Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README |
| 3 | */ |
| 4 | |
| 5 | /** |
| 6 | ** old_item_num |
| 7 | ** old_entry_num |
| 8 | ** set_entry_sizes |
| 9 | ** create_virtual_node |
| 10 | ** check_left |
| 11 | ** check_right |
| 12 | ** directory_part_size |
| 13 | ** get_num_ver |
| 14 | ** set_parameters |
| 15 | ** is_leaf_removable |
| 16 | ** are_leaves_removable |
| 17 | ** get_empty_nodes |
| 18 | ** get_lfree |
| 19 | ** get_rfree |
| 20 | ** is_left_neighbor_in_cache |
| 21 | ** decrement_key |
| 22 | ** get_far_parent |
| 23 | ** get_parents |
| 24 | ** can_node_be_removed |
| 25 | ** ip_check_balance |
| 26 | ** dc_check_balance_internal |
| 27 | ** dc_check_balance_leaf |
| 28 | ** dc_check_balance |
| 29 | ** check_balance |
| 30 | ** get_direct_parent |
| 31 | ** get_neighbors |
| 32 | ** fix_nodes |
| 33 | ** |
| 34 | ** |
| 35 | **/ |
| 36 | |
| 37 | |
| 38 | #include <linux/config.h> |
| 39 | #include <linux/time.h> |
| 40 | #include <linux/string.h> |
| 41 | #include <linux/reiserfs_fs.h> |
| 42 | #include <linux/buffer_head.h> |
| 43 | |
| 44 | |
| 45 | /* To make any changes in the tree we find a node, that contains item |
| 46 | to be changed/deleted or position in the node we insert a new item |
| 47 | to. We call this node S. To do balancing we need to decide what we |
| 48 | will shift to left/right neighbor, or to a new node, where new item |
| 49 | will be etc. To make this analysis simpler we build virtual |
| 50 | node. Virtual node is an array of items, that will replace items of |
| 51 | node S. (For instance if we are going to delete an item, virtual |
| 52 | node does not contain it). Virtual node keeps information about |
| 53 | item sizes and types, mergeability of first and last items, sizes |
| 54 | of all entries in directory item. We use this array of items when |
| 55 | calculating what we can shift to neighbors and how many nodes we |
| 56 | have to have if we do not any shiftings, if we shift to left/right |
| 57 | neighbor or to both. */ |
| 58 | |
| 59 | |
| 60 | /* taking item number in virtual node, returns number of item, that it has in source buffer */ |
| 61 | static inline int old_item_num (int new_num, int affected_item_num, int mode) |
| 62 | { |
| 63 | if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num) |
| 64 | return new_num; |
| 65 | |
| 66 | if (mode == M_INSERT) { |
| 67 | |
| 68 | RFALSE( new_num == 0, |
| 69 | "vs-8005: for INSERT mode and item number of inserted item"); |
| 70 | |
| 71 | return new_num - 1; |
| 72 | } |
| 73 | |
| 74 | RFALSE( mode != M_DELETE, |
| 75 | "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'", mode); |
| 76 | /* delete mode */ |
| 77 | return new_num + 1; |
| 78 | } |
| 79 | |
| 80 | static void create_virtual_node (struct tree_balance * tb, int h) |
| 81 | { |
| 82 | struct item_head * ih; |
| 83 | struct virtual_node * vn = tb->tb_vn; |
| 84 | int new_num; |
| 85 | struct buffer_head * Sh; /* this comes from tb->S[h] */ |
| 86 | |
| 87 | Sh = PATH_H_PBUFFER (tb->tb_path, h); |
| 88 | |
| 89 | /* size of changed node */ |
| 90 | vn->vn_size = MAX_CHILD_SIZE (Sh) - B_FREE_SPACE (Sh) + tb->insert_size[h]; |
| 91 | |
| 92 | /* for internal nodes array if virtual items is not created */ |
| 93 | if (h) { |
| 94 | vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE); |
| 95 | return; |
| 96 | } |
| 97 | |
| 98 | /* number of items in virtual node */ |
| 99 | vn->vn_nr_item = B_NR_ITEMS (Sh) + ((vn->vn_mode == M_INSERT)? 1 : 0) - ((vn->vn_mode == M_DELETE)? 1 : 0); |
| 100 | |
| 101 | /* first virtual item */ |
| 102 | vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1); |
| 103 | memset (vn->vn_vi, 0, vn->vn_nr_item * sizeof (struct virtual_item)); |
| 104 | vn->vn_free_ptr += vn->vn_nr_item * sizeof (struct virtual_item); |
| 105 | |
| 106 | |
| 107 | /* first item in the node */ |
| 108 | ih = B_N_PITEM_HEAD (Sh, 0); |
| 109 | |
| 110 | /* define the mergeability for 0-th item (if it is not being deleted) */ |
| 111 | if (op_is_left_mergeable (&(ih->ih_key), Sh->b_size) && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num)) |
| 112 | vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE; |
| 113 | |
| 114 | /* go through all items those remain in the virtual node (except for the new (inserted) one) */ |
| 115 | for (new_num = 0; new_num < vn->vn_nr_item; new_num ++) { |
| 116 | int j; |
| 117 | struct virtual_item * vi = vn->vn_vi + new_num; |
| 118 | int is_affected = ((new_num != vn->vn_affected_item_num) ? 0 : 1); |
| 119 | |
| 120 | |
| 121 | if (is_affected && vn->vn_mode == M_INSERT) |
| 122 | continue; |
| 123 | |
| 124 | /* get item number in source node */ |
| 125 | j = old_item_num (new_num, vn->vn_affected_item_num, vn->vn_mode); |
| 126 | |
| 127 | vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE; |
| 128 | vi->vi_ih = ih + j; |
| 129 | vi->vi_item = B_I_PITEM (Sh, ih + j); |
| 130 | vi->vi_uarea = vn->vn_free_ptr; |
| 131 | |
| 132 | // FIXME: there is no check, that item operation did not |
| 133 | // consume too much memory |
| 134 | vn->vn_free_ptr += op_create_vi (vn, vi, is_affected, tb->insert_size [0]); |
| 135 | if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr) |
| 136 | reiserfs_panic (tb->tb_sb, "vs-8030: create_virtual_node: " |
| 137 | "virtual node space consumed"); |
| 138 | |
| 139 | if (!is_affected) |
| 140 | /* this is not being changed */ |
| 141 | continue; |
| 142 | |
| 143 | if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) { |
| 144 | vn->vn_vi[new_num].vi_item_len += tb->insert_size[0]; |
| 145 | vi->vi_new_data = vn->vn_data; // pointer to data which is going to be pasted |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | |
| 150 | /* virtual inserted item is not defined yet */ |
| 151 | if (vn->vn_mode == M_INSERT) { |
| 152 | struct virtual_item * vi = vn->vn_vi + vn->vn_affected_item_num; |
| 153 | |
| 154 | RFALSE( vn->vn_ins_ih == 0, |
| 155 | "vs-8040: item header of inserted item is not specified"); |
| 156 | vi->vi_item_len = tb->insert_size[0]; |
| 157 | vi->vi_ih = vn->vn_ins_ih; |
| 158 | vi->vi_item = vn->vn_data; |
| 159 | vi->vi_uarea = vn->vn_free_ptr; |
| 160 | |
| 161 | op_create_vi (vn, vi, 0/*not pasted or cut*/, tb->insert_size [0]); |
| 162 | } |
| 163 | |
| 164 | /* set right merge flag we take right delimiting key and check whether it is a mergeable item */ |
| 165 | if (tb->CFR[0]) { |
| 166 | struct reiserfs_key * key; |
| 167 | |
| 168 | key = B_N_PDELIM_KEY (tb->CFR[0], tb->rkey[0]); |
| 169 | if (op_is_left_mergeable (key, Sh->b_size) && (vn->vn_mode != M_DELETE || |
| 170 | vn->vn_affected_item_num != B_NR_ITEMS (Sh) - 1)) |
| 171 | vn->vn_vi[vn->vn_nr_item-1].vi_type |= VI_TYPE_RIGHT_MERGEABLE; |
| 172 | |
| 173 | #ifdef CONFIG_REISERFS_CHECK |
| 174 | if (op_is_left_mergeable (key, Sh->b_size) && |
| 175 | !(vn->vn_mode != M_DELETE || vn->vn_affected_item_num != B_NR_ITEMS (Sh) - 1) ) { |
| 176 | /* we delete last item and it could be merged with right neighbor's first item */ |
| 177 | if (!(B_NR_ITEMS (Sh) == 1 && is_direntry_le_ih (B_N_PITEM_HEAD (Sh, 0)) && |
| 178 | I_ENTRY_COUNT (B_N_PITEM_HEAD (Sh, 0)) == 1)) { |
| 179 | /* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */ |
| 180 | print_block (Sh, 0, -1, -1); |
| 181 | reiserfs_panic (tb->tb_sb, "vs-8045: create_virtual_node: rdkey %k, affected item==%d (mode==%c) Must be %c", |
| 182 | key, vn->vn_affected_item_num, vn->vn_mode, M_DELETE); |
| 183 | } else |
| 184 | /* we can delete directory item, that has only one directory entry in it */ |
| 185 | ; |
| 186 | } |
| 187 | #endif |
| 188 | |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | |
| 193 | /* using virtual node check, how many items can be shifted to left |
| 194 | neighbor */ |
| 195 | static void check_left (struct tree_balance * tb, int h, int cur_free) |
| 196 | { |
| 197 | int i; |
| 198 | struct virtual_node * vn = tb->tb_vn; |
| 199 | struct virtual_item * vi; |
| 200 | int d_size, ih_size; |
| 201 | |
| 202 | RFALSE( cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free); |
| 203 | |
| 204 | /* internal level */ |
| 205 | if (h > 0) { |
| 206 | tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE); |
| 207 | return; |
| 208 | } |
| 209 | |
| 210 | /* leaf level */ |
| 211 | |
| 212 | if (!cur_free || !vn->vn_nr_item) { |
| 213 | /* no free space or nothing to move */ |
| 214 | tb->lnum[h] = 0; |
| 215 | tb->lbytes = -1; |
| 216 | return; |
| 217 | } |
| 218 | |
| 219 | RFALSE( !PATH_H_PPARENT (tb->tb_path, 0), |
| 220 | "vs-8055: parent does not exist or invalid"); |
| 221 | |
| 222 | vi = vn->vn_vi; |
| 223 | if ((unsigned int)cur_free >= (vn->vn_size - ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) { |
| 224 | /* all contents of S[0] fits into L[0] */ |
| 225 | |
| 226 | RFALSE( vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, |
| 227 | "vs-8055: invalid mode or balance condition failed"); |
| 228 | |
| 229 | tb->lnum[0] = vn->vn_nr_item; |
| 230 | tb->lbytes = -1; |
| 231 | return; |
| 232 | } |
| 233 | |
| 234 | |
| 235 | d_size = 0, ih_size = IH_SIZE; |
| 236 | |
| 237 | /* first item may be merge with last item in left neighbor */ |
| 238 | if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE) |
| 239 | d_size = -((int)IH_SIZE), ih_size = 0; |
| 240 | |
| 241 | tb->lnum[0] = 0; |
| 242 | for (i = 0; i < vn->vn_nr_item; i ++, ih_size = IH_SIZE, d_size = 0, vi ++) { |
| 243 | d_size += vi->vi_item_len; |
| 244 | if (cur_free >= d_size) { |
| 245 | /* the item can be shifted entirely */ |
| 246 | cur_free -= d_size; |
| 247 | tb->lnum[0] ++; |
| 248 | continue; |
| 249 | } |
| 250 | |
| 251 | /* the item cannot be shifted entirely, try to split it */ |
| 252 | /* check whether L[0] can hold ih and at least one byte of the item body */ |
| 253 | if (cur_free <= ih_size) { |
| 254 | /* cannot shift even a part of the current item */ |
| 255 | tb->lbytes = -1; |
| 256 | return; |
| 257 | } |
| 258 | cur_free -= ih_size; |
| 259 | |
| 260 | tb->lbytes = op_check_left (vi, cur_free, 0, 0); |
| 261 | if (tb->lbytes != -1) |
| 262 | /* count partially shifted item */ |
| 263 | tb->lnum[0] ++; |
| 264 | |
| 265 | break; |
| 266 | } |
| 267 | |
| 268 | return; |
| 269 | } |
| 270 | |
| 271 | |
| 272 | /* using virtual node check, how many items can be shifted to right |
| 273 | neighbor */ |
| 274 | static void check_right (struct tree_balance * tb, int h, int cur_free) |
| 275 | { |
| 276 | int i; |
| 277 | struct virtual_node * vn = tb->tb_vn; |
| 278 | struct virtual_item * vi; |
| 279 | int d_size, ih_size; |
| 280 | |
| 281 | RFALSE( cur_free < 0, "vs-8070: cur_free < 0"); |
| 282 | |
| 283 | /* internal level */ |
| 284 | if (h > 0) { |
| 285 | tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE); |
| 286 | return; |
| 287 | } |
| 288 | |
| 289 | /* leaf level */ |
| 290 | |
| 291 | if (!cur_free || !vn->vn_nr_item) { |
| 292 | /* no free space */ |
| 293 | tb->rnum[h] = 0; |
| 294 | tb->rbytes = -1; |
| 295 | return; |
| 296 | } |
| 297 | |
| 298 | RFALSE( !PATH_H_PPARENT (tb->tb_path, 0), |
| 299 | "vs-8075: parent does not exist or invalid"); |
| 300 | |
| 301 | vi = vn->vn_vi + vn->vn_nr_item - 1; |
| 302 | if ((unsigned int)cur_free >= (vn->vn_size - ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) { |
| 303 | /* all contents of S[0] fits into R[0] */ |
| 304 | |
| 305 | RFALSE( vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, |
| 306 | "vs-8080: invalid mode or balance condition failed"); |
| 307 | |
| 308 | tb->rnum[h] = vn->vn_nr_item; |
| 309 | tb->rbytes = -1; |
| 310 | return; |
| 311 | } |
| 312 | |
| 313 | d_size = 0, ih_size = IH_SIZE; |
| 314 | |
| 315 | /* last item may be merge with first item in right neighbor */ |
| 316 | if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) |
| 317 | d_size = -(int)IH_SIZE, ih_size = 0; |
| 318 | |
| 319 | tb->rnum[0] = 0; |
| 320 | for (i = vn->vn_nr_item - 1; i >= 0; i --, d_size = 0, ih_size = IH_SIZE, vi --) { |
| 321 | d_size += vi->vi_item_len; |
| 322 | if (cur_free >= d_size) { |
| 323 | /* the item can be shifted entirely */ |
| 324 | cur_free -= d_size; |
| 325 | tb->rnum[0] ++; |
| 326 | continue; |
| 327 | } |
| 328 | |
| 329 | /* check whether R[0] can hold ih and at least one byte of the item body */ |
| 330 | if ( cur_free <= ih_size ) { /* cannot shift even a part of the current item */ |
| 331 | tb->rbytes = -1; |
| 332 | return; |
| 333 | } |
| 334 | |
| 335 | /* R[0] can hold the header of the item and at least one byte of its body */ |
| 336 | cur_free -= ih_size; /* cur_free is still > 0 */ |
| 337 | |
| 338 | tb->rbytes = op_check_right (vi, cur_free); |
| 339 | if (tb->rbytes != -1) |
| 340 | /* count partially shifted item */ |
| 341 | tb->rnum[0] ++; |
| 342 | |
| 343 | break; |
| 344 | } |
