blob: 4963d83d15118d332dedc2910b5e0836237689b0 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook V4.1//EN">
2
3<book>
4<?dbhtml filename="index.html">
5
6<!-- ****************************************************** -->
7<!-- Header -->
8<!-- ****************************************************** -->
9 <bookinfo>
10 <title>Writing an ALSA Driver</title>
11 <author>
12 <firstname>Takashi</firstname>
13 <surname>Iwai</surname>
14 <affiliation>
15 <address>
16 <email>tiwai@suse.de</email>
17 </address>
18 </affiliation>
19 </author>
20
Takashi Iwai5fe76e42005-11-17 17:26:09 +010021 <date>November 17, 2005</date>
22 <edition>0.3.6</edition>
Linus Torvalds1da177e2005-04-16 15:20:36 -070023
24 <abstract>
25 <para>
26 This document describes how to write an ALSA (Advanced Linux
27 Sound Architecture) driver.
28 </para>
29 </abstract>
30
31 <legalnotice>
32 <para>
Takashi Iwai7c22f1a2005-10-10 11:46:31 +020033 Copyright (c) 2002-2005 Takashi Iwai <email>tiwai@suse.de</email>
Linus Torvalds1da177e2005-04-16 15:20:36 -070034 </para>
35
36 <para>
37 This document is free; you can redistribute it and/or modify it
38 under the terms of the GNU General Public License as published by
39 the Free Software Foundation; either version 2 of the License, or
40 (at your option) any later version.
41 </para>
42
43 <para>
44 This document is distributed in the hope that it will be useful,
45 but <emphasis>WITHOUT ANY WARRANTY</emphasis>; without even the
46 implied warranty of <emphasis>MERCHANTABILITY or FITNESS FOR A
47 PARTICULAR PURPOSE</emphasis>. See the GNU General Public License
48 for more details.
49 </para>
50
51 <para>
52 You should have received a copy of the GNU General Public
53 License along with this program; if not, write to the Free
54 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
55 MA 02111-1307 USA
56 </para>
57 </legalnotice>
58
59 </bookinfo>
60
61<!-- ****************************************************** -->
62<!-- Preface -->
63<!-- ****************************************************** -->
64 <preface id="preface">
65 <title>Preface</title>
66 <para>
67 This document describes how to write an
68 <ulink url="http://www.alsa-project.org/"><citetitle>
69 ALSA (Advanced Linux Sound Architecture)</citetitle></ulink>
70 driver. The document focuses mainly on the PCI soundcard.
71 In the case of other device types, the API might
72 be different, too. However, at least the ALSA kernel API is
73 consistent, and therefore it would be still a bit help for
74 writing them.
75 </para>
76
77 <para>
78 The target of this document is ones who already have enough
79 skill of C language and have the basic knowledge of linux
80 kernel programming. This document doesn't explain the general
81 topics of linux kernel codes and doesn't cover the detail of
82 implementation of each low-level driver. It describes only how is
83 the standard way to write a PCI sound driver on ALSA.
84 </para>
85
86 <para>
87 If you are already familiar with the older ALSA ver.0.5.x, you
88 can check the drivers such as <filename>es1938.c</filename> or
89 <filename>maestro3.c</filename> which have also almost the same
90 code-base in the ALSA 0.5.x tree, so you can compare the differences.
91 </para>
92
93 <para>
94 This document is still a draft version. Any feedbacks and
95 corrections, please!!
96 </para>
97 </preface>
98
99
100<!-- ****************************************************** -->
101<!-- File Tree Structure -->
102<!-- ****************************************************** -->
103 <chapter id="file-tree">
104 <title>File Tree Structure</title>
105
106 <section id="file-tree-general">
107 <title>General</title>
108 <para>
109 The ALSA drivers are provided in the two ways.
110 </para>
111
112 <para>
113 One is the trees provided as a tarball or via cvs from the
114 ALSA's ftp site, and another is the 2.6 (or later) Linux kernel
115 tree. To synchronize both, the ALSA driver tree is split into
116 two different trees: alsa-kernel and alsa-driver. The former
117 contains purely the source codes for the Linux 2.6 (or later)
118 tree. This tree is designed only for compilation on 2.6 or
119 later environment. The latter, alsa-driver, contains many subtle
120 files for compiling the ALSA driver on the outside of Linux
121 kernel like configure script, the wrapper functions for older,
122 2.2 and 2.4 kernels, to adapt the latest kernel API,
123 and additional drivers which are still in development or in
124 tests. The drivers in alsa-driver tree will be moved to
125 alsa-kernel (eventually 2.6 kernel tree) once when they are
126 finished and confirmed to work fine.
127 </para>
128
129 <para>
130 The file tree structure of ALSA driver is depicted below. Both
131 alsa-kernel and alsa-driver have almost the same file
132 structure, except for <quote>core</quote> directory. It's
133 named as <quote>acore</quote> in alsa-driver tree.
134
135 <example>
136 <title>ALSA File Tree Structure</title>
137 <literallayout>
138 sound
139 /core
140 /oss
141 /seq
142 /oss
143 /instr
144 /ioctl32
145 /include
146 /drivers
147 /mpu401
148 /opl3
149 /i2c
150 /l3
151 /synth
152 /emux
153 /pci
154 /(cards)
155 /isa
156 /(cards)
157 /arm
158 /ppc
159 /sparc
160 /usb
161 /pcmcia /(cards)
162 /oss
163 </literallayout>
164 </example>
165 </para>
166 </section>
167
168 <section id="file-tree-core-directory">
169 <title>core directory</title>
170 <para>
171 This directory contains the middle layer, that is, the heart
172 of ALSA drivers. In this directory, the native ALSA modules are
173 stored. The sub-directories contain different modules and are
174 dependent upon the kernel config.
175 </para>
176
177 <section id="file-tree-core-directory-oss">
178 <title>core/oss</title>
179
180 <para>
181 The codes for PCM and mixer OSS emulation modules are stored
182 in this directory. The rawmidi OSS emulation is included in
183 the ALSA rawmidi code since it's quite small. The sequencer
184 code is stored in core/seq/oss directory (see
185 <link linkend="file-tree-core-directory-seq-oss"><citetitle>
186 below</citetitle></link>).
187 </para>
188 </section>
189
190 <section id="file-tree-core-directory-ioctl32">
191 <title>core/ioctl32</title>
192
193 <para>
194 This directory contains the 32bit-ioctl wrappers for 64bit
195 architectures such like x86-64, ppc64 and sparc64. For 32bit
196 and alpha architectures, these are not compiled.
197 </para>
198 </section>
199
200 <section id="file-tree-core-directory-seq">
201 <title>core/seq</title>
202 <para>
203 This and its sub-directories are for the ALSA
204 sequencer. This directory contains the sequencer core and
205 primary sequencer modules such like snd-seq-midi,
206 snd-seq-virmidi, etc. They are compiled only when
207 <constant>CONFIG_SND_SEQUENCER</constant> is set in the kernel
208 config.
209 </para>
210 </section>
211
212 <section id="file-tree-core-directory-seq-oss">
213 <title>core/seq/oss</title>
214 <para>
215 This contains the OSS sequencer emulation codes.
216 </para>
217 </section>
218
219 <section id="file-tree-core-directory-deq-instr">
220 <title>core/seq/instr</title>
221 <para>
222 This directory contains the modules for the sequencer
223 instrument layer.
224 </para>
225 </section>
226 </section>
227
228 <section id="file-tree-include-directory">
229 <title>include directory</title>
230 <para>
231 This is the place for the public header files of ALSA drivers,
232 which are to be exported to the user-space, or included by
233 several files at different directories. Basically, the private
234 header files should not be placed in this directory, but you may
235 still find files there, due to historical reason :)
236 </para>
237 </section>
238
239 <section id="file-tree-drivers-directory">
240 <title>drivers directory</title>
241 <para>
242 This directory contains the codes shared among different drivers
243 on the different architectures. They are hence supposed not to be
244 architecture-specific.
245 For example, the dummy pcm driver and the serial MIDI
246 driver are found in this directory. In the sub-directories,
247 there are the codes for components which are independent from
248 bus and cpu architectures.
249 </para>
250
251 <section id="file-tree-drivers-directory-mpu401">
252 <title>drivers/mpu401</title>
253 <para>
254 The MPU401 and MPU401-UART modules are stored here.
255 </para>
256 </section>
257
258 <section id="file-tree-drivers-directory-opl3">
259 <title>drivers/opl3 and opl4</title>
260 <para>
261 The OPL3 and OPL4 FM-synth stuff is found here.
262 </para>
263 </section>
264 </section>
265
266 <section id="file-tree-i2c-directory">
267 <title>i2c directory</title>
268 <para>
269 This contains the ALSA i2c components.
270 </para>
271
272 <para>
273 Although there is a standard i2c layer on Linux, ALSA has its
274 own i2c codes for some cards, because the soundcard needs only a
275 simple operation and the standard i2c API is too complicated for
276 such a purpose.
277 </para>
278
279 <section id="file-tree-i2c-directory-l3">
280 <title>i2c/l3</title>
281 <para>
282 This is a sub-directory for ARM L3 i2c.
283 </para>
284 </section>
285 </section>
286
287 <section id="file-tree-synth-directory">
288 <title>synth directory</title>
289 <para>
290 This contains the synth middle-level modules.
291 </para>
292
293 <para>
294 So far, there is only Emu8000/Emu10k1 synth driver under
295 synth/emux sub-directory.
296 </para>
297 </section>
298
299 <section id="file-tree-pci-directory">
300 <title>pci directory</title>
301 <para>
302 This and its sub-directories hold the top-level card modules
303 for PCI soundcards and the codes specific to the PCI BUS.
304 </para>
305
306 <para>
307 The drivers compiled from a single file is stored directly on
308 pci directory, while the drivers with several source files are
309 stored on its own sub-directory (e.g. emu10k1, ice1712).
310 </para>
311 </section>
312
313 <section id="file-tree-isa-directory">
314 <title>isa directory</title>
315 <para>
316 This and its sub-directories hold the top-level card modules
317 for ISA soundcards.
318 </para>
319 </section>
320
321 <section id="file-tree-arm-ppc-sparc-directories">
322 <title>arm, ppc, and sparc directories</title>
323 <para>
324 These are for the top-level card modules which are
325 specific to each given architecture.
326 </para>
327 </section>
328
329 <section id="file-tree-usb-directory">
330 <title>usb directory</title>
331 <para>
332 This contains the USB-audio driver. On the latest version, the
333 USB MIDI driver is integrated together with usb-audio driver.
334 </para>
335 </section>
336
337 <section id="file-tree-pcmcia-directory">
338 <title>pcmcia directory</title>
339 <para>
340 The PCMCIA, especially PCCard drivers will go here. CardBus
341 drivers will be on pci directory, because its API is identical
342 with the standard PCI cards.
343 </para>
344 </section>
345
346 <section id="file-tree-oss-directory">
347 <title>oss directory</title>
348 <para>
349 The OSS/Lite source files are stored here on Linux 2.6 (or
350 later) tree. (In the ALSA driver tarball, it's empty, of course :)
351 </para>
352 </section>
353 </chapter>
354
355
356<!-- ****************************************************** -->
357<!-- Basic Flow for PCI Drivers -->
358<!-- ****************************************************** -->
359 <chapter id="basic-flow">
360 <title>Basic Flow for PCI Drivers</title>
361
362 <section id="basic-flow-outline">
363 <title>Outline</title>
364 <para>
365 The minimum flow of PCI soundcard is like the following:
366
367 <itemizedlist>
368 <listitem><para>define the PCI ID table (see the section
369 <link linkend="pci-resource-entries"><citetitle>PCI Entries
370 </citetitle></link>).</para></listitem>
371 <listitem><para>create <function>probe()</function> callback.</para></listitem>
372 <listitem><para>create <function>remove()</function> callback.</para></listitem>
373 <listitem><para>create pci_driver table which contains the three pointers above.</para></listitem>
Takashi Iwai01d25d42005-04-11 16:58:24 +0200374 <listitem><para>create <function>init()</function> function just calling <function>pci_register_driver()</function> to register the pci_driver table defined above.</para></listitem>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700375 <listitem><para>create <function>exit()</function> function to call <function>pci_unregister_driver()</function> function.</para></listitem>
376 </itemizedlist>
377 </para>
378 </section>
379
380 <section id="basic-flow-example">
381 <title>Full Code Example</title>
382 <para>
383 The code example is shown below. Some parts are kept
384 unimplemented at this moment but will be filled in the
385 succeeding sections. The numbers in comment lines of
386 <function>snd_mychip_probe()</function> function are the
387 markers.
388
389 <example>
390 <title>Basic Flow for PCI Drivers Example</title>
391 <programlisting>
392<![CDATA[
393 #include <sound/driver.h>
394 #include <linux/init.h>
395 #include <linux/pci.h>
396 #include <linux/slab.h>
397 #include <sound/core.h>
398 #include <sound/initval.h>
399
400 /* module parameters (see "Module Parameters") */
401 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
402 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
403 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
404
405 /* definition of the chip-specific record */
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100406 struct mychip {
407 struct snd_card *card;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700408 // rest of implementation will be in the section
409 // "PCI Resource Managements"
410 };
411
412 /* chip-specific destructor
413 * (see "PCI Resource Managements")
414 */
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100415 static int snd_mychip_free(struct mychip *chip)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700416 {
417 .... // will be implemented later...
418 }
419
420 /* component-destructor
421 * (see "Management of Cards and Components")
422 */
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100423 static int snd_mychip_dev_free(struct snd_device *device)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700424 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100425 return snd_mychip_free(device->device_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700426 }
427
428 /* chip-specific constructor
429 * (see "Management of Cards and Components")
430 */
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100431 static int __devinit snd_mychip_create(struct snd_card *card,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700432 struct pci_dev *pci,
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100433 struct mychip **rchip)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700434 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100435 struct mychip *chip;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700436 int err;
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100437 static struct snd_device_ops ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700438 .dev_free = snd_mychip_dev_free,
439 };
440
441 *rchip = NULL;
442
443 // check PCI availability here
444 // (see "PCI Resource Managements")
445 ....
446
447 /* allocate a chip-specific data with zero filled */
Takashi Iwai561b2202005-09-09 14:22:34 +0200448 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700449 if (chip == NULL)
450 return -ENOMEM;
451
452 chip->card = card;
453
454 // rest of initialization here; will be implemented
455 // later, see "PCI Resource Managements"
456 ....
457
458 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL,
459 chip, &ops)) < 0) {
460 snd_mychip_free(chip);
461 return err;
462 }
463
464 snd_card_set_dev(card, &pci->dev);
465
466 *rchip = chip;
467 return 0;
468 }
469
470 /* constructor -- see "Constructor" sub-section */
471 static int __devinit snd_mychip_probe(struct pci_dev *pci,
472 const struct pci_device_id *pci_id)
473 {
474 static int dev;
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100475 struct snd_card *card;
476 struct mychip *chip;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700477 int err;
478
479 /* (1) */
480 if (dev >= SNDRV_CARDS)
481 return -ENODEV;
482 if (!enable[dev]) {
483 dev++;
484 return -ENOENT;
485 }
486
487 /* (2) */
488 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
489 if (card == NULL)
490 return -ENOMEM;
491
492 /* (3) */
493 if ((err = snd_mychip_create(card, pci, &chip)) < 0) {
494 snd_card_free(card);
495 return err;
496 }
497
498 /* (4) */
499 strcpy(card->driver, "My Chip");
500 strcpy(card->shortname, "My Own Chip 123");
501 sprintf(card->longname, "%s at 0x%lx irq %i",
502 card->shortname, chip->ioport, chip->irq);
503
504 /* (5) */
505 .... // implemented later
506
507 /* (6) */
508 if ((err = snd_card_register(card)) < 0) {
509 snd_card_free(card);
510 return err;
511 }
512
513 /* (7) */
514 pci_set_drvdata(pci, card);
515 dev++;
516 return 0;
517 }
518
519 /* destructor -- see "Destructor" sub-section */
520 static void __devexit snd_mychip_remove(struct pci_dev *pci)
521 {
522 snd_card_free(pci_get_drvdata(pci));
523 pci_set_drvdata(pci, NULL);
524 }
525]]>
526 </programlisting>
527 </example>
528 </para>
529 </section>
530
531 <section id="basic-flow-constructor">
532 <title>Constructor</title>
533 <para>
534 The real constructor of PCI drivers is probe callback. The
535 probe callback and other component-constructors which are called
536 from probe callback should be defined with
537 <parameter>__devinit</parameter> prefix. You
538 cannot use <parameter>__init</parameter> prefix for them,
539 because any PCI device could be a hotplug device.
540 </para>
541
542 <para>
543 In the probe callback, the following scheme is often used.
544 </para>
545
546 <section id="basic-flow-constructor-device-index">
547 <title>1) Check and increment the device index.</title>
548 <para>
549 <informalexample>
550 <programlisting>
551<![CDATA[
552 static int dev;
553 ....
554 if (dev >= SNDRV_CARDS)
555 return -ENODEV;
556 if (!enable[dev]) {
557 dev++;
558 return -ENOENT;
559 }
560]]>
561 </programlisting>
562 </informalexample>
563
564 where enable[dev] is the module option.
565 </para>
566
567 <para>
568 At each time probe callback is called, check the
569 availability of the device. If not available, simply increment
570 the device index and returns. dev will be incremented also
571 later (<link
572 linkend="basic-flow-constructor-set-pci"><citetitle>step
573 7</citetitle></link>).
574 </para>
575 </section>
576
577 <section id="basic-flow-constructor-create-card">
578 <title>2) Create a card instance</title>
579 <para>
580 <informalexample>
581 <programlisting>
582<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100583 struct snd_card *card;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700584 ....
585 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
586]]>
587 </programlisting>
588 </informalexample>
589 </para>
590
591 <para>
592 The detail will be explained in the section
593 <link linkend="card-management-card-instance"><citetitle>
594 Management of Cards and Components</citetitle></link>.
595 </para>
596 </section>
597
598 <section id="basic-flow-constructor-create-main">
599 <title>3) Create a main component</title>
600 <para>
601 In this part, the PCI resources are allocated.
602
603 <informalexample>
604 <programlisting>
605<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100606 struct mychip *chip;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700607 ....
608 if ((err = snd_mychip_create(card, pci, &chip)) < 0) {
609 snd_card_free(card);
610 return err;
611 }
612]]>
613 </programlisting>
614 </informalexample>
615
616 The detail will be explained in the section <link
617 linkend="pci-resource"><citetitle>PCI Resource
618 Managements</citetitle></link>.
619 </para>
620 </section>
621
622 <section id="basic-flow-constructor-main-component">
623 <title>4) Set the driver ID and name strings.</title>
624 <para>
625 <informalexample>
626 <programlisting>
627<![CDATA[
628 strcpy(card->driver, "My Chip");
629 strcpy(card->shortname, "My Own Chip 123");
630 sprintf(card->longname, "%s at 0x%lx irq %i",
631 card->shortname, chip->ioport, chip->irq);
632]]>
633 </programlisting>
634 </informalexample>
635
636 The driver field holds the minimal ID string of the
637 chip. This is referred by alsa-lib's configurator, so keep it
638 simple but unique.
639 Even the same driver can have different driver IDs to
640 distinguish the functionality of each chip type.
641 </para>
642
643 <para>
644 The shortname field is a string shown as more verbose
645 name. The longname field contains the information which is
646 shown in <filename>/proc/asound/cards</filename>.
647 </para>
648 </section>
649
650 <section id="basic-flow-constructor-create-other">
651 <title>5) Create other components, such as mixer, MIDI, etc.</title>
652 <para>
653 Here you define the basic components such as
654 <link linkend="pcm-interface"><citetitle>PCM</citetitle></link>,
655 mixer (e.g. <link linkend="api-ac97"><citetitle>AC97</citetitle></link>),
656 MIDI (e.g. <link linkend="midi-interface"><citetitle>MPU-401</citetitle></link>),
657 and other interfaces.
658 Also, if you want a <link linkend="proc-interface"><citetitle>proc
659 file</citetitle></link>, define it here, too.
660 </para>
661 </section>
662
663 <section id="basic-flow-constructor-register-card">
664 <title>6) Register the card instance.</title>
665 <para>
666 <informalexample>
667 <programlisting>
668<![CDATA[
669 if ((err = snd_card_register(card)) < 0) {
670 snd_card_free(card);
671 return err;
672 }
673]]>
674 </programlisting>
675 </informalexample>
676 </para>
677
678 <para>
679 Will be explained in the section <link
680 linkend="card-management-registration"><citetitle>Management
681 of Cards and Components</citetitle></link>, too.
682 </para>
683 </section>
684
685 <section id="basic-flow-constructor-set-pci">
686 <title>7) Set the PCI driver data and return zero.</title>
687 <para>
688 <informalexample>
689 <programlisting>
690<![CDATA[
691 pci_set_drvdata(pci, card);
692 dev++;
693 return 0;
694]]>
695 </programlisting>
696 </informalexample>
697
698 In the above, the card record is stored. This pointer is
699 referred in the remove callback and power-management
700 callbacks, too.
