 clear_buffer_uptodate(bh);
163 }
164 unlock_buffer(bh);
165 put_bh(bh);
166}
167
168/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700169 * Various filesystems appear to want __find_get_block to be non-blocking.
170 * But it's the page lock which protects the buffers. To get around this,
171 * we get exclusion from try_to_free_buffers with the blockdev mapping's
172 * private_lock.
173 *
174 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
175 * may be quite high. This code could TryLock the page, and if that
176 * succeeds, there is no need to take private_lock. (But if
177 * private_lock is contended then so is mapping->tree_lock).
178 */
179static struct buffer_head *
Coywolf Qi Hunt385fd4c2005-11-07 00:59:39 -0800180__find_get_block_slow(struct block_device *bdev, sector_t block)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700181{
182 struct inode *bd_inode = bdev->bd_inode;
183 struct address_space *bd_mapping = bd_inode->i_mapping;
184 struct buffer_head *ret = NULL;
185 pgoff_t index;
186 struct buffer_head *bh;
187 struct buffer_head *head;
188 struct page *page;
189 int all_mapped = 1;
190
191 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
192 page = find_get_page(bd_mapping, index);
193 if (!page)
194 goto out;
195
196 spin_lock(&bd_mapping->private_lock);
197 if (!page_has_buffers(page))
198 goto out_unlock;
199 head = page_buffers(page);
200 bh = head;
201 do {
202 if (bh->b_blocknr == block) {
203 ret = bh;
204 get_bh(bh);
205 goto out_unlock;
206 }
207 if (!buffer_mapped(bh))
208 all_mapped = 0;
209 bh = bh->b_this_page;
210 } while (bh != head);
211
212 /* we might be here because some of the buffers on this page are
213 * not mapped. This is due to various races between
214 * file io on the block device and getblk. It gets dealt with
215 * elsewhere, don't buffer_error if we had some unmapped buffers
216 */
217 if (all_mapped) {
218 printk("__find_get_block_slow() failed. "
219 "block=%llu, b_blocknr=%llu\n",
Badari Pulavarty205f87f2006-03-26 01:38:00 -0800220 (unsigned long long)block,
221 (unsigned long long)bh->b_blocknr);
222 printk("b_state=0x%08lx, b_size=%zu\n",
223 bh->b_state, bh->b_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700224 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
225 }
226out_unlock:
227 spin_unlock(&bd_mapping->private_lock);
228 page_cache_release(page);
229out:
230 return ret;
231}
232
233/* If invalidate_buffers() will trash dirty buffers, it means some kind
234 of fs corruption is going on. Trashing dirty data always imply losing
235 information that was supposed to be just stored on the physical layer
236 by the user.
237
238 Thus invalidate_buffers in general usage is not allwowed to trash
239 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
240 be preserved. These buffers are simply skipped.
241
242 We also skip buffers which are still in use. For example this can
243 happen if a userspace program is reading the block device.
244
245 NOTE: In the case where the user removed a removable-media-disk even if
246 there's still dirty data not synced on disk (due a bug in the device driver
247 or due an error of the user), by not destroying the dirty buffers we could
248 generate corruption also on the next media inserted, thus a parameter is
249 necessary to handle this case in the most safe way possible (trying
250 to not corrupt also the new disk inserted with the data belonging to
251 the old now corrupted disk). Also for the ramdisk the natural thing
252 to do in order to release the ramdisk memory is to destroy dirty buffers.
253
254 These are two special cases. Normal usage imply the device driver
255 to issue a sync on the device (without waiting I/O completion) and
256 then an invalidate_buffers call that doesn't trash dirty buffers.
257
258 For handling cache coherency with the blkdev pagecache the 'update' case
259 is been introduced. It is needed to re-read from disk any pinned
260 buffer. NOTE: re-reading from disk is destructive so we can do it only
261 when we assume nobody is changing the buffercache under our I/O and when
262 we think the disk contains more recent information than the buffercache.
263 The update == 1 pass marks the buffers we need to update, the update == 2
264 pass does the actual I/O. */
Peter Zijlstraf98393a2007-05-06 14:49:54 -0700265void invalidate_bdev(struct block_device *bdev)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700266{
Andrew Morton0e1dfc62006-07-30 03:03:28 -0700267 struct address_space *mapping = bdev->bd_inode->i_mapping;
268
269 if (mapping->nrpages == 0)
270 return;
271
Linus Torvalds1da177e2005-04-16 15:20:36 -0700272 invalidate_bh_lrus();
Andrew Mortonfc0ecff2007-02-10 01:45:39 -0800273 invalidate_mapping_pages(mapping, 0, -1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700274}
275
276/*
277 * Kick pdflush then try to free up some ZONE_NORMAL memory.
278 */
279static void free_more_memory(void)
280{
Mel Gorman19770b32008-04-28 02:12:18 -0700281 struct zone *zone;
Mel Gorman0e884602008-04-28 02:12:14 -0700282 int nid;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700283
Pekka J Enberg687a21c2005-06-28 20:44:55 -0700284 wakeup_pdflush(1024);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700285 yield();
286
Mel Gorman0e884602008-04-28 02:12:14 -0700287 for_each_online_node(nid) {
Mel Gorman19770b32008-04-28 02:12:18 -0700288 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
289 gfp_zone(GFP_NOFS), NULL,
290 &zone);
291 if (zone)
Mel Gorman54a6eb52008-04-28 02:12:16 -0700292 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
293 GFP_NOFS);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700294 }
295}
296
297/*
298 * I/O completion handler for block_read_full_page() - pages
299 * which come unlocked at the end of I/O.
300 */
301static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
302{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700303 unsigned long flags;
Nick Piggina3972202005-07-07 17:56:56 -0700304 struct buffer_head *first;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700305 struct buffer_head *tmp;
306 struct page *page;
307 int page_uptodate = 1;
308
309 BUG_ON(!buffer_async_read(bh));
310
311 page = bh->b_page;
312 if (uptodate) {
313 set_buffer_uptodate(bh);
314 } else {
315 clear_buffer_uptodate(bh);
Keith Mannthey08bafc02008-11-25 10:24:35 +0100316 if (!quiet_error(bh))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700317 buffer_io_error(bh);
318 SetPageError(page);
319 }
320
321 /*
322 * Be _very_ careful from here on. Bad things can happen if
323 * two buffer heads end IO at almost the same time and both
324 * decide that the page is now completely done.
325 */
Nick Piggina3972202005-07-07 17:56:56 -0700326 first = page_buffers(page);
327 local_irq_save(flags);
328 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700329 clear_buffer_async_read(bh);
330 unlock_buffer(bh);
331 tmp = bh;
332 do {
333 if (!buffer_uptodate(tmp))
334 page_uptodate = 0;
335 if (buffer_async_read(tmp)) {
336 BUG_ON(!buffer_locked(tmp));
337 goto still_busy;
338 }
339 tmp = tmp->b_this_page;
340 } while (tmp != bh);
Nick Piggina3972202005-07-07 17:56:56 -0700341 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
342 local_irq_restore(flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700343
344 /*
345 * If none of the buffers had errors and they are all
346 * uptodate then we can set the page uptodate.
347 */
348 if (page_uptodate && !PageError(page))
349 SetPageUptodate(page);
350 unlock_page(page);
351 return;
352
353still_busy:
Nick Piggina3972202005-07-07 17:56:56 -0700354 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
355 local_irq_restore(flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700356 return;
357}
358
359/*
360 * Completion handler for block_write_full_page() - pages which are unlocked
361 * during I/O, and which have PageWriteback cleared upon I/O completion.
362 */
Adrian Bunkb6cd0b72006-06-27 02:53:54 -0700363static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700364{
365 char b[BDEVNAME_SIZE];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700366 unsigned long flags;
Nick Piggina3972202005-07-07 17:56:56 -0700367 struct buffer_head *first;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700368 struct buffer_head *tmp;
369 struct page *page;
370
371 BUG_ON(!buffer_async_write(bh));
372
373 page = bh->b_page;
374 if (uptodate) {
375 set_buffer_uptodate(bh);
376 } else {
Keith Mannthey08bafc02008-11-25 10:24:35 +0100377 if (!quiet_error(bh)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700378 buffer_io_error(bh);
379 printk(KERN_WARNING "lost page write due to "
380 "I/O error on %s\n",
381 bdevname(bh->b_bdev, b));
382 }
383 set_bit(AS_EIO, &page->mapping->flags);
Jan Kara58ff4072006-10-17 00:10:19 -0700384 set_buffer_write_io_error(bh);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700385 clear_buffer_uptodate(bh);
386 SetPageError(page);
387 }
388
Nick Piggina3972202005-07-07 17:56:56 -0700389 first = page_buffers(page);
390 local_irq_save(flags);
391 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
392
Linus Torvalds1da177e2005-04-16 15:20:36 -0700393 clear_buffer_async_write(bh);
394 unlock_buffer(bh);
395 tmp = bh->b_this_page;
396 while (tmp != bh) {
397 if (buffer_async_write(tmp)) {
398 BUG_ON(!buffer_locked(tmp));
399 goto still_busy;
400 }
401 tmp = tmp->b_this_page;
402 }
Nick Piggina3972202005-07-07 17:56:56 -0700403 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
404 local_irq_restore(flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700405 end_page_writeback(page);
406 return;
407
408still_busy:
Nick Piggina3972202005-07-07 17:56:56 -0700409 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
410 local_irq_restore(flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700411 return;
412}
413
414/*
415 * If a page's buffers are under async readin (end_buffer_async_read
416 * completion) then there is a possibility that another thread of
417 * control could lock one of the buffers after it has completed
418 * but while some of the other buffers have not completed. This
419 * locked buffer would confuse end_buffer_async_read() into not unlocking
420 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
421 * that this buffer is not under async I/O.
422 *
423 * The page comes unlocked when it has no locked buffer_async buffers
424 * left.
425 *
426 * PageLocked prevents anyone starting new async I/O reads any of
427 * the buffers.
428 *
429 * PageWriteback is used to prevent simultaneous writeout of the same
430 * page.
431 *
432 * PageLocked prevents anyone from starting writeback of a page which is
433 * under read I/O (PageWriteback is only ever set against a locked page).
434 */
435static void mark_buffer_async_read(struct buffer_head *bh)
436{
437 bh->b_end_io = end_buffer_async_read;
438 set_buffer_async_read(bh);
439}
440
441void mark_buffer_async_write(struct buffer_head *bh)
442{
443 bh->b_end_io = end_buffer_async_write;
444 set_buffer_async_write(bh);
445}
446EXPORT_SYMBOL(mark_buffer_async_write);
447
448
449/*
450 * fs/buffer.c contains helper functions for buffer-backed address space's
451 * fsync functions. A common requirement for buffer-based filesystems is
452 * that certain data from the backing blockdev needs to be written out for
453 * a successful fsync(). For example, ext2 indirect blocks need to be
454 * written back and waited upon before fsync() returns.
455 *
456 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
457 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
458 * management of a list of dependent buffers at ->i_mapping->private_list.
459 *
460 * Locking is a little subtle: try_to_free_buffers() will remove buffers
461 * from their controlling inode's queue when they are being freed. But
462 * try_to_free_buffers() will be operating against the *blockdev* mapping
463 * at the time, not against the S_ISREG file which depends on those buffers.
464 * So the locking for private_list is via the private_lock in the address_space
465 * which backs the buffers. Which is different from the address_space
466 * against which the buffers are listed. So for a particular address_space,
467 * mapping->private_lock does *not* protect mapping->private_list! In fact,
468 * mapping->private_list will always be protected by the backing blockdev's
469 * ->private_lock.
470 *
471 * Which introduces a requirement: all buffers on an address_space's
472 * ->private_list must be from the same address_space: the blockdev's.
473 *
474 * address_spaces which do not place buffers at ->private_list via these
475 * utility functions are free to use private_lock and private_list for
476 * whatever they want. The only requirement is that list_empty(private_list)
477 * be true at clear_inode() time.
478 *
479 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
480 * filesystems should do that. invalidate_inode_buffers() should just go
481 * BUG_ON(!list_empty).
482 *
483 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
484 * take an address_space, not an inode. And it should be called
485 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
486 * queued up.
487 *
488 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
489 * list if it is already on a list. Because if the buffer is on a list,
490 * it *must* already be on the right one. If not, the filesystem is being
491 * silly. This will save a ton of locking. But first we have to ensure
492 * that buffers are taken *off* the old inode's list when they are freed
493 * (presumably in truncate). That requires careful auditing of all
494 * filesystems (do it inside bforget()). It could also be done by bringing
495 * b_inode back.
496 */
497
498/*
499 * The buffer's backing address_space's private_lock must be held
500 */
Thomas Petazzonidbacefc2008-07-29 22:33:47 -0700501static void __remove_assoc_queue(struct buffer_head *bh)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700502{
503 list_del_init(&bh->b_assoc_buffers);
Jan Kara58ff4072006-10-17 00:10:19 -0700504 WARN_ON(!bh->b_assoc_map);
505 if (buffer_write_io_error(bh))
506 set_bit(AS_EIO, &bh->b_assoc_map->flags);
507 bh->b_assoc_map = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700508}
509
510int inode_has_buffers(struct inode *inode)
511{
512 return !list_empty(&inode->i_data.private_list);
513}
514
515/*
516 * osync is designed to support O_SYNC io. It waits synchronously for
517 * all already-submitted IO to complete, but does not queue any new
518 * writes to the disk.
519 *
520 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
521 * you dirty the buffers, and then use osync_inode_buffers to wait for
522 * completion. Any other dirty buffers which are not yet queued for
523 * write will not be flushed to disk by the osync.
524 */
525static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
526{
527 struct buffer_head *bh;
528 struct list_head *p;
529 int err = 0;
530
531 spin_lock(lock);
532repeat:
533 list_for_each_prev(p, list) {
534 bh = BH_ENTRY(p);
535 if (buffer_locked(bh)) {
536 get_bh(bh);
537 spin_unlock(lock);
538 wait_on_buffer(bh);
539 if (!buffer_uptodate(bh))
540 err = -EIO;
541 brelse(bh);
542 spin_lock(lock);
543 goto repeat;
544 }
545 }
546 spin_unlock(lock);
547 return err;
548}
549
550/**
Randy Dunlap78a4a502008-02-29 22:02:31 -0800551 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
Martin Waitz67be2dd2005-05-01 08:59:26 -0700552 * @mapping: the mapping which wants those buffers written
Linus Torvalds1da177e2005-04-16 15:20:36 -0700553 *
554 * Starts I/O against the buffers at mapping->private_list, and waits upon
555 * that I/O.
556 *
Martin Waitz67be2dd2005-05-01 08:59:26 -0700557 * Basically, this is a convenience function for fsync().
558 * @mapping is a file or directory which needs those buffers to be written for
559 * a successful fsync().