| 345 | |
| 346 | return; |
| 347 | } |
| 348 | |
| 349 | |
| 350 | /* |
| 351 | * from - number of items, which are shifted to left neighbor entirely |
| 352 | * to - number of item, which are shifted to right neighbor entirely |
| 353 | * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor |
| 354 | * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */ |
| 355 | static int get_num_ver (int mode, struct tree_balance * tb, int h, |
| 356 | int from, int from_bytes, |
| 357 | int to, int to_bytes, |
| 358 | short * snum012, int flow |
| 359 | ) |
| 360 | { |
| 361 | int i; |
| 362 | int cur_free; |
| 363 | // int bytes; |
| 364 | int units; |
| 365 | struct virtual_node * vn = tb->tb_vn; |
| 366 | // struct virtual_item * vi; |
| 367 | |
| 368 | int total_node_size, max_node_size, current_item_size; |
| 369 | int needed_nodes; |
| 370 | int start_item, /* position of item we start filling node from */ |
| 371 | end_item, /* position of item we finish filling node by */ |
| 372 | start_bytes,/* number of first bytes (entries for directory) of start_item-th item |
| 373 | we do not include into node that is being filled */ |
| 374 | end_bytes; /* number of last bytes (entries for directory) of end_item-th item |
| 375 | we do node include into node that is being filled */ |
| 376 | int split_item_positions[2]; /* these are positions in virtual item of |
| 377 | items, that are split between S[0] and |
| 378 | S1new and S1new and S2new */ |
| 379 | |
| 380 | split_item_positions[0] = -1; |
| 381 | split_item_positions[1] = -1; |
| 382 | |
| 383 | /* We only create additional nodes if we are in insert or paste mode |
| 384 | or we are in replace mode at the internal level. If h is 0 and |
| 385 | the mode is M_REPLACE then in fix_nodes we change the mode to |
| 386 | paste or insert before we get here in the code. */ |
| 387 | RFALSE( tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE), |
| 388 | "vs-8100: insert_size < 0 in overflow"); |
| 389 | |
| 390 | max_node_size = MAX_CHILD_SIZE (PATH_H_PBUFFER (tb->tb_path, h)); |
| 391 | |
| 392 | /* snum012 [0-2] - number of items, that lay |
| 393 | to S[0], first new node and second new node */ |
| 394 | snum012[3] = -1; /* s1bytes */ |
| 395 | snum012[4] = -1; /* s2bytes */ |
| 396 | |
| 397 | /* internal level */ |
| 398 | if (h > 0) { |
| 399 | i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE); |
| 400 | if (i == max_node_size) |
| 401 | return 1; |
| 402 | return (i / max_node_size + 1); |
| 403 | } |
| 404 | |
| 405 | /* leaf level */ |
| 406 | needed_nodes = 1; |
| 407 | total_node_size = 0; |
| 408 | cur_free = max_node_size; |
| 409 | |
| 410 | // start from 'from'-th item |
| 411 | start_item = from; |
| 412 | // skip its first 'start_bytes' units |
| 413 | start_bytes = ((from_bytes != -1) ? from_bytes : 0); |
| 414 | |
| 415 | // last included item is the 'end_item'-th one |
| 416 | end_item = vn->vn_nr_item - to - 1; |
| 417 | // do not count last 'end_bytes' units of 'end_item'-th item |
| 418 | end_bytes = (to_bytes != -1) ? to_bytes : 0; |
| 419 | |
| 420 | /* go through all item beginning from the start_item-th item and ending by |
| 421 | the end_item-th item. Do not count first 'start_bytes' units of |
| 422 | 'start_item'-th item and last 'end_bytes' of 'end_item'-th item */ |
| 423 | |
| 424 | for (i = start_item; i <= end_item; i ++) { |
| 425 | struct virtual_item * vi = vn->vn_vi + i; |
| 426 | int skip_from_end = ((i == end_item) ? end_bytes : 0); |
| 427 | |
| 428 | RFALSE( needed_nodes > 3, "vs-8105: too many nodes are needed"); |
| 429 | |
| 430 | /* get size of current item */ |
| 431 | current_item_size = vi->vi_item_len; |
| 432 | |
| 433 | /* do not take in calculation head part (from_bytes) of from-th item */ |
| 434 | current_item_size -= op_part_size (vi, 0/*from start*/, start_bytes); |
| 435 | |
| 436 | /* do not take in calculation tail part of last item */ |
| 437 | current_item_size -= op_part_size (vi, 1/*from end*/, skip_from_end); |
| 438 | |
| 439 | /* if item fits into current node entierly */ |
| 440 | if (total_node_size + current_item_size <= max_node_size) { |
| 441 | snum012[needed_nodes - 1] ++; |
| 442 | total_node_size += current_item_size; |
| 443 | start_bytes = 0; |
| 444 | continue; |
| 445 | } |
| 446 | |
| 447 | if (current_item_size > max_node_size) { |
| 448 | /* virtual item length is longer, than max size of item in |
| 449 | a node. It is impossible for direct item */ |
| 450 | RFALSE( is_direct_le_ih (vi->vi_ih), |
| 451 | "vs-8110: " |
| 452 | "direct item length is %d. It can not be longer than %d", |
| 453 | current_item_size, max_node_size); |
| 454 | /* we will try to split it */ |
| 455 | flow = 1; |
| 456 | } |
| 457 | |
| 458 | if (!flow) { |
| 459 | /* as we do not split items, take new node and continue */ |
| 460 | needed_nodes ++; i --; total_node_size = 0; |
| 461 | continue; |
| 462 | } |
| 463 | |
| 464 | // calculate number of item units which fit into node being |
| 465 | // filled |
| 466 | { |
| 467 | int free_space; |
| 468 | |
| 469 | free_space = max_node_size - total_node_size - IH_SIZE; |
| 470 | units = op_check_left (vi, free_space, start_bytes, skip_from_end); |
| 471 | if (units == -1) { |
| 472 | /* nothing fits into current node, take new node and continue */ |
| 473 | needed_nodes ++, i--, total_node_size = 0; |
| 474 | continue; |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | /* something fits into the current node */ |
| 479 | //if (snum012[3] != -1 || needed_nodes != 1) |
| 480 | // reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required"); |
| 481 | //snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units; |
| 482 | start_bytes += units; |
| 483 | snum012[needed_nodes - 1 + 3] = units; |
| 484 | |
| 485 | if (needed_nodes > 2) |
| 486 | reiserfs_warning (tb->tb_sb, "vs-8111: get_num_ver: " |
| 487 | "split_item_position is out of boundary"); |
| 488 | snum012[needed_nodes - 1] ++; |
| 489 | split_item_positions[needed_nodes - 1] = i; |
| 490 | needed_nodes ++; |
| 491 | /* continue from the same item with start_bytes != -1 */ |
| 492 | start_item = i; |
| 493 | i --; |
| 494 | total_node_size = 0; |
| 495 | } |
| 496 | |
| 497 | // sum012[4] (if it is not -1) contains number of units of which |
| 498 | // are to be in S1new, snum012[3] - to be in S0. They are supposed |
| 499 | // to be S1bytes and S2bytes correspondingly, so recalculate |
| 500 | if (snum012[4] > 0) { |
| 501 | int split_item_num; |
| 502 | int bytes_to_r, bytes_to_l; |
| 503 | int bytes_to_S1new; |
| 504 | |
| 505 | split_item_num = split_item_positions[1]; |
| 506 | bytes_to_l = ((from == split_item_num && from_bytes != -1) ? from_bytes : 0); |
| 507 | bytes_to_r = ((end_item == split_item_num && end_bytes != -1) ? end_bytes : 0); |
| 508 | bytes_to_S1new = ((split_item_positions[0] == split_item_positions[1]) ? snum012[3] : 0); |
| 509 | |
| 510 | // s2bytes |
| 511 | snum012[4] = op_unit_num (&vn->vn_vi[split_item_num]) - snum012[4] - bytes_to_r - bytes_to_l - bytes_to_S1new; |
| 512 | |
| 513 | if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY && |
| 514 | vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT) |
| 515 | reiserfs_warning (tb->tb_sb, "vs-8115: get_num_ver: not " |
| 516 | "directory or indirect item"); |
| 517 | } |
| 518 | |
| 519 | /* now we know S2bytes, calculate S1bytes */ |
| 520 | if (snum012[3] > 0) { |
| 521 | int split_item_num; |
| 522 | int bytes_to_r, bytes_to_l; |
| 523 | int bytes_to_S2new; |
| 524 | |
| 525 | split_item_num = split_item_positions[0]; |
| 526 | bytes_to_l = ((from == split_item_num && from_bytes != -1) ? from_bytes : 0); |
| 527 | bytes_to_r = ((end_item == split_item_num && end_bytes != -1) ? end_bytes : 0); |
| 528 | bytes_to_S2new = ((split_item_positions[0] == split_item_positions[1] && snum012[4] != -1) ? snum012[4] : 0); |
| 529 | |
| 530 | // s1bytes |
| 531 | snum012[3] = op_unit_num (&vn->vn_vi[split_item_num]) - snum012[3] - bytes_to_r - bytes_to_l - bytes_to_S2new; |
| 532 | } |
| 533 | |
| 534 | return needed_nodes; |
| 535 | } |
| 536 | |
| 537 | |
| 538 | #ifdef CONFIG_REISERFS_CHECK |
| 539 | extern struct tree_balance * cur_tb; |
| 540 | #endif |
| 541 | |
| 542 | |
| 543 | /* Set parameters for balancing. |
| 544 | * Performs write of results of analysis of balancing into structure tb, |
| 545 | * where it will later be used by the functions that actually do the balancing. |
| 546 | * Parameters: |
| 547 | * tb tree_balance structure; |
| 548 | * h current level of the node; |
| 549 | * lnum number of items from S[h] that must be shifted to L[h]; |
| 550 | * rnum number of items from S[h] that must be shifted to R[h]; |
| 551 | * blk_num number of blocks that S[h] will be splitted into; |
| 552 | * s012 number of items that fall into splitted nodes. |
| 553 | * lbytes number of bytes which flow to the left neighbor from the item that is not |
| 554 | * not shifted entirely |
| 555 | * rbytes number of bytes which flow to the right neighbor from the item that is not |
| 556 | * not shifted entirely |
| 557 | * s1bytes number of bytes which flow to the first new node when S[0] splits (this number is contained in s012 array) |
| 558 | */ |
| 559 | |
| 560 | static void set_parameters (struct tree_balance * tb, int h, int lnum, |
| 561 | int rnum, int blk_num, short * s012, int lb, int rb) |
| 562 | { |
| 563 | |
| 564 | tb->lnum[h] = lnum; |
| 565 | tb->rnum[h] = rnum; |
| 566 | tb->blknum[h] = blk_num; |
| 567 | |
| 568 | if (h == 0) |
| 569 | { /* only for leaf level */ |
| 570 | if (s012 != NULL) |
| 571 | { |
| 572 | tb->s0num = * s012 ++, |
| 573 | tb->s1num = * s012 ++, |
| 574 | tb->s2num = * s012 ++; |
| 575 | tb->s1bytes = * s012 ++; |
| 576 | tb->s2bytes = * s012; |
| 577 | } |
| 578 | tb->lbytes = lb; |
| 579 | tb->rbytes = rb; |
| 580 | } |
| 581 | PROC_INFO_ADD( tb -> tb_sb, lnum[ h ], lnum ); |
| 582 | PROC_INFO_ADD( tb -> tb_sb, rnum[ h ], rnum ); |
| 583 | |
| 584 | PROC_INFO_ADD( tb -> tb_sb, lbytes[ h ], lb ); |
| 585 | PROC_INFO_ADD( tb -> tb_sb, rbytes[ h ], rb ); |
| 586 | } |
| 587 | |
| 588 | |
| 589 | |
| 590 | /* check, does node disappear if we shift tb->lnum[0] items to left |
| 591 | neighbor and tb->rnum[0] to the right one. */ |
| 592 | static int is_leaf_removable (struct tree_balance * tb) |
| 593 | { |
| 594 | struct virtual_node * vn = tb->tb_vn; |
| 595 | int to_left, to_right; |
| 596 | int size; |
| 597 | int remain_items; |
| 598 | |
| 599 | /* number of items, that will be shifted to left (right) neighbor |
| 600 | entirely */ |
| 601 | to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0); |
| 602 | to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0); |
| 603 | remain_items = vn->vn_nr_item; |
| 604 | |
| 605 | /* how many items remain in S[0] after shiftings to neighbors */ |
| 606 | remain_items -= (to_left + to_right); |
| 607 | |
| 608 | if (remain_items < 1) { |
| 609 | /* all content of node can be shifted to neighbors */ |
| 610 | set_parameters (tb, 0, to_left, vn->vn_nr_item - to_left, 0, NULL, -1, -1); |
| 611 | return 1; |
| 612 | } |
| 613 | |
| 614 | if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1) |
| 615 | /* S[0] is not removable */ |
| 616 | return 0; |
| 617 | |
| 618 | /* check, whether we can divide 1 remaining item between neighbors */ |
| 619 | |
| 620 | /* get size of remaining item (in item units) */ |
| 621 | size = op_unit_num (&(vn->vn_vi[to_left])); |
| 622 | |
| 623 | if (tb->lbytes + tb->rbytes >= size) { |
| 624 | set_parameters (tb, 0, to_left + 1, to_right + 1, 0, NULL, tb->lbytes, -1); |
| 625 | return 1; |
| 626 | } |
| 627 | |
| 628 | return 0; |
| 629 | } |
| 630 | |
| 631 | |
| 632 | /* check whether L, S, R can be joined in one node */ |
| 633 | static int are_leaves_removable (struct tree_balance * tb, int lfree, int rfree) |
| 634 | { |
| 635 | struct virtual_node * vn = tb->tb_vn; |
| 636 | int ih_size; |
| 637 | struct buffer_head *S0; |
| 638 | |
| 639 | S0 = PATH_H_PBUFFER (tb->tb_path, 0); |
| 640 | |
| 641 | ih_size = 0; |
| 642 | if (vn->vn_nr_item) { |
| 643 | if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE) |
| 644 | ih_size += IH_SIZE; |
| 645 | |
| 646 | if (vn->vn_vi[vn->vn_nr_item-1].vi_type & VI_TYPE_RIGHT_MERGEABLE) |
| 647 | ih_size += IH_SIZE; |
| 648 | } else { |
| 649 | /* there was only one item and it will be deleted */ |
| 650 | struct item_head * ih; |
| 651 | |
| 652 | RFALSE( B_NR_ITEMS (S0) != 1, |
| 653 | "vs-8125: item number must be 1: it is %d", B_NR_ITEMS(S0)); |
| 654 | |
| 655 | ih = B_N_PITEM_HEAD (S0, 0); |
| 656 | if (tb->CFR[0] && !comp_short_le_keys (&(ih->ih_key), B_N_PDELIM_KEY (tb->CFR[0], tb->rkey[0]))) |
| 657 | if (is_direntry_le_ih (ih)) { |
| 658 | /* Directory must be in correct state here: that is |