701 </para>
702 </section>
703 </section>
704
705 <section id="basic-flow-destructor">
706 <title>Destructor</title>
707 <para>
708 The destructor, remove callback, simply releases the card
709 instance. Then the ALSA middle layer will release all the
710 attached components automatically.
711 </para>
712
713 <para>
714 It would be typically like the following:
715
716 <informalexample>
717 <programlisting>
718<![CDATA[
719 static void __devexit snd_mychip_remove(struct pci_dev *pci)
720 {
721 snd_card_free(pci_get_drvdata(pci));
722 pci_set_drvdata(pci, NULL);
723 }
724]]>
725 </programlisting>
726 </informalexample>
727
728 The above code assumes that the card pointer is set to the PCI
729 driver data.
730 </para>
731 </section>
732
733 <section id="basic-flow-header-files">
734 <title>Header Files</title>
735 <para>
736 For the above example, at least the following include files
737 are necessary.
738
739 <informalexample>
740 <programlisting>
741<![CDATA[
742 #include <sound/driver.h>
743 #include <linux/init.h>
744 #include <linux/pci.h>
745 #include <linux/slab.h>
746 #include <sound/core.h>
747 #include <sound/initval.h>
748]]>
749 </programlisting>
750 </informalexample>
751
752 where the last one is necessary only when module options are
753 defined in the source file. If the codes are split to several
754 files, the file without module options don't need them.
755 </para>
756
757 <para>
758 In addition to them, you'll need
759 <filename>&lt;linux/interrupt.h&gt;</filename> for the interrupt
760 handling, and <filename>&lt;asm/io.h&gt;</filename> for the i/o
761 access. If you use <function>mdelay()</function> or
762 <function>udelay()</function> functions, you'll need to include
763 <filename>&lt;linux/delay.h&gt;</filename>, too.
764 </para>
765
766 <para>
767 The ALSA interfaces like PCM or control API are defined in other
768 header files as <filename>&lt;sound/xxx.h&gt;</filename>.
769 They have to be included after
770 <filename>&lt;sound/core.h&gt;</filename>.
771 </para>
772
773 </section>
774 </chapter>
775
776
777<!-- ****************************************************** -->
778<!-- Management of Cards and Components -->
779<!-- ****************************************************** -->
780 <chapter id="card-management">
781 <title>Management of Cards and Components</title>
782
783 <section id="card-management-card-instance">
784 <title>Card Instance</title>
785 <para>
786 For each soundcard, a <quote>card</quote> record must be allocated.
787 </para>
788
789 <para>
790 A card record is the headquarters of the soundcard. It manages
791 the list of whole devices (components) on the soundcard, such as
792 PCM, mixers, MIDI, synthesizer, and so on. Also, the card
793 record holds the ID and the name strings of the card, manages
794 the root of proc files, and controls the power-management states
795 and hotplug disconnections. The component list on the card
796 record is used to manage the proper releases of resources at
797 destruction.
798 </para>
799
800 <para>
801 As mentioned above, to create a card instance, call
802 <function>snd_card_new()</function>.
803
804 <informalexample>
805 <programlisting>
806<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100807 struct snd_card *card;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700808 card = snd_card_new(index, id, module, extra_size);
809]]>
810 </programlisting>
811 </informalexample>
812 </para>
813
814 <para>
815 The function takes four arguments, the card-index number, the
816 id string, the module pointer (usually
817 <constant>THIS_MODULE</constant>),
818 and the size of extra-data space. The last argument is used to
819 allocate card-&gt;private_data for the
820 chip-specific data. Note that this data
821 <emphasis>is</emphasis> allocated by
822 <function>snd_card_new()</function>.
823 </para>
824 </section>
825
826 <section id="card-management-component">
827 <title>Components</title>
828 <para>
829 After the card is created, you can attach the components
830 (devices) to the card instance. On ALSA driver, a component is
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100831 represented as a struct <structname>snd_device</structname> object.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700832 A component can be a PCM instance, a control interface, a raw
833 MIDI interface, etc. Each of such instances has one component
834 entry.
835 </para>
836
837 <para>
838 A component can be created via
839 <function>snd_device_new()</function> function.
840
841 <informalexample>
842 <programlisting>
843<![CDATA[
844 snd_device_new(card, SNDRV_DEV_XXX, chip, &ops);
845]]>
846 </programlisting>
847 </informalexample>
848 </para>
849
850 <para>
851 This takes the card pointer, the device-level
852 (<constant>SNDRV_DEV_XXX</constant>), the data pointer, and the
853 callback pointers (<parameter>&amp;ops</parameter>). The
854 device-level defines the type of components and the order of
855 registration and de-registration. For most of components, the
856 device-level is already defined. For a user-defined component,
857 you can use <constant>SNDRV_DEV_LOWLEVEL</constant>.
858 </para>
859
860 <para>
861 This function itself doesn't allocate the data space. The data
862 must be allocated manually beforehand, and its pointer is passed
863 as the argument. This pointer is used as the identifier
864 (<parameter>chip</parameter> in the above example) for the
865 instance.
866 </para>
867
868 <para>
869 Each ALSA pre-defined component such as ac97 or pcm calls
870 <function>snd_device_new()</function> inside its
871 constructor. The destructor for each component is defined in the
872 callback pointers. Hence, you don't need to take care of
873 calling a destructor for such a component.
874 </para>
875
876 <para>
877 If you would like to create your own component, you need to
878 set the destructor function to dev_free callback in
879 <parameter>ops</parameter>, so that it can be released
880 automatically via <function>snd_card_free()</function>. The
881 example will be shown later as an implementation of a
882 chip-specific data.
883 </para>
884 </section>
885
886 <section id="card-management-chip-specific">
887 <title>Chip-Specific Data</title>
888 <para>
889 The chip-specific information, e.g. the i/o port address, its
890 resource pointer, or the irq number, is stored in the
891 chip-specific record.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700892
893 <informalexample>
894 <programlisting>
895<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100896 struct mychip {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700897 ....
898 };
899]]>
900 </programlisting>
901 </informalexample>
902 </para>
903
904 <para>
905 In general, there are two ways to allocate the chip record.
906 </para>
907
908 <section id="card-management-chip-specific-snd-card-new">
909 <title>1. Allocating via <function>snd_card_new()</function>.</title>
910 <para>
911 As mentioned above, you can pass the extra-data-length to the 4th argument of <function>snd_card_new()</function>, i.e.
912
913 <informalexample>
914 <programlisting>
915<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100916 card = snd_card_new(index[dev], id[dev], THIS_MODULE, sizeof(struct mychip));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700917]]>
918 </programlisting>
919 </informalexample>
920
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100921 whether struct <structname>mychip</structname> is the type of the chip record.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700922 </para>
923
924 <para>
925 In return, the allocated record can be accessed as
926
927 <informalexample>
928 <programlisting>
929<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100930 struct mychip *chip = (struct mychip *)card->private_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700931]]>
932 </programlisting>
933 </informalexample>
934
935 With this method, you don't have to allocate twice.
936 The record is released together with the card instance.
937 </para>
938 </section>
939
940 <section id="card-management-chip-specific-allocate-extra">
941 <title>2. Allocating an extra device.</title>
942
943 <para>
944 After allocating a card instance via
945 <function>snd_card_new()</function> (with
946 <constant>NULL</constant> on the 4th arg), call
Takashi Iwai561b2202005-09-09 14:22:34 +0200947 <function>kzalloc()</function>.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700948
949 <informalexample>
950 <programlisting>
951<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100952 struct snd_card *card;
953 struct mychip *chip;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700954 card = snd_card_new(index[dev], id[dev], THIS_MODULE, NULL);
955 .....
Takashi Iwai561b2202005-09-09 14:22:34 +0200956 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700957]]>
958 </programlisting>
959 </informalexample>
960 </para>
961
962 <para>
963 The chip record should have the field to hold the card
964 pointer at least,
965
966 <informalexample>
967 <programlisting>
968<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100969 struct mychip {
970 struct snd_card *card;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700971 ....
972 };
973]]>
974 </programlisting>
975 </informalexample>
976 </para>
977
978 <para>
979 Then, set the card pointer in the returned chip instance.
980
981 <informalexample>
982 <programlisting>
983<![CDATA[
984 chip->card = card;
985]]>
986 </programlisting>
987 </informalexample>
988 </para>
989
990 <para>
991 Next, initialize the fields, and register this chip
992 record as a low-level device with a specified
993 <parameter>ops</parameter>,
994
995 <informalexample>
996 <programlisting>
997<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100998 static struct snd_device_ops ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700999 .dev_free = snd_mychip_dev_free,
1000 };
1001 ....
1002 snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1003]]>
1004 </programlisting>
1005 </informalexample>
1006
1007 <function>snd_mychip_dev_free()</function> is the
1008 device-destructor function, which will call the real
1009 destructor.
1010 </para>
1011
1012 <para>
1013 <informalexample>
1014 <programlisting>
1015<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001016 static int snd_mychip_dev_free(struct snd_device *device)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001017 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001018 return snd_mychip_free(device->device_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001019 }
1020]]>
1021 </programlisting>
1022 </informalexample>
1023
1024 where <function>snd_mychip_free()</function> is the real destructor.
1025 </para>
1026 </section>
1027 </section>
1028
1029 <section id="card-management-registration">
1030 <title>Registration and Release</title>
1031 <para>
1032 After all components are assigned, register the card instance
1033 by calling <function>snd_card_register()</function>. The access
1034 to the device files are enabled at this point. That is, before
1035 <function>snd_card_register()</function> is called, the
1036 components are safely inaccessible from external side. If this
1037 call fails, exit the probe function after releasing the card via
1038 <function>snd_card_free()</function>.
1039 </para>
1040
1041 <para>
1042 For releasing the card instance, you can call simply
1043 <function>snd_card_free()</function>. As already mentioned, all
1044 components are released automatically by this call.
1045 </para>
1046
1047 <para>
1048 As further notes, the destructors (both
1049 <function>snd_mychip_dev_free</function> and
1050 <function>snd_mychip_free</function>) cannot be defined with
1051 <parameter>__devexit</parameter> prefix, because they may be
1052 called from the constructor, too, at the false path.
1053 </para>
1054
1055 <para>
1056 For a device which allows hotplugging, you can use
1057 <function>snd_card_free_in_thread</function>. This one will
1058 postpone the destruction and wait in a kernel-thread until all
1059 devices are closed.
1060 </para>
1061
1062 </section>
1063
1064 </chapter>
1065
1066
1067<!-- ****************************************************** -->
1068<!-- PCI Resource Managements -->
1069<!-- ****************************************************** -->
1070 <chapter id="pci-resource">
1071 <title>PCI Resource Managements</title>
1072
1073 <section id="pci-resource-example">
1074 <title>Full Code Example</title>
1075 <para>
1076 In this section, we'll finish the chip-specific constructor,
1077 destructor and PCI entries. The example code is shown first,
1078 below.
1079
1080 <example>
1081 <title>PCI Resource Managements Example</title>
1082 <programlisting>
1083<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001084 struct mychip {
1085 struct snd_card *card;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001086 struct pci_dev *pci;
1087
1088 unsigned long port;
1089 int irq;
1090 };
1091
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001092 static int snd_mychip_free(struct mychip *chip)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001093 {
1094 /* disable hardware here if any */
1095 .... // (not implemented in this document)
1096
1097 /* release the irq */
1098 if (chip->irq >= 0)
1099 free_irq(chip->irq, (void *)chip);
1100 /* release the i/o ports & memory */
1101 pci_release_regions(chip->pci);
1102 /* disable the PCI entry */
1103 pci_disable_device(chip->pci);
1104 /* release the data */
1105 kfree(chip);
1106 return 0;
1107 }
1108
1109 /* chip-specific constructor */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001110 static int __devinit snd_mychip_create(struct snd_card *card,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001111 struct pci_dev *pci,
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001112 struct mychip **rchip)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001113 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001114 struct mychip *chip;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001115 int err;
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001116 static struct snd_device_ops ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001117 .dev_free = snd_mychip_dev_free,
1118 };
1119
1120 *rchip = NULL;
1121
1122 /* initialize the PCI entry */
1123 if ((err = pci_enable_device(pci)) < 0)
1124 return err;
1125 /* check PCI availability (28bit DMA) */
1126 if (pci_set_dma_mask(pci, 0x0fffffff) < 0 ||
1127 pci_set_consistent_dma_mask(pci, 0x0fffffff) < 0) {
1128 printk(KERN_ERR "error to set 28bit mask DMA\n");
1129 pci_disable_device(pci);
1130 return -ENXIO;
1131 }
1132
Takashi Iwai561b2202005-09-09 14:22:34 +02001133 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001134 if (chip == NULL) {
1135 pci_disable_device(pci);
1136 return -ENOMEM;
1137 }
1138
1139 /* initialize the stuff */
1140 chip->card = card;
1141 chip->pci = pci;
1142 chip->irq = -1;
1143
1144 /* (1) PCI resource allocation */
1145 if ((err = pci_request_regions(pci, "My Chip")) < 0) {
1146 kfree(chip);
1147 pci_disable_device(pci);
1148 return err;
1149 }
1150 chip->port = pci_resource_start(pci, 0);
1151 if (request_irq(pci->irq, snd_mychip_interrupt,
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001152 SA_INTERRUPT|SA_SHIRQ, "My Chip", chip)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001153 printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
1154 snd_mychip_free(chip);
1155 return -EBUSY;
1156 }
1157 chip->irq = pci->irq;
1158
1159 /* (2) initialization of the chip hardware */
1160 .... // (not implemented in this document)
1161
1162 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL,
1163 chip, &ops)) < 0) {
1164 snd_mychip_free(chip);
1165 return err;
1166 }
1167
1168 snd_card_set_dev(card, &pci->dev);
1169
1170 *rchip = chip;
1171 return 0;
1172 }
1173
1174 /* PCI IDs */
1175 static struct pci_device_id snd_mychip_ids[] = {
1176 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1177 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
1178 ....
1179 { 0, }
1180 };
1181 MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1182
1183 /* pci_driver definition */
1184 static struct pci_driver driver = {
1185 .name = "My Own Chip",
1186 .id_table = snd_mychip_ids,
1187 .probe = snd_mychip_probe,
1188 .remove = __devexit_p(snd_mychip_remove),
1189 };
1190
1191 /* initialization of the module */
1192 static int __init alsa_card_mychip_init(void)
1193 {
Takashi Iwai01d25d42005-04-11 16:58:24 +02001194 return pci_register_driver(&driver);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001195 }
1196
1197 /* clean up the module */
1198 static void __exit alsa_card_mychip_exit(void)
1199 {
1200 pci_unregister_driver(&driver);
1201 }
1202
1203 module_init(alsa_card_mychip_init)
1204 module_exit(alsa_card_mychip_exit)
1205
1206 EXPORT_NO_SYMBOLS; /* for old kernels only */
1207]]>
1208 </programlisting>
1209 </example>
1210 </para>
1211 </section>
1212
1213 <section id="pci-resource-some-haftas">
1214 <title>Some Hafta's</title>
1215 <para>
1216 The allocation of PCI resources is done in the
1217 <function>probe()</function> function, and usually an extra
1218 <function>xxx_create()</function> function is written for this
1219 purpose.
1220 </para>
1221
1222 <para>
1223 In the case of PCI devices, you have to call at first
1224 <function>pci_enable_device()</function> function before
1225 allocating resources. Also, you need to set the proper PCI DMA
1226 mask to limit the accessed i/o range. In some cases, you might
1227 need to call <function>pci_set_master()</function> function,
1228 too.
1229 </para>
1230
1231 <para>
1232 Suppose the 28bit mask, and the code to be added would be like:
1233
1234 <informalexample>
1235 <programlisting>
1236<![CDATA[
1237 if ((err = pci_enable_device(pci)) < 0)
1238 return err;
1239 if (pci_set_dma_mask(pci, 0x0fffffff) < 0 ||
1240 pci_set_consistent_dma_mask(pci, 0x0fffffff) < 0) {
1241 printk(KERN_ERR "error to set 28bit mask DMA\n");
1242 pci_disable_device(pci);
1243 return -ENXIO;
1244 }
1245
1246]]>
1247 </programlisting>
1248 </informalexample>
1249 </para>
1250 </section>
1251
1252 <section id="pci-resource-resource-allocation">
1253 <title>Resource Allocation</title>
1254 <para>
1255 The allocation of I/O ports and irqs are done via standard kernel
1256 functions. Unlike ALSA ver.0.5.x., there are no helpers for
1257 that. And these resources must be released in the destructor
1258 function (see below). Also, on ALSA 0.9.x, you don't need to
1259 allocate (pseudo-)DMA for PCI like ALSA 0.5.x.
1260 </para>
1261
1262 <para>
1263 Now assume that this PCI device has an I/O port with 8 bytes
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001264 and an interrupt. Then struct <structname>mychip</structname> will have the
Linus Torvalds1da177e2005-04-16 15:20:36 -07001265 following fields:
1266
1267 <informalexample>
1268 <programlisting>
1269<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001270 struct mychip {
1271 struct snd_card *card;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001272
1273 unsigned long port;
1274 int irq;
1275 };
1276]]>
1277 </programlisting>
1278 </informalexample>
1279 </para>
1280
1281 <para>
1282 For an i/o port (and also a memory region), you need to have
1283 the resource pointer for the standard resource management. For
1284 an irq, you have to keep only the irq number (integer). But you
1285 need to initialize this number as -1 before actual allocation,
1286 since irq 0 is valid. The port address and its resource pointer
1287 can be initialized as null by
Takashi Iwai561b2202005-09-09 14:22:34 +02001288 <function>kzalloc()</function> automatically, so you
Linus Torvalds1da177e2005-04-16 15:20:36 -07001289 don't have to take care of resetting them.
1290 </para>
1291
1292 <para>
1293 The allocation of an i/o port is done like this:
1294
1295 <informalexample>
1296 <programlisting>
1297<![CDATA[
1298 if ((err = pci_request_regions(pci, "My Chip")) < 0) {
1299 kfree(chip);
1300 pci_disable_device(pci);
1301 return err;
1302 }
1303 chip->port = pci_resource_start(pci, 0);
1304]]>
1305 </programlisting>
1306 </informalexample>
1307 </para>
1308
1309 <para>
1310 <!-- obsolete -->
1311 It will reserve the i/o port region of 8 bytes of the given
1312 PCI device. The returned value, chip-&gt;res_port, is allocated
1313 via <function>kmalloc()</function> by
1314 <function>request_region()</function>. The pointer must be
1315 released via <function>kfree()</function>, but there is some
1316 problem regarding this. This issue will be explained more below.
1317 </para>
1318
1319 <para>
1320 The allocation of an interrupt source is done like this:
1321
1322 <informalexample>
1323 <programlisting>
1324<![CDATA[
1325 if (request_irq(pci->irq, snd_mychip_interrupt,
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001326 SA_INTERRUPT|SA_SHIRQ, "My Chip", chip)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001327 printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
1328 snd_mychip_free(chip);
1329 return -EBUSY;
1330 }
1331 chip->irq = pci->irq;
1332]]>
1333 </programlisting>
1334 </informalexample>
1335
1336 where <function>snd_mychip_interrupt()</function> is the
1337 interrupt handler defined <link
1338 linkend="pcm-interface-interrupt-handler"><citetitle>later</citetitle></link>.
1339 Note that chip-&gt;irq should be defined
1340 only when <function>request_irq()</function> succeeded.
1341 </para>
1342
1343 <para>
1344 On the PCI bus, the interrupts can be shared. Thus,
1345 <constant>SA_SHIRQ</constant> is given as the interrupt flag of
1346 <function>request_irq()</function>.
1347 </para>
1348
1349 <para>
1350 The last argument of <function>request_irq()</function> is the
1351 data pointer passed to the interrupt handler. Usually, the
1352 chip-specific record is used for that, but you can use what you
1353 like, too.
1354 </para>
1355
1356 <para>
1357 I won't define the detail of the interrupt handler at this
1358 point, but at least its appearance can be explained now. The
1359 interrupt handler looks usually like the following:
1360
1361 <informalexample>
1362 <programlisting>
1363<![CDATA[
1364 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id,
1365 struct pt_regs *regs)
1366 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001367 struct mychip *chip = dev_id;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001368 ....
1369 return IRQ_HANDLED;
1370 }
1371]]>
1372 </programlisting>
1373 </informalexample>
1374 </para>
1375
1376 <para>
1377 Now let's write the corresponding destructor for the resources
1378 above. The role of destructor is simple: disable the hardware
1379 (if already activated) and release the resources. So far, we
1380 have no hardware part, so the disabling is not written here.