Linus Torvalds1da177e2005-04-16 15:20:36 -0700560 */
561int sync_mapping_buffers(struct address_space *mapping)
562{
563 struct address_space *buffer_mapping = mapping->assoc_mapping;
564
565 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
566 return 0;
567
568 return fsync_buffers_list(&buffer_mapping->private_lock,
569 &mapping->private_list);
570}
571EXPORT_SYMBOL(sync_mapping_buffers);
572
573/*
574 * Called when we've recently written block `bblock', and it is known that
575 * `bblock' was for a buffer_boundary() buffer. This means that the block at
576 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
577 * dirty, schedule it for IO. So that indirects merge nicely with their data.
578 */
579void write_boundary_block(struct block_device *bdev,
580 sector_t bblock, unsigned blocksize)
581{
582 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
583 if (bh) {
584 if (buffer_dirty(bh))
585 ll_rw_block(WRITE, 1, &bh);
586 put_bh(bh);
587 }
588}
589
590void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
591{
592 struct address_space *mapping = inode->i_mapping;
593 struct address_space *buffer_mapping = bh->b_page->mapping;
594
595 mark_buffer_dirty(bh);
596 if (!mapping->assoc_mapping) {
597 mapping->assoc_mapping = buffer_mapping;
598 } else {
Eric Sesterhenne827f922006-03-26 18:24:46 +0200599 BUG_ON(mapping->assoc_mapping != buffer_mapping);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700600 }
Jan Kara535ee2f2008-02-08 04:21:59 -0800601 if (!bh->b_assoc_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700602 spin_lock(&buffer_mapping->private_lock);
603 list_move_tail(&bh->b_assoc_buffers,
604 &mapping->private_list);
Jan Kara58ff4072006-10-17 00:10:19 -0700605 bh->b_assoc_map = mapping;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700606 spin_unlock(&buffer_mapping->private_lock);
607 }
608}
609EXPORT_SYMBOL(mark_buffer_dirty_inode);
610
611/*
Nick Piggin787d2212007-07-17 04:03:34 -0700612 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
613 * dirty.
614 *
615 * If warn is true, then emit a warning if the page is not uptodate and has
616 * not been truncated.
617 */
Linus Torvaldsa8e7d492009-03-19 11:32:05 -0700618static void __set_page_dirty(struct page *page,
Nick Piggin787d2212007-07-17 04:03:34 -0700619 struct address_space *mapping, int warn)
620{
Nick Piggin19fd6232008-07-25 19:45:32 -0700621 spin_lock_irq(&mapping->tree_lock);
Nick Piggin787d2212007-07-17 04:03:34 -0700622 if (page->mapping) { /* Race with truncate? */
623 WARN_ON_ONCE(warn && !PageUptodate(page));
Edward Shishkine3a7cca2009-03-31 15:19:39 -0700624 account_page_dirtied(page, mapping);
Nick Piggin787d2212007-07-17 04:03:34 -0700625 radix_tree_tag_set(&mapping->page_tree,
626 page_index(page), PAGECACHE_TAG_DIRTY);
627 }
Nick Piggin19fd6232008-07-25 19:45:32 -0700628 spin_unlock_irq(&mapping->tree_lock);
Nick Piggin787d2212007-07-17 04:03:34 -0700629 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
Nick Piggin787d2212007-07-17 04:03:34 -0700630}
631
632/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700633 * Add a page to the dirty page list.
634 *
635 * It is a sad fact of life that this function is called from several places
636 * deeply under spinlocking. It may not sleep.
637 *
638 * If the page has buffers, the uptodate buffers are set dirty, to preserve
639 * dirty-state coherency between the page and the buffers. It the page does
640 * not have buffers then when they are later attached they will all be set
641 * dirty.
642 *
643 * The buffers are dirtied before the page is dirtied. There's a small race
644 * window in which a writepage caller may see the page cleanness but not the
645 * buffer dirtiness. That's fine. If this code were to set the page dirty
646 * before the buffers, a concurrent writepage caller could clear the page dirty
647 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
648 * page on the dirty page list.
649 *
650 * We use private_lock to lock against try_to_free_buffers while using the
651 * page's buffer list. Also use this to protect against clean buffers being
652 * added to the page after it was set dirty.
653 *
654 * FIXME: may need to call ->reservepage here as well. That's rather up to the
655 * address_space though.
656 */
657int __set_page_dirty_buffers(struct page *page)
658{
Linus Torvaldsa8e7d492009-03-19 11:32:05 -0700659 int newly_dirty;
Nick Piggin787d2212007-07-17 04:03:34 -0700660 struct address_space *mapping = page_mapping(page);
Nick Pigginebf7a222006-10-10 04:36:54 +0200661
662 if (unlikely(!mapping))
663 return !TestSetPageDirty(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700664
665 spin_lock(&mapping->private_lock);
666 if (page_has_buffers(page)) {
667 struct buffer_head *head = page_buffers(page);
668 struct buffer_head *bh = head;
669
670 do {
671 set_buffer_dirty(bh);
672 bh = bh->b_this_page;
673 } while (bh != head);
674 }
Linus Torvaldsa8e7d492009-03-19 11:32:05 -0700675 newly_dirty = !TestSetPageDirty(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700676 spin_unlock(&mapping->private_lock);
677
Linus Torvaldsa8e7d492009-03-19 11:32:05 -0700678 if (newly_dirty)
679 __set_page_dirty(page, mapping, 1);
680 return newly_dirty;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700681}
682EXPORT_SYMBOL(__set_page_dirty_buffers);
683
684/*
685 * Write out and wait upon a list of buffers.
686 *
687 * We have conflicting pressures: we want to make sure that all
688 * initially dirty buffers get waited on, but that any subsequently
689 * dirtied buffers don't. After all, we don't want fsync to last
690 * forever if somebody is actively writing to the file.
691 *
692 * Do this in two main stages: first we copy dirty buffers to a
693 * temporary inode list, queueing the writes as we go. Then we clean
694 * up, waiting for those writes to complete.
695 *
696 * During this second stage, any subsequent updates to the file may end
697 * up refiling the buffer on the original inode's dirty list again, so
698 * there is a chance we will end up with a buffer queued for write but
699 * not yet completed on that list. So, as a final cleanup we go through
700 * the osync code to catch these locked, dirty buffers without requeuing
701 * any newly dirty buffers for write.
702 */
703static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
704{
705 struct buffer_head *bh;
706 struct list_head tmp;
Jan Kara535ee2f2008-02-08 04:21:59 -0800707 struct address_space *mapping;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700708 int err = 0, err2;
709
710 INIT_LIST_HEAD(&tmp);
711
712 spin_lock(lock);
713 while (!list_empty(list)) {
714 bh = BH_ENTRY(list->next);
Jan Kara535ee2f2008-02-08 04:21:59 -0800715 mapping = bh->b_assoc_map;
Jan Kara58ff4072006-10-17 00:10:19 -0700716 __remove_assoc_queue(bh);
Jan Kara535ee2f2008-02-08 04:21:59 -0800717 /* Avoid race with mark_buffer_dirty_inode() which does
718 * a lockless check and we rely on seeing the dirty bit */
719 smp_mb();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700720 if (buffer_dirty(bh) || buffer_locked(bh)) {
721 list_add(&bh->b_assoc_buffers, &tmp);
Jan Kara535ee2f2008-02-08 04:21:59 -0800722 bh->b_assoc_map = mapping;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700723 if (buffer_dirty(bh)) {
724 get_bh(bh);
725 spin_unlock(lock);
726 /*
727 * Ensure any pending I/O completes so that
728 * ll_rw_block() actually writes the current
729 * contents - it is a noop if I/O is still in
730 * flight on potentially older contents.
731 */
Jens Axboe18ce3752008-07-01 09:07:34 +0200732 ll_rw_block(SWRITE_SYNC, 1, &bh);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700733 brelse(bh);
734 spin_lock(lock);
735 }
736 }
737 }
738
739 while (!list_empty(&tmp)) {
740 bh = BH_ENTRY(tmp.prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700741 get_bh(bh);
Jan Kara535ee2f2008-02-08 04:21:59 -0800742 mapping = bh->b_assoc_map;
743 __remove_assoc_queue(bh);
744 /* Avoid race with mark_buffer_dirty_inode() which does
745 * a lockless check and we rely on seeing the dirty bit */
746 smp_mb();
747 if (buffer_dirty(bh)) {
748 list_add(&bh->b_assoc_buffers,
Jan Karae3892292008-03-04 14:28:33 -0800749 &mapping->private_list);
Jan Kara535ee2f2008-02-08 04:21:59 -0800750 bh->b_assoc_map = mapping;
751 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700752 spin_unlock(lock);
753 wait_on_buffer(bh);
754 if (!buffer_uptodate(bh))
755 err = -EIO;
756 brelse(bh);
757 spin_lock(lock);
758 }
759
760 spin_unlock(lock);
761 err2 = osync_buffers_list(lock, list);
762 if (err)
763 return err;
764 else
765 return err2;
766}
767
768/*
769 * Invalidate any and all dirty buffers on a given inode. We are
770 * probably unmounting the fs, but that doesn't mean we have already
771 * done a sync(). Just drop the buffers from the inode list.
772 *
773 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
774 * assumes that all the buffers are against the blockdev. Not true
775 * for reiserfs.
776 */
777void invalidate_inode_buffers(struct inode *inode)
778{
779 if (inode_has_buffers(inode)) {
780 struct address_space *mapping = &inode->i_data;
781 struct list_head *list = &mapping->private_list;
782 struct address_space *buffer_mapping = mapping->assoc_mapping;
783
784 spin_lock(&buffer_mapping->private_lock);
785 while (!list_empty(list))
786 __remove_assoc_queue(BH_ENTRY(list->next));
787 spin_unlock(&buffer_mapping->private_lock);
788 }
789}
Jan Kara52b19ac2008-09-23 18:24:08 +0200790EXPORT_SYMBOL(invalidate_inode_buffers);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700791
792/*
793 * Remove any clean buffers from the inode's buffer list. This is called
794 * when we're trying to free the inode itself. Those buffers can pin it.
795 *
796 * Returns true if all buffers were removed.
797 */
798int remove_inode_buffers(struct inode *inode)
799{
800 int ret = 1;
801
802 if (inode_has_buffers(inode)) {
803 struct address_space *mapping = &inode->i_data;
804 struct list_head *list = &mapping->private_list;
805 struct address_space *buffer_mapping = mapping->assoc_mapping;
806
807 spin_lock(&buffer_mapping->private_lock);
808 while (!list_empty(list)) {
809 struct buffer_head *bh = BH_ENTRY(list->next);
810 if (buffer_dirty(bh)) {
811 ret = 0;
812 break;
813 }
814 __remove_assoc_queue(bh);
815 }
816 spin_unlock(&buffer_mapping->private_lock);
817 }
818 return ret;
819}
820
821/*
822 * Create the appropriate buffers when given a page for data area and
823 * the size of each buffer.. Use the bh->b_this_page linked list to
824 * follow the buffers created. Return NULL if unable to create more
825 * buffers.
826 *
827 * The retry flag is used to differentiate async IO (paging, swapping)
828 * which may not fail from ordinary buffer allocations.
829 */
830struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
831 int retry)
832{
833 struct buffer_head *bh, *head;
834 long offset;
835
836try_again:
837 head = NULL;
838 offset = PAGE_SIZE;
839 while ((offset -= size) >= 0) {
840 bh = alloc_buffer_head(GFP_NOFS);
841 if (!bh)
842 goto no_grow;
843
844 bh->b_bdev = NULL;
845 bh->b_this_page = head;
846 bh->b_blocknr = -1;
847 head = bh;
848
849 bh->b_state = 0;
850 atomic_set(&bh->b_count, 0);
Chris Masonfc5cd582006-02-01 03:06:48 -0800851 bh->b_private = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700852 bh->b_size = size;
853
854 /* Link the buffer to its page */
855 set_bh_page(bh, page, offset);
856
Nathan Scott01ffe332006-01-17 09:02:07 +1100857 init_buffer(bh, NULL, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700858 }
859 return head;
860/*
861 * In case anything failed, we just free everything we got.
862 */
863no_grow:
864 if (head) {
865 do {
866 bh = head;
867 head = head->b_this_page;
868 free_buffer_head(bh);
869 } while (head);
870 }
871
872 /*
873 * Return failure for non-async IO requests. Async IO requests
874 * are not allowed to fail, so we have to wait until buffer heads
875 * become available. But we don't want tasks sleeping with
876 * partially complete buffers, so all were released above.
877 */
878 if (!retry)
879 return NULL;
880
881 /* We're _really_ low on memory. Now we just
882 * wait for old buffer heads to become free due to
883 * finishing IO. Since this is an async request and
884 * the reserve list is empty, we're sure there are
885 * async buffer heads in use.
886 */
887 free_more_memory();
888 goto try_again;
889}
890EXPORT_SYMBOL_GPL(alloc_page_buffers);
891
892static inline void
893link_dev_buffers(struct page *page, struct buffer_head *head)
894{
895 struct buffer_head *bh, *tail;
896
897 bh = head;
898 do {
899 tail = bh;
900 bh = bh->b_this_page;
901 } while (bh);
902 tail->b_this_page = head;
903 attach_page_buffers(page, head);
904}
905
906/*
907 * Initialise the state of a blockdev page's buffers.
908 */
909static void
910init_page_buffers(struct page *page, struct block_device *bdev,
911 sector_t block, int size)
912{
913 struct buffer_head *head = page_buffers(page);
914 struct buffer_head *bh = head;
915 int uptodate = PageUptodate(page);
916
917 do {
918 if (!buffer_mapped(bh)) {
919 init_buffer(bh, NULL, NULL);
920 bh->b_bdev = bdev;
921 bh->b_blocknr = block;
922 if (uptodate)
923 set_buffer_uptodate(bh);
924 set_buffer_mapped(bh);
925 }
926 block++;
927 bh = bh->b_this_page;
928 } while (bh != head);
929}
930
931/*
932 * Create the page-cache page that contains the requested block.
933 *
934 * This is user purely for blockdev mappings.
935 */
936static struct page *
937grow_dev_page(struct block_device *bdev, sector_t block,
938 pgoff_t index, int size)
939{
940 struct inode *inode = bdev->bd_inode;
941 struct page *page;
942 struct buffer_head *bh;
943
Christoph Lameterea125892007-05-16 22:11:21 -0700944 page = find_or_create_page(inode->i_mapping, index,
Mel Gorman769848c2007-07-17 04:03:05 -0700945 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700946 if (!page)
947 return NULL;
948
Eric Sesterhenne827f922006-03-26 18:24:46 +0200949 BUG_ON(!PageLocked(page));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700950
951 if (page_has_buffers(page)) {
952 bh = page_buffers(page);
953 if (bh->b_size == size) {
954 init_page_buffers(page, bdev, block, size);
955 return page;
956 }
957 if (!try_to_free_buffers(page))
958 goto failed;
959 }
960
961 /*
962 * Allocate some buffers for this page
963 */
964 bh = alloc_page_buffers(page, size, 0);
965 if (!bh)
966 goto failed;
967
968 /*
969 * Link the page to the buffers and initialise them. Take the
970 * lock to be atomic wrt __find_get_block(), which does not
971 * run under the page lock.