| 659 | somewhere at the left side should exist first directory |
| 660 | item. But the item being deleted can not be that first |
| 661 | one because its right neighbor is item of the same |
| 662 | directory. (But first item always gets deleted in last |
| 663 | turn). So, neighbors of deleted item can be merged, so |
| 664 | we can save ih_size */ |
| 665 | ih_size = IH_SIZE; |
| 666 | |
| 667 | /* we might check that left neighbor exists and is of the |
| 668 | same directory */ |
| 669 | RFALSE(le_ih_k_offset (ih) == DOT_OFFSET, |
| 670 | "vs-8130: first directory item can not be removed until directory is not empty"); |
| 671 | } |
| 672 | |
| 673 | } |
| 674 | |
| 675 | if (MAX_CHILD_SIZE (S0) + vn->vn_size <= rfree + lfree + ih_size) { |
| 676 | set_parameters (tb, 0, -1, -1, -1, NULL, -1, -1); |
| 677 | PROC_INFO_INC( tb -> tb_sb, leaves_removable ); |
| 678 | return 1; |
| 679 | } |
| 680 | return 0; |
| 681 | |
| 682 | } |
| 683 | |
| 684 | |
| 685 | |
| 686 | /* when we do not split item, lnum and rnum are numbers of entire items */ |
| 687 | #define SET_PAR_SHIFT_LEFT \ |
| 688 | if (h)\ |
| 689 | {\ |
| 690 | int to_l;\ |
| 691 | \ |
| 692 | to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\ |
| 693 | (MAX_NR_KEY(Sh) + 1 - lpar);\ |
| 694 | \ |
| 695 | set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\ |
| 696 | }\ |
| 697 | else \ |
| 698 | {\ |
| 699 | if (lset==LEFT_SHIFT_FLOW)\ |
| 700 | set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\ |
| 701 | tb->lbytes, -1);\ |
| 702 | else\ |
| 703 | set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\ |
| 704 | -1, -1);\ |
| 705 | } |
| 706 | |
| 707 | |
| 708 | #define SET_PAR_SHIFT_RIGHT \ |
| 709 | if (h)\ |
| 710 | {\ |
| 711 | int to_r;\ |
| 712 | \ |
| 713 | to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\ |
| 714 | \ |
| 715 | set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\ |
| 716 | }\ |
| 717 | else \ |
| 718 | {\ |
| 719 | if (rset==RIGHT_SHIFT_FLOW)\ |
| 720 | set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\ |
| 721 | -1, tb->rbytes);\ |
| 722 | else\ |
| 723 | set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\ |
| 724 | -1, -1);\ |
| 725 | } |
| 726 | |
| 727 | |
| 728 | static void free_buffers_in_tb ( |
| 729 | struct tree_balance * p_s_tb |
| 730 | ) { |
| 731 | int n_counter; |
| 732 | |
| 733 | decrement_counters_in_path(p_s_tb->tb_path); |
| 734 | |
| 735 | for ( n_counter = 0; n_counter < MAX_HEIGHT; n_counter++ ) { |
| 736 | decrement_bcount(p_s_tb->L[n_counter]); |
| 737 | p_s_tb->L[n_counter] = NULL; |
| 738 | decrement_bcount(p_s_tb->R[n_counter]); |
| 739 | p_s_tb->R[n_counter] = NULL; |
| 740 | decrement_bcount(p_s_tb->FL[n_counter]); |
| 741 | p_s_tb->FL[n_counter] = NULL; |
| 742 | decrement_bcount(p_s_tb->FR[n_counter]); |
| 743 | p_s_tb->FR[n_counter] = NULL; |
| 744 | decrement_bcount(p_s_tb->CFL[n_counter]); |
| 745 | p_s_tb->CFL[n_counter] = NULL; |
| 746 | decrement_bcount(p_s_tb->CFR[n_counter]); |
| 747 | p_s_tb->CFR[n_counter] = NULL; |
| 748 | } |
| 749 | } |
| 750 | |
| 751 | |
| 752 | /* Get new buffers for storing new nodes that are created while balancing. |
| 753 | * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; |
| 754 | * CARRY_ON - schedule didn't occur while the function worked; |
| 755 | * NO_DISK_SPACE - no disk space. |
| 756 | */ |
| 757 | /* The function is NOT SCHEDULE-SAFE! */ |
| 758 | static int get_empty_nodes( |
| 759 | struct tree_balance * p_s_tb, |
| 760 | int n_h |
| 761 | ) { |
| 762 | struct buffer_head * p_s_new_bh, |
| 763 | * p_s_Sh = PATH_H_PBUFFER (p_s_tb->tb_path, n_h); |
| 764 | b_blocknr_t * p_n_blocknr, |
| 765 | a_n_blocknrs[MAX_AMOUNT_NEEDED] = {0, }; |
| 766 | int n_counter, |
| 767 | n_number_of_freeblk, |
| 768 | n_amount_needed,/* number of needed empty blocks */ |
| 769 | n_retval = CARRY_ON; |
| 770 | struct super_block * p_s_sb = p_s_tb->tb_sb; |
| 771 | |
| 772 | |
| 773 | /* number_of_freeblk is the number of empty blocks which have been |
| 774 | acquired for use by the balancing algorithm minus the number of |
| 775 | empty blocks used in the previous levels of the analysis, |
| 776 | number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs |
| 777 | after empty blocks are acquired, and the balancing analysis is |
| 778 | then restarted, amount_needed is the number needed by this level |
| 779 | (n_h) of the balancing analysis. |
| 780 | |
| 781 | Note that for systems with many processes writing, it would be |
| 782 | more layout optimal to calculate the total number needed by all |
| 783 | levels and then to run reiserfs_new_blocks to get all of them at once. */ |
| 784 | |
| 785 | /* Initiate number_of_freeblk to the amount acquired prior to the restart of |
| 786 | the analysis or 0 if not restarted, then subtract the amount needed |
| 787 | by all of the levels of the tree below n_h. */ |
| 788 | /* blknum includes S[n_h], so we subtract 1 in this calculation */ |
| 789 | for ( n_counter = 0, n_number_of_freeblk = p_s_tb->cur_blknum; n_counter < n_h; n_counter++ ) |
| 790 | n_number_of_freeblk -= ( p_s_tb->blknum[n_counter] ) ? (p_s_tb->blknum[n_counter] - 1) : 0; |
| 791 | |
| 792 | /* Allocate missing empty blocks. */ |
| 793 | /* if p_s_Sh == 0 then we are getting a new root */ |
| 794 | n_amount_needed = ( p_s_Sh ) ? (p_s_tb->blknum[n_h] - 1) : 1; |
| 795 | /* Amount_needed = the amount that we need more than the amount that we have. */ |
| 796 | if ( n_amount_needed > n_number_of_freeblk ) |
| 797 | n_amount_needed -= n_number_of_freeblk; |
| 798 | else /* If we have enough already then there is nothing to do. */ |
| 799 | return CARRY_ON; |
| 800 | |
| 801 | /* No need to check quota - is not allocated for blocks used for formatted nodes */ |
| 802 | if (reiserfs_new_form_blocknrs (p_s_tb, a_n_blocknrs, |
| 803 | n_amount_needed) == NO_DISK_SPACE) |
| 804 | return NO_DISK_SPACE; |
| 805 | |
| 806 | /* for each blocknumber we just got, get a buffer and stick it on FEB */ |
| 807 | for ( p_n_blocknr = a_n_blocknrs, n_counter = 0; n_counter < n_amount_needed; |
| 808 | p_n_blocknr++, n_counter++ ) { |
| 809 | |
| 810 | RFALSE( ! *p_n_blocknr, |
| 811 | "PAP-8135: reiserfs_new_blocknrs failed when got new blocks"); |
| 812 | |
| 813 | p_s_new_bh = sb_getblk(p_s_sb, *p_n_blocknr); |
| 814 | RFALSE (buffer_dirty (p_s_new_bh) || |
| 815 | buffer_journaled (p_s_new_bh) || |
| 816 | buffer_journal_dirty (p_s_new_bh), |
| 817 | "PAP-8140: journlaled or dirty buffer %b for the new block", |
| 818 | p_s_new_bh); |
| 819 | |
| 820 | /* Put empty buffers into the array. */ |
| 821 | RFALSE (p_s_tb->FEB[p_s_tb->cur_blknum], |
| 822 | "PAP-8141: busy slot for new buffer"); |
| 823 | |
| 824 | set_buffer_journal_new (p_s_new_bh); |
| 825 | p_s_tb->FEB[p_s_tb->cur_blknum++] = p_s_new_bh; |
| 826 | } |
| 827 | |
| 828 | if ( n_retval == CARRY_ON && FILESYSTEM_CHANGED_TB (p_s_tb) ) |
| 829 | n_retval = REPEAT_SEARCH ; |
| 830 | |
| 831 | return n_retval; |
| 832 | } |
| 833 | |
| 834 | |
| 835 | /* Get free space of the left neighbor, which is stored in the parent |
| 836 | * node of the left neighbor. */ |
| 837 | static int get_lfree (struct tree_balance * tb, int h) |
| 838 | { |
| 839 | struct buffer_head * l, * f; |
| 840 | int order; |
| 841 | |
| 842 | if ((f = PATH_H_PPARENT (tb->tb_path, h)) == 0 || (l = tb->FL[h]) == 0) |
| 843 | return 0; |
| 844 | |
| 845 | if (f == l) |
| 846 | order = PATH_H_B_ITEM_ORDER (tb->tb_path, h) - 1; |
| 847 | else { |
| 848 | order = B_NR_ITEMS (l); |
| 849 | f = l; |
| 850 | } |
| 851 | |
| 852 | return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f,order))); |
| 853 | } |
| 854 | |
| 855 | |
| 856 | /* Get free space of the right neighbor, |
| 857 | * which is stored in the parent node of the right neighbor. |
| 858 | */ |
| 859 | static int get_rfree (struct tree_balance * tb, int h) |
| 860 | { |
| 861 | struct buffer_head * r, * f; |
| 862 | int order; |
| 863 | |
| 864 | if ((f = PATH_H_PPARENT (tb->tb_path, h)) == 0 || (r = tb->FR[h]) == 0) |
| 865 | return 0; |
| 866 | |
| 867 | if (f == r) |
| 868 | order = PATH_H_B_ITEM_ORDER (tb->tb_path, h) + 1; |
| 869 | else { |
| 870 | order = 0; |
| 871 | f = r; |
| 872 | } |
| 873 | |
| 874 | return (MAX_CHILD_SIZE(f) - dc_size( B_N_CHILD(f,order))); |
| 875 | |
| 876 | } |
| 877 | |
| 878 | |
| 879 | /* Check whether left neighbor is in memory. */ |
| 880 | static int is_left_neighbor_in_cache( |
| 881 | struct tree_balance * p_s_tb, |
| 882 | int n_h |
| 883 | ) { |
| 884 | struct buffer_head * p_s_father, * left; |
| 885 | struct super_block * p_s_sb = p_s_tb->tb_sb; |
| 886 | b_blocknr_t n_left_neighbor_blocknr; |
| 887 | int n_left_neighbor_position; |
| 888 | |
| 889 | if ( ! p_s_tb->FL[n_h] ) /* Father of the left neighbor does not exist. */ |
| 890 | return 0; |
| 891 | |
| 892 | /* Calculate father of the node to be balanced. */ |
| 893 | p_s_father = PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1); |
| 894 | |
| 895 | RFALSE( ! p_s_father || |
| 896 | ! B_IS_IN_TREE (p_s_father) || |
| 897 | ! B_IS_IN_TREE (p_s_tb->FL[n_h]) || |
| 898 | ! buffer_uptodate (p_s_father) || |
| 899 | ! buffer_uptodate (p_s_tb->FL[n_h]), |
| 900 | "vs-8165: F[h] (%b) or FL[h] (%b) is invalid", |
| 901 | p_s_father, p_s_tb->FL[n_h]); |
| 902 | |
| 903 | |
| 904 | /* Get position of the pointer to the left neighbor into the left father. */ |
| 905 | n_left_neighbor_position = ( p_s_father == p_s_tb->FL[n_h] ) ? |
| 906 | p_s_tb->lkey[n_h] : B_NR_ITEMS (p_s_tb->FL[n_h]); |
| 907 | /* Get left neighbor block number. */ |
| 908 | n_left_neighbor_blocknr = B_N_CHILD_NUM(p_s_tb->FL[n_h], n_left_neighbor_position); |
| 909 | /* Look for the left neighbor in the cache. */ |
| 910 | if ( (left = sb_find_get_block(p_s_sb, n_left_neighbor_blocknr)) ) { |
| 911 | |
| 912 | RFALSE( buffer_uptodate (left) && ! B_IS_IN_TREE(left), |
| 913 | "vs-8170: left neighbor (%b %z) is not in the tree", left, left); |
| 914 | put_bh(left) ; |
| 915 | return 1; |
| 916 | } |
| 917 | |
| 918 | return 0; |
| 919 | } |
| 920 | |
| 921 | |
| 922 | #define LEFT_PARENTS 'l' |
| 923 | #define RIGHT_PARENTS 'r' |
| 924 | |
| 925 | |
| 926 | static void decrement_key (struct cpu_key * p_s_key) |
| 927 | { |
| 928 | // call item specific function for this key |
| 929 | item_ops[cpu_key_k_type (p_s_key)]->decrement_key (p_s_key); |
| 930 | } |
| 931 | |
| 932 | |
| 933 | |
| 934 | |
| 935 | /* Calculate far left/right parent of the left/right neighbor of the current node, that |
| 936 | * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h]. |
| 937 | * Calculate left/right common parent of the current node and L[h]/R[h]. |
| 938 | * Calculate left/right delimiting key position. |
| 939 | * Returns: PATH_INCORRECT - path in the tree is not correct; |
| 940 | SCHEDULE_OCCURRED - schedule occurred while the function worked; |
| 941 | * CARRY_ON - schedule didn't occur while the function worked; |
| 942 | */ |
| 943 | static int get_far_parent (struct tree_balance * p_s_tb, |
| 944 | int n_h, |
| 945 | struct buffer_head ** pp_s_father, |
| 946 | struct buffer_head ** pp_s_com_father, |
| 947 | char c_lr_par) |
| 948 | { |
| 949 | struct buffer_head * p_s_parent; |
| 950 | INITIALIZE_PATH (s_path_to_neighbor_father); |
| 951 | struct path * p_s_path = p_s_tb->tb_path; |
| 952 | struct cpu_key s_lr_father_key; |
| 953 | int n_counter, |
| 954 | n_position = INT_MAX, |
| 955 | n_first_last_position = 0, |
| 956 | n_path_offset = PATH_H_PATH_OFFSET(p_s_path, n_h); |
| 957 | |
| 958 | /* Starting from F[n_h] go upwards in the tree, and look for the common |
| 959 | ancestor of F[n_h], and its neighbor l/r, that should be obtained. */ |
| 960 | |
| 961 | n_counter = n_path_offset; |
| 962 | |
| 963 | RFALSE( n_counter < FIRST_PATH_ELEMENT_OFFSET, |
| 964 | "PAP-8180: invalid path length"); |
| 965 | |
| 966 | |
| 967 | for ( ; n_counter > FIRST_PATH_ELEMENT_OFFSET; n_counter-- ) { |
| 968 | /* Check whether parent of the current buffer in the path is really parent in the tree. */ |
| 969 | if ( ! B_IS_IN_TREE(p_s_parent = PATH_OFFSET_PBUFFER(p_s_path, n_counter - 1)) ) |
| 970 | return REPEAT_SEARCH; |
| 971 | /* Check whether position in the parent is correct. */ |
| 972 | if ( (n_position = PATH_OFFSET_POSITION(p_s_path, n_counter - 1)) > B_NR_ITEMS(p_s_parent) ) |
| 973 | return REPEAT_SEARCH; |
| 974 | /* Check whether parent at the path really points to the child. */ |
| 975 | if ( B_N_CHILD_NUM(p_s_parent, n_position) != |
| 976 | PATH_OFFSET_PBUFFER(p_s_path, n_counter)->b_blocknr ) |
| 977 | return REPEAT_SEARCH; |
| 978 | /* Return delimiting key if position in the parent is not equal to first/last one. */ |
| 979 | if ( c_lr_par == RIGHT_PARENTS ) |
| 980 | n_first_last_position = B_NR_ITEMS (p_s_parent); |
| 981 | if ( n_position != n_first_last_position ) { |