1381 </para>
1382
1383 <para>
1384 For releasing the resources, <quote>check-and-release</quote>
1385 method is a safer way. For the interrupt, do like this:
1386
1387 <informalexample>
1388 <programlisting>
1389<![CDATA[
1390 if (chip->irq >= 0)
1391 free_irq(chip->irq, (void *)chip);
1392]]>
1393 </programlisting>
1394 </informalexample>
1395
1396 Since the irq number can start from 0, you should initialize
1397 chip-&gt;irq with a negative value (e.g. -1), so that you can
1398 check the validity of the irq number as above.
1399 </para>
1400
1401 <para>
1402 When you requested I/O ports or memory regions via
1403 <function>pci_request_region()</function> or
1404 <function>pci_request_regions()</function> like this example,
1405 release the resource(s) using the corresponding function,
1406 <function>pci_release_region()</function> or
1407 <function>pci_release_regions()</function>.
1408
1409 <informalexample>
1410 <programlisting>
1411<![CDATA[
1412 pci_release_regions(chip->pci);
1413]]>
1414 </programlisting>
1415 </informalexample>
1416 </para>
1417
1418 <para>
1419 When you requested manually via <function>request_region()</function>
1420 or <function>request_mem_region</function>, you can release it via
1421 <function>release_resource()</function>. Suppose that you keep
1422 the resource pointer returned from <function>request_region()</function>
1423 in chip-&gt;res_port, the release procedure looks like below:
1424
1425 <informalexample>
1426 <programlisting>
1427<![CDATA[
Takashi Iwaib1d57762005-10-10 11:56:31 +02001428 release_and_free_resource(chip->res_port);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001429]]>
1430 </programlisting>
1431 </informalexample>
Linus Torvalds1da177e2005-04-16 15:20:36 -07001432 </para>
1433
1434 <para>
1435 Don't forget to call <function>pci_disable_device()</function>
1436 before all finished.
1437 </para>
1438
1439 <para>
1440 And finally, release the chip-specific record.
1441
1442 <informalexample>
1443 <programlisting>
1444<![CDATA[
1445 kfree(chip);
1446]]>
1447 </programlisting>
1448 </informalexample>
1449 </para>
1450
1451 <para>
1452 Again, remember that you cannot
1453 set <parameter>__devexit</parameter> prefix for this destructor.
1454 </para>
1455
1456 <para>
1457 We didn't implement the hardware-disabling part in the above.
1458 If you need to do this, please note that the destructor may be
1459 called even before the initialization of the chip is completed.
1460 It would be better to have a flag to skip the hardware-disabling
1461 if the hardware was not initialized yet.
1462 </para>
1463
1464 <para>
1465 When the chip-data is assigned to the card using
1466 <function>snd_device_new()</function> with
1467 <constant>SNDRV_DEV_LOWLELVEL</constant> , its destructor is
1468 called at the last. That is, it is assured that all other
1469 components like PCMs and controls have been already released.
1470 You don't have to call stopping PCMs, etc. explicitly, but just
1471 stop the hardware in the low-level.
1472 </para>
1473
1474 <para>
1475 The management of a memory-mapped region is almost as same as
1476 the management of an i/o port. You'll need three fields like
1477 the following:
1478
1479 <informalexample>
1480 <programlisting>
1481<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001482 struct mychip {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001483 ....
1484 unsigned long iobase_phys;
1485 void __iomem *iobase_virt;
1486 };
1487]]>
1488 </programlisting>
1489 </informalexample>
1490
1491 and the allocation would be like below:
1492
1493 <informalexample>
1494 <programlisting>
1495<![CDATA[
1496 if ((err = pci_request_regions(pci, "My Chip")) < 0) {
1497 kfree(chip);
1498 return err;
1499 }
1500 chip->iobase_phys = pci_resource_start(pci, 0);
1501 chip->iobase_virt = ioremap_nocache(chip->iobase_phys,
1502 pci_resource_len(pci, 0));
1503]]>
1504 </programlisting>
1505 </informalexample>
1506
1507 and the corresponding destructor would be:
1508
1509 <informalexample>
1510 <programlisting>
1511<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001512 static int snd_mychip_free(struct mychip *chip)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001513 {
1514 ....
1515 if (chip->iobase_virt)
1516 iounmap(chip->iobase_virt);
1517 ....
1518 pci_release_regions(chip->pci);
1519 ....
1520 }
1521]]>
1522 </programlisting>
1523 </informalexample>
1524 </para>
1525
1526 </section>
1527
1528 <section id="pci-resource-device-struct">
1529 <title>Registration of Device Struct</title>
1530 <para>
1531 At some point, typically after calling <function>snd_device_new()</function>,
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001532 you need to register the struct <structname>device</structname> of the chip
Linus Torvalds1da177e2005-04-16 15:20:36 -07001533 you're handling for udev and co. ALSA provides a macro for compatibility with
1534 older kernels. Simply call like the following:
1535 <informalexample>
1536 <programlisting>
1537<![CDATA[
1538 snd_card_set_dev(card, &pci->dev);
1539]]>
1540 </programlisting>
1541 </informalexample>
1542 so that it stores the PCI's device pointer to the card. This will be
1543 referred by ALSA core functions later when the devices are registered.
1544 </para>
1545 <para>
1546 In the case of non-PCI, pass the proper device struct pointer of the BUS
1547 instead. (In the case of legacy ISA without PnP, you don't have to do
1548 anything.)
1549 </para>
1550 </section>
1551
1552 <section id="pci-resource-entries">
1553 <title>PCI Entries</title>
1554 <para>
1555 So far, so good. Let's finish the rest of missing PCI
1556 stuffs. At first, we need a
1557 <structname>pci_device_id</structname> table for this
1558 chipset. It's a table of PCI vendor/device ID number, and some
1559 masks.
1560 </para>
1561
1562 <para>
1563 For example,
1564
1565 <informalexample>
1566 <programlisting>
1567<![CDATA[
1568 static struct pci_device_id snd_mychip_ids[] = {
1569 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1570 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
1571 ....
1572 { 0, }
1573 };
1574 MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1575]]>
1576 </programlisting>
1577 </informalexample>
1578 </para>
1579
1580 <para>
1581 The first and second fields of
1582 <structname>pci_device_id</structname> struct are the vendor and
1583 device IDs. If you have nothing special to filter the matching
1584 devices, you can use the rest of fields like above. The last
1585 field of <structname>pci_device_id</structname> struct is a
1586 private data for this entry. You can specify any value here, for
1587 example, to tell the type of different operations per each
1588 device IDs. Such an example is found in intel8x0 driver.
1589 </para>
1590
1591 <para>
1592 The last entry of this list is the terminator. You must
1593 specify this all-zero entry.
1594 </para>
1595
1596 <para>
1597 Then, prepare the <structname>pci_driver</structname> record:
1598
1599 <informalexample>
1600 <programlisting>
1601<![CDATA[
1602 static struct pci_driver driver = {
1603 .name = "My Own Chip",
1604 .id_table = snd_mychip_ids,
1605 .probe = snd_mychip_probe,
1606 .remove = __devexit_p(snd_mychip_remove),
1607 };
1608]]>
1609 </programlisting>
1610 </informalexample>
1611 </para>
1612
1613 <para>
1614 The <structfield>probe</structfield> and
1615 <structfield>remove</structfield> functions are what we already
1616 defined in
1617 the previous sections. The <structfield>remove</structfield> should
1618 be defined with
1619 <function>__devexit_p()</function> macro, so that it's not
1620 defined for built-in (and non-hot-pluggable) case. The
1621 <structfield>name</structfield>
1622 field is the name string of this device. Note that you must not
1623 use a slash <quote>/</quote> in this string.
1624 </para>
1625
1626 <para>
1627 And at last, the module entries:
1628
1629 <informalexample>
1630 <programlisting>
1631<![CDATA[
1632 static int __init alsa_card_mychip_init(void)
1633 {
Takashi Iwai01d25d42005-04-11 16:58:24 +02001634 return pci_register_driver(&driver);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001635 }
1636
1637 static void __exit alsa_card_mychip_exit(void)
1638 {
1639 pci_unregister_driver(&driver);
1640 }
1641
1642 module_init(alsa_card_mychip_init)
1643 module_exit(alsa_card_mychip_exit)
1644]]>
1645 </programlisting>
1646 </informalexample>
1647 </para>
1648
1649 <para>
1650 Note that these module entries are tagged with
1651 <parameter>__init</parameter> and
1652 <parameter>__exit</parameter> prefixes, not
1653 <parameter>__devinit</parameter> nor
1654 <parameter>__devexit</parameter>.
1655 </para>
1656
1657 <para>
1658 Oh, one thing was forgotten. If you have no exported symbols,
1659 you need to declare it on 2.2 or 2.4 kernels (on 2.6 kernels
1660 it's not necessary, though).
1661
1662 <informalexample>
1663 <programlisting>
1664<![CDATA[
1665 EXPORT_NO_SYMBOLS;
1666]]>
1667 </programlisting>
1668 </informalexample>
1669
1670 That's all!
1671 </para>
1672 </section>
1673 </chapter>
1674
1675
1676<!-- ****************************************************** -->
1677<!-- PCM Interface -->
1678<!-- ****************************************************** -->
1679 <chapter id="pcm-interface">
1680 <title>PCM Interface</title>
1681
1682 <section id="pcm-interface-general">
1683 <title>General</title>
1684 <para>
1685 The PCM middle layer of ALSA is quite powerful and it is only
1686 necessary for each driver to implement the low-level functions
1687 to access its hardware.
1688 </para>
1689
1690 <para>
1691 For accessing to the PCM layer, you need to include
1692 <filename>&lt;sound/pcm.h&gt;</filename> above all. In addition,
1693 <filename>&lt;sound/pcm_params.h&gt;</filename> might be needed
1694 if you access to some functions related with hw_param.
1695 </para>
1696
1697 <para>
1698 Each card device can have up to four pcm instances. A pcm
1699 instance corresponds to a pcm device file. The limitation of
1700 number of instances comes only from the available bit size of
1701 the linux's device number. Once when 64bit device number is
1702 used, we'll have more available pcm instances.
1703 </para>
1704
1705 <para>
1706 A pcm instance consists of pcm playback and capture streams,
1707 and each pcm stream consists of one or more pcm substreams. Some
1708 soundcard supports the multiple-playback function. For example,
1709 emu10k1 has a PCM playback of 32 stereo substreams. In this case, at
1710 each open, a free substream is (usually) automatically chosen
1711 and opened. Meanwhile, when only one substream exists and it was
1712 already opened, the succeeding open will result in the blocking
1713 or the error with <constant>EAGAIN</constant> according to the
1714 file open mode. But you don't have to know the detail in your
1715 driver. The PCM middle layer will take all such jobs.
1716 </para>
1717 </section>
1718
1719 <section id="pcm-interface-example">
1720 <title>Full Code Example</title>
1721 <para>
1722 The example code below does not include any hardware access
1723 routines but shows only the skeleton, how to build up the PCM
1724 interfaces.
1725
1726 <example>
1727 <title>PCM Example Code</title>
1728 <programlisting>
1729<![CDATA[
1730 #include <sound/pcm.h>
1731 ....
1732
1733 /* hardware definition */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001734 static struct snd_pcm_hardware snd_mychip_playback_hw = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001735 .info = (SNDRV_PCM_INFO_MMAP |
1736 SNDRV_PCM_INFO_INTERLEAVED |
1737 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1738 SNDRV_PCM_INFO_MMAP_VALID),
1739 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1740 .rates = SNDRV_PCM_RATE_8000_48000,
1741 .rate_min = 8000,
1742 .rate_max = 48000,
1743 .channels_min = 2,
1744 .channels_max = 2,
1745 .buffer_bytes_max = 32768,
1746 .period_bytes_min = 4096,
1747 .period_bytes_max = 32768,
1748 .periods_min = 1,
1749 .periods_max = 1024,
1750 };
1751
1752 /* hardware definition */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001753 static struct snd_pcm_hardware snd_mychip_capture_hw = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001754 .info = (SNDRV_PCM_INFO_MMAP |
1755 SNDRV_PCM_INFO_INTERLEAVED |
1756 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1757 SNDRV_PCM_INFO_MMAP_VALID),
1758 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1759 .rates = SNDRV_PCM_RATE_8000_48000,
1760 .rate_min = 8000,
1761 .rate_max = 48000,
1762 .channels_min = 2,
1763 .channels_max = 2,
1764 .buffer_bytes_max = 32768,
1765 .period_bytes_min = 4096,
1766 .period_bytes_max = 32768,
1767 .periods_min = 1,
1768 .periods_max = 1024,
1769 };
1770
1771 /* open callback */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001772 static int snd_mychip_playback_open(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001773 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001774 struct mychip *chip = snd_pcm_substream_chip(substream);
1775 struct snd_pcm_runtime *runtime = substream->runtime;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001776
1777 runtime->hw = snd_mychip_playback_hw;
1778 // more hardware-initialization will be done here
1779 return 0;
1780 }
1781
1782 /* close callback */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001783 static int snd_mychip_playback_close(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001784 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001785 struct mychip *chip = snd_pcm_substream_chip(substream);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001786 // the hardware-specific codes will be here
1787 return 0;
1788
1789 }
1790
1791 /* open callback */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001792 static int snd_mychip_capture_open(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001793 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001794 struct mychip *chip = snd_pcm_substream_chip(substream);
1795 struct snd_pcm_runtime *runtime = substream->runtime;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001796
1797 runtime->hw = snd_mychip_capture_hw;
1798 // more hardware-initialization will be done here
1799 return 0;
1800 }
1801
1802 /* close callback */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001803 static int snd_mychip_capture_close(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001804 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001805 struct mychip *chip = snd_pcm_substream_chip(substream);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001806 // the hardware-specific codes will be here
1807 return 0;
1808
1809 }
1810
1811 /* hw_params callback */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001812 static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream,
1813 struct snd_pcm_hw_params *hw_params)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001814 {
1815 return snd_pcm_lib_malloc_pages(substream,
1816 params_buffer_bytes(hw_params));
1817 }
1818
1819 /* hw_free callback */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001820 static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001821 {
1822 return snd_pcm_lib_free_pages(substream);
1823 }
1824
1825 /* prepare callback */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001826 static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001827 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001828 struct mychip *chip = snd_pcm_substream_chip(substream);
1829 struct snd_pcm_runtime *runtime = substream->runtime;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001830
1831 /* set up the hardware with the current configuration
1832 * for example...
1833 */
1834 mychip_set_sample_format(chip, runtime->format);
1835 mychip_set_sample_rate(chip, runtime->rate);
1836 mychip_set_channels(chip, runtime->channels);
1837 mychip_set_dma_setup(chip, runtime->dma_area,
1838 chip->buffer_size,
1839 chip->period_size);
1840 return 0;
1841 }
1842
1843 /* trigger callback */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001844 static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001845 int cmd)
1846 {
1847 switch (cmd) {
1848 case SNDRV_PCM_TRIGGER_START:
1849 // do something to start the PCM engine
1850 break;
1851 case SNDRV_PCM_TRIGGER_STOP:
1852 // do something to stop the PCM engine
1853 break;
1854 default:
1855 return -EINVAL;
1856 }
1857 }
1858
1859 /* pointer callback */
1860 static snd_pcm_uframes_t
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001861 snd_mychip_pcm_pointer(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001862 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001863 struct mychip *chip = snd_pcm_substream_chip(substream);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001864 unsigned int current_ptr;
1865
1866 /* get the current hardware pointer */
1867 current_ptr = mychip_get_hw_pointer(chip);
1868 return current_ptr;
1869 }
1870
1871 /* operators */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001872 static struct snd_pcm_ops snd_mychip_playback_ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001873 .open = snd_mychip_playback_open,
1874 .close = snd_mychip_playback_close,
1875 .ioctl = snd_pcm_lib_ioctl,
1876 .hw_params = snd_mychip_pcm_hw_params,
1877 .hw_free = snd_mychip_pcm_hw_free,
1878 .prepare = snd_mychip_pcm_prepare,
1879 .trigger = snd_mychip_pcm_trigger,
1880 .pointer = snd_mychip_pcm_pointer,
1881 };
1882
1883 /* operators */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001884 static struct snd_pcm_ops snd_mychip_capture_ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001885 .open = snd_mychip_capture_open,
1886 .close = snd_mychip_capture_close,
1887 .ioctl = snd_pcm_lib_ioctl,
1888 .hw_params = snd_mychip_pcm_hw_params,
1889 .hw_free = snd_mychip_pcm_hw_free,
1890 .prepare = snd_mychip_pcm_prepare,
1891 .trigger = snd_mychip_pcm_trigger,
1892 .pointer = snd_mychip_pcm_pointer,
1893 };
1894
1895 /*
1896 * definitions of capture are omitted here...
1897 */
1898
1899 /* create a pcm device */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001900 static int __devinit snd_mychip_new_pcm(struct mychip *chip)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001901 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001902 struct snd_pcm *pcm;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001903 int err;
1904
1905 if ((err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1,
1906 &pcm)) < 0)
1907 return err;
1908 pcm->private_data = chip;
1909 strcpy(pcm->name, "My Chip");
1910 chip->pcm = pcm;
1911 /* set operators */
1912 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1913 &snd_mychip_playback_ops);
1914 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
1915 &snd_mychip_capture_ops);
1916 /* pre-allocation of buffers */
1917 /* NOTE: this may fail */
1918 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1919 snd_dma_pci_data(chip->pci),
1920 64*1024, 64*1024);
1921 return 0;
1922 }
1923]]>
1924 </programlisting>
1925 </example>
1926 </para>
1927 </section>
1928
1929 <section id="pcm-interface-constructor">
1930 <title>Constructor</title>
1931 <para>
1932 A pcm instance is allocated by <function>snd_pcm_new()</function>
1933 function. It would be better to create a constructor for pcm,
1934 namely,
1935
1936 <informalexample>
1937 <programlisting>
1938<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001939 static int __devinit snd_mychip_new_pcm(struct mychip *chip)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001940 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001941 struct snd_pcm *pcm;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001942 int err;
1943
1944 if ((err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1,
1945 &pcm)) < 0)
1946 return err;
1947 pcm->private_data = chip;
1948 strcpy(pcm->name, "My Chip");
1949 chip->pcm = pcm;
1950 ....
1951 return 0;
1952 }
1953]]>
1954 </programlisting>
1955 </informalexample>
1956 </para>
1957
1958 <para>
1959 The <function>snd_pcm_new()</function> function takes the four
1960 arguments. The first argument is the card pointer to which this
1961 pcm is assigned, and the second is the ID string.
1962 </para>
1963
1964 <para>
1965 The third argument (<parameter>index</parameter>, 0 in the
1966 above) is the index of this new pcm. It begins from zero. When
1967 you will create more than one pcm instances, specify the
1968 different numbers in this argument. For example,
1969 <parameter>index</parameter> = 1 for the second PCM device.
1970 </para>
1971
1972 <para>
1973 The fourth and fifth arguments are the number of substreams
1974 for playback and capture, respectively. Here both 1 are given in
1975 the above example. When no playback or no capture is available,
1976 pass 0 to the corresponding argument.
1977 </para>
1978
1979 <para>
1980 If a chip supports multiple playbacks or captures, you can
1981 specify more numbers, but they must be handled properly in
1982 open/close, etc. callbacks. When you need to know which
1983 substream you are referring to, then it can be obtained from
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001984 struct <structname>snd_pcm_substream</structname> data passed to each callback
Linus Torvalds1da177e2005-04-16 15:20:36 -07001985 as follows:
1986
1987 <informalexample>
1988 <programlisting>
1989<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001990 struct snd_pcm_substream *substream;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001991 int index = substream->number;
1992]]>
1993 </programlisting>
1994 </informalexample>
1995 </para>
1996
1997 <para>
1998 After the pcm is created, you need to set operators for each
1999 pcm stream.
2000
2001 <informalexample>
2002 <programlisting>
2003<![CDATA[
2004 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
2005 &snd_mychip_playback_ops);
2006 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
2007 &snd_mychip_capture_ops);
2008]]>
2009 </programlisting>
2010 </informalexample>
2011 </para>
2012
2013 <para>
2014 The operators are defined typically like this:
2015
2016 <informalexample>
2017 <programlisting>
2018<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002019 static struct snd_pcm_ops snd_mychip_playback_ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002020 .open = snd_mychip_pcm_open,
2021 .close = snd_mychip_pcm_close,
2022 .ioctl = snd_pcm_lib_ioctl,
2023 .hw_params = snd_mychip_pcm_hw_params,
2024 .hw_free = snd_mychip_pcm_hw_free,
2025 .prepare = snd_mychip_pcm_prepare,
2026 .trigger = snd_mychip_pcm_trigger,
2027 .pointer = snd_mychip_pcm_pointer,
2028 };
2029]]>
2030 </programlisting>
2031 </informalexample>
2032
2033 Each of callbacks is explained in the subsection
2034 <link linkend="pcm-interface-operators"><citetitle>
2035 Operators</citetitle></link>.
2036 </para>
2037
2038 <para>
2039 After setting the operators, most likely you'd like to
2040 pre-allocate the buffer. For the pre-allocation, simply call
2041 the following:
2042
2043 <informalexample>
2044 <programlisting>
2045<![CDATA[
2046 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
2047 snd_dma_pci_data(chip->pci),
2048 64*1024, 64*1024);
2049]]>
2050 </programlisting>
2051 </informalexample>
2052
2053 It will allocate up to 64kB buffer as default. The details of
2054 buffer management will be described in the later section <link
2055 linkend="buffer-and-memory"><citetitle>Buffer and Memory
2056 Management</citetitle></link>.
2057 </para>
2058
2059 <para>
2060 Additionally, you can set some extra information for this pcm
2061 in pcm-&gt;info_flags.