972 */
973 spin_lock(&inode->i_mapping->private_lock);
974 link_dev_buffers(page, bh);
975 init_page_buffers(page, bdev, block, size);
976 spin_unlock(&inode->i_mapping->private_lock);
977 return page;
978
979failed:
980 BUG();
981 unlock_page(page);
982 page_cache_release(page);
983 return NULL;
984}
985
986/*
987 * Create buffers for the specified block device block's page. If
988 * that page was dirty, the buffers are set dirty also.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700989 */
Arjan van de Ven858119e2006-01-14 13:20:43 -0800990static int
Linus Torvalds1da177e2005-04-16 15:20:36 -0700991grow_buffers(struct block_device *bdev, sector_t block, int size)
992{
993 struct page *page;
994 pgoff_t index;
995 int sizebits;
996
997 sizebits = -1;
998 do {
999 sizebits++;
1000 } while ((size << sizebits) < PAGE_SIZE);
1001
1002 index = block >> sizebits;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001003
Andrew Mortone5657932006-10-11 01:21:46 -07001004 /*
1005 * Check for a block which wants to lie outside our maximum possible
1006 * pagecache index. (this comparison is done using sector_t types).
1007 */
1008 if (unlikely(index != block >> sizebits)) {
1009 char b[BDEVNAME_SIZE];
1010
1011 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1012 "device %s\n",
Harvey Harrison8e24eea2008-04-30 00:55:09 -07001013 __func__, (unsigned long long)block,
Andrew Mortone5657932006-10-11 01:21:46 -07001014 bdevname(bdev, b));
1015 return -EIO;
1016 }
1017 block = index << sizebits;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001018 /* Create a page with the proper size buffers.. */
1019 page = grow_dev_page(bdev, block, index, size);
1020 if (!page)
1021 return 0;
1022 unlock_page(page);
1023 page_cache_release(page);
1024 return 1;
1025}
1026
Adrian Bunk75c96f82005-05-05 16:16:09 -07001027static struct buffer_head *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001028__getblk_slow(struct block_device *bdev, sector_t block, int size)
1029{
1030 /* Size must be multiple of hard sectorsize */
1031 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1032 (size < 512 || size > PAGE_SIZE))) {
1033 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1034 size);
1035 printk(KERN_ERR "hardsect size: %d\n",
1036 bdev_hardsect_size(bdev));
1037
1038 dump_stack();
1039 return NULL;
1040 }
1041
1042 for (;;) {
1043 struct buffer_head * bh;
Andrew Mortone5657932006-10-11 01:21:46 -07001044 int ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001045
1046 bh = __find_get_block(bdev, block, size);
1047 if (bh)
1048 return bh;
1049
Andrew Mortone5657932006-10-11 01:21:46 -07001050 ret = grow_buffers(bdev, block, size);
1051 if (ret < 0)
1052 return NULL;
1053 if (ret == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001054 free_more_memory();
1055 }
1056}
1057
1058/*
1059 * The relationship between dirty buffers and dirty pages:
1060 *
1061 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1062 * the page is tagged dirty in its radix tree.
1063 *
1064 * At all times, the dirtiness of the buffers represents the dirtiness of
1065 * subsections of the page. If the page has buffers, the page dirty bit is
1066 * merely a hint about the true dirty state.
1067 *
1068 * When a page is set dirty in its entirety, all its buffers are marked dirty
1069 * (if the page has buffers).
1070 *
1071 * When a buffer is marked dirty, its page is dirtied, but the page's other
1072 * buffers are not.
1073 *
1074 * Also. When blockdev buffers are explicitly read with bread(), they
1075 * individually become uptodate. But their backing page remains not
1076 * uptodate - even if all of its buffers are uptodate. A subsequent
1077 * block_read_full_page() against that page will discover all the uptodate
1078 * buffers, will set the page uptodate and will perform no I/O.
1079 */
1080
1081/**
1082 * mark_buffer_dirty - mark a buffer_head as needing writeout
Martin Waitz67be2dd2005-05-01 08:59:26 -07001083 * @bh: the buffer_head to mark dirty
Linus Torvalds1da177e2005-04-16 15:20:36 -07001084 *
1085 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1086 * backing page dirty, then tag the page as dirty in its address_space's radix
1087 * tree and then attach the address_space's inode to its superblock's dirty
1088 * inode list.
1089 *
1090 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1091 * mapping->tree_lock and the global inode_lock.
1092 */
Harvey Harrisonfc9b52c2008-02-08 04:19:52 -08001093void mark_buffer_dirty(struct buffer_head *bh)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001094{
Nick Piggin787d2212007-07-17 04:03:34 -07001095 WARN_ON_ONCE(!buffer_uptodate(bh));
Linus Torvalds1be62dc2008-04-04 14:38:17 -07001096
1097 /*
1098 * Very *carefully* optimize the it-is-already-dirty case.
1099 *
1100 * Don't let the final "is it dirty" escape to before we
1101 * perhaps modified the buffer.
1102 */
1103 if (buffer_dirty(bh)) {
1104 smp_mb();
1105 if (buffer_dirty(bh))
1106 return;
1107 }
1108
Linus Torvaldsa8e7d492009-03-19 11:32:05 -07001109 if (!test_set_buffer_dirty(bh)) {
1110 struct page *page = bh->b_page;
1111 if (!TestSetPageDirty(page))
1112 __set_page_dirty(page, page_mapping(page), 0);
1113 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001114}
1115
1116/*
1117 * Decrement a buffer_head's reference count. If all buffers against a page
1118 * have zero reference count, are clean and unlocked, and if the page is clean
1119 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1120 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1121 * a page but it ends up not being freed, and buffers may later be reattached).
1122 */
1123void __brelse(struct buffer_head * buf)
1124{
1125 if (atomic_read(&buf->b_count)) {
1126 put_bh(buf);
1127 return;
1128 }
Arjan van de Ven5c752ad2008-07-25 19:45:40 -07001129 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001130}
1131
1132/*
1133 * bforget() is like brelse(), except it discards any
1134 * potentially dirty data.
1135 */
1136void __bforget(struct buffer_head *bh)
1137{
1138 clear_buffer_dirty(bh);
Jan Kara535ee2f2008-02-08 04:21:59 -08001139 if (bh->b_assoc_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001140 struct address_space *buffer_mapping = bh->b_page->mapping;
1141
1142 spin_lock(&buffer_mapping->private_lock);
1143 list_del_init(&bh->b_assoc_buffers);
Jan Kara58ff4072006-10-17 00:10:19 -07001144 bh->b_assoc_map = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001145 spin_unlock(&buffer_mapping->private_lock);
1146 }
1147 __brelse(bh);
1148}
1149
1150static struct buffer_head *__bread_slow(struct buffer_head *bh)
1151{
1152 lock_buffer(bh);
1153 if (buffer_uptodate(bh)) {
1154 unlock_buffer(bh);
1155 return bh;
1156 } else {
1157 get_bh(bh);
1158 bh->b_end_io = end_buffer_read_sync;
1159 submit_bh(READ, bh);
1160 wait_on_buffer(bh);
1161 if (buffer_uptodate(bh))
1162 return bh;
1163 }
1164 brelse(bh);
1165 return NULL;
1166}
1167
1168/*
1169 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1170 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1171 * refcount elevated by one when they're in an LRU. A buffer can only appear
1172 * once in a particular CPU's LRU. A single buffer can be present in multiple
1173 * CPU's LRUs at the same time.
1174 *
1175 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1176 * sb_find_get_block().
1177 *
1178 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1179 * a local interrupt disable for that.
1180 */
1181
1182#define BH_LRU_SIZE 8
1183
1184struct bh_lru {
1185 struct buffer_head *bhs[BH_LRU_SIZE];
1186};
1187
1188static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1189
1190#ifdef CONFIG_SMP
1191#define bh_lru_lock() local_irq_disable()
1192#define bh_lru_unlock() local_irq_enable()
1193#else
1194#define bh_lru_lock() preempt_disable()
1195#define bh_lru_unlock() preempt_enable()
1196#endif
1197
1198static inline void check_irqs_on(void)
1199{
1200#ifdef irqs_disabled
1201 BUG_ON(irqs_disabled());
1202#endif
1203}
1204
1205/*
1206 * The LRU management algorithm is dopey-but-simple. Sorry.
1207 */
1208static void bh_lru_install(struct buffer_head *bh)
1209{
1210 struct buffer_head *evictee = NULL;
1211 struct bh_lru *lru;
1212
1213 check_irqs_on();
1214 bh_lru_lock();
1215 lru = &__get_cpu_var(bh_lrus);
1216 if (lru->bhs[0] != bh) {
1217 struct buffer_head *bhs[BH_LRU_SIZE];
1218 int in;
1219 int out = 0;
1220
1221 get_bh(bh);
1222 bhs[out++] = bh;
1223 for (in = 0; in < BH_LRU_SIZE; in++) {
1224 struct buffer_head *bh2 = lru->bhs[in];
1225
1226 if (bh2 == bh) {
1227 __brelse(bh2);
1228 } else {
1229 if (out >= BH_LRU_SIZE) {
1230 BUG_ON(evictee != NULL);
1231 evictee = bh2;
1232 } else {
1233 bhs[out++] = bh2;
1234 }
1235 }
1236 }
1237 while (out < BH_LRU_SIZE)
1238 bhs[out++] = NULL;
1239 memcpy(lru->bhs, bhs, sizeof(bhs));
1240 }
1241 bh_lru_unlock();
1242
1243 if (evictee)
1244 __brelse(evictee);
1245}
1246
1247/*
1248 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1249 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08001250static struct buffer_head *
Tomasz Kvarsin3991d3b2007-02-12 00:52:14 -08001251lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001252{
1253 struct buffer_head *ret = NULL;
1254 struct bh_lru *lru;
Tomasz Kvarsin3991d3b2007-02-12 00:52:14 -08001255 unsigned int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001256
1257 check_irqs_on();
1258 bh_lru_lock();
1259 lru = &__get_cpu_var(bh_lrus);
1260 for (i = 0; i < BH_LRU_SIZE; i++) {
1261 struct buffer_head *bh = lru->bhs[i];
1262
1263 if (bh && bh->b_bdev == bdev &&
1264 bh->b_blocknr == block && bh->b_size == size) {
1265 if (i) {
1266 while (i) {
1267 lru->bhs[i] = lru->bhs[i - 1];
1268 i--;
1269 }
1270 lru->bhs[0] = bh;
1271 }
1272 get_bh(bh);
1273 ret = bh;
1274 break;
1275 }
1276 }
1277 bh_lru_unlock();
1278 return ret;
1279}
1280
1281/*
1282 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1283 * it in the LRU and mark it as accessed. If it is not present then return
1284 * NULL
1285 */
1286struct buffer_head *
Tomasz Kvarsin3991d3b2007-02-12 00:52:14 -08001287__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001288{
1289 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1290
1291 if (bh == NULL) {
Coywolf Qi Hunt385fd4c2005-11-07 00:59:39 -08001292 bh = __find_get_block_slow(bdev, block);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001293 if (bh)
1294 bh_lru_install(bh);
1295 }
1296 if (bh)
1297 touch_buffer(bh);
1298 return bh;
1299}
1300EXPORT_SYMBOL(__find_get_block);
1301
1302/*
1303 * __getblk will locate (and, if necessary, create) the buffer_head
1304 * which corresponds to the passed block_device, block and size. The
1305 * returned buffer has its reference count incremented.
1306 *
1307 * __getblk() cannot fail - it just keeps trying. If you pass it an
1308 * illegal block number, __getblk() will happily return a buffer_head
1309 * which represents the non-existent block. Very weird.
1310 *
1311 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1312 * attempt is failing. FIXME, perhaps?
1313 */
1314struct buffer_head *
Tomasz Kvarsin3991d3b2007-02-12 00:52:14 -08001315__getblk(struct block_device *bdev, sector_t block, unsigned size)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001316{
1317 struct buffer_head *bh = __find_get_block(bdev, block, size);
1318
1319 might_sleep();
1320 if (bh == NULL)
1321 bh = __getblk_slow(bdev, block, size);
1322 return bh;
1323}
1324EXPORT_SYMBOL(__getblk);
1325
1326/*
1327 * Do async read-ahead on a buffer..
1328 */
Tomasz Kvarsin3991d3b2007-02-12 00:52:14 -08001329void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001330{
1331 struct buffer_head *bh = __getblk(bdev, block, size);
Andrew Mortona3e713b2005-10-30 15:03:15 -08001332 if (likely(bh)) {
1333 ll_rw_block(READA, 1, &bh);
1334 brelse(bh);
1335 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001336}
1337EXPORT_SYMBOL(__breadahead);
1338
1339/**
1340 * __bread() - reads a specified block and returns the bh
Martin Waitz67be2dd2005-05-01 08:59:26 -07001341 * @bdev: the block_device to read from
Linus Torvalds1da177e2005-04-16 15:20:36 -07001342 * @block: number of block
1343 * @size: size (in bytes) to read
1344 *
1345 * Reads a specified block, and returns buffer head that contains it.
1346 * It returns NULL if the block was unreadable.
1347 */
1348struct buffer_head *
Tomasz Kvarsin3991d3b2007-02-12 00:52:14 -08001349__bread(struct block_device *bdev, sector_t block, unsigned size)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001350{
1351 struct buffer_head *bh = __getblk(bdev, block, size);
1352
Andrew Mortona3e713b2005-10-30 15:03:15 -08001353 if (likely(bh) && !buffer_uptodate(bh))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001354 bh = __bread_slow(bh);
1355 return bh;
1356}
1357EXPORT_SYMBOL(__bread);
1358
1359/*
1360 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1361 * This doesn't race because it runs in each cpu either in irq
1362 * or with preempt disabled.
1363 */
1364static void invalidate_bh_lru(void *arg)
1365{
1366 struct bh_lru *b = &get_cpu_var(bh_lrus);
1367 int i;
1368
1369 for (i = 0; i < BH_LRU_SIZE; i++) {
1370 brelse(b->bhs[i]);
1371 b->bhs[i] = NULL;
1372 }
1373 put_cpu_var(bh_lrus);
1374}
1375
Peter Zijlstraf9a14392007-05-06 14:49:55 -07001376void invalidate_bh_lrus(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001377{
Jens Axboe15c8b6c2008-05-09 09:39:44 +02001378 on_each_cpu(invalidate_bh_lru, NULL, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001379}
Nick Piggin9db55792008-02-08 04:19:49 -08001380EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001381
1382void set_bh_page(struct buffer_head *bh,
1383 struct page *page, unsigned long offset)
1384{
1385 bh->b_page = page;
Eric Sesterhenne827f922006-03-26 18:24:46 +02001386 BUG_ON(offset >= PAGE_SIZE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001387 if (PageHighMem(page))
1388 /*
1389 * This catches illegal uses and preserves the offset:
1390 */
1391 bh->b_data = (char *)(0 + offset);
1392 else
1393 bh->b_data = page_address(page) + offset;
1394}
1395EXPORT_SYMBOL(set_bh_page);
1396
1397/*
1398 * Called when truncating a buffer on a page completely.