| 982 | *pp_s_com_father = p_s_parent; |
| 983 | get_bh(*pp_s_com_father) ; |
| 984 | /*(*pp_s_com_father = p_s_parent)->b_count++;*/ |
| 985 | break; |
| 986 | } |
| 987 | } |
| 988 | |
| 989 | /* if we are in the root of the tree, then there is no common father */ |
| 990 | if ( n_counter == FIRST_PATH_ELEMENT_OFFSET ) { |
| 991 | /* Check whether first buffer in the path is the root of the tree. */ |
| 992 | if ( PATH_OFFSET_PBUFFER(p_s_tb->tb_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr == |
| 993 | SB_ROOT_BLOCK (p_s_tb->tb_sb) ) { |
| 994 | *pp_s_father = *pp_s_com_father = NULL; |
| 995 | return CARRY_ON; |
| 996 | } |
| 997 | return REPEAT_SEARCH; |
| 998 | } |
| 999 | |
| 1000 | RFALSE( B_LEVEL (*pp_s_com_father) <= DISK_LEAF_NODE_LEVEL, |
| 1001 | "PAP-8185: (%b %z) level too small", |
| 1002 | *pp_s_com_father, *pp_s_com_father); |
| 1003 | |
| 1004 | /* Check whether the common parent is locked. */ |
| 1005 | |
| 1006 | if ( buffer_locked (*pp_s_com_father) ) { |
| 1007 | __wait_on_buffer(*pp_s_com_father); |
| 1008 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { |
| 1009 | decrement_bcount(*pp_s_com_father); |
| 1010 | return REPEAT_SEARCH; |
| 1011 | } |
| 1012 | } |
| 1013 | |
| 1014 | /* So, we got common parent of the current node and its left/right neighbor. |
| 1015 | Now we are geting the parent of the left/right neighbor. */ |
| 1016 | |
| 1017 | /* Form key to get parent of the left/right neighbor. */ |
| 1018 | le_key2cpu_key (&s_lr_father_key, B_N_PDELIM_KEY(*pp_s_com_father, ( c_lr_par == LEFT_PARENTS ) ? |
| 1019 | (p_s_tb->lkey[n_h - 1] = n_position - 1) : (p_s_tb->rkey[n_h - 1] = n_position))); |
| 1020 | |
| 1021 | |
| 1022 | if ( c_lr_par == LEFT_PARENTS ) |
| 1023 | decrement_key(&s_lr_father_key); |
| 1024 | |
| 1025 | if (search_by_key(p_s_tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father, n_h + 1) == IO_ERROR) |
| 1026 | // path is released |
| 1027 | return IO_ERROR; |
| 1028 | |
| 1029 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { |
| 1030 | decrement_counters_in_path(&s_path_to_neighbor_father); |
| 1031 | decrement_bcount(*pp_s_com_father); |
| 1032 | return REPEAT_SEARCH; |
| 1033 | } |
| 1034 | |
| 1035 | *pp_s_father = PATH_PLAST_BUFFER(&s_path_to_neighbor_father); |
| 1036 | |
| 1037 | RFALSE( B_LEVEL (*pp_s_father) != n_h + 1, |
| 1038 | "PAP-8190: (%b %z) level too small", *pp_s_father, *pp_s_father); |
| 1039 | RFALSE( s_path_to_neighbor_father.path_length < FIRST_PATH_ELEMENT_OFFSET, |
| 1040 | "PAP-8192: path length is too small"); |
| 1041 | |
| 1042 | s_path_to_neighbor_father.path_length--; |
| 1043 | decrement_counters_in_path(&s_path_to_neighbor_father); |
| 1044 | return CARRY_ON; |
| 1045 | } |
| 1046 | |
| 1047 | |
| 1048 | /* Get parents of neighbors of node in the path(S[n_path_offset]) and common parents of |
| 1049 | * S[n_path_offset] and L[n_path_offset]/R[n_path_offset]: F[n_path_offset], FL[n_path_offset], |
| 1050 | * FR[n_path_offset], CFL[n_path_offset], CFR[n_path_offset]. |
| 1051 | * Calculate numbers of left and right delimiting keys position: lkey[n_path_offset], rkey[n_path_offset]. |
| 1052 | * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; |
| 1053 | * CARRY_ON - schedule didn't occur while the function worked; |
| 1054 | */ |
| 1055 | static int get_parents (struct tree_balance * p_s_tb, int n_h) |
| 1056 | { |
| 1057 | struct path * p_s_path = p_s_tb->tb_path; |
| 1058 | int n_position, |
| 1059 | n_ret_value, |
| 1060 | n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h); |
| 1061 | struct buffer_head * p_s_curf, |
| 1062 | * p_s_curcf; |
| 1063 | |
| 1064 | /* Current node is the root of the tree or will be root of the tree */ |
| 1065 | if ( n_path_offset <= FIRST_PATH_ELEMENT_OFFSET ) { |
| 1066 | /* The root can not have parents. |
| 1067 | Release nodes which previously were obtained as parents of the current node neighbors. */ |
| 1068 | decrement_bcount(p_s_tb->FL[n_h]); |
| 1069 | decrement_bcount(p_s_tb->CFL[n_h]); |
| 1070 | decrement_bcount(p_s_tb->FR[n_h]); |
| 1071 | decrement_bcount(p_s_tb->CFR[n_h]); |
| 1072 | p_s_tb->FL[n_h] = p_s_tb->CFL[n_h] = p_s_tb->FR[n_h] = p_s_tb->CFR[n_h] = NULL; |
| 1073 | return CARRY_ON; |
| 1074 | } |
| 1075 | |
| 1076 | /* Get parent FL[n_path_offset] of L[n_path_offset]. */ |
| 1077 | if ( (n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1)) ) { |
| 1078 | /* Current node is not the first child of its parent. */ |
| 1079 | /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2;*/ |
| 1080 | p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1); |
| 1081 | get_bh(p_s_curf) ; |
| 1082 | get_bh(p_s_curf) ; |
| 1083 | p_s_tb->lkey[n_h] = n_position - 1; |
| 1084 | } |
| 1085 | else { |
| 1086 | /* Calculate current parent of L[n_path_offset], which is the left neighbor of the current node. |
| 1087 | Calculate current common parent of L[n_path_offset] and the current node. Note that |
| 1088 | CFL[n_path_offset] not equal FL[n_path_offset] and CFL[n_path_offset] not equal F[n_path_offset]. |
| 1089 | Calculate lkey[n_path_offset]. */ |
| 1090 | if ( (n_ret_value = get_far_parent(p_s_tb, n_h + 1, &p_s_curf, |
| 1091 | &p_s_curcf, LEFT_PARENTS)) != CARRY_ON ) |
| 1092 | return n_ret_value; |
| 1093 | } |
| 1094 | |
| 1095 | decrement_bcount(p_s_tb->FL[n_h]); |
| 1096 | p_s_tb->FL[n_h] = p_s_curf; /* New initialization of FL[n_h]. */ |
| 1097 | decrement_bcount(p_s_tb->CFL[n_h]); |
| 1098 | p_s_tb->CFL[n_h] = p_s_curcf; /* New initialization of CFL[n_h]. */ |
| 1099 | |
| 1100 | RFALSE( (p_s_curf && !B_IS_IN_TREE (p_s_curf)) || |
| 1101 | (p_s_curcf && !B_IS_IN_TREE (p_s_curcf)), |
| 1102 | "PAP-8195: FL (%b) or CFL (%b) is invalid", p_s_curf, p_s_curcf); |
| 1103 | |
| 1104 | /* Get parent FR[n_h] of R[n_h]. */ |
| 1105 | |
| 1106 | /* Current node is the last child of F[n_h]. FR[n_h] != F[n_h]. */ |
| 1107 | if ( n_position == B_NR_ITEMS (PATH_H_PBUFFER(p_s_path, n_h + 1)) ) { |
| 1108 | /* Calculate current parent of R[n_h], which is the right neighbor of F[n_h]. |
| 1109 | Calculate current common parent of R[n_h] and current node. Note that CFR[n_h] |
| 1110 | not equal FR[n_path_offset] and CFR[n_h] not equal F[n_h]. */ |
| 1111 | if ( (n_ret_value = get_far_parent(p_s_tb, n_h + 1, &p_s_curf, &p_s_curcf, RIGHT_PARENTS)) != CARRY_ON ) |
| 1112 | return n_ret_value; |
| 1113 | } |
| 1114 | else { |
| 1115 | /* Current node is not the last child of its parent F[n_h]. */ |
| 1116 | /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2;*/ |
| 1117 | p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1); |
| 1118 | get_bh(p_s_curf) ; |
| 1119 | get_bh(p_s_curf) ; |
| 1120 | p_s_tb->rkey[n_h] = n_position; |
| 1121 | } |
| 1122 | |
| 1123 | decrement_bcount(p_s_tb->FR[n_h]); |
| 1124 | p_s_tb->FR[n_h] = p_s_curf; /* New initialization of FR[n_path_offset]. */ |
| 1125 | |
| 1126 | decrement_bcount(p_s_tb->CFR[n_h]); |
| 1127 | p_s_tb->CFR[n_h] = p_s_curcf; /* New initialization of CFR[n_path_offset]. */ |
| 1128 | |
| 1129 | RFALSE( (p_s_curf && !B_IS_IN_TREE (p_s_curf)) || |
| 1130 | (p_s_curcf && !B_IS_IN_TREE (p_s_curcf)), |
| 1131 | "PAP-8205: FR (%b) or CFR (%b) is invalid", p_s_curf, p_s_curcf); |
| 1132 | |
| 1133 | return CARRY_ON; |
| 1134 | } |
| 1135 | |
| 1136 | |
| 1137 | /* it is possible to remove node as result of shiftings to |
| 1138 | neighbors even when we insert or paste item. */ |
| 1139 | static inline int can_node_be_removed (int mode, int lfree, int sfree, int rfree, struct tree_balance * tb, int h) |
| 1140 | { |
| 1141 | struct buffer_head * Sh = PATH_H_PBUFFER (tb->tb_path, h); |
| 1142 | int levbytes = tb->insert_size[h]; |
| 1143 | struct item_head * ih; |
| 1144 | struct reiserfs_key * r_key = NULL; |
| 1145 | |
| 1146 | ih = B_N_PITEM_HEAD (Sh, 0); |
| 1147 | if ( tb->CFR[h] ) |
| 1148 | r_key = B_N_PDELIM_KEY(tb->CFR[h],tb->rkey[h]); |
| 1149 | |
| 1150 | if ( |
| 1151 | lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes |
| 1152 | /* shifting may merge items which might save space */ |
| 1153 | - (( ! h && op_is_left_mergeable (&(ih->ih_key), Sh->b_size) ) ? IH_SIZE : 0) |
| 1154 | - (( ! h && r_key && op_is_left_mergeable (r_key, Sh->b_size) ) ? IH_SIZE : 0) |
| 1155 | + (( h ) ? KEY_SIZE : 0)) |
| 1156 | { |
| 1157 | /* node can not be removed */ |
| 1158 | if (sfree >= levbytes ) { /* new item fits into node S[h] without any shifting */ |
| 1159 | if ( ! h ) |
| 1160 | tb->s0num = B_NR_ITEMS(Sh) + ((mode == M_INSERT ) ? 1 : 0); |
| 1161 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); |
| 1162 | return NO_BALANCING_NEEDED; |
| 1163 | } |
| 1164 | } |
| 1165 | PROC_INFO_INC( tb -> tb_sb, can_node_be_removed[ h ] ); |
| 1166 | return !NO_BALANCING_NEEDED; |
| 1167 | } |
| 1168 | |
| 1169 | |
| 1170 | |
| 1171 | /* Check whether current node S[h] is balanced when increasing its size by |
| 1172 | * Inserting or Pasting. |
| 1173 | * Calculate parameters for balancing for current level h. |
| 1174 | * Parameters: |
| 1175 | * tb tree_balance structure; |
| 1176 | * h current level of the node; |
| 1177 | * inum item number in S[h]; |
| 1178 | * mode i - insert, p - paste; |
| 1179 | * Returns: 1 - schedule occurred; |
| 1180 | * 0 - balancing for higher levels needed; |
| 1181 | * -1 - no balancing for higher levels needed; |
| 1182 | * -2 - no disk space. |
| 1183 | */ |
| 1184 | /* ip means Inserting or Pasting */ |
| 1185 | static int ip_check_balance (struct tree_balance * tb, int h) |
| 1186 | { |
| 1187 | struct virtual_node * vn = tb->tb_vn; |
| 1188 | int levbytes, /* Number of bytes that must be inserted into (value |
| 1189 | is negative if bytes are deleted) buffer which |
| 1190 | contains node being balanced. The mnemonic is |
| 1191 | that the attempted change in node space used level |
| 1192 | is levbytes bytes. */ |
| 1193 | n_ret_value; |
| 1194 | |
| 1195 | int lfree, sfree, rfree /* free space in L, S and R */; |
| 1196 | |
| 1197 | /* nver is short for number of vertixes, and lnver is the number if |
| 1198 | we shift to the left, rnver is the number if we shift to the |
| 1199 | right, and lrnver is the number if we shift in both directions. |
| 1200 | The goal is to minimize first the number of vertixes, and second, |
| 1201 | the number of vertixes whose contents are changed by shifting, |
| 1202 | and third the number of uncached vertixes whose contents are |
| 1203 | changed by shifting and must be read from disk. */ |
| 1204 | int nver, lnver, rnver, lrnver; |
| 1205 | |
| 1206 | /* used at leaf level only, S0 = S[0] is the node being balanced, |
| 1207 | sInum [ I = 0,1,2 ] is the number of items that will |
| 1208 | remain in node SI after balancing. S1 and S2 are new |
| 1209 | nodes that might be created. */ |
| 1210 | |
| 1211 | /* we perform 8 calls to get_num_ver(). For each call we calculate five parameters. |
| 1212 | where 4th parameter is s1bytes and 5th - s2bytes |
| 1213 | */ |
| 1214 | short snum012[40] = {0,}; /* s0num, s1num, s2num for 8 cases |
| 1215 | 0,1 - do not shift and do not shift but bottle |
| 1216 | 2 - shift only whole item to left |
| 1217 | 3 - shift to left and bottle as much as possible |
| 1218 | 4,5 - shift to right (whole items and as much as possible |
| 1219 | 6,7 - shift to both directions (whole items and as much as possible) |
| 1220 | */ |
| 1221 | |
| 1222 | /* Sh is the node whose balance is currently being checked */ |
| 1223 | struct buffer_head * Sh; |
| 1224 | |
| 1225 | Sh = PATH_H_PBUFFER (tb->tb_path, h); |
| 1226 | levbytes = tb->insert_size[h]; |
| 1227 | |
| 1228 | /* Calculate balance parameters for creating new root. */ |
| 1229 | if ( ! Sh ) { |
| 1230 | if ( ! h ) |
| 1231 | reiserfs_panic (tb->tb_sb, "vs-8210: ip_check_balance: S[0] can not be 0"); |
| 1232 | switch ( n_ret_value = get_empty_nodes (tb, h) ) { |
| 1233 | case CARRY_ON: |
| 1234 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); |
| 1235 | return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */ |
| 1236 | |
| 1237 | case NO_DISK_SPACE: |
| 1238 | case REPEAT_SEARCH: |
| 1239 | return n_ret_value; |
| 1240 | default: |
| 1241 | reiserfs_panic(tb->tb_sb, "vs-8215: ip_check_balance: incorrect return value of get_empty_nodes"); |
| 1242 | } |
| 1243 | } |
| 1244 | |
| 1245 | if ( (n_ret_value = get_parents (tb, h)) != CARRY_ON ) /* get parents of S[h] neighbors. */ |
| 1246 | return n_ret_value; |
| 1247 | |
| 1248 | sfree = B_FREE_SPACE (Sh); |
| 1249 | |
| 1250 | /* get free space of neighbors */ |
| 1251 | rfree = get_rfree (tb, h); |
| 1252 | lfree = get_lfree (tb, h); |
| 1253 | |
| 1254 | if (can_node_be_removed (vn->vn_mode, lfree, sfree, rfree, tb, h) == NO_BALANCING_NEEDED) |
| 1255 | /* and new item fits into node S[h] without any shifting */ |
| 1256 | return NO_BALANCING_NEEDED; |