2062 The available values are defined as
2063 <constant>SNDRV_PCM_INFO_XXX</constant> in
2064 <filename>&lt;sound/asound.h&gt;</filename>, which is used for
2065 the hardware definition (described later). When your soundchip
2066 supports only half-duplex, specify like this:
2067
2068 <informalexample>
2069 <programlisting>
2070<![CDATA[
2071 pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
2072]]>
2073 </programlisting>
2074 </informalexample>
2075 </para>
2076 </section>
2077
2078 <section id="pcm-interface-destructor">
2079 <title>... And the Destructor?</title>
2080 <para>
2081 The destructor for a pcm instance is not always
2082 necessary. Since the pcm device will be released by the middle
2083 layer code automatically, you don't have to call destructor
2084 explicitly.
2085 </para>
2086
2087 <para>
2088 The destructor would be necessary when you created some
2089 special records internally and need to release them. In such a
2090 case, set the destructor function to
2091 pcm-&gt;private_free:
2092
2093 <example>
2094 <title>PCM Instance with a Destructor</title>
2095 <programlisting>
2096<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002097 static void mychip_pcm_free(struct snd_pcm *pcm)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002098 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002099 struct mychip *chip = snd_pcm_chip(pcm);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002100 /* free your own data */
2101 kfree(chip->my_private_pcm_data);
2102 // do what you like else
2103 ....
2104 }
2105
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002106 static int __devinit snd_mychip_new_pcm(struct mychip *chip)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002107 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002108 struct snd_pcm *pcm;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002109 ....
2110 /* allocate your own data */
2111 chip->my_private_pcm_data = kmalloc(...);
2112 /* set the destructor */
2113 pcm->private_data = chip;
2114 pcm->private_free = mychip_pcm_free;
2115 ....
2116 }
2117]]>
2118 </programlisting>
2119 </example>
2120 </para>
2121 </section>
2122
2123 <section id="pcm-interface-runtime">
2124 <title>Runtime Pointer - The Chest of PCM Information</title>
2125 <para>
2126 When the PCM substream is opened, a PCM runtime instance is
2127 allocated and assigned to the substream. This pointer is
2128 accessible via <constant>substream-&gt;runtime</constant>.
2129 This runtime pointer holds the various information; it holds
2130 the copy of hw_params and sw_params configurations, the buffer
2131 pointers, mmap records, spinlocks, etc. Almost everyhing you
2132 need for controlling the PCM can be found there.
2133 </para>
2134
2135 <para>
2136 The definition of runtime instance is found in
2137 <filename>&lt;sound/pcm.h&gt;</filename>. Here is the
2138 copy from the file.
2139 <informalexample>
2140 <programlisting>
2141<![CDATA[
2142struct _snd_pcm_runtime {
2143 /* -- Status -- */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002144 struct snd_pcm_substream *trigger_master;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002145 snd_timestamp_t trigger_tstamp; /* trigger timestamp */
2146 int overrange;
2147 snd_pcm_uframes_t avail_max;
2148 snd_pcm_uframes_t hw_ptr_base; /* Position at buffer restart */
2149 snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/
2150
2151 /* -- HW params -- */
2152 snd_pcm_access_t access; /* access mode */
2153 snd_pcm_format_t format; /* SNDRV_PCM_FORMAT_* */
2154 snd_pcm_subformat_t subformat; /* subformat */
2155 unsigned int rate; /* rate in Hz */
2156 unsigned int channels; /* channels */
2157 snd_pcm_uframes_t period_size; /* period size */
2158 unsigned int periods; /* periods */
2159 snd_pcm_uframes_t buffer_size; /* buffer size */
2160 unsigned int tick_time; /* tick time */
2161 snd_pcm_uframes_t min_align; /* Min alignment for the format */
2162 size_t byte_align;
2163 unsigned int frame_bits;
2164 unsigned int sample_bits;
2165 unsigned int info;
2166 unsigned int rate_num;
2167 unsigned int rate_den;
2168
2169 /* -- SW params -- */
Takashi Iwai07799e72005-10-10 11:49:49 +02002170 struct timespec tstamp_mode; /* mmap timestamp is updated */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002171 unsigned int period_step;
2172 unsigned int sleep_min; /* min ticks to sleep */
2173 snd_pcm_uframes_t xfer_align; /* xfer size need to be a multiple */
2174 snd_pcm_uframes_t start_threshold;
2175 snd_pcm_uframes_t stop_threshold;
2176 snd_pcm_uframes_t silence_threshold; /* Silence filling happens when
2177 noise is nearest than this */
2178 snd_pcm_uframes_t silence_size; /* Silence filling size */
2179 snd_pcm_uframes_t boundary; /* pointers wrap point */
2180
2181 snd_pcm_uframes_t silenced_start;
2182 snd_pcm_uframes_t silenced_size;
2183
2184 snd_pcm_sync_id_t sync; /* hardware synchronization ID */
2185
2186 /* -- mmap -- */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002187 volatile struct snd_pcm_mmap_status *status;
2188 volatile struct snd_pcm_mmap_control *control;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002189 atomic_t mmap_count;
2190
2191 /* -- locking / scheduling -- */
2192 spinlock_t lock;
2193 wait_queue_head_t sleep;
2194 struct timer_list tick_timer;
2195 struct fasync_struct *fasync;
2196
2197 /* -- private section -- */
2198 void *private_data;
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002199 void (*private_free)(struct snd_pcm_runtime *runtime);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002200
2201 /* -- hardware description -- */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002202 struct snd_pcm_hardware hw;
2203 struct snd_pcm_hw_constraints hw_constraints;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002204
2205 /* -- interrupt callbacks -- */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002206 void (*transfer_ack_begin)(struct snd_pcm_substream *substream);
2207 void (*transfer_ack_end)(struct snd_pcm_substream *substream);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002208
2209 /* -- timer -- */
2210 unsigned int timer_resolution; /* timer resolution */
2211
2212 /* -- DMA -- */
2213 unsigned char *dma_area; /* DMA area */
2214 dma_addr_t dma_addr; /* physical bus address (not accessible from main CPU) */
2215 size_t dma_bytes; /* size of DMA area */
2216
2217 struct snd_dma_buffer *dma_buffer_p; /* allocated buffer */
2218
2219#if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2220 /* -- OSS things -- */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002221 struct snd_pcm_oss_runtime oss;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002222#endif
2223};
2224]]>
2225 </programlisting>
2226 </informalexample>
2227 </para>
2228
2229 <para>
2230 For the operators (callbacks) of each sound driver, most of
2231 these records are supposed to be read-only. Only the PCM
2232 middle-layer changes / updates these info. The exceptions are
2233 the hardware description (hw), interrupt callbacks
2234 (transfer_ack_xxx), DMA buffer information, and the private
2235 data. Besides, if you use the standard buffer allocation
2236 method via <function>snd_pcm_lib_malloc_pages()</function>,
2237 you don't need to set the DMA buffer information by yourself.
2238 </para>
2239
2240 <para>
2241 In the sections below, important records are explained.
2242 </para>
2243
2244 <section id="pcm-interface-runtime-hw">
2245 <title>Hardware Description</title>
2246 <para>
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002247 The hardware descriptor (struct <structname>snd_pcm_hardware</structname>)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002248 contains the definitions of the fundamental hardware
2249 configuration. Above all, you'll need to define this in
2250 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2251 the open callback</citetitle></link>.
2252 Note that the runtime instance holds the copy of the
2253 descriptor, not the pointer to the existing descriptor. That
2254 is, in the open callback, you can modify the copied descriptor
2255 (<constant>runtime-&gt;hw</constant>) as you need. For example, if the maximum
2256 number of channels is 1 only on some chip models, you can
2257 still use the same hardware descriptor and change the
2258 channels_max later:
2259 <informalexample>
2260 <programlisting>
2261<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002262 struct snd_pcm_runtime *runtime = substream->runtime;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002263 ...
2264 runtime->hw = snd_mychip_playback_hw; /* common definition */
2265 if (chip->model == VERY_OLD_ONE)
2266 runtime->hw.channels_max = 1;
2267]]>
2268 </programlisting>
2269 </informalexample>
2270 </para>
2271
2272 <para>
2273 Typically, you'll have a hardware descriptor like below:
2274 <informalexample>
2275 <programlisting>
2276<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002277 static struct snd_pcm_hardware snd_mychip_playback_hw = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002278 .info = (SNDRV_PCM_INFO_MMAP |
2279 SNDRV_PCM_INFO_INTERLEAVED |
2280 SNDRV_PCM_INFO_BLOCK_TRANSFER |
2281 SNDRV_PCM_INFO_MMAP_VALID),
2282 .formats = SNDRV_PCM_FMTBIT_S16_LE,
2283 .rates = SNDRV_PCM_RATE_8000_48000,
2284 .rate_min = 8000,
2285 .rate_max = 48000,
2286 .channels_min = 2,
2287 .channels_max = 2,
2288 .buffer_bytes_max = 32768,
2289 .period_bytes_min = 4096,
2290 .period_bytes_max = 32768,
2291 .periods_min = 1,
2292 .periods_max = 1024,
2293 };
2294]]>
2295 </programlisting>
2296 </informalexample>
2297 </para>
2298
2299 <para>
2300 <itemizedlist>
2301 <listitem><para>
2302 The <structfield>info</structfield> field contains the type and
2303 capabilities of this pcm. The bit flags are defined in
2304 <filename>&lt;sound/asound.h&gt;</filename> as
2305 <constant>SNDRV_PCM_INFO_XXX</constant>. Here, at least, you
2306 have to specify whether the mmap is supported and which
2307 interleaved format is supported.
2308 When the mmap is supported, add
2309 <constant>SNDRV_PCM_INFO_MMAP</constant> flag here. When the
2310 hardware supports the interleaved or the non-interleaved
2311 format, <constant>SNDRV_PCM_INFO_INTERLEAVED</constant> or
2312 <constant>SNDRV_PCM_INFO_NONINTERLEAVED</constant> flag must
2313 be set, respectively. If both are supported, you can set both,
2314 too.
2315 </para>
2316
2317 <para>
2318 In the above example, <constant>MMAP_VALID</constant> and
2319 <constant>BLOCK_TRANSFER</constant> are specified for OSS mmap
2320 mode. Usually both are set. Of course,
2321 <constant>MMAP_VALID</constant> is set only if the mmap is
2322 really supported.
2323 </para>
2324
2325 <para>
2326 The other possible flags are
2327 <constant>SNDRV_PCM_INFO_PAUSE</constant> and
2328 <constant>SNDRV_PCM_INFO_RESUME</constant>. The
2329 <constant>PAUSE</constant> bit means that the pcm supports the
2330 <quote>pause</quote> operation, while the
2331 <constant>RESUME</constant> bit means that the pcm supports
Takashi Iwai5fe76e42005-11-17 17:26:09 +01002332 the full <quote>suspend/resume</quote> operation.
2333 If <constant>PAUSE</constant> flag is set,
2334 the <structfield>trigger</structfield> callback below
2335 must handle the corresponding (pause push/release) commands.
2336 The suspend/resume trigger commands can be defined even without
2337 <constant>RESUME</constant> flag. See <link
2338 linkend="power-management"><citetitle>
2339 Power Management</citetitle></link> section for details.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002340 </para>
2341
2342 <para>
2343 When the PCM substreams can be synchronized (typically,
2344 synchorinized start/stop of a playback and a capture streams),
2345 you can give <constant>SNDRV_PCM_INFO_SYNC_START</constant>,
2346 too. In this case, you'll need to check the linked-list of
2347 PCM substreams in the trigger callback. This will be
2348 described in the later section.
2349 </para>
2350 </listitem>
2351
2352 <listitem>
2353 <para>
2354 <structfield>formats</structfield> field contains the bit-flags
2355 of supported formats (<constant>SNDRV_PCM_FMTBIT_XXX</constant>).
2356 If the hardware supports more than one format, give all or'ed
2357 bits. In the example above, the signed 16bit little-endian
2358 format is specified.
2359 </para>
2360 </listitem>
2361
2362 <listitem>
2363 <para>
2364 <structfield>rates</structfield> field contains the bit-flags of
2365 supported rates (<constant>SNDRV_PCM_RATE_XXX</constant>).
2366 When the chip supports continuous rates, pass
2367 <constant>CONTINUOUS</constant> bit additionally.
2368 The pre-defined rate bits are provided only for typical
2369 rates. If your chip supports unconventional rates, you need to add
2370 <constant>KNOT</constant> bit and set up the hardware
2371 constraint manually (explained later).
2372 </para>
2373 </listitem>
2374
2375 <listitem>
2376 <para>
2377 <structfield>rate_min</structfield> and
2378 <structfield>rate_max</structfield> define the minimal and
2379 maximal sample rate. This should correspond somehow to
2380 <structfield>rates</structfield> bits.
2381 </para>
2382 </listitem>
2383
2384 <listitem>
2385 <para>
2386 <structfield>channel_min</structfield> and
2387 <structfield>channel_max</structfield>
2388 define, as you might already expected, the minimal and maximal
2389 number of channels.
2390 </para>
2391 </listitem>
2392
2393 <listitem>
2394 <para>
2395 <structfield>buffer_bytes_max</structfield> defines the
2396 maximal buffer size in bytes. There is no
2397 <structfield>buffer_bytes_min</structfield> field, since
2398 it can be calculated from the minimal period size and the
2399 minimal number of periods.
2400 Meanwhile, <structfield>period_bytes_min</structfield> and
2401 define the minimal and maximal size of the period in bytes.
2402 <structfield>periods_max</structfield> and
2403 <structfield>periods_min</structfield> define the maximal and
2404 minimal number of periods in the buffer.
2405 </para>
2406
2407 <para>
2408 The <quote>period</quote> is a term, that corresponds to
2409 fragment in the OSS world. The period defines the size at
2410 which the PCM interrupt is generated. This size strongly
2411 depends on the hardware.
2412 Generally, the smaller period size will give you more
2413 interrupts, that is, more controls.
2414 In the case of capture, this size defines the input latency.
2415 On the other hand, the whole buffer size defines the
2416 output latency for the playback direction.
2417 </para>
2418 </listitem>
2419
2420 <listitem>
2421 <para>
2422 There is also a field <structfield>fifo_size</structfield>.
2423 This specifies the size of the hardware FIFO, but it's not
2424 used currently in the driver nor in the alsa-lib. So, you
2425 can ignore this field.
2426 </para>
2427 </listitem>
2428 </itemizedlist>
2429 </para>
2430 </section>
2431
2432 <section id="pcm-interface-runtime-config">
2433 <title>PCM Configurations</title>
2434 <para>
2435 Ok, let's go back again to the PCM runtime records.
2436 The most frequently referred records in the runtime instance are
2437 the PCM configurations.
2438 The PCM configurations are stored on runtime instance
2439 after the application sends <type>hw_params</type> data via
2440 alsa-lib. There are many fields copied from hw_params and
2441 sw_params structs. For example,
2442 <structfield>format</structfield> holds the format type
2443 chosen by the application. This field contains the enum value
2444 <constant>SNDRV_PCM_FORMAT_XXX</constant>.
2445 </para>
2446
2447 <para>
2448 One thing to be noted is that the configured buffer and period
2449 sizes are stored in <quote>frames</quote> in the runtime
2450 In the ALSA world, 1 frame = channels * samples-size.
2451 For conversion between frames and bytes, you can use the
2452 helper functions, <function>frames_to_bytes()</function> and
2453 <function>bytes_to_frames()</function>.
2454 <informalexample>
2455 <programlisting>
2456<![CDATA[
2457 period_bytes = frames_to_bytes(runtime, runtime->period_size);
2458]]>
2459 </programlisting>
2460 </informalexample>
2461 </para>
2462
2463 <para>
2464 Also, many software parameters (sw_params) are
2465 stored in frames, too. Please check the type of the field.
2466 <type>snd_pcm_uframes_t</type> is for the frames as unsigned
2467 integer while <type>snd_pcm_sframes_t</type> is for the frames
2468 as signed integer.
2469 </para>
2470 </section>
2471
2472 <section id="pcm-interface-runtime-dma">
2473 <title>DMA Buffer Information</title>
2474 <para>
2475 The DMA buffer is defined by the following four fields,
2476 <structfield>dma_area</structfield>,
2477 <structfield>dma_addr</structfield>,
2478 <structfield>dma_bytes</structfield> and
2479 <structfield>dma_private</structfield>.
2480 The <structfield>dma_area</structfield> holds the buffer
2481 pointer (the logical address). You can call
2482 <function>memcpy</function> from/to
2483 this pointer. Meanwhile, <structfield>dma_addr</structfield>
2484 holds the physical address of the buffer. This field is
2485 specified only when the buffer is a linear buffer.
2486 <structfield>dma_bytes</structfield> holds the size of buffer
2487 in bytes. <structfield>dma_private</structfield> is used for
2488 the ALSA DMA allocator.
2489 </para>
2490
2491 <para>
2492 If you use a standard ALSA function,
2493 <function>snd_pcm_lib_malloc_pages()</function>, for
2494 allocating the buffer, these fields are set by the ALSA middle
2495 layer, and you should <emphasis>not</emphasis> change them by
2496 yourself. You can read them but not write them.
2497 On the other hand, if you want to allocate the buffer by
2498 yourself, you'll need to manage it in hw_params callback.
2499 At least, <structfield>dma_bytes</structfield> is mandatory.
2500 <structfield>dma_area</structfield> is necessary when the
2501 buffer is mmapped. If your driver doesn't support mmap, this
2502 field is not necessary. <structfield>dma_addr</structfield>
2503 is also not mandatory. You can use
2504 <structfield>dma_private</structfield> as you like, too.
2505 </para>
2506 </section>
2507
2508 <section id="pcm-interface-runtime-status">
2509 <title>Running Status</title>
2510 <para>
2511 The running status can be referred via <constant>runtime-&gt;status</constant>.
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002512 This is the pointer to struct <structname>snd_pcm_mmap_status</structname>
Linus Torvalds1da177e2005-04-16 15:20:36 -07002513 record. For example, you can get the current DMA hardware
2514 pointer via <constant>runtime-&gt;status-&gt;hw_ptr</constant>.
2515 </para>
2516
2517 <para>
2518 The DMA application pointer can be referred via
2519 <constant>runtime-&gt;control</constant>, which points
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002520 struct <structname>snd_pcm_mmap_control</structname> record.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002521 However, accessing directly to this value is not recommended.
2522 </para>
2523 </section>
2524
2525 <section id="pcm-interface-runtime-private">
2526 <title>Private Data</title>
2527 <para>
2528 You can allocate a record for the substream and store it in
2529 <constant>runtime-&gt;private_data</constant>. Usually, this
2530 done in
2531 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2532 the open callback</citetitle></link>.
2533 Don't mix this with <constant>pcm-&gt;private_data</constant>.
2534 The <constant>pcm-&gt;private_data</constant> usually points the
2535 chip instance assigned statically at the creation of PCM, while the
2536 <constant>runtime-&gt;private_data</constant> points a dynamic
2537 data created at the PCM open callback.
2538
2539 <informalexample>
2540 <programlisting>
2541<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002542 static int snd_xxx_open(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002543 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002544 struct my_pcm_data *data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002545 ....
2546 data = kmalloc(sizeof(*data), GFP_KERNEL);
2547 substream->runtime->private_data = data;
2548 ....
2549 }
2550]]>
2551 </programlisting>
2552 </informalexample>
2553 </para>
2554
2555 <para>
2556 The allocated object must be released in
2557 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2558 the close callback</citetitle></link>.
2559 </para>
2560 </section>
2561
2562 <section id="pcm-interface-runtime-intr">
2563 <title>Interrupt Callbacks</title>
2564 <para>
2565 The field <structfield>transfer_ack_begin</structfield> and
2566 <structfield>transfer_ack_end</structfield> are called at
2567 the beginning and the end of
2568 <function>snd_pcm_period_elapsed()</function>, respectively.
2569 </para>
2570 </section>
2571
2572 </section>
2573
2574 <section id="pcm-interface-operators">
2575 <title>Operators</title>
2576 <para>
2577 OK, now let me explain the detail of each pcm callback
2578 (<parameter>ops</parameter>). In general, every callback must
2579 return 0 if successful, or a negative number with the error
2580 number such as <constant>-EINVAL</constant> at any
2581 error.