1399 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08001400static void discard_buffer(struct buffer_head * bh)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001401{
1402 lock_buffer(bh);
1403 clear_buffer_dirty(bh);
1404 bh->b_bdev = NULL;
1405 clear_buffer_mapped(bh);
1406 clear_buffer_req(bh);
1407 clear_buffer_new(bh);
1408 clear_buffer_delay(bh);
David Chinner33a266d2007-02-12 00:51:41 -08001409 clear_buffer_unwritten(bh);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001410 unlock_buffer(bh);
1411}
1412
1413/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001414 * block_invalidatepage - invalidate part of all of a buffer-backed page
1415 *
1416 * @page: the page which is affected
1417 * @offset: the index of the truncation point
1418 *
1419 * block_invalidatepage() is called when all or part of the page has become
1420 * invalidatedby a truncate operation.
1421 *
1422 * block_invalidatepage() does not have to release all buffers, but it must
1423 * ensure that no dirty buffer is left outside @offset and that no I/O
1424 * is underway against any of the blocks which are outside the truncation
1425 * point. Because the caller is about to free (and possibly reuse) those
1426 * blocks on-disk.
1427 */
NeilBrown2ff28e22006-03-26 01:37:18 -08001428void block_invalidatepage(struct page *page, unsigned long offset)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001429{
1430 struct buffer_head *head, *bh, *next;
1431 unsigned int curr_off = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001432
1433 BUG_ON(!PageLocked(page));
1434 if (!page_has_buffers(page))
1435 goto out;
1436
1437 head = page_buffers(page);
1438 bh = head;
1439 do {
1440 unsigned int next_off = curr_off + bh->b_size;
1441 next = bh->b_this_page;
1442
1443 /*
1444 * is this block fully invalidated?
1445 */
1446 if (offset <= curr_off)
1447 discard_buffer(bh);
1448 curr_off = next_off;
1449 bh = next;
1450 } while (bh != head);
1451
1452 /*
1453 * We release buffers only if the entire page is being invalidated.
1454 * The get_block cached value has been unconditionally invalidated,
1455 * so real IO is not possible anymore.
1456 */
1457 if (offset == 0)
NeilBrown2ff28e22006-03-26 01:37:18 -08001458 try_to_release_page(page, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001459out:
NeilBrown2ff28e22006-03-26 01:37:18 -08001460 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001461}
1462EXPORT_SYMBOL(block_invalidatepage);
1463
1464/*
1465 * We attach and possibly dirty the buffers atomically wrt
1466 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1467 * is already excluded via the page lock.
1468 */
1469void create_empty_buffers(struct page *page,
1470 unsigned long blocksize, unsigned long b_state)
1471{
1472 struct buffer_head *bh, *head, *tail;
1473
1474 head = alloc_page_buffers(page, blocksize, 1);
1475 bh = head;
1476 do {
1477 bh->b_state |= b_state;
1478 tail = bh;
1479 bh = bh->b_this_page;
1480 } while (bh);
1481 tail->b_this_page = head;
1482
1483 spin_lock(&page->mapping->private_lock);
1484 if (PageUptodate(page) || PageDirty(page)) {
1485 bh = head;
1486 do {
1487 if (PageDirty(page))
1488 set_buffer_dirty(bh);
1489 if (PageUptodate(page))
1490 set_buffer_uptodate(bh);
1491 bh = bh->b_this_page;
1492 } while (bh != head);
1493 }
1494 attach_page_buffers(page, head);
1495 spin_unlock(&page->mapping->private_lock);
1496}
1497EXPORT_SYMBOL(create_empty_buffers);
1498
1499/*
1500 * We are taking a block for data and we don't want any output from any
1501 * buffer-cache aliases starting from return from that function and
1502 * until the moment when something will explicitly mark the buffer
1503 * dirty (hopefully that will not happen until we will free that block ;-)
1504 * We don't even need to mark it not-uptodate - nobody can expect
1505 * anything from a newly allocated buffer anyway. We used to used
1506 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1507 * don't want to mark the alias unmapped, for example - it would confuse
1508 * anyone who might pick it with bread() afterwards...
1509 *
1510 * Also.. Note that bforget() doesn't lock the buffer. So there can
1511 * be writeout I/O going on against recently-freed buffers. We don't
1512 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1513 * only if we really need to. That happens here.
1514 */
1515void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1516{
1517 struct buffer_head *old_bh;
1518
1519 might_sleep();
1520
Coywolf Qi Hunt385fd4c2005-11-07 00:59:39 -08001521 old_bh = __find_get_block_slow(bdev, block);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001522 if (old_bh) {
1523 clear_buffer_dirty(old_bh);
1524 wait_on_buffer(old_bh);
1525 clear_buffer_req(old_bh);
1526 __brelse(old_bh);
1527 }
1528}
1529EXPORT_SYMBOL(unmap_underlying_metadata);
1530
1531/*
1532 * NOTE! All mapped/uptodate combinations are valid:
1533 *
1534 * Mapped Uptodate Meaning
1535 *
1536 * No No "unknown" - must do get_block()
1537 * No Yes "hole" - zero-filled
1538 * Yes No "allocated" - allocated on disk, not read in
1539 * Yes Yes "valid" - allocated and up-to-date in memory.
1540 *
1541 * "Dirty" is valid only with the last case (mapped+uptodate).
1542 */
1543
1544/*
1545 * While block_write_full_page is writing back the dirty buffers under
1546 * the page lock, whoever dirtied the buffers may decide to clean them
1547 * again at any time. We handle that by only looking at the buffer
1548 * state inside lock_buffer().
1549 *
1550 * If block_write_full_page() is called for regular writeback
1551 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1552 * locked buffer. This only can happen if someone has written the buffer
1553 * directly, with submit_bh(). At the address_space level PageWriteback
1554 * prevents this contention from occurring.
1555 */
1556static int __block_write_full_page(struct inode *inode, struct page *page,
1557 get_block_t *get_block, struct writeback_control *wbc)
1558{
1559 int err;
1560 sector_t block;
1561 sector_t last_block;
Andrew Mortonf0fbd5f2005-05-05 16:15:48 -07001562 struct buffer_head *bh, *head;
Badari Pulavartyb0cf2322006-03-26 01:38:00 -08001563 const unsigned blocksize = 1 << inode->i_blkbits;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001564 int nr_underway = 0;
1565
1566 BUG_ON(!PageLocked(page));
1567
1568 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1569
1570 if (!page_has_buffers(page)) {
Badari Pulavartyb0cf2322006-03-26 01:38:00 -08001571 create_empty_buffers(page, blocksize,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001572 (1 << BH_Dirty)|(1 << BH_Uptodate));
1573 }
1574
1575 /*
1576 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1577 * here, and the (potentially unmapped) buffers may become dirty at
1578 * any time. If a buffer becomes dirty here after we've inspected it
1579 * then we just miss that fact, and the page stays dirty.
1580 *
1581 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1582 * handle that here by just cleaning them.
1583 */
1584
Andrew Morton54b21a72006-01-08 01:03:05 -08001585 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001586 head = page_buffers(page);
1587 bh = head;
1588
1589 /*
1590 * Get all the dirty buffers mapped to disk addresses and
1591 * handle any aliases from the underlying blockdev's mapping.
1592 */
1593 do {
1594 if (block > last_block) {
1595 /*
1596 * mapped buffers outside i_size will occur, because
1597 * this page can be outside i_size when there is a
1598 * truncate in progress.
1599 */
1600 /*
1601 * The buffer was zeroed by block_write_full_page()
1602 */
1603 clear_buffer_dirty(bh);
1604 set_buffer_uptodate(bh);
Alex Tomas29a814d2008-07-11 19:27:31 -04001605 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1606 buffer_dirty(bh)) {
Badari Pulavartyb0cf2322006-03-26 01:38:00 -08001607 WARN_ON(bh->b_size != blocksize);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001608 err = get_block(inode, block, bh, 1);
1609 if (err)
1610 goto recover;
Alex Tomas29a814d2008-07-11 19:27:31 -04001611 clear_buffer_delay(bh);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001612 if (buffer_new(bh)) {
1613 /* blockdev mappings never come here */
1614 clear_buffer_new(bh);
1615 unmap_underlying_metadata(bh->b_bdev,
1616 bh->b_blocknr);
1617 }
1618 }
1619 bh = bh->b_this_page;
1620 block++;
1621 } while (bh != head);
1622
1623 do {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001624 if (!buffer_mapped(bh))
1625 continue;
1626 /*
1627 * If it's a fully non-blocking write attempt and we cannot
1628 * lock the buffer then redirty the page. Note that this can
1629 * potentially cause a busy-wait loop from pdflush and kswapd
1630 * activity, but those code paths have their own higher-level
1631 * throttling.
1632 */
1633 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1634 lock_buffer(bh);
Nick Pigginca5de402008-08-02 12:02:13 +02001635 } else if (!trylock_buffer(bh)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001636 redirty_page_for_writepage(wbc, page);
1637 continue;
1638 }
1639 if (test_clear_buffer_dirty(bh)) {
1640 mark_buffer_async_write(bh);
1641 } else {
1642 unlock_buffer(bh);
1643 }
1644 } while ((bh = bh->b_this_page) != head);
1645
1646 /*
1647 * The page and its buffers are protected by PageWriteback(), so we can
1648 * drop the bh refcounts early.
1649 */
1650 BUG_ON(PageWriteback(page));
1651 set_page_writeback(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001652
1653 do {
1654 struct buffer_head *next = bh->b_this_page;
1655 if (buffer_async_write(bh)) {
1656 submit_bh(WRITE, bh);
1657 nr_underway++;
1658 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001659 bh = next;
1660 } while (bh != head);
Andrew Morton05937ba2005-05-05 16:15:47 -07001661 unlock_page(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001662
1663 err = 0;
1664done:
1665 if (nr_underway == 0) {
1666 /*
1667 * The page was marked dirty, but the buffers were
1668 * clean. Someone wrote them back by hand with
1669 * ll_rw_block/submit_bh. A rare case.
1670 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001671 end_page_writeback(page);
Nick Piggin3d67f2d2007-05-06 14:49:05 -07001672
Linus Torvalds1da177e2005-04-16 15:20:36 -07001673 /*
1674 * The page and buffer_heads can be released at any time from
1675 * here on.
1676 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001677 }
1678 return err;
1679
1680recover:
1681 /*
1682 * ENOSPC, or some other error. We may already have added some
1683 * blocks to the file, so we need to write these out to avoid
1684 * exposing stale data.
1685 * The page is currently locked and not marked for writeback
1686 */
1687 bh = head;
1688 /* Recovery: lock and submit the mapped buffers */
1689 do {
Alex Tomas29a814d2008-07-11 19:27:31 -04001690 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1691 !buffer_delay(bh)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001692 lock_buffer(bh);
1693 mark_buffer_async_write(bh);
1694 } else {
1695 /*
1696 * The buffer may have been set dirty during
1697 * attachment to a dirty page.
1698 */
1699 clear_buffer_dirty(bh);
1700 }
1701 } while ((bh = bh->b_this_page) != head);
1702 SetPageError(page);
1703 BUG_ON(PageWriteback(page));
Andrew Morton7e4c3692007-05-08 00:23:27 -07001704 mapping_set_error(page->mapping, err);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001705 set_page_writeback(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001706 do {
1707 struct buffer_head *next = bh->b_this_page;
1708 if (buffer_async_write(bh)) {
1709 clear_buffer_dirty(bh);
1710 submit_bh(WRITE, bh);
1711 nr_underway++;
1712 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001713 bh = next;
1714 } while (bh != head);
Nick Pigginffda9d32007-02-20 13:57:54 -08001715 unlock_page(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001716 goto done;
1717}
1718
Nick Pigginafddba42007-10-16 01:25:01 -07001719/*
1720 * If a page has any new buffers, zero them out here, and mark them uptodate
1721 * and dirty so they'll be written out (in order to prevent uninitialised
1722 * block data from leaking). And clear the new bit.
1723 */
1724void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1725{
1726 unsigned int block_start, block_end;
1727 struct buffer_head *head, *bh;
1728
1729 BUG_ON(!PageLocked(page));
1730 if (!page_has_buffers(page))
1731 return;
1732
1733 bh = head = page_buffers(page);
1734 block_start = 0;
1735 do {
1736 block_end = block_start + bh->b_size;
1737
1738 if (buffer_new(bh)) {
1739 if (block_end > from && block_start < to) {
1740 if (!PageUptodate(page)) {
1741 unsigned start, size;
1742
1743 start = max(from, block_start);
1744 size = min(to, block_end) - start;
1745
Christoph Lametereebd2aa2008-02-04 22:28:29 -08001746 zero_user(page, start, size);
Nick Pigginafddba42007-10-16 01:25:01 -07001747 set_buffer_uptodate(bh);
1748 }
1749
1750 clear_buffer_new(bh);
1751 mark_buffer_dirty(bh);
1752 }
1753 }
1754
1755 block_start = block_end;
1756 bh = bh->b_this_page;
1757 } while (bh != head);
1758}
1759EXPORT_SYMBOL(page_zero_new_buffers);
1760
Linus Torvalds1da177e2005-04-16 15:20:36 -07001761static int __block_prepare_write(struct inode *inode, struct page *page,
1762 unsigned from, unsigned to, get_block_t *get_block)
1763{
1764 unsigned block_start, block_end;
1765 sector_t block;
1766 int err = 0;
1767 unsigned blocksize, bbits;
1768 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1769
1770 BUG_ON(!PageLocked(page));
1771 BUG_ON(from > PAGE_CACHE_SIZE);
1772 BUG_ON(to > PAGE_CACHE_SIZE);
1773 BUG_ON(from > to);
1774
1775 blocksize = 1 << inode->i_blkbits;
1776 if (!page_has_buffers(page))
1777 create_empty_buffers(page, blocksize, 0);
1778 head = page_buffers(page);
1779
1780 bbits = inode->i_blkbits;
1781 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1782
1783 for(bh = head, block_start = 0; bh != head || !block_start;
1784 block++, block_start=block_end, bh = bh->b_this_page) {
1785 block_end = block_start + blocksize;
1786 if (block_end <= from || block_start >= to) {
1787 if (PageUptodate(page)) {
1788 if (!buffer_uptodate(bh))
1789 set_buffer_uptodate(bh);
1790 }
1791 continue;
1792 }
1793 if (buffer_new(bh))
1794 clear_buffer_new(bh);
1795 if (!buffer_mapped(bh)) {
Badari Pulavartyb0cf2322006-03-26 01:38:00 -08001796 WARN_ON(bh->b_size != blocksize);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001797 err = get_block(inode, block, bh, 1);
1798 if (err)
Nick Pigginf3ddbdc2005-05-05 16:15:45 -07001799 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001800 if (buffer_new(bh)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001801 unmap_underlying_metadata(bh->b_bdev,
1802 bh->b_blocknr);
1803 if (PageUptodate(page)) {
Nick Piggin637aff42007-10-16 01:25:00 -07001804 clear_buffer_new(bh);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001805 set_buffer_uptodate(bh);
Nick Piggin637aff42007-10-16 01:25:00 -07001806 mark_buffer_dirty(bh);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001807 continue;
1808 }
Christoph Lametereebd2aa2008-02-04 22:28:29 -08001809 if (block_end > to || block_start < from)
1810 zero_user_segments(page,
1811 to, block_end,
1812 block_start, from);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001813 continue;
1814 }
1815 }
1816 if (PageUptodate(page)) {
1817 if (!buffer_uptodate(bh))
1818 set_buffer_uptodate(bh);
1819 continue;
1820 }
1821 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
David Chinner33a266d2007-02-12 00:51:41 -08001822 !buffer_unwritten(bh) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07001823 (block_start < from || block_end > to)) {
1824 ll_rw_block(READ, 1, &bh);
1825 *wait_bh++=bh;
1826 }
1827 }
1828 /*
1829 * If we issued read requests - let them complete.