| 1257 | |
| 1258 | create_virtual_node (tb, h); |
| 1259 | |
| 1260 | /* |
| 1261 | determine maximal number of items we can shift to the left neighbor (in tb structure) |
| 1262 | and the maximal number of bytes that can flow to the left neighbor |
| 1263 | from the left most liquid item that cannot be shifted from S[0] entirely (returned value) |
| 1264 | */ |
| 1265 | check_left (tb, h, lfree); |
| 1266 | |
| 1267 | /* |
| 1268 | determine maximal number of items we can shift to the right neighbor (in tb structure) |
| 1269 | and the maximal number of bytes that can flow to the right neighbor |
| 1270 | from the right most liquid item that cannot be shifted from S[0] entirely (returned value) |
| 1271 | */ |
| 1272 | check_right (tb, h, rfree); |
| 1273 | |
| 1274 | |
| 1275 | /* all contents of internal node S[h] can be moved into its |
| 1276 | neighbors, S[h] will be removed after balancing */ |
| 1277 | if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) { |
| 1278 | int to_r; |
| 1279 | |
| 1280 | /* Since we are working on internal nodes, and our internal |
| 1281 | nodes have fixed size entries, then we can balance by the |
| 1282 | number of items rather than the space they consume. In this |
| 1283 | routine we set the left node equal to the right node, |
| 1284 | allowing a difference of less than or equal to 1 child |
| 1285 | pointer. */ |
| 1286 | to_r = ((MAX_NR_KEY(Sh)<<1)+2-tb->lnum[h]-tb->rnum[h]+vn->vn_nr_item+1)/2 - |
| 1287 | (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); |
| 1288 | set_parameters (tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1); |
| 1289 | return CARRY_ON; |
| 1290 | } |
| 1291 | |
| 1292 | /* this checks balance condition, that any two neighboring nodes can not fit in one node */ |
| 1293 | RFALSE( h && |
| 1294 | ( tb->lnum[h] >= vn->vn_nr_item + 1 || |
| 1295 | tb->rnum[h] >= vn->vn_nr_item + 1), |
| 1296 | "vs-8220: tree is not balanced on internal level"); |
| 1297 | RFALSE( ! h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) || |
| 1298 | (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1)) ), |
| 1299 | "vs-8225: tree is not balanced on leaf level"); |
| 1300 | |
| 1301 | /* all contents of S[0] can be moved into its neighbors |
| 1302 | S[0] will be removed after balancing. */ |
| 1303 | if (!h && is_leaf_removable (tb)) |
| 1304 | return CARRY_ON; |
| 1305 | |
| 1306 | |
| 1307 | /* why do we perform this check here rather than earlier?? |
| 1308 | Answer: we can win 1 node in some cases above. Moreover we |
| 1309 | checked it above, when we checked, that S[0] is not removable |
| 1310 | in principle */ |
| 1311 | if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */ |
| 1312 | if ( ! h ) |
| 1313 | tb->s0num = vn->vn_nr_item; |
| 1314 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); |
| 1315 | return NO_BALANCING_NEEDED; |
| 1316 | } |
| 1317 | |
| 1318 | |
| 1319 | { |
| 1320 | int lpar, rpar, nset, lset, rset, lrset; |
| 1321 | /* |
| 1322 | * regular overflowing of the node |
| 1323 | */ |
| 1324 | |
| 1325 | /* get_num_ver works in 2 modes (FLOW & NO_FLOW) |
| 1326 | lpar, rpar - number of items we can shift to left/right neighbor (including splitting item) |
| 1327 | nset, lset, rset, lrset - shows, whether flowing items give better packing |
| 1328 | */ |
| 1329 | #define FLOW 1 |
| 1330 | #define NO_FLOW 0 /* do not any splitting */ |
| 1331 | |
| 1332 | /* we choose one the following */ |
| 1333 | #define NOTHING_SHIFT_NO_FLOW 0 |
| 1334 | #define NOTHING_SHIFT_FLOW 5 |
| 1335 | #define LEFT_SHIFT_NO_FLOW 10 |
| 1336 | #define LEFT_SHIFT_FLOW 15 |
| 1337 | #define RIGHT_SHIFT_NO_FLOW 20 |
| 1338 | #define RIGHT_SHIFT_FLOW 25 |
| 1339 | #define LR_SHIFT_NO_FLOW 30 |
| 1340 | #define LR_SHIFT_FLOW 35 |
| 1341 | |
| 1342 | |
| 1343 | lpar = tb->lnum[h]; |
| 1344 | rpar = tb->rnum[h]; |
| 1345 | |
| 1346 | |
| 1347 | /* calculate number of blocks S[h] must be split into when |
| 1348 | nothing is shifted to the neighbors, |
| 1349 | as well as number of items in each part of the split node (s012 numbers), |
| 1350 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any */ |
| 1351 | nset = NOTHING_SHIFT_NO_FLOW; |
| 1352 | nver = get_num_ver (vn->vn_mode, tb, h, |
| 1353 | 0, -1, h?vn->vn_nr_item:0, -1, |
| 1354 | snum012, NO_FLOW); |
| 1355 | |
| 1356 | if (!h) |
| 1357 | { |
| 1358 | int nver1; |
| 1359 | |
| 1360 | /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */ |
| 1361 | nver1 = get_num_ver (vn->vn_mode, tb, h, |
| 1362 | 0, -1, 0, -1, |
| 1363 | snum012 + NOTHING_SHIFT_FLOW, FLOW); |
| 1364 | if (nver > nver1) |
| 1365 | nset = NOTHING_SHIFT_FLOW, nver = nver1; |
| 1366 | } |
| 1367 | |
| 1368 | |
| 1369 | /* calculate number of blocks S[h] must be split into when |
| 1370 | l_shift_num first items and l_shift_bytes of the right most |
| 1371 | liquid item to be shifted are shifted to the left neighbor, |
| 1372 | as well as number of items in each part of the splitted node (s012 numbers), |
| 1373 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any |
| 1374 | */ |
| 1375 | lset = LEFT_SHIFT_NO_FLOW; |
| 1376 | lnver = get_num_ver (vn->vn_mode, tb, h, |
| 1377 | lpar - (( h || tb->lbytes == -1 ) ? 0 : 1), -1, h ? vn->vn_nr_item:0, -1, |
| 1378 | snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW); |
| 1379 | if (!h) |
| 1380 | { |
| 1381 | int lnver1; |
| 1382 | |
| 1383 | lnver1 = get_num_ver (vn->vn_mode, tb, h, |
| 1384 | lpar - ((tb->lbytes != -1) ? 1 : 0), tb->lbytes, 0, -1, |
| 1385 | snum012 + LEFT_SHIFT_FLOW, FLOW); |
| 1386 | if (lnver > lnver1) |
| 1387 | lset = LEFT_SHIFT_FLOW, lnver = lnver1; |
| 1388 | } |
| 1389 | |
| 1390 | |
| 1391 | /* calculate number of blocks S[h] must be split into when |
| 1392 | r_shift_num first items and r_shift_bytes of the left most |
| 1393 | liquid item to be shifted are shifted to the right neighbor, |
| 1394 | as well as number of items in each part of the splitted node (s012 numbers), |
| 1395 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any |
| 1396 | */ |
| 1397 | rset = RIGHT_SHIFT_NO_FLOW; |
| 1398 | rnver = get_num_ver (vn->vn_mode, tb, h, |
| 1399 | 0, -1, h ? (vn->vn_nr_item-rpar) : (rpar - (( tb->rbytes != -1 ) ? 1 : 0)), -1, |
| 1400 | snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW); |
| 1401 | if (!h) |
| 1402 | { |
| 1403 | int rnver1; |
| 1404 | |
| 1405 | rnver1 = get_num_ver (vn->vn_mode, tb, h, |
| 1406 | 0, -1, (rpar - ((tb->rbytes != -1) ? 1 : 0)), tb->rbytes, |
| 1407 | snum012 + RIGHT_SHIFT_FLOW, FLOW); |
| 1408 | |
| 1409 | if (rnver > rnver1) |
| 1410 | rset = RIGHT_SHIFT_FLOW, rnver = rnver1; |
| 1411 | } |
| 1412 | |
| 1413 | |
| 1414 | /* calculate number of blocks S[h] must be split into when |
| 1415 | items are shifted in both directions, |
| 1416 | as well as number of items in each part of the splitted node (s012 numbers), |
| 1417 | and number of bytes (s1bytes) of the shared drop which flow to S1 if any |
| 1418 | */ |
| 1419 | lrset = LR_SHIFT_NO_FLOW; |
| 1420 | lrnver = get_num_ver (vn->vn_mode, tb, h, |
| 1421 | lpar - ((h || tb->lbytes == -1) ? 0 : 1), -1, h ? (vn->vn_nr_item-rpar):(rpar - ((tb->rbytes != -1) ? 1 : 0)), -1, |
| 1422 | snum012 + LR_SHIFT_NO_FLOW, NO_FLOW); |
| 1423 | if (!h) |
| 1424 | { |
| 1425 | int lrnver1; |
| 1426 | |
| 1427 | lrnver1 = get_num_ver (vn->vn_mode, tb, h, |
| 1428 | lpar - ((tb->lbytes != -1) ? 1 : 0), tb->lbytes, (rpar - ((tb->rbytes != -1) ? 1 : 0)), tb->rbytes, |
| 1429 | snum012 + LR_SHIFT_FLOW, FLOW); |
| 1430 | if (lrnver > lrnver1) |
| 1431 | lrset = LR_SHIFT_FLOW, lrnver = lrnver1; |
| 1432 | } |
| 1433 | |
| 1434 | |
| 1435 | |
| 1436 | /* Our general shifting strategy is: |
| 1437 | 1) to minimized number of new nodes; |
| 1438 | 2) to minimized number of neighbors involved in shifting; |
| 1439 | 3) to minimized number of disk reads; */ |
| 1440 | |
| 1441 | /* we can win TWO or ONE nodes by shifting in both directions */ |
| 1442 | if (lrnver < lnver && lrnver < rnver) |
| 1443 | { |
| 1444 | RFALSE( h && |
| 1445 | (tb->lnum[h] != 1 || |
| 1446 | tb->rnum[h] != 1 || |
| 1447 | lrnver != 1 || rnver != 2 || lnver != 2 || h != 1), |
| 1448 | "vs-8230: bad h"); |
| 1449 | if (lrset == LR_SHIFT_FLOW) |
| 1450 | set_parameters (tb, h, tb->lnum[h], tb->rnum[h], lrnver, snum012 + lrset, |
| 1451 | tb->lbytes, tb->rbytes); |
| 1452 | else |
| 1453 | set_parameters (tb, h, tb->lnum[h] - ((tb->lbytes == -1) ? 0 : 1), |
| 1454 | tb->rnum[h] - ((tb->rbytes == -1) ? 0 : 1), lrnver, snum012 + lrset, -1, -1); |
| 1455 | |
| 1456 | return CARRY_ON; |
| 1457 | } |
| 1458 | |
| 1459 | /* if shifting doesn't lead to better packing then don't shift */ |
| 1460 | if (nver == lrnver) |
| 1461 | { |
| 1462 | set_parameters (tb, h, 0, 0, nver, snum012 + nset, -1, -1); |
| 1463 | return CARRY_ON; |
| 1464 | } |
| 1465 | |
| 1466 | |
| 1467 | /* now we know that for better packing shifting in only one |
| 1468 | direction either to the left or to the right is required */ |
| 1469 | |
| 1470 | /* if shifting to the left is better than shifting to the right */ |
| 1471 | if (lnver < rnver) |
| 1472 | { |
| 1473 | SET_PAR_SHIFT_LEFT; |
| 1474 | return CARRY_ON; |
| 1475 | } |
| 1476 | |
| 1477 | /* if shifting to the right is better than shifting to the left */ |
| 1478 | if (lnver > rnver) |
| 1479 | { |
| 1480 | SET_PAR_SHIFT_RIGHT; |
| 1481 | return CARRY_ON; |
| 1482 | } |
| 1483 | |
| 1484 | |
| 1485 | /* now shifting in either direction gives the same number |
| 1486 | of nodes and we can make use of the cached neighbors */ |
| 1487 | if (is_left_neighbor_in_cache (tb,h)) |
| 1488 | { |
| 1489 | SET_PAR_SHIFT_LEFT; |
| 1490 | return CARRY_ON; |
| 1491 | } |
| 1492 | |
| 1493 | /* shift to the right independently on whether the right neighbor in cache or not */ |
| 1494 | SET_PAR_SHIFT_RIGHT; |
| 1495 | return CARRY_ON; |
| 1496 | } |
| 1497 | } |
| 1498 | |
| 1499 | |
| 1500 | /* Check whether current node S[h] is balanced when Decreasing its size by |
| 1501 | * Deleting or Cutting for INTERNAL node of S+tree. |
| 1502 | * Calculate parameters for balancing for current level h. |
| 1503 | * Parameters: |
| 1504 | * tb tree_balance structure; |
| 1505 | * h current level of the node; |
| 1506 | * inum item number in S[h]; |
| 1507 | * mode i - insert, p - paste; |
| 1508 | * Returns: 1 - schedule occurred; |
| 1509 | * 0 - balancing for higher levels needed; |
| 1510 | * -1 - no balancing for higher levels needed; |
| 1511 | * -2 - no disk space. |
| 1512 | * |
| 1513 | * Note: Items of internal nodes have fixed size, so the balance condition for |
| 1514 | * the internal part of S+tree is as for the B-trees. |
| 1515 | */ |
| 1516 | static int dc_check_balance_internal (struct tree_balance * tb, int h) |
| 1517 | { |
| 1518 | struct virtual_node * vn = tb->tb_vn; |
| 1519 | |
| 1520 | /* Sh is the node whose balance is currently being checked, |
| 1521 | and Fh is its father. */ |
| 1522 | struct buffer_head * Sh, * Fh; |
| 1523 | int maxsize, |
| 1524 | n_ret_value; |
| 1525 | int lfree, rfree /* free space in L and R */; |
| 1526 | |
| 1527 | Sh = PATH_H_PBUFFER (tb->tb_path, h); |
| 1528 | Fh = PATH_H_PPARENT (tb->tb_path, h); |
| 1529 | |
| 1530 | maxsize = MAX_CHILD_SIZE(Sh); |
| 1531 | |
| 1532 | /* using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */ |
| 1533 | /* new_nr_item = number of items node would have if operation is */ |
| 1534 | /* performed without balancing (new_nr_item); */ |
| 1535 | create_virtual_node (tb, h); |
| 1536 | |
| 1537 | if ( ! Fh ) |
| 1538 | { /* S[h] is the root. */ |
| 1539 | if ( vn->vn_nr_item > 0 ) |
| 1540 | { |
| 1541 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); |
| 1542 | return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */ |
| 1543 | } |
| 1544 | /* new_nr_item == 0. |
| 1545 | * Current root will be deleted resulting in |
| 1546 | * decrementing the tree height. */ |
| 1547 | set_parameters (tb, h, 0, 0, 0, NULL, -1, -1); |
| 1548 | return CARRY_ON; |
| 1549 | } |
| 1550 | |
| 1551 | if ( (n_ret_value = get_parents(tb,h)) != CARRY_ON ) |
| 1552 | return n_ret_value; |
| 1553 | |
| 1554 | |
| 1555 | /* get free space of neighbors */ |
| 1556 | rfree = get_rfree (tb, h); |
| 1557 | lfree = get_lfree (tb, h); |
| 1558 | |
| 1559 | /* determine maximal number of items we can fit into neighbors */ |
| 1560 | check_left (tb, h, lfree); |
| 1561 | check_right (tb, h, rfree); |
| 1562 | |
| 1563 | |
| 1564 | if ( vn->vn_nr_item >= MIN_NR_KEY(Sh) ) |
| 1565 | { /* Balance condition for the internal node is valid. |
| 1566 | * In this case we balance only if it leads to better packing. */ |
| 1567 | if ( vn->vn_nr_item == MIN_NR_KEY(Sh) ) |
| 1568 | { /* Here we join S[h] with one of its neighbors, |
| 1569 | * which is impossible with greater values of new_nr_item. */ |