2582 </para>
2583
2584 <para>
2585 The callback function takes at least the argument with
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002586 <structname>snd_pcm_substream</structname> pointer. For retrieving the
Linus Torvalds1da177e2005-04-16 15:20:36 -07002587 chip record from the given substream instance, you can use the
2588 following macro.
2589
2590 <informalexample>
2591 <programlisting>
2592<![CDATA[
2593 int xxx() {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002594 struct mychip *chip = snd_pcm_substream_chip(substream);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002595 ....
2596 }
2597]]>
2598 </programlisting>
2599 </informalexample>
2600
2601 The macro reads <constant>substream-&gt;private_data</constant>,
2602 which is a copy of <constant>pcm-&gt;private_data</constant>.
2603 You can override the former if you need to assign different data
2604 records per PCM substream. For example, cmi8330 driver assigns
2605 different private_data for playback and capture directions,
2606 because it uses two different codecs (SB- and AD-compatible) for
2607 different directions.
2608 </para>
2609
2610 <section id="pcm-interface-operators-open-callback">
2611 <title>open callback</title>
2612 <para>
2613 <informalexample>
2614 <programlisting>
2615<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002616 static int snd_xxx_open(struct snd_pcm_substream *substream);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002617]]>
2618 </programlisting>
2619 </informalexample>
2620
2621 This is called when a pcm substream is opened.
2622 </para>
2623
2624 <para>
2625 At least, here you have to initialize the runtime-&gt;hw
2626 record. Typically, this is done by like this:
2627
2628 <informalexample>
2629 <programlisting>
2630<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002631 static int snd_xxx_open(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002632 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002633 struct mychip *chip = snd_pcm_substream_chip(substream);
2634 struct snd_pcm_runtime *runtime = substream->runtime;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002635
2636 runtime->hw = snd_mychip_playback_hw;
2637 return 0;
2638 }
2639]]>
2640 </programlisting>
2641 </informalexample>
2642
2643 where <parameter>snd_mychip_playback_hw</parameter> is the
2644 pre-defined hardware description.
2645 </para>
2646
2647 <para>
2648 You can allocate a private data in this callback, as described
2649 in <link linkend="pcm-interface-runtime-private"><citetitle>
2650 Private Data</citetitle></link> section.
2651 </para>
2652
2653 <para>
2654 If the hardware configuration needs more constraints, set the
2655 hardware constraints here, too.
2656 See <link linkend="pcm-interface-constraints"><citetitle>
2657 Constraints</citetitle></link> for more details.
2658 </para>
2659 </section>
2660
2661 <section id="pcm-interface-operators-close-callback">
2662 <title>close callback</title>
2663 <para>
2664 <informalexample>
2665 <programlisting>
2666<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002667 static int snd_xxx_close(struct snd_pcm_substream *substream);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002668]]>
2669 </programlisting>
2670 </informalexample>
2671
2672 Obviously, this is called when a pcm substream is closed.
2673 </para>
2674
2675 <para>
2676 Any private instance for a pcm substream allocated in the
2677 open callback will be released here.
2678
2679 <informalexample>
2680 <programlisting>
2681<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002682 static int snd_xxx_close(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002683 {
2684 ....
2685 kfree(substream->runtime->private_data);
2686 ....
2687 }
2688]]>
2689 </programlisting>
2690 </informalexample>
2691 </para>
2692 </section>
2693
2694 <section id="pcm-interface-operators-ioctl-callback">
2695 <title>ioctl callback</title>
2696 <para>
2697 This is used for any special action to pcm ioctls. But
2698 usually you can pass a generic ioctl callback,
2699 <function>snd_pcm_lib_ioctl</function>.
2700 </para>
2701 </section>
2702
2703 <section id="pcm-interface-operators-hw-params-callback">
2704 <title>hw_params callback</title>
2705 <para>
2706 <informalexample>
2707 <programlisting>
2708<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002709 static int snd_xxx_hw_params(struct snd_pcm_substream *substream,
2710 struct snd_pcm_hw_params *hw_params);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002711]]>
2712 </programlisting>
2713 </informalexample>
2714
2715 This and <structfield>hw_free</structfield> callbacks exist
2716 only on ALSA 0.9.x.
2717 </para>
2718
2719 <para>
2720 This is called when the hardware parameter
2721 (<structfield>hw_params</structfield>) is set
2722 up by the application,
2723 that is, once when the buffer size, the period size, the
2724 format, etc. are defined for the pcm substream.
2725 </para>
2726
2727 <para>
2728 Many hardware set-up should be done in this callback,
2729 including the allocation of buffers.
2730 </para>
2731
2732 <para>
2733 Parameters to be initialized are retrieved by
2734 <function>params_xxx()</function> macros. For allocating a
2735 buffer, you can call a helper function,
2736
2737 <informalexample>
2738 <programlisting>
2739<![CDATA[
2740 snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
2741]]>
2742 </programlisting>
2743 </informalexample>
2744
2745 <function>snd_pcm_lib_malloc_pages()</function> is available
2746 only when the DMA buffers have been pre-allocated.
2747 See the section <link
2748 linkend="buffer-and-memory-buffer-types"><citetitle>
2749 Buffer Types</citetitle></link> for more details.
2750 </para>
2751
2752 <para>
2753 Note that this and <structfield>prepare</structfield> callbacks
2754 may be called multiple times per initialization.
2755 For example, the OSS emulation may
2756 call these callbacks at each change via its ioctl.
2757 </para>
2758
2759 <para>
2760 Thus, you need to take care not to allocate the same buffers
2761 many times, which will lead to memory leak! Calling the
2762 helper function above many times is OK. It will release the
2763 previous buffer automatically when it was already allocated.
2764 </para>
2765
2766 <para>
2767 Another note is that this callback is non-atomic
2768 (schedulable). This is important, because the
2769 <structfield>trigger</structfield> callback
2770 is atomic (non-schedulable). That is, mutex or any
2771 schedule-related functions are not available in
2772 <structfield>trigger</structfield> callback.
2773 Please see the subsection
2774 <link linkend="pcm-interface-atomicity"><citetitle>
2775 Atomicity</citetitle></link> for details.
2776 </para>
2777 </section>
2778
2779 <section id="pcm-interface-operators-hw-free-callback">
2780 <title>hw_free callback</title>
2781 <para>
2782 <informalexample>
2783 <programlisting>
2784<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002785 static int snd_xxx_hw_free(struct snd_pcm_substream *substream);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002786]]>
2787 </programlisting>
2788 </informalexample>
2789 </para>
2790
2791 <para>
2792 This is called to release the resources allocated via
2793 <structfield>hw_params</structfield>. For example, releasing the
2794 buffer via
2795 <function>snd_pcm_lib_malloc_pages()</function> is done by
2796 calling the following:
2797
2798 <informalexample>
2799 <programlisting>
2800<![CDATA[
2801 snd_pcm_lib_free_pages(substream);
2802]]>
2803 </programlisting>
2804 </informalexample>
2805 </para>
2806
2807 <para>
2808 This function is always called before the close callback is called.
2809 Also, the callback may be called multiple times, too.
2810 Keep track whether the resource was already released.
2811 </para>
2812 </section>
2813
2814 <section id="pcm-interface-operators-prepare-callback">
2815 <title>prepare callback</title>
2816 <para>
2817 <informalexample>
2818 <programlisting>
2819<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002820 static int snd_xxx_prepare(struct snd_pcm_substream *substream);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002821]]>
2822 </programlisting>
2823 </informalexample>
2824 </para>
2825
2826 <para>
2827 This callback is called when the pcm is
2828 <quote>prepared</quote>. You can set the format type, sample
2829 rate, etc. here. The difference from
2830 <structfield>hw_params</structfield> is that the
2831 <structfield>prepare</structfield> callback will be called at each
2832 time
2833 <function>snd_pcm_prepare()</function> is called, i.e. when
2834 recovered after underruns, etc.
2835 </para>
2836
2837 <para>
2838 Note that this callback became non-atomic since the recent version.
2839 You can use schedule-related fucntions safely in this callback now.
2840 </para>
2841
2842 <para>
2843 In this and the following callbacks, you can refer to the
2844 values via the runtime record,
2845 substream-&gt;runtime.
2846 For example, to get the current
2847 rate, format or channels, access to
2848 runtime-&gt;rate,
2849 runtime-&gt;format or
2850 runtime-&gt;channels, respectively.
2851 The physical address of the allocated buffer is set to
2852 runtime-&gt;dma_area. The buffer and period sizes are
2853 in runtime-&gt;buffer_size and runtime-&gt;period_size,
2854 respectively.
2855 </para>
2856
2857 <para>
2858 Be careful that this callback will be called many times at
2859 each set up, too.
2860 </para>
2861 </section>
2862
2863 <section id="pcm-interface-operators-trigger-callback">
2864 <title>trigger callback</title>
2865 <para>
2866 <informalexample>
2867 <programlisting>
2868<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002869 static int snd_xxx_trigger(struct snd_pcm_substream *substream, int cmd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002870]]>
2871 </programlisting>
2872 </informalexample>
2873
2874 This is called when the pcm is started, stopped or paused.
2875 </para>
2876
2877 <para>
2878 Which action is specified in the second argument,
2879 <constant>SNDRV_PCM_TRIGGER_XXX</constant> in
2880 <filename>&lt;sound/pcm.h&gt;</filename>. At least,
2881 <constant>START</constant> and <constant>STOP</constant>
2882 commands must be defined in this callback.
2883
2884 <informalexample>
2885 <programlisting>
2886<![CDATA[
2887 switch (cmd) {
2888 case SNDRV_PCM_TRIGGER_START:
2889 // do something to start the PCM engine
2890 break;
2891 case SNDRV_PCM_TRIGGER_STOP:
2892 // do something to stop the PCM engine
2893 break;
2894 default:
2895 return -EINVAL;
2896 }
2897]]>
2898 </programlisting>
2899 </informalexample>
2900 </para>
2901
2902 <para>
2903 When the pcm supports the pause operation (given in info
2904 field of the hardware table), <constant>PAUSE_PUSE</constant>
2905 and <constant>PAUSE_RELEASE</constant> commands must be
2906 handled here, too. The former is the command to pause the pcm,
2907 and the latter to restart the pcm again.
2908 </para>
2909
2910 <para>
Takashi Iwai5fe76e42005-11-17 17:26:09 +01002911 When the pcm supports the suspend/resume operation,
2912 regardless of full or partial suspend/resume support,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002913 <constant>SUSPEND</constant> and <constant>RESUME</constant>
2914 commands must be handled, too.
2915 These commands are issued when the power-management status is
2916 changed. Obviously, the <constant>SUSPEND</constant> and
2917 <constant>RESUME</constant>
2918 do suspend and resume of the pcm substream, and usually, they
2919 are identical with <constant>STOP</constant> and
2920 <constant>START</constant> commands, respectively.
Takashi Iwai5fe76e42005-11-17 17:26:09 +01002921 See <link linkend="power-management"><citetitle>
2922 Power Management</citetitle></link> section for details.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002923 </para>
2924
2925 <para>
2926 As mentioned, this callback is atomic. You cannot call
2927 the function going to sleep.
2928 The trigger callback should be as minimal as possible,
2929 just really triggering the DMA. The other stuff should be
2930 initialized hw_params and prepare callbacks properly
2931 beforehand.
2932 </para>
2933 </section>
2934
2935 <section id="pcm-interface-operators-pointer-callback">
2936 <title>pointer callback</title>
2937 <para>
2938 <informalexample>
2939 <programlisting>
2940<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002941 static snd_pcm_uframes_t snd_xxx_pointer(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002942]]>
2943 </programlisting>
2944 </informalexample>
2945
2946 This callback is called when the PCM middle layer inquires
2947 the current hardware position on the buffer. The position must
2948 be returned in frames (which was in bytes on ALSA 0.5.x),
2949 ranged from 0 to buffer_size - 1.
2950 </para>
2951
2952 <para>
2953 This is called usually from the buffer-update routine in the
2954 pcm middle layer, which is invoked when
2955 <function>snd_pcm_period_elapsed()</function> is called in the
2956 interrupt routine. Then the pcm middle layer updates the
2957 position and calculates the available space, and wakes up the
2958 sleeping poll threads, etc.
2959 </para>
2960
2961 <para>
2962 This callback is also atomic.
2963 </para>
2964 </section>
2965
2966 <section id="pcm-interface-operators-copy-silence">
2967 <title>copy and silence callbacks</title>
2968 <para>
2969 These callbacks are not mandatory, and can be omitted in
2970 most cases. These callbacks are used when the hardware buffer
2971 cannot be on the normal memory space. Some chips have their
2972 own buffer on the hardware which is not mappable. In such a
2973 case, you have to transfer the data manually from the memory
2974 buffer to the hardware buffer. Or, if the buffer is
2975 non-contiguous on both physical and virtual memory spaces,
2976 these callbacks must be defined, too.
2977 </para>
2978
2979 <para>
2980 If these two callbacks are defined, copy and set-silence
2981 operations are done by them. The detailed will be described in
2982 the later section <link
2983 linkend="buffer-and-memory"><citetitle>Buffer and Memory
2984 Management</citetitle></link>.
2985 </para>
2986 </section>
2987
2988 <section id="pcm-interface-operators-ack">
2989 <title>ack callback</title>
2990 <para>
2991 This callback is also not mandatory. This callback is called
2992 when the appl_ptr is updated in read or write operations.
2993 Some drivers like emu10k1-fx and cs46xx need to track the
2994 current appl_ptr for the internal buffer, and this callback
2995 is useful only for such a purpose.
2996 </para>
2997 <para>
2998 This callback is atomic.
2999 </para>
3000 </section>
3001
3002 <section id="pcm-interface-operators-page-callback">
3003 <title>page callback</title>
3004
3005 <para>
3006 This callback is also not mandatory. This callback is used
3007 mainly for the non-contiguous buffer. The mmap calls this
3008 callback to get the page address. Some examples will be
3009 explained in the later section <link
3010 linkend="buffer-and-memory"><citetitle>Buffer and Memory
3011 Management</citetitle></link>, too.
3012 </para>
3013 </section>
3014 </section>
3015
3016 <section id="pcm-interface-interrupt-handler">
3017 <title>Interrupt Handler</title>
3018 <para>
3019 The rest of pcm stuff is the PCM interrupt handler. The
3020 role of PCM interrupt handler in the sound driver is to update
3021 the buffer position and to tell the PCM middle layer when the
3022 buffer position goes across the prescribed period size. To
3023 inform this, call <function>snd_pcm_period_elapsed()</function>
3024 function.
3025 </para>
3026
3027 <para>
3028 There are several types of sound chips to generate the interrupts.
3029 </para>
3030
3031 <section id="pcm-interface-interrupt-handler-boundary">
3032 <title>Interrupts at the period (fragment) boundary</title>
3033 <para>
3034 This is the most frequently found type: the hardware
3035 generates an interrupt at each period boundary.
3036 In this case, you can call
3037 <function>snd_pcm_period_elapsed()</function> at each
3038 interrupt.
3039 </para>
3040
3041 <para>
3042 <function>snd_pcm_period_elapsed()</function> takes the
3043 substream pointer as its argument. Thus, you need to keep the
3044 substream pointer accessible from the chip instance. For
3045 example, define substream field in the chip record to hold the
3046 current running substream pointer, and set the pointer value
3047 at open callback (and reset at close callback).
3048 </para>
3049
3050 <para>
3051 If you aquire a spinlock in the interrupt handler, and the
3052 lock is used in other pcm callbacks, too, then you have to
3053 release the lock before calling
3054 <function>snd_pcm_period_elapsed()</function>, because
3055 <function>snd_pcm_period_elapsed()</function> calls other pcm
3056 callbacks inside.
3057 </para>
3058
3059 <para>
3060 A typical coding would be like:
3061
3062 <example>
3063 <title>Interrupt Handler Case #1</title>
3064 <programlisting>
3065<![CDATA[
3066 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id,
3067 struct pt_regs *regs)
3068 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003069 struct mychip *chip = dev_id;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003070 spin_lock(&chip->lock);
3071 ....
3072 if (pcm_irq_invoked(chip)) {
3073 /* call updater, unlock before it */
3074 spin_unlock(&chip->lock);
3075 snd_pcm_period_elapsed(chip->substream);
3076 spin_lock(&chip->lock);
3077 // acknowledge the interrupt if necessary
3078 }
3079 ....
3080 spin_unlock(&chip->lock);
3081 return IRQ_HANDLED;
3082 }
3083]]>
3084 </programlisting>
3085 </example>
3086 </para>
3087 </section>
3088
3089 <section id="pcm-interface-interrupt-handler-timer">
3090 <title>High-frequent timer interrupts</title>
3091 <para>
3092 This is the case when the hardware doesn't generate interrupts
3093 at the period boundary but do timer-interrupts at the fixed
3094 timer rate (e.g. es1968 or ymfpci drivers).
3095 In this case, you need to check the current hardware
3096 position and accumulates the processed sample length at each
3097 interrupt. When the accumulated size overcomes the period
3098 size, call
3099 <function>snd_pcm_period_elapsed()</function> and reset the
3100 accumulator.
3101 </para>
3102
3103 <para>
3104 A typical coding would be like the following.
3105
3106 <example>
3107 <title>Interrupt Handler Case #2</title>
3108 <programlisting>
3109<![CDATA[
3110 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id,
3111 struct pt_regs *regs)
3112 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003113 struct mychip *chip = dev_id;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003114 spin_lock(&chip->lock);
3115 ....
3116 if (pcm_irq_invoked(chip)) {
3117 unsigned int last_ptr, size;
3118 /* get the current hardware pointer (in frames) */
3119 last_ptr = get_hw_ptr(chip);
3120 /* calculate the processed frames since the
3121 * last update
3122 */
3123 if (last_ptr < chip->last_ptr)
3124 size = runtime->buffer_size + last_ptr
3125 - chip->last_ptr;
3126 else
3127 size = last_ptr - chip->last_ptr;
3128 /* remember the last updated point */
3129 chip->last_ptr = last_ptr;
3130 /* accumulate the size */
3131 chip->size += size;
3132 /* over the period boundary? */
3133 if (chip->size >= runtime->period_size) {
3134 /* reset the accumulator */
3135 chip->size %= runtime->period_size;
3136 /* call updater */
3137 spin_unlock(&chip->lock);
3138 snd_pcm_period_elapsed(substream);
3139 spin_lock(&chip->lock);
3140 }
3141 // acknowledge the interrupt if necessary
3142 }
3143 ....
3144 spin_unlock(&chip->lock);
3145 return IRQ_HANDLED;
3146 }
3147]]>
3148 </programlisting>
3149 </example>
3150 </para>
3151 </section>
3152
3153 <section id="pcm-interface-interrupt-handler-both">
3154 <title>On calling <function>snd_pcm_period_elapsed()</function></title>
3155 <para>
3156 In both cases, even if more than one period are elapsed, you
3157 don't have to call
3158 <function>snd_pcm_period_elapsed()</function> many times. Call
3159 only once. And the pcm layer will check the current hardware
3160 pointer and update to the latest status.
3161 </para>
3162 </section>
3163 </section>
3164
3165 <section id="pcm-interface-atomicity">
3166 <title>Atomicity</title>
3167 <para>
3168 One of the most important (and thus difficult to debug) problem
3169 on the kernel programming is the race condition.
3170 On linux kernel, usually it's solved via spin-locks or
3171 semaphores. In general, if the race condition may
3172 happen in the interrupt handler, it's handled as atomic, and you
3173 have to use spinlock for protecting the critical session. If it
3174 never happens in the interrupt and it may take relatively long
3175 time, you should use semaphore.
3176 </para>
3177
3178 <para>
3179 As already seen, some pcm callbacks are atomic and some are
3180 not. For example, <parameter>hw_params</parameter> callback is
3181 non-atomic, while <parameter>trigger</parameter> callback is
3182 atomic. This means, the latter is called already in a spinlock
3183 held by the PCM middle layer. Please take this atomicity into
3184 account when you use a spinlock or a semaphore in the callbacks.
3185 </para>
3186
3187 <para>
3188 In the atomic callbacks, you cannot use functions which may call
3189 <function>schedule</function> or go to
3190 <function>sleep</function>. The semaphore and mutex do sleep,
3191 and hence they cannot be used inside the atomic callbacks
3192 (e.g. <parameter>trigger</parameter> callback).
3193 For taking a certain delay in such a callback, please use
3194 <function>udelay()</function> or <function>mdelay()</function>.
3195 </para>
3196
3197 <para>
3198 All three atomic callbacks (trigger, pointer, and ack) are
3199 called with local interrupts disabled.
3200 </para>
3201
3202 </section>
3203 <section id="pcm-interface-constraints">
3204 <title>Constraints</title>
3205 <para>
3206 If your chip supports unconventional sample rates, or only the
3207 limited samples, you need to set a constraint for the
3208 condition.
3209 </para>
3210
3211 <para>
3212 For example, in order to restrict the sample rates in the some
3213 supported values, use
3214 <function>snd_pcm_hw_constraint_list()</function>.