1830 */
1831 while(wait_bh > wait) {
1832 wait_on_buffer(*--wait_bh);
1833 if (!buffer_uptodate(*wait_bh))
Nick Pigginf3ddbdc2005-05-05 16:15:45 -07001834 err = -EIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001835 }
Nick Pigginafddba42007-10-16 01:25:01 -07001836 if (unlikely(err))
1837 page_zero_new_buffers(page, from, to);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001838 return err;
1839}
1840
1841static int __block_commit_write(struct inode *inode, struct page *page,
1842 unsigned from, unsigned to)
1843{
1844 unsigned block_start, block_end;
1845 int partial = 0;
1846 unsigned blocksize;
1847 struct buffer_head *bh, *head;
1848
1849 blocksize = 1 << inode->i_blkbits;
1850
1851 for(bh = head = page_buffers(page), block_start = 0;
1852 bh != head || !block_start;
1853 block_start=block_end, bh = bh->b_this_page) {
1854 block_end = block_start + blocksize;
1855 if (block_end <= from || block_start >= to) {
1856 if (!buffer_uptodate(bh))
1857 partial = 1;
1858 } else {
1859 set_buffer_uptodate(bh);
1860 mark_buffer_dirty(bh);
1861 }
Nick Pigginafddba42007-10-16 01:25:01 -07001862 clear_buffer_new(bh);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001863 }
1864
1865 /*
1866 * If this is a partial write which happened to make all buffers
1867 * uptodate then we can optimize away a bogus readpage() for
1868 * the next read(). Here we 'discover' whether the page went
1869 * uptodate as a result of this (potentially partial) write.
1870 */
1871 if (!partial)
1872 SetPageUptodate(page);
1873 return 0;
1874}
1875
1876/*
Nick Pigginafddba42007-10-16 01:25:01 -07001877 * block_write_begin takes care of the basic task of block allocation and
1878 * bringing partial write blocks uptodate first.
1879 *
1880 * If *pagep is not NULL, then block_write_begin uses the locked page
1881 * at *pagep rather than allocating its own. In this case, the page will
1882 * not be unlocked or deallocated on failure.
1883 */
1884int block_write_begin(struct file *file, struct address_space *mapping,
1885 loff_t pos, unsigned len, unsigned flags,
1886 struct page **pagep, void **fsdata,
1887 get_block_t *get_block)
1888{
1889 struct inode *inode = mapping->host;
1890 int status = 0;
1891 struct page *page;
1892 pgoff_t index;
1893 unsigned start, end;
1894 int ownpage = 0;
1895
1896 index = pos >> PAGE_CACHE_SHIFT;
1897 start = pos & (PAGE_CACHE_SIZE - 1);
1898 end = start + len;
1899
1900 page = *pagep;
1901 if (page == NULL) {
1902 ownpage = 1;
Nick Piggin54566b22009-01-04 12:00:53 -08001903 page = grab_cache_page_write_begin(mapping, index, flags);
Nick Pigginafddba42007-10-16 01:25:01 -07001904 if (!page) {
1905 status = -ENOMEM;
1906 goto out;
1907 }
1908 *pagep = page;
1909 } else
1910 BUG_ON(!PageLocked(page));
1911
1912 status = __block_prepare_write(inode, page, start, end, get_block);
1913 if (unlikely(status)) {
1914 ClearPageUptodate(page);
1915
1916 if (ownpage) {
1917 unlock_page(page);
1918 page_cache_release(page);
1919 *pagep = NULL;
1920
1921 /*
1922 * prepare_write() may have instantiated a few blocks
1923 * outside i_size. Trim these off again. Don't need
1924 * i_size_read because we hold i_mutex.
1925 */
1926 if (pos + len > inode->i_size)
1927 vmtruncate(inode, inode->i_size);
1928 }
Nick Pigginafddba42007-10-16 01:25:01 -07001929 }
1930
1931out:
1932 return status;
1933}
1934EXPORT_SYMBOL(block_write_begin);
1935
1936int block_write_end(struct file *file, struct address_space *mapping,
1937 loff_t pos, unsigned len, unsigned copied,
1938 struct page *page, void *fsdata)
1939{
1940 struct inode *inode = mapping->host;
1941 unsigned start;
1942
1943 start = pos & (PAGE_CACHE_SIZE - 1);
1944
1945 if (unlikely(copied < len)) {
1946 /*
1947 * The buffers that were written will now be uptodate, so we
1948 * don't have to worry about a readpage reading them and
1949 * overwriting a partial write. However if we have encountered
1950 * a short write and only partially written into a buffer, it
1951 * will not be marked uptodate, so a readpage might come in and
1952 * destroy our partial write.
1953 *
1954 * Do the simplest thing, and just treat any short write to a
1955 * non uptodate page as a zero-length write, and force the
1956 * caller to redo the whole thing.
1957 */
1958 if (!PageUptodate(page))
1959 copied = 0;
1960
1961 page_zero_new_buffers(page, start+copied, start+len);
1962 }
1963 flush_dcache_page(page);
1964
1965 /* This could be a short (even 0-length) commit */
1966 __block_commit_write(inode, page, start, start+copied);
1967
1968 return copied;
1969}
1970EXPORT_SYMBOL(block_write_end);
1971
1972int generic_write_end(struct file *file, struct address_space *mapping,
1973 loff_t pos, unsigned len, unsigned copied,
1974 struct page *page, void *fsdata)
1975{
1976 struct inode *inode = mapping->host;
Jan Karac7d206b2008-07-11 19:27:31 -04001977 int i_size_changed = 0;
Nick Pigginafddba42007-10-16 01:25:01 -07001978
1979 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1980
1981 /*
1982 * No need to use i_size_read() here, the i_size
1983 * cannot change under us because we hold i_mutex.
1984 *
1985 * But it's important to update i_size while still holding page lock:
1986 * page writeout could otherwise come in and zero beyond i_size.
1987 */
1988 if (pos+copied > inode->i_size) {
1989 i_size_write(inode, pos+copied);
Jan Karac7d206b2008-07-11 19:27:31 -04001990 i_size_changed = 1;
Nick Pigginafddba42007-10-16 01:25:01 -07001991 }
1992
1993 unlock_page(page);
1994 page_cache_release(page);
1995
Jan Karac7d206b2008-07-11 19:27:31 -04001996 /*
1997 * Don't mark the inode dirty under page lock. First, it unnecessarily
1998 * makes the holding time of page lock longer. Second, it forces lock
1999 * ordering of page lock and transaction start for journaling
2000 * filesystems.
2001 */
2002 if (i_size_changed)
2003 mark_inode_dirty(inode);
2004
Nick Pigginafddba42007-10-16 01:25:01 -07002005 return copied;
2006}
2007EXPORT_SYMBOL(generic_write_end);
2008
2009/*
Hisashi Hifumi8ab22b92008-07-28 15:46:36 -07002010 * block_is_partially_uptodate checks whether buffers within a page are
2011 * uptodate or not.
2012 *
2013 * Returns true if all buffers which correspond to a file portion
2014 * we want to read are uptodate.
2015 */
2016int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2017 unsigned long from)
2018{
2019 struct inode *inode = page->mapping->host;
2020 unsigned block_start, block_end, blocksize;
2021 unsigned to;
2022 struct buffer_head *bh, *head;
2023 int ret = 1;
2024
2025 if (!page_has_buffers(page))
2026 return 0;
2027
2028 blocksize = 1 << inode->i_blkbits;
2029 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2030 to = from + to;
2031 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2032 return 0;
2033
2034 head = page_buffers(page);
2035 bh = head;
2036 block_start = 0;
2037 do {
2038 block_end = block_start + blocksize;
2039 if (block_end > from && block_start < to) {
2040 if (!buffer_uptodate(bh)) {
2041 ret = 0;
2042 break;
2043 }
2044 if (block_end >= to)
2045 break;
2046 }
2047 block_start = block_end;
2048 bh = bh->b_this_page;
2049 } while (bh != head);
2050
2051 return ret;
2052}
2053EXPORT_SYMBOL(block_is_partially_uptodate);
2054
2055/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002056 * Generic "read page" function for block devices that have the normal
2057 * get_block functionality. This is most of the block device filesystems.
2058 * Reads the page asynchronously --- the unlock_buffer() and
2059 * set/clear_buffer_uptodate() functions propagate buffer state into the
2060 * page struct once IO has completed.
2061 */
2062int block_read_full_page(struct page *page, get_block_t *get_block)
2063{
2064 struct inode *inode = page->mapping->host;
2065 sector_t iblock, lblock;
2066 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2067 unsigned int blocksize;
2068 int nr, i;
2069 int fully_mapped = 1;
2070
Matt Mackallcd7619d2005-05-01 08:59:01 -07002071 BUG_ON(!PageLocked(page));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002072 blocksize = 1 << inode->i_blkbits;
2073 if (!page_has_buffers(page))
2074 create_empty_buffers(page, blocksize, 0);
2075 head = page_buffers(page);
2076
2077 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2078 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2079 bh = head;
2080 nr = 0;
2081 i = 0;
2082
2083 do {
2084 if (buffer_uptodate(bh))
2085 continue;
2086
2087 if (!buffer_mapped(bh)) {
Andrew Mortonc64610b2005-05-16 21:53:49 -07002088 int err = 0;
2089
Linus Torvalds1da177e2005-04-16 15:20:36 -07002090 fully_mapped = 0;
2091 if (iblock < lblock) {
Badari Pulavartyb0cf2322006-03-26 01:38:00 -08002092 WARN_ON(bh->b_size != blocksize);
Andrew Mortonc64610b2005-05-16 21:53:49 -07002093 err = get_block(inode, iblock, bh, 0);
2094 if (err)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002095 SetPageError(page);
2096 }
2097 if (!buffer_mapped(bh)) {
Christoph Lametereebd2aa2008-02-04 22:28:29 -08002098 zero_user(page, i * blocksize, blocksize);
Andrew Mortonc64610b2005-05-16 21:53:49 -07002099 if (!err)
2100 set_buffer_uptodate(bh);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002101 continue;
2102 }
2103 /*
2104 * get_block() might have updated the buffer
2105 * synchronously
2106 */
2107 if (buffer_uptodate(bh))
2108 continue;
2109 }
2110 arr[nr++] = bh;
2111 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2112
2113 if (fully_mapped)
2114 SetPageMappedToDisk(page);
2115
2116 if (!nr) {
2117 /*
2118 * All buffers are uptodate - we can set the page uptodate
2119 * as well. But not if get_block() returned an error.
2120 */
2121 if (!PageError(page))
2122 SetPageUptodate(page);
2123 unlock_page(page);
2124 return 0;
2125 }
2126
2127 /* Stage two: lock the buffers */
2128 for (i = 0; i < nr; i++) {
2129 bh = arr[i];
2130 lock_buffer(bh);
2131 mark_buffer_async_read(bh);
2132 }
2133
2134 /*
2135 * Stage 3: start the IO. Check for uptodateness
2136 * inside the buffer lock in case another process reading
2137 * the underlying blockdev brought it uptodate (the sct fix).
2138 */
2139 for (i = 0; i < nr; i++) {
2140 bh = arr[i];
2141 if (buffer_uptodate(bh))
2142 end_buffer_async_read(bh, 1);
2143 else
2144 submit_bh(READ, bh);
2145 }
2146 return 0;
2147}
2148
2149/* utility function for filesystems that need to do work on expanding
Nick Piggin89e10782007-10-16 01:25:07 -07002150 * truncates. Uses filesystem pagecache writes to allow the filesystem to
Linus Torvalds1da177e2005-04-16 15:20:36 -07002151 * deal with the hole.