| 1570 | if ( tb->lnum[h] >= vn->vn_nr_item + 1 ) |
| 1571 | { |
| 1572 | /* All contents of S[h] can be moved to L[h]. */ |
| 1573 | int n; |
| 1574 | int order_L; |
| 1575 | |
| 1576 | order_L = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; |
| 1577 | n = dc_size(B_N_CHILD(tb->FL[h],order_L)) / (DC_SIZE + KEY_SIZE); |
| 1578 | set_parameters (tb, h, -n-1, 0, 0, NULL, -1, -1); |
| 1579 | return CARRY_ON; |
| 1580 | } |
| 1581 | |
| 1582 | if ( tb->rnum[h] >= vn->vn_nr_item + 1 ) |
| 1583 | { |
| 1584 | /* All contents of S[h] can be moved to R[h]. */ |
| 1585 | int n; |
| 1586 | int order_R; |
| 1587 | |
| 1588 | order_R = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==B_NR_ITEMS(Fh)) ? 0 : n + 1; |
| 1589 | n = dc_size(B_N_CHILD(tb->FR[h],order_R)) / (DC_SIZE + KEY_SIZE); |
| 1590 | set_parameters (tb, h, 0, -n-1, 0, NULL, -1, -1); |
| 1591 | return CARRY_ON; |
| 1592 | } |
| 1593 | } |
| 1594 | |
| 1595 | if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) |
| 1596 | { |
| 1597 | /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */ |
| 1598 | int to_r; |
| 1599 | |
| 1600 | to_r = ((MAX_NR_KEY(Sh)<<1)+2-tb->lnum[h]-tb->rnum[h]+vn->vn_nr_item+1)/2 - |
| 1601 | (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); |
| 1602 | set_parameters (tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1); |
| 1603 | return CARRY_ON; |
| 1604 | } |
| 1605 | |
| 1606 | /* Balancing does not lead to better packing. */ |
| 1607 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); |
| 1608 | return NO_BALANCING_NEEDED; |
| 1609 | } |
| 1610 | |
| 1611 | /* Current node contain insufficient number of items. Balancing is required. */ |
| 1612 | /* Check whether we can merge S[h] with left neighbor. */ |
| 1613 | if (tb->lnum[h] >= vn->vn_nr_item + 1) |
| 1614 | if (is_left_neighbor_in_cache (tb,h) || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) |
| 1615 | { |
| 1616 | int n; |
| 1617 | int order_L; |
| 1618 | |
| 1619 | order_L = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; |
| 1620 | n = dc_size(B_N_CHILD(tb->FL[h],order_L)) / (DC_SIZE + KEY_SIZE); |
| 1621 | set_parameters (tb, h, -n-1, 0, 0, NULL, -1, -1); |
| 1622 | return CARRY_ON; |
| 1623 | } |
| 1624 | |
| 1625 | /* Check whether we can merge S[h] with right neighbor. */ |
| 1626 | if (tb->rnum[h] >= vn->vn_nr_item + 1) |
| 1627 | { |
| 1628 | int n; |
| 1629 | int order_R; |
| 1630 | |
| 1631 | order_R = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==B_NR_ITEMS(Fh)) ? 0 : (n + 1); |
| 1632 | n = dc_size(B_N_CHILD(tb->FR[h],order_R)) / (DC_SIZE + KEY_SIZE); |
| 1633 | set_parameters (tb, h, 0, -n-1, 0, NULL, -1, -1); |
| 1634 | return CARRY_ON; |
| 1635 | } |
| 1636 | |
| 1637 | /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */ |
| 1638 | if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) |
| 1639 | { |
| 1640 | int to_r; |
| 1641 | |
| 1642 | to_r = ((MAX_NR_KEY(Sh)<<1)+2-tb->lnum[h]-tb->rnum[h]+vn->vn_nr_item+1)/2 - |
| 1643 | (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); |
| 1644 | set_parameters (tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1); |
| 1645 | return CARRY_ON; |
| 1646 | } |
| 1647 | |
| 1648 | /* For internal nodes try to borrow item from a neighbor */ |
| 1649 | RFALSE( !tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root"); |
| 1650 | |
| 1651 | /* Borrow one or two items from caching neighbor */ |
| 1652 | if (is_left_neighbor_in_cache (tb,h) || !tb->FR[h]) |
| 1653 | { |
| 1654 | int from_l; |
| 1655 | |
| 1656 | from_l = (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item + 1) / 2 - (vn->vn_nr_item + 1); |
| 1657 | set_parameters (tb, h, -from_l, 0, 1, NULL, -1, -1); |
| 1658 | return CARRY_ON; |
| 1659 | } |
| 1660 | |
| 1661 | set_parameters (tb, h, 0, -((MAX_NR_KEY(Sh)+1-tb->rnum[h]+vn->vn_nr_item+1)/2-(vn->vn_nr_item+1)), 1, |
| 1662 | NULL, -1, -1); |
| 1663 | return CARRY_ON; |
| 1664 | } |
| 1665 | |
| 1666 | |
| 1667 | /* Check whether current node S[h] is balanced when Decreasing its size by |
| 1668 | * Deleting or Truncating for LEAF node of S+tree. |
| 1669 | * Calculate parameters for balancing for current level h. |
| 1670 | * Parameters: |
| 1671 | * tb tree_balance structure; |
| 1672 | * h current level of the node; |
| 1673 | * inum item number in S[h]; |
| 1674 | * mode i - insert, p - paste; |
| 1675 | * Returns: 1 - schedule occurred; |
| 1676 | * 0 - balancing for higher levels needed; |
| 1677 | * -1 - no balancing for higher levels needed; |
| 1678 | * -2 - no disk space. |
| 1679 | */ |
| 1680 | static int dc_check_balance_leaf (struct tree_balance * tb, int h) |
| 1681 | { |
| 1682 | struct virtual_node * vn = tb->tb_vn; |
| 1683 | |
| 1684 | /* Number of bytes that must be deleted from |
| 1685 | (value is negative if bytes are deleted) buffer which |
| 1686 | contains node being balanced. The mnemonic is that the |
| 1687 | attempted change in node space used level is levbytes bytes. */ |
| 1688 | int levbytes; |
| 1689 | /* the maximal item size */ |
| 1690 | int maxsize, |
| 1691 | n_ret_value; |
| 1692 | /* S0 is the node whose balance is currently being checked, |
| 1693 | and F0 is its father. */ |
| 1694 | struct buffer_head * S0, * F0; |
| 1695 | int lfree, rfree /* free space in L and R */; |
| 1696 | |
| 1697 | S0 = PATH_H_PBUFFER (tb->tb_path, 0); |
| 1698 | F0 = PATH_H_PPARENT (tb->tb_path, 0); |
| 1699 | |
| 1700 | levbytes = tb->insert_size[h]; |
| 1701 | |
| 1702 | maxsize = MAX_CHILD_SIZE(S0); /* maximal possible size of an item */ |
| 1703 | |
| 1704 | if ( ! F0 ) |
| 1705 | { /* S[0] is the root now. */ |
| 1706 | |
| 1707 | RFALSE( -levbytes >= maxsize - B_FREE_SPACE (S0), |
| 1708 | "vs-8240: attempt to create empty buffer tree"); |
| 1709 | |
| 1710 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); |
| 1711 | return NO_BALANCING_NEEDED; |
| 1712 | } |
| 1713 | |
| 1714 | if ( (n_ret_value = get_parents(tb,h)) != CARRY_ON ) |
| 1715 | return n_ret_value; |
| 1716 | |
| 1717 | /* get free space of neighbors */ |
| 1718 | rfree = get_rfree (tb, h); |
| 1719 | lfree = get_lfree (tb, h); |
| 1720 | |
| 1721 | create_virtual_node (tb, h); |
| 1722 | |
| 1723 | /* if 3 leaves can be merge to one, set parameters and return */ |
| 1724 | if (are_leaves_removable (tb, lfree, rfree)) |
| 1725 | return CARRY_ON; |
| 1726 | |
| 1727 | /* determine maximal number of items we can shift to the left/right neighbor |
| 1728 | and the maximal number of bytes that can flow to the left/right neighbor |
| 1729 | from the left/right most liquid item that cannot be shifted from S[0] entirely |
| 1730 | */ |
| 1731 | check_left (tb, h, lfree); |
| 1732 | check_right (tb, h, rfree); |
| 1733 | |
| 1734 | /* check whether we can merge S with left neighbor. */ |
| 1735 | if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1) |
| 1736 | if (is_left_neighbor_in_cache (tb,h) || |
| 1737 | ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */ |
| 1738 | !tb->FR[h]) { |
| 1739 | |
| 1740 | RFALSE( !tb->FL[h], "vs-8245: dc_check_balance_leaf: FL[h] must exist"); |
| 1741 | |
| 1742 | /* set parameter to merge S[0] with its left neighbor */ |
| 1743 | set_parameters (tb, h, -1, 0, 0, NULL, -1, -1); |
| 1744 | return CARRY_ON; |
| 1745 | } |
| 1746 | |
| 1747 | /* check whether we can merge S[0] with right neighbor. */ |
| 1748 | if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) { |
| 1749 | set_parameters (tb, h, 0, -1, 0, NULL, -1, -1); |
| 1750 | return CARRY_ON; |
| 1751 | } |
| 1752 | |
| 1753 | /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */ |
| 1754 | if (is_leaf_removable (tb)) |
| 1755 | return CARRY_ON; |
| 1756 | |
| 1757 | /* Balancing is not required. */ |
| 1758 | tb->s0num = vn->vn_nr_item; |
| 1759 | set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); |
| 1760 | return NO_BALANCING_NEEDED; |
| 1761 | } |
| 1762 | |
| 1763 | |
| 1764 | |
| 1765 | /* Check whether current node S[h] is balanced when Decreasing its size by |
| 1766 | * Deleting or Cutting. |
| 1767 | * Calculate parameters for balancing for current level h. |
| 1768 | * Parameters: |
| 1769 | * tb tree_balance structure; |
| 1770 | * h current level of the node; |
| 1771 | * inum item number in S[h]; |
| 1772 | * mode d - delete, c - cut. |
| 1773 | * Returns: 1 - schedule occurred; |
| 1774 | * 0 - balancing for higher levels needed; |
| 1775 | * -1 - no balancing for higher levels needed; |
| 1776 | * -2 - no disk space. |
| 1777 | */ |
| 1778 | static int dc_check_balance (struct tree_balance * tb, int h) |
| 1779 | { |
| 1780 | RFALSE( ! (PATH_H_PBUFFER (tb->tb_path, h)), "vs-8250: S is not initialized"); |
| 1781 | |
| 1782 | if ( h ) |
| 1783 | return dc_check_balance_internal (tb, h); |
| 1784 | else |
| 1785 | return dc_check_balance_leaf (tb, h); |
| 1786 | } |
| 1787 | |
| 1788 | |
| 1789 | |
| 1790 | /* Check whether current node S[h] is balanced. |
| 1791 | * Calculate parameters for balancing for current level h. |
| 1792 | * Parameters: |
| 1793 | * |
| 1794 | * tb tree_balance structure: |
| 1795 | * |
| 1796 | * tb is a large structure that must be read about in the header file |
| 1797 | * at the same time as this procedure if the reader is to successfully |
| 1798 | * understand this procedure |
| 1799 | * |
| 1800 | * h current level of the node; |
| 1801 | * inum item number in S[h]; |
| 1802 | * mode i - insert, p - paste, d - delete, c - cut. |
| 1803 | * Returns: 1 - schedule occurred; |
| 1804 | * 0 - balancing for higher levels needed; |
| 1805 | * -1 - no balancing for higher levels needed; |
| 1806 | * -2 - no disk space. |
| 1807 | */ |
| 1808 | static int check_balance (int mode, |
| 1809 | struct tree_balance * tb, |
| 1810 | int h, |
| 1811 | int inum, |
| 1812 | int pos_in_item, |
| 1813 | struct item_head * ins_ih, |
| 1814 | const void * data |
| 1815 | ) |
| 1816 | { |
| 1817 | struct virtual_node * vn; |
| 1818 | |
| 1819 | vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf); |
| 1820 | vn->vn_free_ptr = (char *)(tb->tb_vn + 1); |
| 1821 | vn->vn_mode = mode; |
| 1822 | vn->vn_affected_item_num = inum; |
| 1823 | vn->vn_pos_in_item = pos_in_item; |
| 1824 | vn->vn_ins_ih = ins_ih; |
| 1825 | vn->vn_data = data; |
| 1826 | |
| 1827 | RFALSE( mode == M_INSERT && !vn->vn_ins_ih, |
| 1828 | "vs-8255: ins_ih can not be 0 in insert mode"); |
| 1829 | |
| 1830 | if ( tb->insert_size[h] > 0 ) |
| 1831 | /* Calculate balance parameters when size of node is increasing. */ |
| 1832 | return ip_check_balance (tb, h); |
| 1833 | |
| 1834 | /* Calculate balance parameters when size of node is decreasing. */ |
| 1835 | return dc_check_balance (tb, h); |
| 1836 | } |
| 1837 | |
| 1838 | |
| 1839 | |
| 1840 | /* Check whether parent at the path is the really parent of the current node.*/ |
| 1841 | static int get_direct_parent( |
| 1842 | struct tree_balance * p_s_tb, |
| 1843 | int n_h |
| 1844 | ) { |
| 1845 | struct buffer_head * p_s_bh; |
| 1846 | struct path * p_s_path = p_s_tb->tb_path; |
| 1847 | int n_position, |
| 1848 | n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h); |
| 1849 | |
| 1850 | /* We are in the root or in the new root. */ |
| 1851 | if ( n_path_offset <= FIRST_PATH_ELEMENT_OFFSET ) { |
| 1852 | |
| 1853 | RFALSE( n_path_offset < FIRST_PATH_ELEMENT_OFFSET - 1, |
| 1854 | "PAP-8260: invalid offset in the path"); |
| 1855 | |
| 1856 | if ( PATH_OFFSET_PBUFFER(p_s_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr == |
| 1857 | SB_ROOT_BLOCK (p_s_tb->tb_sb) ) { |
| 1858 | /* Root is not changed. */ |
| 1859 | PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1) = NULL; |
| 1860 | PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1) = 0; |
| 1861 | return CARRY_ON; |
| 1862 | } |
| 1863 | return REPEAT_SEARCH; /* Root is changed and we must recalculate the path. */ |
| 1864 | } |
| 1865 | |
| 1866 | if ( ! B_IS_IN_TREE(p_s_bh = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1)) ) |
| 1867 | return REPEAT_SEARCH; /* Parent in the path is not in the tree. */ |
| 1868 | |
| 1869 | if ( (n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1)) > B_NR_ITEMS(p_s_bh) ) |
| 1870 | return REPEAT_SEARCH; |
| 1871 | |
| 1872 | if ( B_N_CHILD_NUM(p_s_bh, n_position) != PATH_OFFSET_PBUFFER(p_s_path, n_path_offset)->b_blocknr ) |
| 1873 | /* Parent in the path is not parent of the current node in the tree. */ |
| 1874 | return REPEAT_SEARCH; |
| 1875 | |
| 1876 | if ( buffer_locked(p_s_bh) ) { |
| 1877 | __wait_on_buffer(p_s_bh); |
| 1878 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) |
| 1879 | return REPEAT_SEARCH; |
| 1880 | } |
| 1881 | |
| 1882 | return CARRY_ON; /* Parent in the path is unlocked and really parent of the current node. */ |
| 1883 | } |
| 1884 | |
| 1885 | |
| 1886 | /* Using lnum[n_h] and rnum[n_h] we should determine what neighbors |