3215 You need to call this function in the open callback.
3216
3217 <example>
3218 <title>Example of Hardware Constraints</title>
3219 <programlisting>
3220<![CDATA[
3221 static unsigned int rates[] =
3222 {4000, 10000, 22050, 44100};
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003223 static struct snd_pcm_hw_constraint_list constraints_rates = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003224 .count = ARRAY_SIZE(rates),
3225 .list = rates,
3226 .mask = 0,
3227 };
3228
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003229 static int snd_mychip_pcm_open(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003230 {
3231 int err;
3232 ....
3233 err = snd_pcm_hw_constraint_list(substream->runtime, 0,
3234 SNDRV_PCM_HW_PARAM_RATE,
3235 &constraints_rates);
3236 if (err < 0)
3237 return err;
3238 ....
3239 }
3240]]>
3241 </programlisting>
3242 </example>
3243 </para>
3244
3245 <para>
3246 There are many different constraints.
3247 Look in <filename>sound/pcm.h</filename> for a complete list.
3248 You can even define your own constraint rules.
3249 For example, let's suppose my_chip can manage a substream of 1 channel
3250 if and only if the format is S16_LE, otherwise it supports any format
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003251 specified in the <structname>snd_pcm_hardware</structname> stucture (or in any
Linus Torvalds1da177e2005-04-16 15:20:36 -07003252 other constraint_list). You can build a rule like this:
3253
3254 <example>
3255 <title>Example of Hardware Constraints for Channels</title>
3256 <programlisting>
3257<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003258 static int hw_rule_format_by_channels(struct snd_pcm_hw_params *params,
3259 struct snd_pcm_hw_rule *rule)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003260 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003261 struct snd_interval *c = hw_param_interval(params,
3262 SNDRV_PCM_HW_PARAM_CHANNELS);
3263 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3264 struct snd_mask fmt;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003265
3266 snd_mask_any(&fmt); /* Init the struct */
3267 if (c->min < 2) {
3268 fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE;
3269 return snd_mask_refine(f, &fmt);
3270 }
3271 return 0;
3272 }
3273]]>
3274 </programlisting>
3275 </example>
3276 </para>
3277
3278 <para>
3279 Then you need to call this function to add your rule:
3280
3281 <informalexample>
3282 <programlisting>
3283<![CDATA[
3284 snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
3285 hw_rule_channels_by_format, 0, SNDRV_PCM_HW_PARAM_FORMAT,
3286 -1);
3287]]>
3288 </programlisting>
3289 </informalexample>
3290 </para>
3291
3292 <para>
3293 The rule function is called when an application sets the number of
3294 channels. But an application can set the format before the number of
3295 channels. Thus you also need to define the inverse rule:
3296
3297 <example>
3298 <title>Example of Hardware Constraints for Channels</title>
3299 <programlisting>
3300<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003301 static int hw_rule_channels_by_format(struct snd_pcm_hw_params *params,
3302 struct snd_pcm_hw_rule *rule)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003303 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003304 struct snd_interval *c = hw_param_interval(params,
3305 SNDRV_PCM_HW_PARAM_CHANNELS);
3306 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3307 struct snd_interval ch;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003308
3309 snd_interval_any(&ch);
3310 if (f->bits[0] == SNDRV_PCM_FMTBIT_S16_LE) {
3311 ch.min = ch.max = 1;
3312 ch.integer = 1;
3313 return snd_interval_refine(c, &ch);
3314 }
3315 return 0;
3316 }
3317]]>
3318 </programlisting>
3319 </example>
3320 </para>
3321
3322 <para>
3323 ...and in the open callback:
3324 <informalexample>
3325 <programlisting>
3326<![CDATA[
3327 snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
3328 hw_rule_format_by_channels, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
3329 -1);
3330]]>
3331 </programlisting>
3332 </informalexample>
3333 </para>
3334
3335 <para>
3336 I won't explain more details here, rather I
3337 would like to say, <quote>Luke, use the source.</quote>
3338 </para>
3339 </section>
3340
3341 </chapter>
3342
3343
3344<!-- ****************************************************** -->
3345<!-- Control Interface -->
3346<!-- ****************************************************** -->
3347 <chapter id="control-interface">
3348 <title>Control Interface</title>
3349
3350 <section id="control-interface-general">
3351 <title>General</title>
3352 <para>
3353 The control interface is used widely for many switches,
3354 sliders, etc. which are accessed from the user-space. Its most
3355 important use is the mixer interface. In other words, on ALSA
3356 0.9.x, all the mixer stuff is implemented on the control kernel
3357 API (while there was an independent mixer kernel API on 0.5.x).
3358 </para>
3359
3360 <para>
3361 ALSA has a well-defined AC97 control module. If your chip
3362 supports only the AC97 and nothing else, you can skip this
3363 section.
3364 </para>
3365
3366 <para>
3367 The control API is defined in
3368 <filename>&lt;sound/control.h&gt;</filename>.
3369 Include this file if you add your own controls.
3370 </para>
3371 </section>
3372
3373 <section id="control-interface-definition">
3374 <title>Definition of Controls</title>
3375 <para>
3376 For creating a new control, you need to define the three
3377 callbacks: <structfield>info</structfield>,
3378 <structfield>get</structfield> and
3379 <structfield>put</structfield>. Then, define a
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003380 struct <structname>snd_kcontrol_new</structname> record, such as:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003381
3382 <example>
3383 <title>Definition of a Control</title>
3384 <programlisting>
3385<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003386 static struct snd_kcontrol_new my_control __devinitdata = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003387 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3388 .name = "PCM Playback Switch",
3389 .index = 0,
3390 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3391 .private_values = 0xffff,
3392 .info = my_control_info,
3393 .get = my_control_get,
3394 .put = my_control_put
3395 };
3396]]>
3397 </programlisting>
3398 </example>
3399 </para>
3400
3401 <para>
3402 Most likely the control is created via
3403 <function>snd_ctl_new1()</function>, and in such a case, you can
3404 add <parameter>__devinitdata</parameter> prefix to the
3405 definition like above.
3406 </para>
3407
3408 <para>
3409 The <structfield>iface</structfield> field specifies the type of
Clemens Ladisch67ed4162005-07-29 15:32:58 +02003410 the control, <constant>SNDRV_CTL_ELEM_IFACE_XXX</constant>, which
3411 is usually <constant>MIXER</constant>.
3412 Use <constant>CARD</constant> for global controls that are not
3413 logically part of the mixer.
3414 If the control is closely associated with some specific device on
3415 the sound card, use <constant>HWDEP</constant>,
3416 <constant>PCM</constant>, <constant>RAWMIDI</constant>,
3417 <constant>TIMER</constant>, or <constant>SEQUENCER</constant>, and
3418 specify the device number with the
3419 <structfield>device</structfield> and
3420 <structfield>subdevice</structfield> fields.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003421 </para>
3422
3423 <para>
3424 The <structfield>name</structfield> is the name identifier
3425 string. On ALSA 0.9.x, the control name is very important,
3426 because its role is classified from its name. There are
3427 pre-defined standard control names. The details are described in
3428 the subsection
3429 <link linkend="control-interface-control-names"><citetitle>
3430 Control Names</citetitle></link>.
3431 </para>
3432
3433 <para>
3434 The <structfield>index</structfield> field holds the index number
3435 of this control. If there are several different controls with
3436 the same name, they can be distinguished by the index
3437 number. This is the case when
3438 several codecs exist on the card. If the index is zero, you can
3439 omit the definition above.
3440 </para>
3441
3442 <para>
3443 The <structfield>access</structfield> field contains the access
3444 type of this control. Give the combination of bit masks,
3445 <constant>SNDRV_CTL_ELEM_ACCESS_XXX</constant>, there.
3446 The detailed will be explained in the subsection
3447 <link linkend="control-interface-access-flags"><citetitle>
3448 Access Flags</citetitle></link>.
3449 </para>
3450
3451 <para>
3452 The <structfield>private_values</structfield> field contains
3453 an arbitrary long integer value for this record. When using
3454 generic <structfield>info</structfield>,
3455 <structfield>get</structfield> and
3456 <structfield>put</structfield> callbacks, you can pass a value
3457 through this field. If several small numbers are necessary, you can
3458 combine them in bitwise. Or, it's possible to give a pointer
3459 (casted to unsigned long) of some record to this field, too.
3460 </para>
3461
3462 <para>
3463 The other three are
3464 <link linkend="control-interface-callbacks"><citetitle>
3465 callback functions</citetitle></link>.
3466 </para>
3467 </section>
3468
3469 <section id="control-interface-control-names">
3470 <title>Control Names</title>
3471 <para>
3472 There are some standards for defining the control names. A
3473 control is usually defined from the three parts as
3474 <quote>SOURCE DIRECTION FUNCTION</quote>.
3475 </para>
3476
3477 <para>
3478 The first, <constant>SOURCE</constant>, specifies the source
3479 of the control, and is a string such as <quote>Master</quote>,
3480 <quote>PCM</quote>, <quote>CD</quote> or
3481 <quote>Line</quote>. There are many pre-defined sources.
3482 </para>
3483
3484 <para>
3485 The second, <constant>DIRECTION</constant>, is one of the
3486 following strings according to the direction of the control:
3487 <quote>Playback</quote>, <quote>Capture</quote>, <quote>Bypass
3488 Playback</quote> and <quote>Bypass Capture</quote>. Or, it can
3489 be omitted, meaning both playback and capture directions.
3490 </para>
3491
3492 <para>
3493 The third, <constant>FUNCTION</constant>, is one of the
3494 following strings according to the function of the control:
3495 <quote>Switch</quote>, <quote>Volume</quote> and
3496 <quote>Route</quote>.
3497 </para>
3498
3499 <para>
3500 The example of control names are, thus, <quote>Master Capture
3501 Switch</quote> or <quote>PCM Playback Volume</quote>.
3502 </para>
3503
3504 <para>
3505 There are some exceptions:
3506 </para>
3507
3508 <section id="control-interface-control-names-global">
3509 <title>Global capture and playback</title>
3510 <para>
3511 <quote>Capture Source</quote>, <quote>Capture Switch</quote>
3512 and <quote>Capture Volume</quote> are used for the global
3513 capture (input) source, switch and volume. Similarly,
3514 <quote>Playback Switch</quote> and <quote>Playback
3515 Volume</quote> are used for the global output gain switch and
3516 volume.
3517 </para>
3518 </section>
3519
3520 <section id="control-interface-control-names-tone">
3521 <title>Tone-controls</title>
3522 <para>
3523 tone-control switch and volumes are specified like
3524 <quote>Tone Control - XXX</quote>, e.g. <quote>Tone Control -
3525 Switch</quote>, <quote>Tone Control - Bass</quote>,
3526 <quote>Tone Control - Center</quote>.
3527 </para>
3528 </section>
3529
3530 <section id="control-interface-control-names-3d">
3531 <title>3D controls</title>
3532 <para>
3533 3D-control switches and volumes are specified like <quote>3D
3534 Control - XXX</quote>, e.g. <quote>3D Control -
3535 Switch</quote>, <quote>3D Control - Center</quote>, <quote>3D
3536 Control - Space</quote>.
3537 </para>
3538 </section>
3539
3540 <section id="control-interface-control-names-mic">
3541 <title>Mic boost</title>
3542 <para>
3543 Mic-boost switch is set as <quote>Mic Boost</quote> or
3544 <quote>Mic Boost (6dB)</quote>.
3545 </para>
3546
3547 <para>
3548 More precise information can be found in
3549 <filename>Documentation/sound/alsa/ControlNames.txt</filename>.
3550 </para>
3551 </section>
3552 </section>
3553
3554 <section id="control-interface-access-flags">
3555 <title>Access Flags</title>
3556
3557 <para>
3558 The access flag is the bit-flags which specifies the access type
3559 of the given control. The default access type is
3560 <constant>SNDRV_CTL_ELEM_ACCESS_READWRITE</constant>,
3561 which means both read and write are allowed to this control.
3562 When the access flag is omitted (i.e. = 0), it is
3563 regarded as <constant>READWRITE</constant> access as default.
3564 </para>
3565
3566 <para>
3567 When the control is read-only, pass
3568 <constant>SNDRV_CTL_ELEM_ACCESS_READ</constant> instead.
3569 In this case, you don't have to define
3570 <structfield>put</structfield> callback.
3571 Similarly, when the control is write-only (although it's a rare
3572 case), you can use <constant>WRITE</constant> flag instead, and
3573 you don't need <structfield>get</structfield> callback.
3574 </para>
3575
3576 <para>
3577 If the control value changes frequently (e.g. the VU meter),
3578 <constant>VOLATILE</constant> flag should be given. This means
3579 that the control may be changed without
3580 <link linkend="control-interface-change-notification"><citetitle>
3581 notification</citetitle></link>. Applications should poll such
3582 a control constantly.
3583 </para>
3584
3585 <para>
3586 When the control is inactive, set
3587 <constant>INACTIVE</constant> flag, too.
3588 There are <constant>LOCK</constant> and
3589 <constant>OWNER</constant> flags for changing the write
3590 permissions.
3591 </para>
3592
3593 </section>
3594
3595 <section id="control-interface-callbacks">
3596 <title>Callbacks</title>
3597
3598 <section id="control-interface-callbacks-info">
3599 <title>info callback</title>
3600 <para>
3601 The <structfield>info</structfield> callback is used to get
3602 the detailed information of this control. This must store the
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003603 values of the given struct <structname>snd_ctl_elem_info</structname>
Linus Torvalds1da177e2005-04-16 15:20:36 -07003604 object. For example, for a boolean control with a single
3605 element will be:
3606
3607 <example>
3608 <title>Example of info callback</title>
3609 <programlisting>
3610<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003611 static int snd_myctl_info(struct snd_kcontrol *kcontrol,
3612 struct snd_ctl_elem_info *uinfo)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003613 {
3614 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
3615 uinfo->count = 1;
3616 uinfo->value.integer.min = 0;
3617 uinfo->value.integer.max = 1;
3618 return 0;
3619 }
3620]]>
3621 </programlisting>
3622 </example>
3623 </para>
3624
3625 <para>
3626 The <structfield>type</structfield> field specifies the type
3627 of the control. There are <constant>BOOLEAN</constant>,
3628 <constant>INTEGER</constant>, <constant>ENUMERATED</constant>,
3629 <constant>BYTES</constant>, <constant>IEC958</constant> and
3630 <constant>INTEGER64</constant>. The
3631 <structfield>count</structfield> field specifies the
3632 number of elements in this control. For example, a stereo
3633 volume would have count = 2. The
3634 <structfield>value</structfield> field is a union, and
3635 the values stored are depending on the type. The boolean and
3636 integer are identical.
3637 </para>
3638
3639 <para>
3640 The enumerated type is a bit different from others. You'll
3641 need to set the string for the currently given item index.
3642
3643 <informalexample>
3644 <programlisting>
3645<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003646 static int snd_myctl_info(struct snd_kcontrol *kcontrol,
3647 struct snd_ctl_elem_info *uinfo)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003648 {
3649 static char *texts[4] = {
3650 "First", "Second", "Third", "Fourth"
3651 };
3652 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3653 uinfo->count = 1;
3654 uinfo->value.enumerated.items = 4;
3655 if (uinfo->value.enumerated.item > 3)
3656 uinfo->value.enumerated.item = 3;
3657 strcpy(uinfo->value.enumerated.name,
3658 texts[uinfo->value.enumerated.item]);
3659 return 0;
3660 }
3661]]>
3662 </programlisting>
3663 </informalexample>
3664 </para>
3665 </section>
3666
3667 <section id="control-interface-callbacks-get">
3668 <title>get callback</title>
3669
3670 <para>
3671 This callback is used to read the current value of the
3672 control and to return to the user-space.
3673 </para>
3674
3675 <para>
3676 For example,
3677
3678 <example>
3679 <title>Example of get callback</title>
3680 <programlisting>
3681<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003682 static int snd_myctl_get(struct snd_kcontrol *kcontrol,
3683 struct snd_ctl_elem_value *ucontrol)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003684 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003685 struct mychip *chip = snd_kcontrol_chip(kcontrol);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003686 ucontrol->value.integer.value[0] = get_some_value(chip);
3687 return 0;
3688 }
3689]]>
3690 </programlisting>
3691 </example>
3692 </para>
3693
3694 <para>
3695 Here, the chip instance is retrieved via
3696 <function>snd_kcontrol_chip()</function> macro. This macro
Takashi Iwai063859c2005-10-14 17:17:02 +02003697 just accesses to kcontrol-&gt;private_data. The
Linus Torvalds1da177e2005-04-16 15:20:36 -07003698 kcontrol-&gt;private_data field is
3699 given as the argument of <function>snd_ctl_new()</function>
3700 (see the later subsection
3701 <link linkend="control-interface-constructor"><citetitle>Constructor</citetitle></link>).
3702 </para>
3703
3704 <para>
3705 The <structfield>value</structfield> field is depending on
3706 the type of control as well as on info callback. For example,
3707 the sb driver uses this field to store the register offset,
3708 the bit-shift and the bit-mask. The
3709 <structfield>private_value</structfield> is set like
3710 <informalexample>
3711 <programlisting>
3712<![CDATA[
3713 .private_value = reg | (shift << 16) | (mask << 24)
3714]]>
3715 </programlisting>
3716 </informalexample>
3717 and is retrieved in callbacks like
3718 <informalexample>
3719 <programlisting>
3720<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003721 static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol,
3722 struct snd_ctl_elem_value *ucontrol)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003723 {
3724 int reg = kcontrol->private_value & 0xff;
3725 int shift = (kcontrol->private_value >> 16) & 0xff;
3726 int mask = (kcontrol->private_value >> 24) & 0xff;
3727 ....
3728 }
3729]]>
3730 </programlisting>
3731 </informalexample>
3732 </para>
3733
3734 <para>
3735 In <structfield>get</structfield> callback, you have to fill all the elements if the
3736 control has more than one elements,
3737 i.e. <structfield>count</structfield> &gt; 1.
3738 In the example above, we filled only one element
3739 (<structfield>value.integer.value[0]</structfield>) since it's
3740 assumed as <structfield>count</structfield> = 1.
3741 </para>
3742 </section>
3743
3744 <section id="control-interface-callbacks-put">
3745 <title>put callback</title>
3746
3747 <para>
3748 This callback is used to write a value from the user-space.
3749 </para>
3750
3751 <para>
3752 For example,
3753
3754 <example>
3755 <title>Example of put callback</title>
3756 <programlisting>
3757<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003758 static int snd_myctl_put(struct snd_kcontrol *kcontrol,
3759 struct snd_ctl_elem_value *ucontrol)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003760 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003761 struct mychip *chip = snd_kcontrol_chip(kcontrol);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003762 int changed = 0;
3763 if (chip->current_value !=
3764 ucontrol->value.integer.value[0]) {
3765 change_current_value(chip,
3766 ucontrol->value.integer.value[0]);
3767 changed = 1;
3768 }
3769 return changed;
3770 }
3771]]>
3772 </programlisting>
3773 </example>
3774
3775 As seen above, you have to return 1 if the value is
3776 changed. If the value is not changed, return 0 instead.
3777 If any fatal error happens, return a negative error code as
3778 usual.
3779 </para>
3780
3781 <para>
3782 Like <structfield>get</structfield> callback,
3783 when the control has more than one elements,
3784 all elemehts must be evaluated in this callback, too.
3785 </para>
3786 </section>
3787
3788 <section id="control-interface-callbacks-all">
3789 <title>Callbacks are not atomic</title>
3790 <para>
3791 All these three callbacks are basically not atomic.
3792 </para>
3793 </section>
3794 </section>
3795
3796 <section id="control-interface-constructor">
3797 <title>Constructor</title>
3798 <para>
3799 When everything is ready, finally we can create a new
3800 control. For creating a control, there are two functions to be
3801 called, <function>snd_ctl_new1()</function> and
3802 <function>snd_ctl_add()</function>.
3803 </para>
3804
3805 <para>
3806 In the simplest way, you can do like this:
3807
3808 <informalexample>
3809 <programlisting>
3810<![CDATA[
3811 if ((err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip))) < 0)
3812 return err;
3813]]>
3814 </programlisting>
3815 </informalexample>
3816
3817 where <parameter>my_control</parameter> is the
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003818 struct <structname>snd_kcontrol_new</structname> object defined above, and chip
Linus Torvalds1da177e2005-04-16 15:20:36 -07003819 is the object pointer to be passed to
3820 kcontrol-&gt;private_data
3821 which can be referred in callbacks.
3822 </para>
3823
3824 <para>
3825 <function>snd_ctl_new1()</function> allocates a new
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003826 <structname>snd_kcontrol</structname> instance (that's why the definition
Linus Torvalds1da177e2005-04-16 15:20:36 -07003827 of <parameter>my_control</parameter> can be with
3828 <parameter>__devinitdata</parameter>
3829 prefix), and <function>snd_ctl_add</function> assigns the given
3830 control component to the card.