2152 */
Nick Piggin89e10782007-10-16 01:25:07 -07002153int generic_cont_expand_simple(struct inode *inode, loff_t size)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002154{
2155 struct address_space *mapping = inode->i_mapping;
2156 struct page *page;
Nick Piggin89e10782007-10-16 01:25:07 -07002157 void *fsdata;
OGAWA Hirofumi05eb0b52006-01-08 01:02:13 -08002158 unsigned long limit;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002159 int err;
2160
2161 err = -EFBIG;
2162 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2163 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2164 send_sig(SIGXFSZ, current, 0);
2165 goto out;
2166 }
2167 if (size > inode->i_sb->s_maxbytes)
2168 goto out;
2169
Nick Piggin89e10782007-10-16 01:25:07 -07002170 err = pagecache_write_begin(NULL, mapping, size, 0,
2171 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2172 &page, &fsdata);
2173 if (err)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002174 goto out;
OGAWA Hirofumi05eb0b52006-01-08 01:02:13 -08002175
Nick Piggin89e10782007-10-16 01:25:07 -07002176 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2177 BUG_ON(err > 0);
OGAWA Hirofumi05eb0b52006-01-08 01:02:13 -08002178
Linus Torvalds1da177e2005-04-16 15:20:36 -07002179out:
2180 return err;
2181}
2182
Adrian Bunkf1e3af72008-04-29 00:59:01 -07002183static int cont_expand_zero(struct file *file, struct address_space *mapping,
2184 loff_t pos, loff_t *bytes)
OGAWA Hirofumi05eb0b52006-01-08 01:02:13 -08002185{
Nick Piggin89e10782007-10-16 01:25:07 -07002186 struct inode *inode = mapping->host;
2187 unsigned blocksize = 1 << inode->i_blkbits;
2188 struct page *page;
2189 void *fsdata;
2190 pgoff_t index, curidx;
2191 loff_t curpos;
2192 unsigned zerofrom, offset, len;
2193 int err = 0;
OGAWA Hirofumi05eb0b52006-01-08 01:02:13 -08002194
Nick Piggin89e10782007-10-16 01:25:07 -07002195 index = pos >> PAGE_CACHE_SHIFT;
2196 offset = pos & ~PAGE_CACHE_MASK;
2197
2198 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2199 zerofrom = curpos & ~PAGE_CACHE_MASK;
2200 if (zerofrom & (blocksize-1)) {
2201 *bytes |= (blocksize-1);
2202 (*bytes)++;
2203 }
2204 len = PAGE_CACHE_SIZE - zerofrom;
2205
2206 err = pagecache_write_begin(file, mapping, curpos, len,
2207 AOP_FLAG_UNINTERRUPTIBLE,
2208 &page, &fsdata);
2209 if (err)
2210 goto out;
Christoph Lametereebd2aa2008-02-04 22:28:29 -08002211 zero_user(page, zerofrom, len);
Nick Piggin89e10782007-10-16 01:25:07 -07002212 err = pagecache_write_end(file, mapping, curpos, len, len,
2213 page, fsdata);
2214 if (err < 0)
2215 goto out;
2216 BUG_ON(err != len);
2217 err = 0;
OGAWA Hirofumi061e9742008-04-28 02:16:28 -07002218
2219 balance_dirty_pages_ratelimited(mapping);
Nick Piggin89e10782007-10-16 01:25:07 -07002220 }
2221
2222 /* page covers the boundary, find the boundary offset */
2223 if (index == curidx) {
2224 zerofrom = curpos & ~PAGE_CACHE_MASK;
2225 /* if we will expand the thing last block will be filled */
2226 if (offset <= zerofrom) {
2227 goto out;
2228 }
2229 if (zerofrom & (blocksize-1)) {
2230 *bytes |= (blocksize-1);
2231 (*bytes)++;
2232 }
2233 len = offset - zerofrom;
2234
2235 err = pagecache_write_begin(file, mapping, curpos, len,
2236 AOP_FLAG_UNINTERRUPTIBLE,
2237 &page, &fsdata);
2238 if (err)
2239 goto out;
Christoph Lametereebd2aa2008-02-04 22:28:29 -08002240 zero_user(page, zerofrom, len);
Nick Piggin89e10782007-10-16 01:25:07 -07002241 err = pagecache_write_end(file, mapping, curpos, len, len,
2242 page, fsdata);
2243 if (err < 0)
2244 goto out;
2245 BUG_ON(err != len);
2246 err = 0;
2247 }
2248out:
2249 return err;
OGAWA Hirofumi05eb0b52006-01-08 01:02:13 -08002250}
2251
Linus Torvalds1da177e2005-04-16 15:20:36 -07002252/*
2253 * For moronic filesystems that do not allow holes in file.
2254 * We may have to extend the file.
2255 */
Nick Piggin89e10782007-10-16 01:25:07 -07002256int cont_write_begin(struct file *file, struct address_space *mapping,
2257 loff_t pos, unsigned len, unsigned flags,
2258 struct page **pagep, void **fsdata,
2259 get_block_t *get_block, loff_t *bytes)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002260{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002261 struct inode *inode = mapping->host;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002262 unsigned blocksize = 1 << inode->i_blkbits;
Nick Piggin89e10782007-10-16 01:25:07 -07002263 unsigned zerofrom;
2264 int err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002265
Nick Piggin89e10782007-10-16 01:25:07 -07002266 err = cont_expand_zero(file, mapping, pos, bytes);
2267 if (err)
2268 goto out;
2269
2270 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2271 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2272 *bytes |= (blocksize-1);
2273 (*bytes)++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002274 }
2275
Nick Piggin89e10782007-10-16 01:25:07 -07002276 *pagep = NULL;
2277 err = block_write_begin(file, mapping, pos, len,
2278 flags, pagep, fsdata, get_block);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002279out:
Nick Piggin89e10782007-10-16 01:25:07 -07002280 return err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002281}
2282
2283int block_prepare_write(struct page *page, unsigned from, unsigned to,
2284 get_block_t *get_block)
2285{
2286 struct inode *inode = page->mapping->host;
2287 int err = __block_prepare_write(inode, page, from, to, get_block);
2288 if (err)
2289 ClearPageUptodate(page);
2290 return err;
2291}
2292
2293int block_commit_write(struct page *page, unsigned from, unsigned to)
2294{
2295 struct inode *inode = page->mapping->host;
2296 __block_commit_write(inode,page,from,to);
2297 return 0;
2298}
2299
David Chinner54171692007-07-19 17:39:55 +10002300/*
2301 * block_page_mkwrite() is not allowed to change the file size as it gets
2302 * called from a page fault handler when a page is first dirtied. Hence we must
2303 * be careful to check for EOF conditions here. We set the page up correctly
2304 * for a written page which means we get ENOSPC checking when writing into
2305 * holes and correct delalloc and unwritten extent mapping on filesystems that
2306 * support these features.
2307 *
2308 * We are not allowed to take the i_mutex here so we have to play games to
2309 * protect against truncate races as the page could now be beyond EOF. Because
2310 * vmtruncate() writes the inode size before removing pages, once we have the
2311 * page lock we can determine safely if the page is beyond EOF. If it is not
2312 * beyond EOF, then the page is guaranteed safe against truncation until we
2313 * unlock the page.
2314 */
2315int
2316block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2317 get_block_t get_block)
2318{
2319 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2320 unsigned long end;
2321 loff_t size;
2322 int ret = -EINVAL;
2323
2324 lock_page(page);
2325 size = i_size_read(inode);
2326 if ((page->mapping != inode->i_mapping) ||
Nick Piggin18336332007-07-20 00:31:45 -07002327 (page_offset(page) > size)) {
David Chinner54171692007-07-19 17:39:55 +10002328 /* page got truncated out from underneath us */
2329 goto out_unlock;
2330 }
2331
2332 /* page is wholly or partially inside EOF */
2333 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2334 end = size & ~PAGE_CACHE_MASK;
2335 else
2336 end = PAGE_CACHE_SIZE;
2337
2338 ret = block_prepare_write(page, 0, end, get_block);
2339 if (!ret)
2340 ret = block_commit_write(page, 0, end);
2341
2342out_unlock:
2343 unlock_page(page);
2344 return ret;
2345}
Linus Torvalds1da177e2005-04-16 15:20:36 -07002346
2347/*
Nick Piggin03158cd2007-10-16 01:25:25 -07002348 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
Linus Torvalds1da177e2005-04-16 15:20:36 -07002349 * immediately, while under the page lock. So it needs a special end_io
2350 * handler which does not touch the bh after unlocking it.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002351 */
2352static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2353{
Dmitry Monakhov68671f32007-10-16 01:24:47 -07002354 __end_buffer_read_notouch(bh, uptodate);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002355}
2356
2357/*
Nick Piggin03158cd2007-10-16 01:25:25 -07002358 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2359 * the page (converting it to circular linked list and taking care of page
2360 * dirty races).
2361 */
2362static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2363{
2364 struct buffer_head *bh;
2365
2366 BUG_ON(!PageLocked(page));
2367
2368 spin_lock(&page->mapping->private_lock);
2369 bh = head;
2370 do {
2371 if (PageDirty(page))
2372 set_buffer_dirty(bh);
2373 if (!bh->b_this_page)
2374 bh->b_this_page = head;
2375 bh = bh->b_this_page;
2376 } while (bh != head);
2377 attach_page_buffers(page, head);
2378 spin_unlock(&page->mapping->private_lock);
2379}
2380
2381/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002382 * On entry, the page is fully not uptodate.
2383 * On exit the page is fully uptodate in the areas outside (from,to)
2384 */
Nick Piggin03158cd2007-10-16 01:25:25 -07002385int nobh_write_begin(struct file *file, struct address_space *mapping,
2386 loff_t pos, unsigned len, unsigned flags,
2387 struct page **pagep, void **fsdata,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002388 get_block_t *get_block)
2389{
Nick Piggin03158cd2007-10-16 01:25:25 -07002390 struct inode *inode = mapping->host;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002391 const unsigned blkbits = inode->i_blkbits;
2392 const unsigned blocksize = 1 << blkbits;
Nick Piggina4b06722007-10-16 01:24:48 -07002393 struct buffer_head *head, *bh;
Nick Piggin03158cd2007-10-16 01:25:25 -07002394 struct page *page;
2395 pgoff_t index;
2396 unsigned from, to;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002397 unsigned block_in_page;
Nick Piggina4b06722007-10-16 01:24:48 -07002398 unsigned block_start, block_end;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002399 sector_t block_in_file;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002400 int nr_reads = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002401 int ret = 0;
2402 int is_mapped_to_disk = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002403
Nick Piggin03158cd2007-10-16 01:25:25 -07002404 index = pos >> PAGE_CACHE_SHIFT;
2405 from = pos & (PAGE_CACHE_SIZE - 1);
2406 to = from + len;
2407
Nick Piggin54566b22009-01-04 12:00:53 -08002408 page = grab_cache_page_write_begin(mapping, index, flags);
Nick Piggin03158cd2007-10-16 01:25:25 -07002409 if (!page)
2410 return -ENOMEM;
2411 *pagep = page;
2412 *fsdata = NULL;
2413
2414 if (page_has_buffers(page)) {
2415 unlock_page(page);
2416 page_cache_release(page);
2417 *pagep = NULL;
2418 return block_write_begin(file, mapping, pos, len, flags, pagep,
2419 fsdata, get_block);
2420 }
Nick Piggina4b06722007-10-16 01:24:48 -07002421
Linus Torvalds1da177e2005-04-16 15:20:36 -07002422 if (PageMappedToDisk(page))
2423 return 0;
2424
Nick Piggina4b06722007-10-16 01:24:48 -07002425 /*
2426 * Allocate buffers so that we can keep track of state, and potentially
2427 * attach them to the page if an error occurs. In the common case of
2428 * no error, they will just be freed again without ever being attached
2429 * to the page (which is all OK, because we're under the page lock).
2430 *
2431 * Be careful: the buffer linked list is a NULL terminated one, rather
2432 * than the circular one we're used to.
2433 */
2434 head = alloc_page_buffers(page, blocksize, 0);
Nick Piggin03158cd2007-10-16 01:25:25 -07002435 if (!head) {
2436 ret = -ENOMEM;
2437 goto out_release;
2438 }
Nick Piggina4b06722007-10-16 01:24:48 -07002439
Linus Torvalds1da177e2005-04-16 15:20:36 -07002440 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002441
2442 /*
2443 * We loop across all blocks in the page, whether or not they are
2444 * part of the affected region. This is so we can discover if the
2445 * page is fully mapped-to-disk.
2446 */
Nick Piggina4b06722007-10-16 01:24:48 -07002447 for (block_start = 0, block_in_page = 0, bh = head;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002448 block_start < PAGE_CACHE_SIZE;
Nick Piggina4b06722007-10-16 01:24:48 -07002449 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002450 int create;
2451
Nick Piggina4b06722007-10-16 01:24:48 -07002452 block_end = block_start + blocksize;
2453 bh->b_state = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002454 create = 1;
2455 if (block_start >= to)
2456 create = 0;
2457 ret = get_block(inode, block_in_file + block_in_page,
Nick Piggina4b06722007-10-16 01:24:48 -07002458 bh, create);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002459 if (ret)
2460 goto failed;
Nick Piggina4b06722007-10-16 01:24:48 -07002461 if (!buffer_mapped(bh))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002462 is_mapped_to_disk = 0;
Nick Piggina4b06722007-10-16 01:24:48 -07002463 if (buffer_new(bh))
2464 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2465 if (PageUptodate(page)) {
2466 set_buffer_uptodate(bh);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002467 continue;
Nick Piggina4b06722007-10-16 01:24:48 -07002468 }
2469 if (buffer_new(bh) || !buffer_mapped(bh)) {
Christoph Lametereebd2aa2008-02-04 22:28:29 -08002470 zero_user_segments(page, block_start, from,
2471 to, block_end);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002472 continue;
2473 }
Nick Piggina4b06722007-10-16 01:24:48 -07002474 if (buffer_uptodate(bh))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002475 continue; /* reiserfs does this */
2476 if (block_start < from || block_end > to) {
Nick Piggina4b06722007-10-16 01:24:48 -07002477 lock_buffer(bh);
2478 bh->b_end_io = end_buffer_read_nobh;
2479 submit_bh(READ, bh);
2480 nr_reads++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002481 }
2482 }
2483
2484 if (nr_reads) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002485 /*
2486 * The page is locked, so these buffers are protected from
2487 * any VM or truncate activity. Hence we don't need to care
2488 * for the buffer_head refcounts.
2489 */
Nick Piggina4b06722007-10-16 01:24:48 -07002490 for (bh = head; bh; bh = bh->b_this_page) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002491 wait_on_buffer(bh);
2492 if (!buffer_uptodate(bh))
2493 ret = -EIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002494 }
2495 if (ret)
2496 goto failed;
2497 }
2498
2499 if (is_mapped_to_disk)
2500 SetPageMappedToDisk(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002501
Nick Piggin03158cd2007-10-16 01:25:25 -07002502 *fsdata = head; /* to be released by nobh_write_end */
Nick Piggina4b06722007-10-16 01:24:48 -07002503
Linus Torvalds1da177e2005-04-16 15:20:36 -07002504 return 0;
2505
2506failed:
Nick Piggin03158cd2007-10-16 01:25:25 -07002507 BUG_ON(!ret);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002508 /*
Nick Piggina4b06722007-10-16 01:24:48 -07002509 * Error recovery is a bit difficult. We need to zero out blocks that
2510 * were newly allocated, and dirty them to ensure they get written out.