| 1887 | * of S[n_h] we |
| 1888 | * need in order to balance S[n_h], and get them if necessary. |
| 1889 | * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; |
| 1890 | * CARRY_ON - schedule didn't occur while the function worked; |
| 1891 | */ |
| 1892 | static int get_neighbors( |
| 1893 | struct tree_balance * p_s_tb, |
| 1894 | int n_h |
| 1895 | ) { |
| 1896 | int n_child_position, |
| 1897 | n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h + 1); |
| 1898 | unsigned long n_son_number; |
| 1899 | struct super_block * p_s_sb = p_s_tb->tb_sb; |
| 1900 | struct buffer_head * p_s_bh; |
| 1901 | |
| 1902 | |
| 1903 | PROC_INFO_INC( p_s_sb, get_neighbors[ n_h ] ); |
| 1904 | |
| 1905 | if ( p_s_tb->lnum[n_h] ) { |
| 1906 | /* We need left neighbor to balance S[n_h]. */ |
| 1907 | PROC_INFO_INC( p_s_sb, need_l_neighbor[ n_h ] ); |
| 1908 | p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset); |
| 1909 | |
| 1910 | RFALSE( p_s_bh == p_s_tb->FL[n_h] && |
| 1911 | ! PATH_OFFSET_POSITION(p_s_tb->tb_path, n_path_offset), |
| 1912 | "PAP-8270: invalid position in the parent"); |
| 1913 | |
| 1914 | n_child_position = ( p_s_bh == p_s_tb->FL[n_h] ) ? p_s_tb->lkey[n_h] : B_NR_ITEMS (p_s_tb->FL[n_h]); |
| 1915 | n_son_number = B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position); |
| 1916 | p_s_bh = sb_bread(p_s_sb, n_son_number); |
| 1917 | if (!p_s_bh) |
| 1918 | return IO_ERROR; |
| 1919 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { |
| 1920 | decrement_bcount(p_s_bh); |
| 1921 | PROC_INFO_INC( p_s_sb, get_neighbors_restart[ n_h ] ); |
| 1922 | return REPEAT_SEARCH; |
| 1923 | } |
| 1924 | |
| 1925 | RFALSE( ! B_IS_IN_TREE(p_s_tb->FL[n_h]) || |
| 1926 | n_child_position > B_NR_ITEMS(p_s_tb->FL[n_h]) || |
| 1927 | B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position) != |
| 1928 | p_s_bh->b_blocknr, "PAP-8275: invalid parent"); |
| 1929 | RFALSE( ! B_IS_IN_TREE(p_s_bh), "PAP-8280: invalid child"); |
| 1930 | RFALSE( ! n_h && |
| 1931 | B_FREE_SPACE (p_s_bh) != MAX_CHILD_SIZE (p_s_bh) - dc_size(B_N_CHILD (p_s_tb->FL[0],n_child_position)), |
| 1932 | "PAP-8290: invalid child size of left neighbor"); |
| 1933 | |
| 1934 | decrement_bcount(p_s_tb->L[n_h]); |
| 1935 | p_s_tb->L[n_h] = p_s_bh; |
| 1936 | } |
| 1937 | |
| 1938 | |
| 1939 | if ( p_s_tb->rnum[n_h] ) { /* We need right neighbor to balance S[n_path_offset]. */ |
| 1940 | PROC_INFO_INC( p_s_sb, need_r_neighbor[ n_h ] ); |
| 1941 | p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset); |
| 1942 | |
| 1943 | RFALSE( p_s_bh == p_s_tb->FR[n_h] && |
| 1944 | PATH_OFFSET_POSITION(p_s_tb->tb_path, n_path_offset) >= B_NR_ITEMS(p_s_bh), |
| 1945 | "PAP-8295: invalid position in the parent"); |
| 1946 | |
| 1947 | n_child_position = ( p_s_bh == p_s_tb->FR[n_h] ) ? p_s_tb->rkey[n_h] + 1 : 0; |
| 1948 | n_son_number = B_N_CHILD_NUM(p_s_tb->FR[n_h], n_child_position); |
| 1949 | p_s_bh = sb_bread(p_s_sb, n_son_number); |
| 1950 | if (!p_s_bh) |
| 1951 | return IO_ERROR; |
| 1952 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { |
| 1953 | decrement_bcount(p_s_bh); |
| 1954 | PROC_INFO_INC( p_s_sb, get_neighbors_restart[ n_h ] ); |
| 1955 | return REPEAT_SEARCH; |
| 1956 | } |
| 1957 | decrement_bcount(p_s_tb->R[n_h]); |
| 1958 | p_s_tb->R[n_h] = p_s_bh; |
| 1959 | |
| 1960 | RFALSE( ! n_h && B_FREE_SPACE (p_s_bh) != MAX_CHILD_SIZE (p_s_bh) - dc_size(B_N_CHILD (p_s_tb->FR[0],n_child_position)), |
| 1961 | "PAP-8300: invalid child size of right neighbor (%d != %d - %d)", |
| 1962 | B_FREE_SPACE (p_s_bh), MAX_CHILD_SIZE (p_s_bh), |
| 1963 | dc_size(B_N_CHILD (p_s_tb->FR[0],n_child_position))); |
| 1964 | |
| 1965 | } |
| 1966 | return CARRY_ON; |
| 1967 | } |
| 1968 | |
| 1969 | #ifdef CONFIG_REISERFS_CHECK |
| 1970 | void * reiserfs_kmalloc (size_t size, int flags, struct super_block * s) |
| 1971 | { |
| 1972 | void * vp; |
| 1973 | static size_t malloced; |
| 1974 | |
| 1975 | |
| 1976 | vp = kmalloc (size, flags); |
| 1977 | if (vp) { |
| 1978 | REISERFS_SB(s)->s_kmallocs += size; |
| 1979 | if (REISERFS_SB(s)->s_kmallocs > malloced + 200000) { |
| 1980 | reiserfs_warning (s, |
| 1981 | "vs-8301: reiserfs_kmalloc: allocated memory %d", |
| 1982 | REISERFS_SB(s)->s_kmallocs); |
| 1983 | malloced = REISERFS_SB(s)->s_kmallocs; |
| 1984 | } |
| 1985 | } |
| 1986 | return vp; |
| 1987 | } |
| 1988 | |
| 1989 | void reiserfs_kfree (const void * vp, size_t size, struct super_block * s) |
| 1990 | { |
| 1991 | kfree (vp); |
| 1992 | |
| 1993 | REISERFS_SB(s)->s_kmallocs -= size; |
| 1994 | if (REISERFS_SB(s)->s_kmallocs < 0) |
| 1995 | reiserfs_warning (s, "vs-8302: reiserfs_kfree: allocated memory %d", |
| 1996 | REISERFS_SB(s)->s_kmallocs); |
| 1997 | |
| 1998 | } |
| 1999 | #endif |
| 2000 | |
| 2001 | |
| 2002 | static int get_virtual_node_size (struct super_block * sb, struct buffer_head * bh) |
| 2003 | { |
| 2004 | int max_num_of_items; |
| 2005 | int max_num_of_entries; |
| 2006 | unsigned long blocksize = sb->s_blocksize; |
| 2007 | |
| 2008 | #define MIN_NAME_LEN 1 |
| 2009 | |
| 2010 | max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN); |
| 2011 | max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) / |
| 2012 | (DEH_SIZE + MIN_NAME_LEN); |
| 2013 | |
| 2014 | return sizeof(struct virtual_node) + |
| 2015 | max(max_num_of_items * sizeof (struct virtual_item), |
| 2016 | sizeof (struct virtual_item) + sizeof(struct direntry_uarea) + |
| 2017 | (max_num_of_entries - 1) * sizeof (__u16)); |
| 2018 | } |
| 2019 | |
| 2020 | |
| 2021 | |
| 2022 | /* maybe we should fail balancing we are going to perform when kmalloc |
| 2023 | fails several times. But now it will loop until kmalloc gets |
| 2024 | required memory */ |
| 2025 | static int get_mem_for_virtual_node (struct tree_balance * tb) |
| 2026 | { |
| 2027 | int check_fs = 0; |
| 2028 | int size; |
| 2029 | char * buf; |
| 2030 | |
| 2031 | size = get_virtual_node_size (tb->tb_sb, PATH_PLAST_BUFFER (tb->tb_path)); |
| 2032 | |
| 2033 | if (size > tb->vn_buf_size) { |
| 2034 | /* we have to allocate more memory for virtual node */ |
| 2035 | if (tb->vn_buf) { |
| 2036 | /* free memory allocated before */ |
| 2037 | reiserfs_kfree (tb->vn_buf, tb->vn_buf_size, tb->tb_sb); |
| 2038 | /* this is not needed if kfree is atomic */ |
| 2039 | check_fs = 1; |
| 2040 | } |
| 2041 | |
| 2042 | /* virtual node requires now more memory */ |
| 2043 | tb->vn_buf_size = size; |
| 2044 | |
| 2045 | /* get memory for virtual item */ |
| 2046 | buf = reiserfs_kmalloc(size, GFP_ATOMIC | __GFP_NOWARN, tb->tb_sb); |
| 2047 | if ( ! buf ) { |
| 2048 | /* getting memory with GFP_KERNEL priority may involve |
| 2049 | balancing now (due to indirect_to_direct conversion on |
| 2050 | dcache shrinking). So, release path and collected |
| 2051 | resources here */ |
| 2052 | free_buffers_in_tb (tb); |
| 2053 | buf = reiserfs_kmalloc(size, GFP_NOFS, tb->tb_sb); |
| 2054 | if ( !buf ) { |
| 2055 | #ifdef CONFIG_REISERFS_CHECK |
| 2056 | reiserfs_warning (tb->tb_sb, |
| 2057 | "vs-8345: get_mem_for_virtual_node: " |
| 2058 | "kmalloc failed. reiserfs kmalloced %d bytes", |
| 2059 | REISERFS_SB(tb->tb_sb)->s_kmallocs); |
| 2060 | #endif |
| 2061 | tb->vn_buf_size = 0; |
| 2062 | } |
| 2063 | tb->vn_buf = buf; |
| 2064 | schedule() ; |
| 2065 | return REPEAT_SEARCH; |
| 2066 | } |
| 2067 | |
| 2068 | tb->vn_buf = buf; |
| 2069 | } |
| 2070 | |
| 2071 | if ( check_fs && FILESYSTEM_CHANGED_TB (tb) ) |
| 2072 | return REPEAT_SEARCH; |
| 2073 | |
| 2074 | return CARRY_ON; |
| 2075 | } |
| 2076 | |
| 2077 | |
| 2078 | #ifdef CONFIG_REISERFS_CHECK |
| 2079 | static void tb_buffer_sanity_check (struct super_block * p_s_sb, |
| 2080 | struct buffer_head * p_s_bh, |
| 2081 | const char *descr, int level) { |
| 2082 | if (p_s_bh) { |
| 2083 | if (atomic_read (&(p_s_bh->b_count)) <= 0) { |
| 2084 | |
| 2085 | reiserfs_panic (p_s_sb, "jmacd-1: tb_buffer_sanity_check(): negative or zero reference counter for buffer %s[%d] (%b)\n", descr, level, p_s_bh); |
| 2086 | } |
| 2087 | |
| 2088 | if ( ! buffer_uptodate (p_s_bh) ) { |
| 2089 | reiserfs_panic (p_s_sb, "jmacd-2: tb_buffer_sanity_check(): buffer is not up to date %s[%d] (%b)\n", descr, level, p_s_bh); |
| 2090 | } |
| 2091 | |
| 2092 | if ( ! B_IS_IN_TREE (p_s_bh) ) { |
| 2093 | reiserfs_panic (p_s_sb, "jmacd-3: tb_buffer_sanity_check(): buffer is not in tree %s[%d] (%b)\n", descr, level, p_s_bh); |
| 2094 | } |
| 2095 | |
| 2096 | if (p_s_bh->b_bdev != p_s_sb->s_bdev) { |
| 2097 | reiserfs_panic (p_s_sb, "jmacd-4: tb_buffer_sanity_check(): buffer has wrong device %s[%d] (%b)\n", descr, level, p_s_bh); |
| 2098 | } |
| 2099 | |
| 2100 | if (p_s_bh->b_size != p_s_sb->s_blocksize) { |
| 2101 | reiserfs_panic (p_s_sb, "jmacd-5: tb_buffer_sanity_check(): buffer has wrong blocksize %s[%d] (%b)\n", descr, level, p_s_bh); |
| 2102 | } |
| 2103 | |
| 2104 | if (p_s_bh->b_blocknr > SB_BLOCK_COUNT(p_s_sb)) { |
| 2105 | reiserfs_panic (p_s_sb, "jmacd-6: tb_buffer_sanity_check(): buffer block number too high %s[%d] (%b)\n", descr, level, p_s_bh); |
| 2106 | } |
| 2107 | } |
| 2108 | } |
| 2109 | #else |
| 2110 | static void tb_buffer_sanity_check (struct super_block * p_s_sb, |
| 2111 | struct buffer_head * p_s_bh, |
| 2112 | const char *descr, int level) |
| 2113 | {;} |
| 2114 | #endif |
| 2115 | |
| 2116 | static int clear_all_dirty_bits(struct super_block *s, |
| 2117 | struct buffer_head *bh) { |
| 2118 | return reiserfs_prepare_for_journal(s, bh, 0) ; |
| 2119 | } |
| 2120 | |
| 2121 | static int wait_tb_buffers_until_unlocked (struct tree_balance * p_s_tb) |
| 2122 | { |
| 2123 | struct buffer_head * locked; |
| 2124 | #ifdef CONFIG_REISERFS_CHECK |
| 2125 | int repeat_counter = 0; |
| 2126 | #endif |
| 2127 | int i; |
| 2128 | |
| 2129 | do { |
| 2130 | |
| 2131 | locked = NULL; |
| 2132 | |
| 2133 | for ( i = p_s_tb->tb_path->path_length; !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i-- ) { |
| 2134 | if ( PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i) ) { |
| 2135 | /* if I understand correctly, we can only be sure the last buffer |
| 2136 | ** in the path is in the tree --clm |
| 2137 | */ |
| 2138 | #ifdef CONFIG_REISERFS_CHECK |
| 2139 | if (PATH_PLAST_BUFFER(p_s_tb->tb_path) == |
| 2140 | PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) { |
| 2141 | tb_buffer_sanity_check (p_s_tb->tb_sb, |
| 2142 | PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i), |
| 2143 | "S", |
| 2144 | p_s_tb->tb_path->path_length - i); |
| 2145 | } |
| 2146 | #endif |
| 2147 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, |
| 2148 | PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i))) |
| 2149 | { |
| 2150 | locked = PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i); |
| 2151 | } |
| 2152 | } |
| 2153 | } |
| 2154 | |
| 2155 | for ( i = 0; !locked && i < MAX_HEIGHT && p_s_tb->insert_size[i]; i++ ) { |
| 2156 | |
| 2157 | if (p_s_tb->lnum[i] ) { |
| 2158 | |
| 2159 | if ( p_s_tb->L[i] ) { |
| 2160 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->L[i], "L", i); |
| 2161 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->L[i])) |
| 2162 | locked = p_s_tb->L[i]; |
| 2163 | } |
| 2164 | |
| 2165 | if ( !locked && p_s_tb->FL[i] ) { |
| 2166 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->FL[i], "FL", i); |
| 2167 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->FL[i])) |
| 2168 | locked = p_s_tb->FL[i]; |
| 2169 | } |
| 2170 | |
| 2171 | if ( !locked && p_s_tb->CFL[i] ) { |
| 2172 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->CFL[i], "CFL", i); |
| 2173 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->CFL[i])) |
| 2174 | locked = p_s_tb->CFL[i]; |
| 2175 | } |
| 2176 | |
| 2177 | } |
| 2178 | |
| 2179 | if ( !locked && (p_s_tb->rnum[i]) ) { |
| 2180 | |
| 2181 | if ( p_s_tb->R[i] ) { |
| 2182 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->R[i], "R", i); |
| 2183 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->R[i])) |
| 2184 | locked = p_s_tb->R[i]; |
| 2185 | } |
| 2186 | |
| 2187 | |
| 2188 | if ( !locked && p_s_tb->FR[i] ) { |
| 2189 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->FR[i], "FR", i); |
| 2190 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->FR[i])) |
| 2191 | locked = p_s_tb->FR[i]; |
| 2192 | } |
| 2193 | |
| 2194 | if ( !locked && p_s_tb->CFR[i] ) { |
| 2195 | tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->CFR[i], "CFR", i); |
| 2196 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->CFR[i])) |
| 2197 | locked = p_s_tb->CFR[i]; |
| 2198 | } |
| 2199 | } |
| 2200 | } |
| 2201 | /* as far as I can tell, this is not required. The FEB list seems |
| 2202 | ** to be full of newly allocated nodes, which will never be locked, |
| 2203 | ** dirty, or anything else. |