3831 </para>
3832 </section>
3833
3834 <section id="control-interface-change-notification">
3835 <title>Change Notification</title>
3836 <para>
3837 If you need to change and update a control in the interrupt
3838 routine, you can call <function>snd_ctl_notify()</function>. For
3839 example,
3840
3841 <informalexample>
3842 <programlisting>
3843<![CDATA[
3844 snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer);
3845]]>
3846 </programlisting>
3847 </informalexample>
3848
3849 This function takes the card pointer, the event-mask, and the
3850 control id pointer for the notification. The event-mask
3851 specifies the types of notification, for example, in the above
3852 example, the change of control values is notified.
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003853 The id pointer is the pointer of struct <structname>snd_ctl_elem_id</structname>
Linus Torvalds1da177e2005-04-16 15:20:36 -07003854 to be notified.
3855 You can find some examples in <filename>es1938.c</filename> or
3856 <filename>es1968.c</filename> for hardware volume interrupts.
3857 </para>
3858 </section>
3859
3860 </chapter>
3861
3862
3863<!-- ****************************************************** -->
3864<!-- API for AC97 Codec -->
3865<!-- ****************************************************** -->
3866 <chapter id="api-ac97">
3867 <title>API for AC97 Codec</title>
3868
3869 <section>
3870 <title>General</title>
3871 <para>
3872 The ALSA AC97 codec layer is a well-defined one, and you don't
3873 have to write many codes to control it. Only low-level control
3874 routines are necessary. The AC97 codec API is defined in
3875 <filename>&lt;sound/ac97_codec.h&gt;</filename>.
3876 </para>
3877 </section>
3878
3879 <section id="api-ac97-example">
3880 <title>Full Code Example</title>
3881 <para>
3882 <example>
3883 <title>Example of AC97 Interface</title>
3884 <programlisting>
3885<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003886 struct mychip {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003887 ....
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003888 struct snd_ac97 *ac97;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003889 ....
3890 };
3891
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003892 static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
Linus Torvalds1da177e2005-04-16 15:20:36 -07003893 unsigned short reg)
3894 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003895 struct mychip *chip = ac97->private_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003896 ....
3897 // read a register value here from the codec
3898 return the_register_value;
3899 }
3900
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003901 static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
Linus Torvalds1da177e2005-04-16 15:20:36 -07003902 unsigned short reg, unsigned short val)
3903 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003904 struct mychip *chip = ac97->private_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003905 ....
3906 // write the given register value to the codec
3907 }
3908
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003909 static int snd_mychip_ac97(struct mychip *chip)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003910 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003911 struct snd_ac97_bus *bus;
3912 struct snd_ac97_template ac97;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003913 int err;
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003914 static struct snd_ac97_bus_ops ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003915 .write = snd_mychip_ac97_write,
3916 .read = snd_mychip_ac97_read,
3917 };
3918
3919 if ((err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus)) < 0)
3920 return err;
3921 memset(&ac97, 0, sizeof(ac97));
3922 ac97.private_data = chip;
3923 return snd_ac97_mixer(bus, &ac97, &chip->ac97);
3924 }
3925
3926]]>
3927 </programlisting>
3928 </example>
3929 </para>
3930 </section>
3931
3932 <section id="api-ac97-constructor">
3933 <title>Constructor</title>
3934 <para>
3935 For creating an ac97 instance, first call <function>snd_ac97_bus</function>
3936 with an <type>ac97_bus_ops_t</type> record with callback functions.
3937
3938 <informalexample>
3939 <programlisting>
3940<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003941 struct snd_ac97_bus *bus;
3942 static struct snd_ac97_bus_ops ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003943 .write = snd_mychip_ac97_write,
3944 .read = snd_mychip_ac97_read,
3945 };
3946
3947 snd_ac97_bus(card, 0, &ops, NULL, &pbus);
3948]]>
3949 </programlisting>
3950 </informalexample>
3951
3952 The bus record is shared among all belonging ac97 instances.
3953 </para>
3954
3955 <para>
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003956 And then call <function>snd_ac97_mixer()</function> with an
3957 struct <structname>snd_ac97_template</structname>
Linus Torvalds1da177e2005-04-16 15:20:36 -07003958 record together with the bus pointer created above.
3959
3960 <informalexample>
3961 <programlisting>
3962<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003963 struct snd_ac97_template ac97;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003964 int err;
3965
3966 memset(&ac97, 0, sizeof(ac97));
3967 ac97.private_data = chip;
3968 snd_ac97_mixer(bus, &ac97, &chip->ac97);
3969]]>
3970 </programlisting>
3971 </informalexample>
3972
3973 where chip-&gt;ac97 is the pointer of a newly created
3974 <type>ac97_t</type> instance.
3975 In this case, the chip pointer is set as the private data, so that
3976 the read/write callback functions can refer to this chip instance.
3977 This instance is not necessarily stored in the chip
3978 record. When you need to change the register values from the
3979 driver, or need the suspend/resume of ac97 codecs, keep this
3980 pointer to pass to the corresponding functions.
3981 </para>
3982 </section>
3983
3984 <section id="api-ac97-callbacks">
3985 <title>Callbacks</title>
3986 <para>
3987 The standard callbacks are <structfield>read</structfield> and
3988 <structfield>write</structfield>. Obviously they
3989 correspond to the functions for read and write accesses to the
3990 hardware low-level codes.
3991 </para>
3992
3993 <para>
3994 The <structfield>read</structfield> callback returns the
3995 register value specified in the argument.
3996
3997 <informalexample>
3998 <programlisting>
3999<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004000 static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
Linus Torvalds1da177e2005-04-16 15:20:36 -07004001 unsigned short reg)
4002 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004003 struct mychip *chip = ac97->private_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004004 ....
4005 return the_register_value;
4006 }
4007]]>
4008 </programlisting>
4009 </informalexample>
4010
4011 Here, the chip can be cast from ac97-&gt;private_data.
4012 </para>
4013
4014 <para>
4015 Meanwhile, the <structfield>write</structfield> callback is
4016 used to set the register value.
4017
4018 <informalexample>
4019 <programlisting>
4020<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004021 static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
Linus Torvalds1da177e2005-04-16 15:20:36 -07004022 unsigned short reg, unsigned short val)
4023]]>
4024 </programlisting>
4025 </informalexample>
4026 </para>
4027
4028 <para>
4029 These callbacks are non-atomic like the callbacks of control API.
4030 </para>
4031
4032 <para>
4033 There are also other callbacks:
4034 <structfield>reset</structfield>,
4035 <structfield>wait</structfield> and
4036 <structfield>init</structfield>.
4037 </para>
4038
4039 <para>
4040 The <structfield>reset</structfield> callback is used to reset
4041 the codec. If the chip requires a special way of reset, you can
4042 define this callback.
4043 </para>
4044
4045 <para>
4046 The <structfield>wait</structfield> callback is used for a
4047 certain wait at the standard initialization of the codec. If the
4048 chip requires the extra wait-time, define this callback.
4049 </para>
4050
4051 <para>
4052 The <structfield>init</structfield> callback is used for
4053 additional initialization of the codec.
4054 </para>
4055 </section>
4056
4057 <section id="api-ac97-updating-registers">
4058 <title>Updating Registers in The Driver</title>
4059 <para>
4060 If you need to access to the codec from the driver, you can
4061 call the following functions:
4062 <function>snd_ac97_write()</function>,
4063 <function>snd_ac97_read()</function>,
4064 <function>snd_ac97_update()</function> and
4065 <function>snd_ac97_update_bits()</function>.
4066 </para>
4067
4068 <para>
4069 Both <function>snd_ac97_write()</function> and
4070 <function>snd_ac97_update()</function> functions are used to
4071 set a value to the given register
4072 (<constant>AC97_XXX</constant>). The difference between them is
4073 that <function>snd_ac97_update()</function> doesn't write a
4074 value if the given value has been already set, while
4075 <function>snd_ac97_write()</function> always rewrites the
4076 value.
4077
4078 <informalexample>
4079 <programlisting>
4080<![CDATA[
4081 snd_ac97_write(ac97, AC97_MASTER, 0x8080);
4082 snd_ac97_update(ac97, AC97_MASTER, 0x8080);
4083]]>
4084 </programlisting>
4085 </informalexample>
4086 </para>
4087
4088 <para>
4089 <function>snd_ac97_read()</function> is used to read the value
4090 of the given register. For example,
4091
4092 <informalexample>
4093 <programlisting>
4094<![CDATA[
4095 value = snd_ac97_read(ac97, AC97_MASTER);
4096]]>
4097 </programlisting>
4098 </informalexample>
4099 </para>
4100
4101 <para>
4102 <function>snd_ac97_update_bits()</function> is used to update
4103 some bits of the given register.
4104
4105 <informalexample>
4106 <programlisting>
4107<![CDATA[
4108 snd_ac97_update_bits(ac97, reg, mask, value);
4109]]>
4110 </programlisting>
4111 </informalexample>
4112 </para>
4113
4114 <para>
4115 Also, there is a function to change the sample rate (of a
4116 certain register such as
4117 <constant>AC97_PCM_FRONT_DAC_RATE</constant>) when VRA or
4118 DRA is supported by the codec:
4119 <function>snd_ac97_set_rate()</function>.
4120
4121 <informalexample>
4122 <programlisting>
4123<![CDATA[
4124 snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE, 44100);
4125]]>
4126 </programlisting>
4127 </informalexample>
4128 </para>
4129
4130 <para>
4131 The following registers are available for setting the rate:
4132 <constant>AC97_PCM_MIC_ADC_RATE</constant>,
4133 <constant>AC97_PCM_FRONT_DAC_RATE</constant>,
4134 <constant>AC97_PCM_LR_ADC_RATE</constant>,
4135 <constant>AC97_SPDIF</constant>. When the
4136 <constant>AC97_SPDIF</constant> is specified, the register is
4137 not really changed but the corresponding IEC958 status bits will
4138 be updated.
4139 </para>
4140 </section>
4141
4142 <section id="api-ac97-clock-adjustment">
4143 <title>Clock Adjustment</title>
4144 <para>
4145 On some chip, the clock of the codec isn't 48000 but using a
4146 PCI clock (to save a quartz!). In this case, change the field
4147 bus-&gt;clock to the corresponding
4148 value. For example, intel8x0
4149 and es1968 drivers have the auto-measurement function of the
4150 clock.
4151 </para>
4152 </section>
4153
4154 <section id="api-ac97-proc-files">
4155 <title>Proc Files</title>
4156 <para>
4157 The ALSA AC97 interface will create a proc file such as
4158 <filename>/proc/asound/card0/codec97#0/ac97#0-0</filename> and
4159 <filename>ac97#0-0+regs</filename>. You can refer to these files to
4160 see the current status and registers of the codec.
4161 </para>
4162 </section>
4163
4164 <section id="api-ac97-multiple-codecs">
4165 <title>Multiple Codecs</title>
4166 <para>
4167 When there are several codecs on the same card, you need to
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004168 call <function>snd_ac97_mixer()</function> multiple times with
Linus Torvalds1da177e2005-04-16 15:20:36 -07004169 ac97.num=1 or greater. The <structfield>num</structfield> field
4170 specifies the codec
4171 number.
4172 </para>
4173
4174 <para>
4175 If you have set up multiple codecs, you need to either write
4176 different callbacks for each codec or check
4177 ac97-&gt;num in the
4178 callback routines.
4179 </para>
4180 </section>
4181
4182 </chapter>
4183
4184
4185<!-- ****************************************************** -->
4186<!-- MIDI (MPU401-UART) Interface -->
4187<!-- ****************************************************** -->
4188 <chapter id="midi-interface">
4189 <title>MIDI (MPU401-UART) Interface</title>
4190
4191 <section id="midi-interface-general">
4192 <title>General</title>
4193 <para>
4194 Many soundcards have built-in MIDI (MPU401-UART)
4195 interfaces. When the soundcard supports the standard MPU401-UART
4196 interface, most likely you can use the ALSA MPU401-UART API. The
4197 MPU401-UART API is defined in
4198 <filename>&lt;sound/mpu401.h&gt;</filename>.
4199 </para>
4200
4201 <para>
4202 Some soundchips have similar but a little bit different
4203 implementation of mpu401 stuff. For example, emu10k1 has its own
4204 mpu401 routines.
4205 </para>
4206 </section>
4207
4208 <section id="midi-interface-constructor">
4209 <title>Constructor</title>
4210 <para>
4211 For creating a rawmidi object, call
4212 <function>snd_mpu401_uart_new()</function>.
4213
4214 <informalexample>
4215 <programlisting>
4216<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004217 struct snd_rawmidi *rmidi;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004218 snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, integrated,
4219 irq, irq_flags, &rmidi);
4220]]>
4221 </programlisting>
4222 </informalexample>
4223 </para>
4224
4225 <para>
4226 The first argument is the card pointer, and the second is the
4227 index of this component. You can create up to 8 rawmidi
4228 devices.
4229 </para>
4230
4231 <para>
4232 The third argument is the type of the hardware,
4233 <constant>MPU401_HW_XXX</constant>. If it's not a special one,
4234 you can use <constant>MPU401_HW_MPU401</constant>.
4235 </para>
4236
4237 <para>
4238 The 4th argument is the i/o port address. Many
4239 backward-compatible MPU401 has an i/o port such as 0x330. Or, it
4240 might be a part of its own PCI i/o region. It depends on the
4241 chip design.
4242 </para>
4243
4244 <para>
4245 When the i/o port address above is a part of the PCI i/o
4246 region, the MPU401 i/o port might have been already allocated
4247 (reserved) by the driver itself. In such a case, pass non-zero
4248 to the 5th argument
4249 (<parameter>integrated</parameter>). Otherwise, pass 0 to it,
4250 and
4251 the mpu401-uart layer will allocate the i/o ports by itself.
4252 </para>
4253
4254 <para>
4255 Usually, the port address corresponds to the command port and
4256 port + 1 corresponds to the data port. If not, you may change
4257 the <structfield>cport</structfield> field of
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004258 struct <structname>snd_mpu401</structname> manually
4259 afterward. However, <structname>snd_mpu401</structname> pointer is not
Linus Torvalds1da177e2005-04-16 15:20:36 -07004260 returned explicitly by
4261 <function>snd_mpu401_uart_new()</function>. You need to cast
4262 rmidi-&gt;private_data to
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004263 <structname>snd_mpu401</structname> explicitly,
Linus Torvalds1da177e2005-04-16 15:20:36 -07004264
4265 <informalexample>
4266 <programlisting>
4267<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004268 struct snd_mpu401 *mpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004269 mpu = rmidi->private_data;
4270]]>
4271 </programlisting>
4272 </informalexample>
4273
4274 and reset the cport as you like:
4275
4276 <informalexample>
4277 <programlisting>
4278<![CDATA[
4279 mpu->cport = my_own_control_port;
4280]]>
4281 </programlisting>
4282 </informalexample>
4283 </para>
4284
4285 <para>
4286 The 6th argument specifies the irq number for UART. If the irq
4287 is already allocated, pass 0 to the 7th argument
4288 (<parameter>irq_flags</parameter>). Otherwise, pass the flags
4289 for irq allocation
4290 (<constant>SA_XXX</constant> bits) to it, and the irq will be
4291 reserved by the mpu401-uart layer. If the card doesn't generates
4292 UART interrupts, pass -1 as the irq number. Then a timer
4293 interrupt will be invoked for polling.
4294 </para>
4295 </section>
4296
4297 <section id="midi-interface-interrupt-handler">
4298 <title>Interrupt Handler</title>
4299 <para>
4300 When the interrupt is allocated in
4301 <function>snd_mpu401_uart_new()</function>, the private
4302 interrupt handler is used, hence you don't have to do nothing
4303 else than creating the mpu401 stuff. Otherwise, you have to call
4304 <function>snd_mpu401_uart_interrupt()</function> explicitly when
4305 a UART interrupt is invoked and checked in your own interrupt
4306 handler.
4307 </para>
4308
4309 <para>
4310 In this case, you need to pass the private_data of the
4311 returned rawmidi object from
4312 <function>snd_mpu401_uart_new()</function> as the second
4313 argument of <function>snd_mpu401_uart_interrupt()</function>.
4314
4315 <informalexample>
4316 <programlisting>
4317<![CDATA[
4318 snd_mpu401_uart_interrupt(irq, rmidi->private_data, regs);
4319]]>
4320 </programlisting>
4321 </informalexample>
4322 </para>
4323 </section>
4324
4325 </chapter>
4326
4327
4328<!-- ****************************************************** -->
4329<!-- RawMIDI Interface -->
4330<!-- ****************************************************** -->
4331 <chapter id="rawmidi-interface">
4332 <title>RawMIDI Interface</title>
4333
4334 <section id="rawmidi-interface-overview">
4335 <title>Overview</title>
4336
4337 <para>
4338 The raw MIDI interface is used for hardware MIDI ports that can
4339 be accessed as a byte stream. It is not used for synthesizer
4340 chips that do not directly understand MIDI.
4341 </para>
4342
4343 <para>
4344 ALSA handles file and buffer management. All you have to do is
4345 to write some code to move data between the buffer and the
4346 hardware.
4347 </para>
4348
4349 <para>
4350 The rawmidi API is defined in
4351 <filename>&lt;sound/rawmidi.h&gt;</filename>.
4352 </para>
4353 </section>
4354
4355 <section id="rawmidi-interface-constructor">
4356 <title>Constructor</title>
4357
4358 <para>
4359 To create a rawmidi device, call the
4360 <function>snd_rawmidi_new</function> function:
4361 <informalexample>
4362 <programlisting>
4363<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004364 struct snd_rawmidi *rmidi;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004365 err = snd_rawmidi_new(chip->card, "MyMIDI", 0, outs, ins, &rmidi);
4366 if (err < 0)
4367 return err;
4368 rmidi->private_data = chip;
4369 strcpy(rmidi->name, "My MIDI");
4370 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
4371 SNDRV_RAWMIDI_INFO_INPUT |
4372 SNDRV_RAWMIDI_INFO_DUPLEX;
4373]]>
4374 </programlisting>
4375 </informalexample>
4376 </para>
4377
4378 <para>
4379 The first argument is the card pointer, the second argument is
4380 the ID string.
4381 </para>
4382
4383 <para>
4384 The third argument is the index of this component. You can
4385 create up to 8 rawmidi devices.
4386 </para>
4387
4388 <para>
4389 The fourth and fifth arguments are the number of output and
4390 input substreams, respectively, of this device. (A substream is
4391 the equivalent of a MIDI port.)
4392 </para>
4393
4394 <para>
4395 Set the <structfield>info_flags</structfield> field to specify
4396 the capabilities of the device.
4397 Set <constant>SNDRV_RAWMIDI_INFO_OUTPUT</constant> if there is
4398 at least one output port,
4399 <constant>SNDRV_RAWMIDI_INFO_INPUT</constant> if there is at
4400 least one input port,
4401 and <constant>SNDRV_RAWMIDI_INFO_DUPLEX</constant> if the device
4402 can handle output and input at the same time.
4403 </para>
4404
4405 <para>
4406 After the rawmidi device is created, you need to set the
4407 operators (callbacks) for each substream. There are helper
4408 functions to set the operators for all substream of a device:
4409 <informalexample>
4410 <programlisting>
4411<![CDATA[
4412 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops);
4413 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops);
4414]]>
4415 </programlisting>
4416 </informalexample>
4417 </para>
4418
4419 <para>
4420 The operators are usually defined like this:
4421 <informalexample>
4422 <programlisting>
4423<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004424 static struct snd_rawmidi_ops snd_mymidi_output_ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004425 .open = snd_mymidi_output_open,
4426 .close = snd_mymidi_output_close,
4427 .trigger = snd_mymidi_output_trigger,
4428 };
4429]]>
4430 </programlisting>
4431 </informalexample>
4432 These callbacks are explained in the <link
4433 linkend="rawmidi-interface-callbacks"><citetitle>Callbacks</citetitle></link>
4434 section.
4435 </para>
4436
4437 <para>
4438 If there is more than one substream, you should give each one a
4439 unique name:
4440 <informalexample>
4441 <programlisting>
4442<![CDATA[
4443 struct list_head *list;
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004444 struct snd_rawmidi_substream *substream;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004445 list_for_each(list, &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams) {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004446 substream = list_entry(list, struct snd_rawmidi_substream, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004447 sprintf(substream->name, "My MIDI Port %d", substream->number + 1);
4448 }
4449 /* same for SNDRV_RAWMIDI_STREAM_INPUT */
4450]]>
4451 </programlisting>
4452 </informalexample>
4453 </para>
4454 </section>
4455
4456 <section id="rawmidi-interface-callbacks">
4457 <title>Callbacks</title>
4458
4459 <para>
4460 In all callbacks, the private data that you've set for the
4461 rawmidi device can be accessed as
4462 substream-&gt;rmidi-&gt;private_data.