2511 * Buffers need to be attached to the page at this point, otherwise
2512 * the handling of potential IO errors during writeout would be hard
2513 * (could try doing synchronous writeout, but what if that fails too?)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002514 */
Nick Piggin03158cd2007-10-16 01:25:25 -07002515 attach_nobh_buffers(page, head);
2516 page_zero_new_buffers(page, from, to);
Nick Piggina4b06722007-10-16 01:24:48 -07002517
Nick Piggin03158cd2007-10-16 01:25:25 -07002518out_release:
2519 unlock_page(page);
2520 page_cache_release(page);
2521 *pagep = NULL;
Nick Piggina4b06722007-10-16 01:24:48 -07002522
Nick Piggin03158cd2007-10-16 01:25:25 -07002523 if (pos + len > inode->i_size)
2524 vmtruncate(inode, inode->i_size);
Nick Piggina4b06722007-10-16 01:24:48 -07002525
Linus Torvalds1da177e2005-04-16 15:20:36 -07002526 return ret;
2527}
Nick Piggin03158cd2007-10-16 01:25:25 -07002528EXPORT_SYMBOL(nobh_write_begin);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002529
Nick Piggin03158cd2007-10-16 01:25:25 -07002530int nobh_write_end(struct file *file, struct address_space *mapping,
2531 loff_t pos, unsigned len, unsigned copied,
2532 struct page *page, void *fsdata)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002533{
2534 struct inode *inode = page->mapping->host;
Nick Pigginefdc3132007-10-21 06:57:41 +02002535 struct buffer_head *head = fsdata;
Nick Piggin03158cd2007-10-16 01:25:25 -07002536 struct buffer_head *bh;
Dmitri Monakhov5b41e742008-03-28 14:15:52 -07002537 BUG_ON(fsdata != NULL && page_has_buffers(page));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002538
Dave Kleikampd4cf1092009-02-06 14:59:26 -06002539 if (unlikely(copied < len) && head)
Dmitri Monakhov5b41e742008-03-28 14:15:52 -07002540 attach_nobh_buffers(page, head);
2541 if (page_has_buffers(page))
2542 return generic_write_end(file, mapping, pos, len,
2543 copied, page, fsdata);
Nick Piggina4b06722007-10-16 01:24:48 -07002544
Nick Piggin22c8ca72007-02-20 13:58:09 -08002545 SetPageUptodate(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002546 set_page_dirty(page);
Nick Piggin03158cd2007-10-16 01:25:25 -07002547 if (pos+copied > inode->i_size) {
2548 i_size_write(inode, pos+copied);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002549 mark_inode_dirty(inode);
2550 }
Nick Piggin03158cd2007-10-16 01:25:25 -07002551
2552 unlock_page(page);
2553 page_cache_release(page);
2554
Nick Piggin03158cd2007-10-16 01:25:25 -07002555 while (head) {
2556 bh = head;
2557 head = head->b_this_page;
2558 free_buffer_head(bh);
2559 }
2560
2561 return copied;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002562}
Nick Piggin03158cd2007-10-16 01:25:25 -07002563EXPORT_SYMBOL(nobh_write_end);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002564
2565/*
2566 * nobh_writepage() - based on block_full_write_page() except
2567 * that it tries to operate without attaching bufferheads to
2568 * the page.
2569 */
2570int nobh_writepage(struct page *page, get_block_t *get_block,
2571 struct writeback_control *wbc)
2572{
2573 struct inode * const inode = page->mapping->host;
2574 loff_t i_size = i_size_read(inode);
2575 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2576 unsigned offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002577 int ret;
2578
2579 /* Is the page fully inside i_size? */
2580 if (page->index < end_index)
2581 goto out;
2582
2583 /* Is the page fully outside i_size? (truncate in progress) */
2584 offset = i_size & (PAGE_CACHE_SIZE-1);
2585 if (page->index >= end_index+1 || !offset) {
2586 /*
2587 * The page may have dirty, unmapped buffers. For example,
2588 * they may have been added in ext3_writepage(). Make them
2589 * freeable here, so the page does not leak.
2590 */
2591#if 0
2592 /* Not really sure about this - do we need this ? */
2593 if (page->mapping->a_ops->invalidatepage)
2594 page->mapping->a_ops->invalidatepage(page, offset);
2595#endif
2596 unlock_page(page);
2597 return 0; /* don't care */
2598 }
2599
2600 /*
2601 * The page straddles i_size. It must be zeroed out on each and every
2602 * writepage invocation because it may be mmapped. "A file is mapped
2603 * in multiples of the page size. For a file that is not a multiple of
2604 * the page size, the remaining memory is zeroed when mapped, and
2605 * writes to that region are not written out to the file."
2606 */
Christoph Lametereebd2aa2008-02-04 22:28:29 -08002607 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002608out:
2609 ret = mpage_writepage(page, get_block, wbc);
2610 if (ret == -EAGAIN)
2611 ret = __block_write_full_page(inode, page, get_block, wbc);
2612 return ret;
2613}
2614EXPORT_SYMBOL(nobh_writepage);
2615
Nick Piggin03158cd2007-10-16 01:25:25 -07002616int nobh_truncate_page(struct address_space *mapping,
2617 loff_t from, get_block_t *get_block)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002618{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002619 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2620 unsigned offset = from & (PAGE_CACHE_SIZE-1);
Nick Piggin03158cd2007-10-16 01:25:25 -07002621 unsigned blocksize;
2622 sector_t iblock;
2623 unsigned length, pos;
2624 struct inode *inode = mapping->host;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002625 struct page *page;
Nick Piggin03158cd2007-10-16 01:25:25 -07002626 struct buffer_head map_bh;
2627 int err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002628
Nick Piggin03158cd2007-10-16 01:25:25 -07002629 blocksize = 1 << inode->i_blkbits;
2630 length = offset & (blocksize - 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002631
Nick Piggin03158cd2007-10-16 01:25:25 -07002632 /* Block boundary? Nothing to do */
2633 if (!length)
2634 return 0;
2635
2636 length = blocksize - length;
2637 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2638
Linus Torvalds1da177e2005-04-16 15:20:36 -07002639 page = grab_cache_page(mapping, index);
Nick Piggin03158cd2007-10-16 01:25:25 -07002640 err = -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002641 if (!page)
2642 goto out;
2643
Nick Piggin03158cd2007-10-16 01:25:25 -07002644 if (page_has_buffers(page)) {
2645has_buffers:
2646 unlock_page(page);
2647 page_cache_release(page);
2648 return block_truncate_page(mapping, from, get_block);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002649 }
Nick Piggin03158cd2007-10-16 01:25:25 -07002650
2651 /* Find the buffer that contains "offset" */
2652 pos = blocksize;
2653 while (offset >= pos) {
2654 iblock++;
2655 pos += blocksize;
2656 }
2657
2658 err = get_block(inode, iblock, &map_bh, 0);
2659 if (err)
2660 goto unlock;
2661 /* unmapped? It's a hole - nothing to do */
2662 if (!buffer_mapped(&map_bh))
2663 goto unlock;
2664
2665 /* Ok, it's mapped. Make sure it's up-to-date */
2666 if (!PageUptodate(page)) {
2667 err = mapping->a_ops->readpage(NULL, page);
2668 if (err) {
2669 page_cache_release(page);
2670 goto out;
2671 }
2672 lock_page(page);
2673 if (!PageUptodate(page)) {
2674 err = -EIO;
2675 goto unlock;
2676 }
2677 if (page_has_buffers(page))
2678 goto has_buffers;
2679 }
Christoph Lametereebd2aa2008-02-04 22:28:29 -08002680 zero_user(page, offset, length);
Nick Piggin03158cd2007-10-16 01:25:25 -07002681 set_page_dirty(page);
2682 err = 0;
2683
2684unlock:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002685 unlock_page(page);
2686 page_cache_release(page);
2687out:
Nick Piggin03158cd2007-10-16 01:25:25 -07002688 return err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002689}
2690EXPORT_SYMBOL(nobh_truncate_page);
2691
2692int block_truncate_page(struct address_space *mapping,
2693 loff_t from, get_block_t *get_block)
2694{
2695 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2696 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2697 unsigned blocksize;
Andrew Morton54b21a72006-01-08 01:03:05 -08002698 sector_t iblock;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002699 unsigned length, pos;
2700 struct inode *inode = mapping->host;
2701 struct page *page;
2702 struct buffer_head *bh;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002703 int err;
2704
2705 blocksize = 1 << inode->i_blkbits;
2706 length = offset & (blocksize - 1);
2707
2708 /* Block boundary? Nothing to do */
2709 if (!length)
2710 return 0;
2711
2712 length = blocksize - length;
Andrew Morton54b21a72006-01-08 01:03:05 -08002713 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002714
2715 page = grab_cache_page(mapping, index);
2716 err = -ENOMEM;
2717 if (!page)
2718 goto out;
2719
2720 if (!page_has_buffers(page))
2721 create_empty_buffers(page, blocksize, 0);
2722
2723 /* Find the buffer that contains "offset" */
2724 bh = page_buffers(page);
2725 pos = blocksize;
2726 while (offset >= pos) {
2727 bh = bh->b_this_page;
2728 iblock++;
2729 pos += blocksize;
2730 }
2731
2732 err = 0;
2733 if (!buffer_mapped(bh)) {
Badari Pulavartyb0cf2322006-03-26 01:38:00 -08002734 WARN_ON(bh->b_size != blocksize);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002735 err = get_block(inode, iblock, bh, 0);
2736 if (err)
2737 goto unlock;
2738 /* unmapped? It's a hole - nothing to do */
2739 if (!buffer_mapped(bh))
2740 goto unlock;
2741 }
2742
2743 /* Ok, it's mapped. Make sure it's up-to-date */
2744 if (PageUptodate(page))
2745 set_buffer_uptodate(bh);
2746
David Chinner33a266d2007-02-12 00:51:41 -08002747 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002748 err = -EIO;
2749 ll_rw_block(READ, 1, &bh);
2750 wait_on_buffer(bh);
2751 /* Uhhuh. Read error. Complain and punt. */
2752 if (!buffer_uptodate(bh))
2753 goto unlock;
2754 }
2755
Christoph Lametereebd2aa2008-02-04 22:28:29 -08002756 zero_user(page, offset, length);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002757 mark_buffer_dirty(bh);
2758 err = 0;
2759
2760unlock:
2761 unlock_page(page);
2762 page_cache_release(page);
2763out:
2764 return err;
2765}
2766
2767/*
2768 * The generic ->writepage function for buffer-backed address_spaces
2769 */
2770int block_write_full_page(struct page *page, get_block_t *get_block,
2771 struct writeback_control *wbc)
2772{
2773 struct inode * const inode = page->mapping->host;
2774 loff_t i_size = i_size_read(inode);
2775 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2776 unsigned offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002777
2778 /* Is the page fully inside i_size? */
2779 if (page->index < end_index)
2780 return __block_write_full_page(inode, page, get_block, wbc);
2781
2782 /* Is the page fully outside i_size? (truncate in progress) */
2783 offset = i_size & (PAGE_CACHE_SIZE-1);
2784 if (page->index >= end_index+1 || !offset) {
2785 /*
2786 * The page may have dirty, unmapped buffers. For example,
2787 * they may have been added in ext3_writepage(). Make them
2788 * freeable here, so the page does not leak.
2789 */
Jan Karaaaa40592005-10-30 15:00:16 -08002790 do_invalidatepage(page, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002791 unlock_page(page);
2792 return 0; /* don't care */
2793 }
2794
2795 /*
2796 * The page straddles i_size. It must be zeroed out on each and every
2797 * writepage invokation because it may be mmapped. "A file is mapped
2798 * in multiples of the page size. For a file that is not a multiple of
2799 * the page size, the remaining memory is zeroed when mapped, and
2800 * writes to that region are not written out to the file."
2801 */
Christoph Lametereebd2aa2008-02-04 22:28:29 -08002802 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002803 return __block_write_full_page(inode, page, get_block, wbc);
2804}
2805
2806sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2807 get_block_t *get_block)
2808{
2809 struct buffer_head tmp;
2810 struct inode *inode = mapping->host;
2811 tmp.b_state = 0;
2812 tmp.b_blocknr = 0;
Badari Pulavartyb0cf2322006-03-26 01:38:00 -08002813 tmp.b_size = 1 << inode->i_blkbits;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002814 get_block(inode, block, &tmp, 0);
2815 return tmp.b_blocknr;
2816}
2817
NeilBrown6712ecf2007-09-27 12:47:43 +02002818static void end_bio_bh_io_sync(struct bio *bio, int err)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002819{
2820 struct buffer_head *bh = bio->bi_private;
2821
Linus Torvalds1da177e2005-04-16 15:20:36 -07002822 if (err == -EOPNOTSUPP) {
2823 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2824 set_bit(BH_Eopnotsupp, &bh->b_state);
2825 }
2826
Keith Mannthey08bafc02008-11-25 10:24:35 +01002827 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2828 set_bit(BH_Quiet, &bh->b_state);
2829
Linus Torvalds1da177e2005-04-16 15:20:36 -07002830 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2831 bio_put(bio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002832}
2833
2834int submit_bh(int rw, struct buffer_head * bh)
2835{
2836 struct bio *bio;
2837 int ret = 0;
2838
2839 BUG_ON(!buffer_locked(bh));
2840 BUG_ON(!buffer_mapped(bh));
2841 BUG_ON(!bh->b_end_io);
2842
Jens Axboe48fd4f92008-08-22 10:00:36 +02002843 /*
2844 * Mask in barrier bit for a write (could be either a WRITE or a
2845 * WRITE_SYNC
2846 */
2847 if (buffer_ordered(bh) && (rw & WRITE))
2848 rw |= WRITE_BARRIER;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002849
2850 /*
Jens Axboe48fd4f92008-08-22 10:00:36 +02002851 * Only clear out a write error when rewriting
Linus Torvalds1da177e2005-04-16 15:20:36 -07002852 */
Jens Axboe48fd4f92008-08-22 10:00:36 +02002853 if (test_set_buffer_req(bh) && (rw & WRITE))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002854 clear_buffer_write_io_error(bh);
2855
2856 /*
2857 * from here on down, it's all bio -- do the initial mapping,
2858 * submit_bio -> generic_make_request may further map this bio around
2859 */
2860 bio = bio_alloc(GFP_NOIO, 1);
2861
2862 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2863 bio->bi_bdev = bh->b_bdev;
2864 bio->bi_io_vec[0].bv_page = bh->b_page;
2865 bio->bi_io_vec[0].bv_len = bh->b_size;
2866 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2867
2868 bio->bi_vcnt = 1;
2869 bio->bi_idx = 0;
2870 bio->bi_size = bh->b_size;
2871
2872 bio->bi_end_io = end_bio_bh_io_sync;
2873 bio->bi_private = bh;
2874
2875 bio_get(bio);
2876 submit_bio(rw, bio);
2877
2878 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2879 ret = -EOPNOTSUPP;
2880
2881 bio_put(bio);
2882 return ret;
2883}
2884
2885/**
2886 * ll_rw_block: low-level access to block devices (DEPRECATED)
Jan Karaa7662232005-09-06 15:19:10 -07002887 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002888 * @nr: number of &struct buffer_heads in the array
2889 * @bhs: array of pointers to &struct buffer_head
2890 *
Jan Karaa7662232005-09-06 15:19:10 -07002891 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2892 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2893 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2894 * are sent to disk. The fourth %READA option is described in the documentation
2895 * for generic_make_request() which ll_rw_block() calls.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002896 *
2897 * This function drops any buffer that it cannot get a lock on (with the
Jan Karaa7662232005-09-06 15:19:10 -07002898 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2899 * clean when doing a write request, and any buffer that appears to be
2900 * up-to-date when doing read request. Further it marks as clean buffers that
2901 * are processed for writing (the buffer cache won't assume that they are
2902 * actually clean until the buffer gets unlocked).
Linus Torvalds1da177e2005-04-16 15:20:36 -07002903 *
2904 * ll_rw_block sets b_end_io to simple completion handler that marks
2905 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2906 * any waiters.
2907 *
2908 * All of the buffers must be for the same device, and must also be a
2909 * multiple of the current approved size for the device.