| 2204 | ** To be safe, I'm putting in the checks and waits in. For the moment, |
| 2205 | ** they are needed to keep the code in journal.c from complaining |
| 2206 | ** about the buffer. That code is inside CONFIG_REISERFS_CHECK as well. |
| 2207 | ** --clm |
| 2208 | */ |
| 2209 | for ( i = 0; !locked && i < MAX_FEB_SIZE; i++ ) { |
| 2210 | if ( p_s_tb->FEB[i] ) { |
| 2211 | if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->FEB[i])) |
| 2212 | locked = p_s_tb->FEB[i] ; |
| 2213 | } |
| 2214 | } |
| 2215 | |
| 2216 | if (locked) { |
| 2217 | #ifdef CONFIG_REISERFS_CHECK |
| 2218 | repeat_counter++; |
| 2219 | if ( (repeat_counter % 10000) == 0) { |
| 2220 | reiserfs_warning (p_s_tb->tb_sb, |
| 2221 | "wait_tb_buffers_until_released(): too many " |
| 2222 | "iterations waiting for buffer to unlock " |
| 2223 | "(%b)", locked); |
| 2224 | |
| 2225 | /* Don't loop forever. Try to recover from possible error. */ |
| 2226 | |
| 2227 | return ( FILESYSTEM_CHANGED_TB (p_s_tb) ) ? REPEAT_SEARCH : CARRY_ON; |
| 2228 | } |
| 2229 | #endif |
| 2230 | __wait_on_buffer (locked); |
| 2231 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { |
| 2232 | return REPEAT_SEARCH; |
| 2233 | } |
| 2234 | } |
| 2235 | |
| 2236 | } while (locked); |
| 2237 | |
| 2238 | return CARRY_ON; |
| 2239 | } |
| 2240 | |
| 2241 | |
| 2242 | /* Prepare for balancing, that is |
| 2243 | * get all necessary parents, and neighbors; |
| 2244 | * analyze what and where should be moved; |
| 2245 | * get sufficient number of new nodes; |
| 2246 | * Balancing will start only after all resources will be collected at a time. |
| 2247 | * |
| 2248 | * When ported to SMP kernels, only at the last moment after all needed nodes |
| 2249 | * are collected in cache, will the resources be locked using the usual |
| 2250 | * textbook ordered lock acquisition algorithms. Note that ensuring that |
| 2251 | * this code neither write locks what it does not need to write lock nor locks out of order |
| 2252 | * will be a pain in the butt that could have been avoided. Grumble grumble. -Hans |
| 2253 | * |
| 2254 | * fix is meant in the sense of render unchanging |
| 2255 | * |
| 2256 | * Latency might be improved by first gathering a list of what buffers are needed |
| 2257 | * and then getting as many of them in parallel as possible? -Hans |
| 2258 | * |
| 2259 | * Parameters: |
| 2260 | * op_mode i - insert, d - delete, c - cut (truncate), p - paste (append) |
| 2261 | * tb tree_balance structure; |
| 2262 | * inum item number in S[h]; |
| 2263 | * pos_in_item - comment this if you can |
| 2264 | * ins_ih & ins_sd are used when inserting |
| 2265 | * Returns: 1 - schedule occurred while the function worked; |
| 2266 | * 0 - schedule didn't occur while the function worked; |
| 2267 | * -1 - if no_disk_space |
| 2268 | */ |
| 2269 | |
| 2270 | |
| 2271 | int fix_nodes (int n_op_mode, |
| 2272 | struct tree_balance * p_s_tb, |
| 2273 | struct item_head * p_s_ins_ih, // item head of item being inserted |
| 2274 | const void * data // inserted item or data to be pasted |
| 2275 | ) { |
| 2276 | int n_ret_value, |
| 2277 | n_h, |
| 2278 | n_item_num = PATH_LAST_POSITION(p_s_tb->tb_path); |
| 2279 | int n_pos_in_item; |
| 2280 | |
| 2281 | /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared |
| 2282 | ** during wait_tb_buffers_run |
| 2283 | */ |
| 2284 | int wait_tb_buffers_run = 0 ; |
| 2285 | struct buffer_head * p_s_tbS0 = PATH_PLAST_BUFFER(p_s_tb->tb_path); |
| 2286 | |
| 2287 | ++ REISERFS_SB(p_s_tb -> tb_sb) -> s_fix_nodes; |
| 2288 | |
| 2289 | n_pos_in_item = p_s_tb->tb_path->pos_in_item; |
| 2290 | |
| 2291 | |
| 2292 | p_s_tb->fs_gen = get_generation (p_s_tb->tb_sb); |
| 2293 | |
| 2294 | /* we prepare and log the super here so it will already be in the |
| 2295 | ** transaction when do_balance needs to change it. |
| 2296 | ** This way do_balance won't have to schedule when trying to prepare |
| 2297 | ** the super for logging |
| 2298 | */ |
| 2299 | reiserfs_prepare_for_journal(p_s_tb->tb_sb, |
| 2300 | SB_BUFFER_WITH_SB(p_s_tb->tb_sb), 1) ; |
| 2301 | journal_mark_dirty(p_s_tb->transaction_handle, p_s_tb->tb_sb, |
| 2302 | SB_BUFFER_WITH_SB(p_s_tb->tb_sb)) ; |
| 2303 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) |
| 2304 | return REPEAT_SEARCH; |
| 2305 | |
| 2306 | /* if it possible in indirect_to_direct conversion */ |
| 2307 | if (buffer_locked (p_s_tbS0)) { |
| 2308 | __wait_on_buffer (p_s_tbS0); |
| 2309 | if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) |
| 2310 | return REPEAT_SEARCH; |
| 2311 | } |
| 2312 | |
| 2313 | #ifdef CONFIG_REISERFS_CHECK |
| 2314 | if ( cur_tb ) { |
| 2315 | print_cur_tb ("fix_nodes"); |
| 2316 | reiserfs_panic(p_s_tb->tb_sb,"PAP-8305: fix_nodes: there is pending do_balance"); |
| 2317 | } |
| 2318 | |
| 2319 | if (!buffer_uptodate (p_s_tbS0) || !B_IS_IN_TREE (p_s_tbS0)) { |
| 2320 | reiserfs_panic (p_s_tb->tb_sb, "PAP-8320: fix_nodes: S[0] (%b %z) is not uptodate " |
| 2321 | "at the beginning of fix_nodes or not in tree (mode %c)", p_s_tbS0, p_s_tbS0, n_op_mode); |
| 2322 | } |
| 2323 | |
| 2324 | /* Check parameters. */ |
| 2325 | switch (n_op_mode) { |
| 2326 | case M_INSERT: |
| 2327 | if ( n_item_num <= 0 || n_item_num > B_NR_ITEMS(p_s_tbS0) ) |
| 2328 | reiserfs_panic(p_s_tb->tb_sb,"PAP-8330: fix_nodes: Incorrect item number %d (in S0 - %d) in case of insert", |
| 2329 | n_item_num, B_NR_ITEMS(p_s_tbS0)); |
| 2330 | break; |
| 2331 | case M_PASTE: |
| 2332 | case M_DELETE: |
| 2333 | case M_CUT: |
| 2334 | if ( n_item_num < 0 || n_item_num >= B_NR_ITEMS(p_s_tbS0) ) { |
| 2335 | print_block (p_s_tbS0, 0, -1, -1); |
| 2336 | reiserfs_panic(p_s_tb->tb_sb,"PAP-8335: fix_nodes: Incorrect item number(%d); mode = %c insert_size = %d\n", n_item_num, n_op_mode, p_s_tb->insert_size[0]); |
| 2337 | } |
| 2338 | break; |
| 2339 | default: |
| 2340 | reiserfs_panic(p_s_tb->tb_sb,"PAP-8340: fix_nodes: Incorrect mode of operation"); |
| 2341 | } |
| 2342 | #endif |
| 2343 | |
| 2344 | if (get_mem_for_virtual_node (p_s_tb) == REPEAT_SEARCH) |
| 2345 | // FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat |
| 2346 | return REPEAT_SEARCH; |
| 2347 | |
| 2348 | |
| 2349 | /* Starting from the leaf level; for all levels n_h of the tree. */ |
| 2350 | for ( n_h = 0; n_h < MAX_HEIGHT && p_s_tb->insert_size[n_h]; n_h++ ) { |
| 2351 | if ( (n_ret_value = get_direct_parent(p_s_tb, n_h)) != CARRY_ON ) { |
| 2352 | goto repeat; |
| 2353 | } |
| 2354 | |
| 2355 | if ( (n_ret_value = check_balance (n_op_mode, p_s_tb, n_h, n_item_num, |
| 2356 | n_pos_in_item, p_s_ins_ih, data)) != CARRY_ON ) { |
| 2357 | if ( n_ret_value == NO_BALANCING_NEEDED ) { |
| 2358 | /* No balancing for higher levels needed. */ |
| 2359 | if ( (n_ret_value = get_neighbors(p_s_tb, n_h)) != CARRY_ON ) { |
| 2360 | goto repeat; |
| 2361 | } |
| 2362 | if ( n_h != MAX_HEIGHT - 1 ) |
| 2363 | p_s_tb->insert_size[n_h + 1] = 0; |
| 2364 | /* ok, analysis and resource gathering are complete */ |
| 2365 | break; |
| 2366 | } |
| 2367 | goto repeat; |
| 2368 | } |
| 2369 | |
| 2370 | if ( (n_ret_value = get_neighbors(p_s_tb, n_h)) != CARRY_ON ) { |
| 2371 | goto repeat; |
| 2372 | } |
| 2373 | |
| 2374 | if ( (n_ret_value = get_empty_nodes(p_s_tb, n_h)) != CARRY_ON ) { |
| 2375 | goto repeat; /* No disk space, or schedule occurred and |
| 2376 | analysis may be invalid and needs to be redone. */ |
| 2377 | } |
| 2378 | |
| 2379 | if ( ! PATH_H_PBUFFER(p_s_tb->tb_path, n_h) ) { |
| 2380 | /* We have a positive insert size but no nodes exist on this |
| 2381 | level, this means that we are creating a new root. */ |
| 2382 | |
| 2383 | RFALSE( p_s_tb->blknum[n_h] != 1, |
| 2384 | "PAP-8350: creating new empty root"); |
| 2385 | |
| 2386 | if ( n_h < MAX_HEIGHT - 1 ) |
| 2387 | p_s_tb->insert_size[n_h + 1] = 0; |
| 2388 | } |
| 2389 | else |
| 2390 | if ( ! PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1) ) { |
| 2391 | if ( p_s_tb->blknum[n_h] > 1 ) { |
| 2392 | /* The tree needs to be grown, so this node S[n_h] |
| 2393 | which is the root node is split into two nodes, |
| 2394 | and a new node (S[n_h+1]) will be created to |
| 2395 | become the root node. */ |
| 2396 | |
| 2397 | RFALSE( n_h == MAX_HEIGHT - 1, |
| 2398 | "PAP-8355: attempt to create too high of a tree"); |
| 2399 | |
| 2400 | p_s_tb->insert_size[n_h + 1] = (DC_SIZE + KEY_SIZE) * (p_s_tb->blknum[n_h] - 1) + DC_SIZE; |
| 2401 | } |
| 2402 | else |
| 2403 | if ( n_h < MAX_HEIGHT - 1 ) |
| 2404 | p_s_tb->insert_size[n_h + 1] = 0; |
| 2405 | } |
| 2406 | else |
| 2407 | p_s_tb->insert_size[n_h + 1] = (DC_SIZE + KEY_SIZE) * (p_s_tb->blknum[n_h] - 1); |
| 2408 | } |
| 2409 | |
| 2410 | if ((n_ret_value = wait_tb_buffers_until_unlocked (p_s_tb)) == CARRY_ON) { |
| 2411 | if (FILESYSTEM_CHANGED_TB(p_s_tb)) { |
| 2412 | wait_tb_buffers_run = 1 ; |
| 2413 | n_ret_value = REPEAT_SEARCH ; |
| 2414 | goto repeat; |
| 2415 | } else { |
| 2416 | return CARRY_ON; |
| 2417 | } |
| 2418 | } else { |
| 2419 | wait_tb_buffers_run = 1 ; |
| 2420 | goto repeat; |
| 2421 | } |
| 2422 | |
| 2423 | repeat: |
| 2424 | // fix_nodes was unable to perform its calculation due to |
| 2425 | // filesystem got changed under us, lack of free disk space or i/o |
| 2426 | // failure. If the first is the case - the search will be |
| 2427 | // repeated. For now - free all resources acquired so far except |
| 2428 | // for the new allocated nodes |
| 2429 | { |
| 2430 | int i; |
| 2431 | |
| 2432 | /* Release path buffers. */ |
| 2433 | if (wait_tb_buffers_run) { |
| 2434 | pathrelse_and_restore(p_s_tb->tb_sb, p_s_tb->tb_path) ; |
| 2435 | } else { |
| 2436 | pathrelse (p_s_tb->tb_path); |
| 2437 | } |
| 2438 | /* brelse all resources collected for balancing */ |
| 2439 | for ( i = 0; i < MAX_HEIGHT; i++ ) { |
| 2440 | if (wait_tb_buffers_run) { |
| 2441 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->L[i]); |
| 2442 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->R[i]); |
| 2443 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->FL[i]); |
| 2444 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->FR[i]); |
| 2445 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->CFL[i]); |
| 2446 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->CFR[i]); |
| 2447 | } |
| 2448 | |
| 2449 | brelse (p_s_tb->L[i]);p_s_tb->L[i] = NULL; |
| 2450 | brelse (p_s_tb->R[i]);p_s_tb->R[i] = NULL; |
| 2451 | brelse (p_s_tb->FL[i]);p_s_tb->FL[i] = NULL; |
| 2452 | brelse (p_s_tb->FR[i]);p_s_tb->FR[i] = NULL; |
| 2453 | brelse (p_s_tb->CFL[i]);p_s_tb->CFL[i] = NULL; |
| 2454 | brelse (p_s_tb->CFR[i]);p_s_tb->CFR[i] = NULL; |
| 2455 | } |
| 2456 | |
| 2457 | if (wait_tb_buffers_run) { |
| 2458 | for ( i = 0; i < MAX_FEB_SIZE; i++ ) { |
| 2459 | if ( p_s_tb->FEB[i] ) { |
| 2460 | reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, |
| 2461 | p_s_tb->FEB[i]) ; |
| 2462 | } |
| 2463 | } |
| 2464 | } |
| 2465 | return n_ret_value; |
| 2466 | } |
| 2467 | |
| 2468 | } |
| 2469 | |
| 2470 | |
| 2471 | /* Anatoly will probably forgive me renaming p_s_tb to tb. I just |
| 2472 | wanted to make lines shorter */ |
| 2473 | void unfix_nodes (struct tree_balance * tb) |
| 2474 | { |
| 2475 | int i; |
| 2476 | |
| 2477 | /* Release path buffers. */ |
| 2478 | pathrelse_and_restore (tb->tb_sb, tb->tb_path); |
| 2479 | |
| 2480 | /* brelse all resources collected for balancing */ |
| 2481 | for ( i = 0; i < MAX_HEIGHT; i++ ) { |
| 2482 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->L[i]); |
| 2483 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->R[i]); |
| 2484 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->FL[i]); |
| 2485 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->FR[i]); |
| 2486 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->CFL[i]); |
| 2487 | reiserfs_restore_prepared_buffer (tb->tb_sb, tb->CFR[i]); |
| 2488 | |
| 2489 | brelse (tb->L[i]); |
| 2490 | brelse (tb->R[i]); |
| 2491 | brelse (tb->FL[i]); |
| 2492 | brelse (tb->FR[i]); |
| 2493 | brelse (tb->CFL[i]); |
| 2494 | brelse (tb->CFR[i]); |
| 2495 | } |
| 2496 | |
| 2497 | /* deal with list of allocated (used and unused) nodes */ |
| 2498 | for ( i = 0; i < MAX_FEB_SIZE; i++ ) { |
| 2499 | if ( tb->FEB[i] ) { |
| 2500 | b_blocknr_t blocknr = tb->FEB[i]->b_blocknr ; |
| 2501 | /* de-allocated block which was not used by balancing and |
| 2502 | bforget about buffer for it */ |
| 2503 | brelse (tb->FEB[i]); |
| 2504 | reiserfs_free_block (tb->transaction_handle, NULL, blocknr, 0); |
| 2505 | } |
| 2506 | if (tb->used[i]) { |
| 2507 | /* release used as new nodes including a new root */ |
| 2508 | brelse (tb->used[i]); |
| 2509 | } |
| 2510 | } |
| 2511 | |
| 2512 | if (tb->vn_buf) |
| 2513 | reiserfs_kfree (tb->vn_buf, tb->vn_buf_size, tb->tb_sb); |
| 2514 | |
| 2515 | } |
| 2516 | |
| 2517 | |
| 2518 | |