2910 */
2911void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2912{
2913 int i;
2914
2915 for (i = 0; i < nr; i++) {
2916 struct buffer_head *bh = bhs[i];
2917
Jens Axboe18ce3752008-07-01 09:07:34 +02002918 if (rw == SWRITE || rw == SWRITE_SYNC)
Jan Karaa7662232005-09-06 15:19:10 -07002919 lock_buffer(bh);
Nick Pigginca5de402008-08-02 12:02:13 +02002920 else if (!trylock_buffer(bh))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002921 continue;
2922
Jens Axboe18ce3752008-07-01 09:07:34 +02002923 if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002924 if (test_clear_buffer_dirty(bh)) {
akpm@osdl.org76c30732005-04-16 15:24:07 -07002925 bh->b_end_io = end_buffer_write_sync;
OGAWA Hirofumie60e5c52006-02-03 03:04:43 -08002926 get_bh(bh);
Jens Axboe18ce3752008-07-01 09:07:34 +02002927 if (rw == SWRITE_SYNC)
2928 submit_bh(WRITE_SYNC, bh);
2929 else
2930 submit_bh(WRITE, bh);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002931 continue;
2932 }
2933 } else {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002934 if (!buffer_uptodate(bh)) {
akpm@osdl.org76c30732005-04-16 15:24:07 -07002935 bh->b_end_io = end_buffer_read_sync;
OGAWA Hirofumie60e5c52006-02-03 03:04:43 -08002936 get_bh(bh);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002937 submit_bh(rw, bh);
2938 continue;
2939 }
2940 }
2941 unlock_buffer(bh);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002942 }
2943}
2944
2945/*
2946 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2947 * and then start new I/O and then wait upon it. The caller must have a ref on
2948 * the buffer_head.
2949 */
2950int sync_dirty_buffer(struct buffer_head *bh)
2951{
2952 int ret = 0;
2953
2954 WARN_ON(atomic_read(&bh->b_count) < 1);
2955 lock_buffer(bh);
2956 if (test_clear_buffer_dirty(bh)) {
2957 get_bh(bh);
2958 bh->b_end_io = end_buffer_write_sync;
Jens Axboe78f707b2009-02-17 13:59:08 +01002959 ret = submit_bh(WRITE, bh);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002960 wait_on_buffer(bh);
2961 if (buffer_eopnotsupp(bh)) {
2962 clear_buffer_eopnotsupp(bh);
2963 ret = -EOPNOTSUPP;
2964 }
2965 if (!ret && !buffer_uptodate(bh))
2966 ret = -EIO;
2967 } else {
2968 unlock_buffer(bh);
2969 }
2970 return ret;
2971}
2972
2973/*
2974 * try_to_free_buffers() checks if all the buffers on this particular page
2975 * are unused, and releases them if so.
2976 *
2977 * Exclusion against try_to_free_buffers may be obtained by either
2978 * locking the page or by holding its mapping's private_lock.
2979 *
2980 * If the page is dirty but all the buffers are clean then we need to
2981 * be sure to mark the page clean as well. This is because the page
2982 * may be against a block device, and a later reattachment of buffers
2983 * to a dirty page will set *all* buffers dirty. Which would corrupt
2984 * filesystem data on the same device.
2985 *
2986 * The same applies to regular filesystem pages: if all the buffers are
2987 * clean then we set the page clean and proceed. To do that, we require
2988 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2989 * private_lock.
2990 *
2991 * try_to_free_buffers() is non-blocking.
2992 */
2993static inline int buffer_busy(struct buffer_head *bh)
2994{
2995 return atomic_read(&bh->b_count) |
2996 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2997}
2998
2999static int
3000drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3001{
3002 struct buffer_head *head = page_buffers(page);
3003 struct buffer_head *bh;
3004
3005 bh = head;
3006 do {
akpm@osdl.orgde7d5a32005-05-01 08:58:39 -07003007 if (buffer_write_io_error(bh) && page->mapping)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003008 set_bit(AS_EIO, &page->mapping->flags);
3009 if (buffer_busy(bh))
3010 goto failed;
3011 bh = bh->b_this_page;
3012 } while (bh != head);
3013
3014 do {
3015 struct buffer_head *next = bh->b_this_page;
3016
Jan Kara535ee2f2008-02-08 04:21:59 -08003017 if (bh->b_assoc_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003018 __remove_assoc_queue(bh);
3019 bh = next;
3020 } while (bh != head);
3021 *buffers_to_free = head;
3022 __clear_page_buffers(page);
3023 return 1;
3024failed:
3025 return 0;
3026}
3027
3028int try_to_free_buffers(struct page *page)
3029{
3030 struct address_space * const mapping = page->mapping;
3031 struct buffer_head *buffers_to_free = NULL;
3032 int ret = 0;
3033
3034 BUG_ON(!PageLocked(page));
Linus Torvaldsecdfc972007-01-26 12:47:06 -08003035 if (PageWriteback(page))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003036 return 0;
3037
3038 if (mapping == NULL) { /* can this still happen? */
3039 ret = drop_buffers(page, &buffers_to_free);
3040 goto out;
3041 }
3042
3043 spin_lock(&mapping->private_lock);
3044 ret = drop_buffers(page, &buffers_to_free);
Linus Torvaldsecdfc972007-01-26 12:47:06 -08003045
3046 /*
3047 * If the filesystem writes its buffers by hand (eg ext3)
3048 * then we can have clean buffers against a dirty page. We
3049 * clean the page here; otherwise the VM will never notice
3050 * that the filesystem did any IO at all.
3051 *
3052 * Also, during truncate, discard_buffer will have marked all
3053 * the page's buffers clean. We discover that here and clean
3054 * the page also.
Nick Piggin87df7242007-01-30 14:36:27 +11003055 *
3056 * private_lock must be held over this entire operation in order
3057 * to synchronise against __set_page_dirty_buffers and prevent the
3058 * dirty bit from being lost.
Linus Torvaldsecdfc972007-01-26 12:47:06 -08003059 */
3060 if (ret)
3061 cancel_dirty_page(page, PAGE_CACHE_SIZE);
Nick Piggin87df7242007-01-30 14:36:27 +11003062 spin_unlock(&mapping->private_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003063out:
3064 if (buffers_to_free) {
3065 struct buffer_head *bh = buffers_to_free;
3066
3067 do {
3068 struct buffer_head *next = bh->b_this_page;
3069 free_buffer_head(bh);
3070 bh = next;
3071 } while (bh != buffers_to_free);
3072 }
3073 return ret;
3074}
3075EXPORT_SYMBOL(try_to_free_buffers);
3076
NeilBrown3978d712006-03-26 01:37:17 -08003077void block_sync_page(struct page *page)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003078{
3079 struct address_space *mapping;
3080
3081 smp_mb();
3082 mapping = page_mapping(page);
3083 if (mapping)
3084 blk_run_backing_dev(mapping->backing_dev_info, page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003085}
3086
3087/*
3088 * There are no bdflush tunables left. But distributions are
3089 * still running obsolete flush daemons, so we terminate them here.
3090 *
3091 * Use of bdflush() is deprecated and will be removed in a future kernel.
3092 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3093 */
Heiko Carstensbdc480e2009-01-14 14:14:12 +01003094SYSCALL_DEFINE2(bdflush, int, func, long, data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003095{
3096 static int msg_count;
3097
3098 if (!capable(CAP_SYS_ADMIN))
3099 return -EPERM;
3100
3101 if (msg_count < 5) {
3102 msg_count++;
3103 printk(KERN_INFO
3104 "warning: process `%s' used the obsolete bdflush"
3105 " system call\n", current->comm);
3106 printk(KERN_INFO "Fix your initscripts?\n");
3107 }
3108
3109 if (func == 1)
3110 do_exit(0);
3111 return 0;
3112}
3113
3114/*
3115 * Buffer-head allocation
3116 */
Christoph Lametere18b8902006-12-06 20:33:20 -08003117static struct kmem_cache *bh_cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003118
3119/*
3120 * Once the number of bh's in the machine exceeds this level, we start
3121 * stripping them in writeback.
3122 */
3123static int max_buffer_heads;
3124
3125int buffer_heads_over_limit;
3126
3127struct bh_accounting {
3128 int nr; /* Number of live bh's */
3129 int ratelimit; /* Limit cacheline bouncing */
3130};
3131
3132static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3133
3134static void recalc_bh_state(void)
3135{
3136 int i;
3137 int tot = 0;
3138
3139 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3140 return;
3141 __get_cpu_var(bh_accounting).ratelimit = 0;
Eric Dumazet8a143422006-03-24 03:18:10 -08003142 for_each_online_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003143 tot += per_cpu(bh_accounting, i).nr;
3144 buffer_heads_over_limit = (tot > max_buffer_heads);
3145}
3146
Al Virodd0fc662005-10-07 07:46:04 +01003147struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003148{
Christoph Lameter488514d2008-04-28 02:12:05 -07003149 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003150 if (ret) {
Christoph Lametera35afb82007-05-16 22:10:57 -07003151 INIT_LIST_HEAD(&ret->b_assoc_buffers);
Coywolf Qi Hunt736c7b82005-09-06 15:18:17 -07003152 get_cpu_var(bh_accounting).nr++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003153 recalc_bh_state();
Coywolf Qi Hunt736c7b82005-09-06 15:18:17 -07003154 put_cpu_var(bh_accounting);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003155 }
3156 return ret;
3157}
3158EXPORT_SYMBOL(alloc_buffer_head);
3159
3160void free_buffer_head(struct buffer_head *bh)
3161{
3162 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3163 kmem_cache_free(bh_cachep, bh);
Coywolf Qi Hunt736c7b82005-09-06 15:18:17 -07003164 get_cpu_var(bh_accounting).nr--;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003165 recalc_bh_state();
Coywolf Qi Hunt736c7b82005-09-06 15:18:17 -07003166 put_cpu_var(bh_accounting);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003167}
3168EXPORT_SYMBOL(free_buffer_head);
3169
Linus Torvalds1da177e2005-04-16 15:20:36 -07003170static void buffer_exit_cpu(int cpu)
3171{
3172 int i;
3173 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3174
3175 for (i = 0; i < BH_LRU_SIZE; i++) {
3176 brelse(b->bhs[i]);
3177 b->bhs[i] = NULL;
3178 }
Eric Dumazet8a143422006-03-24 03:18:10 -08003179 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3180 per_cpu(bh_accounting, cpu).nr = 0;
3181 put_cpu_var(bh_accounting);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003182}
3183
3184static int buffer_cpu_notify(struct notifier_block *self,
3185 unsigned long action, void *hcpu)
3186{
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07003187 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003188 buffer_exit_cpu((unsigned long)hcpu);
3189 return NOTIFY_OK;
3190}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003191
Aneesh Kumar K.V389d1b02008-01-28 23:58:26 -05003192/**
Randy Dunlapa6b91912008-03-19 17:01:00 -07003193 * bh_uptodate_or_lock - Test whether the buffer is uptodate
Aneesh Kumar K.V389d1b02008-01-28 23:58:26 -05003194 * @bh: struct buffer_head
3195 *
3196 * Return true if the buffer is up-to-date and false,
3197 * with the buffer locked, if not.
3198 */
3199int bh_uptodate_or_lock(struct buffer_head *bh)
3200{
3201 if (!buffer_uptodate(bh)) {
3202 lock_buffer(bh);
3203 if (!buffer_uptodate(bh))
3204 return 0;
3205 unlock_buffer(bh);
3206 }
3207 return 1;
3208}
3209EXPORT_SYMBOL(bh_uptodate_or_lock);
3210
3211/**
Randy Dunlapa6b91912008-03-19 17:01:00 -07003212 * bh_submit_read - Submit a locked buffer for reading
Aneesh Kumar K.V389d1b02008-01-28 23:58:26 -05003213 * @bh: struct buffer_head
3214 *
3215 * Returns zero on success and -EIO on error.
3216 */
3217int bh_submit_read(struct buffer_head *bh)
3218{
3219 BUG_ON(!buffer_locked(bh));
3220
3221 if (buffer_uptodate(bh)) {
3222 unlock_buffer(bh);
3223 return 0;
3224 }
3225
3226 get_bh(bh);
3227 bh->b_end_io = end_buffer_read_sync;
3228 submit_bh(READ, bh);
3229 wait_on_buffer(bh);
3230 if (buffer_uptodate(bh))
3231 return 0;
3232 return -EIO;
3233}
3234EXPORT_SYMBOL(bh_submit_read);
3235
Christoph Lameterb98938c2008-02-04 22:28:36 -08003236static void
Alexey Dobriyan51cc5062008-07-25 19:45:34 -07003237init_buffer_head(void *data)
Christoph Lameterb98938c2008-02-04 22:28:36 -08003238{
3239 struct buffer_head *bh = data;
3240
3241 memset(bh, 0, sizeof(*bh));
3242 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3243}
3244
Linus Torvalds1da177e2005-04-16 15:20:36 -07003245void __init buffer_init(void)
3246{
3247 int nrpages;
3248
Christoph Lameterb98938c2008-02-04 22:28:36 -08003249 bh_cachep = kmem_cache_create("buffer_head",
3250 sizeof(struct buffer_head), 0,
3251 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3252 SLAB_MEM_SPREAD),
3253 init_buffer_head);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003254
3255 /*
3256 * Limit the bh occupancy to 10% of ZONE_NORMAL
3257 */
3258 nrpages = (nr_free_buffer_pages() * 10) / 100;
3259 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3260 hotcpu_notifier(buffer_cpu_notify, 0);
3261}
3262
3263EXPORT_SYMBOL(__bforget);
3264EXPORT_SYMBOL(__brelse);
3265EXPORT_SYMBOL(__wait_on_buffer);
3266EXPORT_SYMBOL(block_commit_write);
3267EXPORT_SYMBOL(block_prepare_write);
David Chinner54171692007-07-19 17:39:55 +10003268EXPORT_SYMBOL(block_page_mkwrite);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003269EXPORT_SYMBOL(block_read_full_page);
3270EXPORT_SYMBOL(block_sync_page);
3271EXPORT_SYMBOL(block_truncate_page);
3272EXPORT_SYMBOL(block_write_full_page);
Nick Piggin89e10782007-10-16 01:25:07 -07003273EXPORT_SYMBOL(cont_write_begin);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003274EXPORT_SYMBOL(end_buffer_read_sync);
3275EXPORT_SYMBOL(end_buffer_write_sync);
3276EXPORT_SYMBOL(file_fsync);
3277EXPORT_SYMBOL(fsync_bdev);
3278EXPORT_SYMBOL(generic_block_bmap);
OGAWA Hirofumi05eb0b52006-01-08 01:02:13 -08003279EXPORT_SYMBOL(generic_cont_expand_simple);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003280EXPORT_SYMBOL(init_buffer);
3281EXPORT_SYMBOL(invalidate_bdev);
3282EXPORT_SYMBOL(ll_rw_block);
3283EXPORT_SYMBOL(mark_buffer_dirty);
3284EXPORT_SYMBOL(submit_bh);
3285EXPORT_SYMBOL(sync_dirty_buffer);
3286EXPORT_SYMBOL(unlock_buffer);