4463 <!-- <code> isn't available before DocBook 4.3 -->
4464 </para>
4465
4466 <para>
4467 If there is more than one port, your callbacks can determine the
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004468 port index from the struct snd_rawmidi_substream data passed to each
Linus Torvalds1da177e2005-04-16 15:20:36 -07004469 callback:
4470 <informalexample>
4471 <programlisting>
4472<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004473 struct snd_rawmidi_substream *substream;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004474 int index = substream->number;
4475]]>
4476 </programlisting>
4477 </informalexample>
4478 </para>
4479
4480 <section id="rawmidi-interface-op-open">
4481 <title><function>open</function> callback</title>
4482
4483 <informalexample>
4484 <programlisting>
4485<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004486 static int snd_xxx_open(struct snd_rawmidi_substream *substream);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004487]]>
4488 </programlisting>
4489 </informalexample>
4490
4491 <para>
4492 This is called when a substream is opened.
4493 You can initialize the hardware here, but you should not yet
4494 start transmitting/receiving data.
4495 </para>
4496 </section>
4497
4498 <section id="rawmidi-interface-op-close">
4499 <title><function>close</function> callback</title>
4500
4501 <informalexample>
4502 <programlisting>
4503<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004504 static int snd_xxx_close(struct snd_rawmidi_substream *substream);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004505]]>
4506 </programlisting>
4507 </informalexample>
4508
4509 <para>
4510 Guess what.
4511 </para>
4512
4513 <para>
4514 The <function>open</function> and <function>close</function>
4515 callbacks of a rawmidi device are serialized with a mutex,
4516 and can sleep.
4517 </para>
4518 </section>
4519
4520 <section id="rawmidi-interface-op-trigger-out">
4521 <title><function>trigger</function> callback for output
4522 substreams</title>
4523
4524 <informalexample>
4525 <programlisting>
4526<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004527 static void snd_xxx_output_trigger(struct snd_rawmidi_substream *substream, int up);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004528]]>
4529 </programlisting>
4530 </informalexample>
4531
4532 <para>
4533 This is called with a nonzero <parameter>up</parameter>
4534 parameter when there is some data in the substream buffer that
4535 must be transmitted.
4536 </para>
4537
4538 <para>
4539 To read data from the buffer, call
4540 <function>snd_rawmidi_transmit_peek</function>. It will
4541 return the number of bytes that have been read; this will be
4542 less than the number of bytes requested when there is no more
4543 data in the buffer.
4544 After the data has been transmitted successfully, call
4545 <function>snd_rawmidi_transmit_ack</function> to remove the
4546 data from the substream buffer:
4547 <informalexample>
4548 <programlisting>
4549<![CDATA[
4550 unsigned char data;
4551 while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004552 if (snd_mychip_try_to_transmit(data))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004553 snd_rawmidi_transmit_ack(substream, 1);
4554 else
4555 break; /* hardware FIFO full */
4556 }
4557]]>
4558 </programlisting>
4559 </informalexample>
4560 </para>
4561
4562 <para>
4563 If you know beforehand that the hardware will accept data, you
4564 can use the <function>snd_rawmidi_transmit</function> function
4565 which reads some data and removes it from the buffer at once:
4566 <informalexample>
4567 <programlisting>
4568<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004569 while (snd_mychip_transmit_possible()) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004570 unsigned char data;
4571 if (snd_rawmidi_transmit(substream, &data, 1) != 1)
4572 break; /* no more data */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004573 snd_mychip_transmit(data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004574 }
4575]]>
4576 </programlisting>
4577 </informalexample>
4578 </para>
4579
4580 <para>
4581 If you know beforehand how many bytes you can accept, you can
4582 use a buffer size greater than one with the
4583 <function>snd_rawmidi_transmit*</function> functions.
4584 </para>
4585
4586 <para>
4587 The <function>trigger</function> callback must not sleep. If
4588 the hardware FIFO is full before the substream buffer has been
4589 emptied, you have to continue transmitting data later, either
4590 in an interrupt handler, or with a timer if the hardware
4591 doesn't have a MIDI transmit interrupt.
4592 </para>
4593
4594 <para>
4595 The <function>trigger</function> callback is called with a
4596 zero <parameter>up</parameter> parameter when the transmission
4597 of data should be aborted.
4598 </para>
4599 </section>
4600
4601 <section id="rawmidi-interface-op-trigger-in">
4602 <title><function>trigger</function> callback for input
4603 substreams</title>
4604
4605 <informalexample>
4606 <programlisting>
4607<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004608 static void snd_xxx_input_trigger(struct snd_rawmidi_substream *substream, int up);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004609]]>
4610 </programlisting>
4611 </informalexample>
4612
4613 <para>
4614 This is called with a nonzero <parameter>up</parameter>
4615 parameter to enable receiving data, or with a zero
4616 <parameter>up</parameter> parameter do disable receiving data.
4617 </para>
4618
4619 <para>
4620 The <function>trigger</function> callback must not sleep; the
4621 actual reading of data from the device is usually done in an
4622 interrupt handler.
4623 </para>
4624
4625 <para>
4626 When data reception is enabled, your interrupt handler should
4627 call <function>snd_rawmidi_receive</function> for all received
4628 data:
4629 <informalexample>
4630 <programlisting>
4631<![CDATA[
4632 void snd_mychip_midi_interrupt(...)
4633 {
4634 while (mychip_midi_available()) {
4635 unsigned char data;
4636 data = mychip_midi_read();
4637 snd_rawmidi_receive(substream, &data, 1);
4638 }
4639 }
4640]]>
4641 </programlisting>
4642 </informalexample>
4643 </para>
4644 </section>
4645
4646 <section id="rawmidi-interface-op-drain">
4647 <title><function>drain</function> callback</title>
4648
4649 <informalexample>
4650 <programlisting>
4651<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004652 static void snd_xxx_drain(struct snd_rawmidi_substream *substream);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004653]]>
4654 </programlisting>
4655 </informalexample>
4656
4657 <para>
4658 This is only used with output substreams. This function should wait
4659 until all data read from the substream buffer has been transmitted.
4660 This ensures that the device can be closed and the driver unloaded
4661 without losing data.
4662 </para>
4663
4664 <para>
4665 This callback is optional. If you do not set
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004666 <structfield>drain</structfield> in the struct snd_rawmidi_ops
Linus Torvalds1da177e2005-04-16 15:20:36 -07004667 structure, ALSA will simply wait for 50&nbsp;milliseconds
4668 instead.
4669 </para>
4670 </section>
4671 </section>
4672
4673 </chapter>
4674
4675
4676<!-- ****************************************************** -->
4677<!-- Miscellaneous Devices -->
4678<!-- ****************************************************** -->
4679 <chapter id="misc-devices">
4680 <title>Miscellaneous Devices</title>
4681
4682 <section id="misc-devices-opl3">
4683 <title>FM OPL3</title>
4684 <para>
4685 The FM OPL3 is still used on many chips (mainly for backward
4686 compatibility). ALSA has a nice OPL3 FM control layer, too. The
4687 OPL3 API is defined in
4688 <filename>&lt;sound/opl3.h&gt;</filename>.
4689 </para>
4690
4691 <para>
4692 FM registers can be directly accessed through direct-FM API,
4693 defined in <filename>&lt;sound/asound_fm.h&gt;</filename>. In
4694 ALSA native mode, FM registers are accessed through
4695 Hardware-Dependant Device direct-FM extension API, whereas in
4696 OSS compatible mode, FM registers can be accessed with OSS
4697 direct-FM compatible API on <filename>/dev/dmfmX</filename> device.
4698 </para>
4699
4700 <para>
4701 For creating the OPL3 component, you have two functions to
4702 call. The first one is a constructor for <type>opl3_t</type>
4703 instance.
4704
4705 <informalexample>
4706 <programlisting>
4707<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004708 struct snd_opl3 *opl3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004709 snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX,
4710 integrated, &opl3);
4711]]>
4712 </programlisting>
4713 </informalexample>
4714 </para>
4715
4716 <para>
4717 The first argument is the card pointer, the second one is the
4718 left port address, and the third is the right port address. In
4719 most cases, the right port is placed at the left port + 2.
4720 </para>
4721
4722 <para>
4723 The fourth argument is the hardware type.
4724 </para>
4725
4726 <para>
4727 When the left and right ports have been already allocated by
4728 the card driver, pass non-zero to the fifth argument
4729 (<parameter>integrated</parameter>). Otherwise, opl3 module will
4730 allocate the specified ports by itself.
4731 </para>
4732
4733 <para>
4734 When the accessing to the hardware requires special method
4735 instead of the standard I/O access, you can create opl3 instance
4736 separately with <function>snd_opl3_new()</function>.
4737
4738 <informalexample>
4739 <programlisting>
4740<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004741 struct snd_opl3 *opl3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004742 snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3);
4743]]>
4744 </programlisting>
4745 </informalexample>
4746 </para>
4747
4748 <para>
4749 Then set <structfield>command</structfield>,
4750 <structfield>private_data</structfield> and
4751 <structfield>private_free</structfield> for the private
4752 access function, the private data and the destructor.
4753 The l_port and r_port are not necessarily set. Only the
4754 command must be set properly. You can retrieve the data
4755 from opl3-&gt;private_data field.
4756 </para>
4757
4758 <para>
4759 After creating the opl3 instance via <function>snd_opl3_new()</function>,
4760 call <function>snd_opl3_init()</function> to initialize the chip to the
4761 proper state. Note that <function>snd_opl3_create()</function> always
4762 calls it internally.
4763 </para>
4764
4765 <para>
4766 If the opl3 instance is created successfully, then create a
4767 hwdep device for this opl3.
4768
4769 <informalexample>
4770 <programlisting>
4771<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004772 struct snd_hwdep *opl3hwdep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004773 snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep);
4774]]>
4775 </programlisting>
4776 </informalexample>
4777 </para>
4778
4779 <para>
4780 The first argument is the <type>opl3_t</type> instance you
4781 created, and the second is the index number, usually 0.
4782 </para>
4783
4784 <para>
4785 The third argument is the index-offset for the sequencer
4786 client assigned to the OPL3 port. When there is an MPU401-UART,
4787 give 1 for here (UART always takes 0).
4788 </para>
4789 </section>
4790
4791 <section id="misc-devices-hardware-dependent">
4792 <title>Hardware-Dependent Devices</title>
4793 <para>
4794 Some chips need the access from the user-space for special
4795 controls or for loading the micro code. In such a case, you can
4796 create a hwdep (hardware-dependent) device. The hwdep API is
4797 defined in <filename>&lt;sound/hwdep.h&gt;</filename>. You can
4798 find examples in opl3 driver or
4799 <filename>isa/sb/sb16_csp.c</filename>.
4800 </para>
4801
4802 <para>
4803 Creation of the <type>hwdep</type> instance is done via
4804 <function>snd_hwdep_new()</function>.
4805
4806 <informalexample>
4807 <programlisting>
4808<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004809 struct snd_hwdep *hw;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004810 snd_hwdep_new(card, "My HWDEP", 0, &hw);
4811]]>
4812 </programlisting>
4813 </informalexample>
4814
4815 where the third argument is the index number.
4816 </para>
4817
4818 <para>
4819 You can then pass any pointer value to the
4820 <parameter>private_data</parameter>.
4821 If you assign a private data, you should define the
4822 destructor, too. The destructor function is set to
4823 <structfield>private_free</structfield> field.
4824
4825 <informalexample>
4826 <programlisting>
4827<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004828 struct mydata *p = kmalloc(sizeof(*p), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004829 hw->private_data = p;
4830 hw->private_free = mydata_free;
4831]]>
4832 </programlisting>
4833 </informalexample>
4834
4835 and the implementation of destructor would be:
4836
4837 <informalexample>
4838 <programlisting>
4839<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004840 static void mydata_free(struct snd_hwdep *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004841 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004842 struct mydata *p = hw->private_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004843 kfree(p);
4844 }
4845]]>
4846 </programlisting>
4847 </informalexample>
4848 </para>
4849
4850 <para>
4851 The arbitrary file operations can be defined for this
4852 instance. The file operators are defined in
4853 <parameter>ops</parameter> table. For example, assume that
4854 this chip needs an ioctl.
4855
4856 <informalexample>
4857 <programlisting>
4858<![CDATA[
4859 hw->ops.open = mydata_open;
4860 hw->ops.ioctl = mydata_ioctl;
4861 hw->ops.release = mydata_release;
4862]]>
4863 </programlisting>
4864 </informalexample>
4865
4866 And implement the callback functions as you like.
4867 </para>
4868 </section>
4869
4870 <section id="misc-devices-IEC958">
4871 <title>IEC958 (S/PDIF)</title>
4872 <para>
4873 Usually the controls for IEC958 devices are implemented via
4874 control interface. There is a macro to compose a name string for
4875 IEC958 controls, <function>SNDRV_CTL_NAME_IEC958()</function>
4876 defined in <filename>&lt;include/asound.h&gt;</filename>.
4877 </para>
4878
4879 <para>
4880 There are some standard controls for IEC958 status bits. These
4881 controls use the type <type>SNDRV_CTL_ELEM_TYPE_IEC958</type>,
4882 and the size of element is fixed as 4 bytes array
4883 (value.iec958.status[x]). For <structfield>info</structfield>
4884 callback, you don't specify
4885 the value field for this type (the count field must be set,
4886 though).
4887 </para>
4888
4889 <para>
4890 <quote>IEC958 Playback Con Mask</quote> is used to return the
4891 bit-mask for the IEC958 status bits of consumer mode. Similarly,
4892 <quote>IEC958 Playback Pro Mask</quote> returns the bitmask for
4893 professional mode. They are read-only controls, and are defined
4894 as MIXER controls (iface =
4895 <constant>SNDRV_CTL_ELEM_IFACE_MIXER</constant>).
4896 </para>
4897
4898 <para>
4899 Meanwhile, <quote>IEC958 Playback Default</quote> control is
4900 defined for getting and setting the current default IEC958
4901 bits. Note that this one is usually defined as a PCM control
4902 (iface = <constant>SNDRV_CTL_ELEM_IFACE_PCM</constant>),
4903 although in some places it's defined as a MIXER control.
4904 </para>
4905
4906 <para>
4907 In addition, you can define the control switches to
4908 enable/disable or to set the raw bit mode. The implementation
4909 will depend on the chip, but the control should be named as
4910 <quote>IEC958 xxx</quote>, preferably using
4911 <function>SNDRV_CTL_NAME_IEC958()</function> macro.
4912 </para>
4913
4914 <para>
4915 You can find several cases, for example,
4916 <filename>pci/emu10k1</filename>,
4917 <filename>pci/ice1712</filename>, or
4918 <filename>pci/cmipci.c</filename>.
4919 </para>
4920 </section>
4921
4922 </chapter>
4923
4924
4925<!-- ****************************************************** -->
4926<!-- Buffer and Memory Management -->
4927<!-- ****************************************************** -->
4928 <chapter id="buffer-and-memory">
4929 <title>Buffer and Memory Management</title>
4930
4931 <section id="buffer-and-memory-buffer-types">
4932 <title>Buffer Types</title>
4933 <para>
4934 ALSA provides several different buffer allocation functions
4935 depending on the bus and the architecture. All these have a
4936 consistent API. The allocation of physically-contiguous pages is
4937 done via
4938 <function>snd_malloc_xxx_pages()</function> function, where xxx
4939 is the bus type.
4940 </para>
4941
4942 <para>
4943 The allocation of pages with fallback is
4944 <function>snd_malloc_xxx_pages_fallback()</function>. This
4945 function tries to allocate the specified pages but if the pages
4946 are not available, it tries to reduce the page sizes until the
4947 enough space is found.
4948 </para>
4949
4950 <para>
4951 For releasing the space, call
4952 <function>snd_free_xxx_pages()</function> function.
4953 </para>
4954
4955 <para>
4956 Usually, ALSA drivers try to allocate and reserve
4957 a large contiguous physical space
4958 at the time the module is loaded for the later use.
4959 This is called <quote>pre-allocation</quote>.
4960 As already written, you can call the following function at the
4961 construction of pcm instance (in the case of PCI bus).
4962
4963 <informalexample>
4964 <programlisting>
4965<![CDATA[
4966 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
4967 snd_dma_pci_data(pci), size, max);
4968]]>
4969 </programlisting>
4970 </informalexample>
4971
4972 where <parameter>size</parameter> is the byte size to be
4973 pre-allocated and the <parameter>max</parameter> is the maximal
4974 size to be changed via <filename>prealloc</filename> proc file.
4975 The allocator will try to get as large area as possible
4976 within the given size.
4977 </para>
4978
4979 <para>
4980 The second argument (type) and the third argument (device pointer)
4981 are dependent on the bus.
4982 In the case of ISA bus, pass <function>snd_dma_isa_data()</function>
4983 as the third argument with <constant>SNDRV_DMA_TYPE_DEV</constant> type.
4984 For the continuous buffer unrelated to the bus can be pre-allocated
4985 with <constant>SNDRV_DMA_TYPE_CONTINUOUS</constant> type and the
4986 <function>snd_dma_continuous_data(GFP_KERNEL)</function> device pointer,
4987 whereh <constant>GFP_KERNEL</constant> is the kernel allocation flag to
4988 use. For the SBUS, <constant>SNDRV_DMA_TYPE_SBUS</constant> and
4989 <function>snd_dma_sbus_data(sbus_dev)</function> are used instead.
4990 For the PCI scatter-gather buffers, use
4991 <constant>SNDRV_DMA_TYPE_DEV_SG</constant> with
4992 <function>snd_dma_pci_data(pci)</function>
4993 (see the section
4994 <link linkend="buffer-and-memory-non-contiguous"><citetitle>Non-Contiguous Buffers
4995 </citetitle></link>).
4996 </para>
4997
4998 <para>
4999 Once when the buffer is pre-allocated, you can use the
5000 allocator in the <structfield>hw_params</structfield> callback
5001
5002 <informalexample>
5003 <programlisting>
5004<![CDATA[
5005 snd_pcm_lib_malloc_pages(substream, size);
5006]]>
5007 </programlisting>
5008 </informalexample>
5009
5010 Note that you have to pre-allocate to use this function.
5011 </para>
5012 </section>
5013
5014 <section id="buffer-and-memory-external-hardware">
5015 <title>External Hardware Buffers</title>
5016 <para>
5017 Some chips have their own hardware buffers and the DMA
5018 transfer from the host memory is not available. In such a case,
5019 you need to either 1) copy/set the audio data directly to the
5020 external hardware buffer, or 2) make an intermediate buffer and
5021 copy/set the data from it to the external hardware buffer in
5022 interrupts (or in tasklets, preferably).
5023 </para>
5024
5025 <para>
5026 The first case works fine if the external hardware buffer is enough
5027 large. This method doesn't need any extra buffers and thus is
5028 more effective. You need to define the
5029 <structfield>copy</structfield> and
5030 <structfield>silence</structfield> callbacks for
5031 the data transfer. However, there is a drawback: it cannot
5032 be mmapped. The examples are GUS's GF1 PCM or emu8000's
5033 wavetable PCM.
5034 </para>
5035
5036 <para>
5037 The second case allows the mmap of the buffer, although you have
5038 to handle an interrupt or a tasklet for transferring the data
5039 from the intermediate buffer to the hardware buffer. You can find an
5040 example in vxpocket driver.
5041 </para>
5042
5043 <para>
5044 Another case is that the chip uses a PCI memory-map
5045 region for the buffer instead of the host memory. In this case,
5046 mmap is available only on certain architectures like intel. In
5047 non-mmap mode, the data cannot be transferred as the normal
5048 way. Thus you need to define <structfield>copy</structfield> and
5049 <structfield>silence</structfield> callbacks as well
5050 as in the cases above. The examples are found in
5051 <filename>rme32.c</filename> and <filename>rme96.c</filename>.
5052 </para>
5053
5054 <para>
5055 The implementation of <structfield>copy</structfield> and
5056 <structfield>silence</structfield> callbacks depends upon
5057 whether the hardware supports interleaved or non-interleaved
5058 samples. The <structfield>copy</structfield> callback is
5059 defined like below, a bit
5060 differently depending whether the direction is playback or
5061 capture:
5062
5063 <informalexample>
5064 <programlisting>
5065<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01005066 static int playback_copy(struct snd_pcm_substream *substream, int channel,
Linus Torvalds1da177e2005-04-16 15:20:36 -07005067 snd_pcm_uframes_t pos, void *src, snd_pcm_uframes_t count);
Takashi Iwai446ab5f2005-11-17 15:12:54 +01005068 static int capture_copy(struct snd_pcm_substream *substream, int channel,
Linus Torvalds1da177e2005-04-16 15:20:36 -07005069 snd_pcm_uframes_t pos, void *dst, snd_pcm_uframes_t count);
5070]]>
5071 </programlisting>
5072 </informalexample>
5073 </para>
5074
5075 <para>
5076 In the case of interleaved samples, the second argument
5077 (<parameter>channel</parameter>) is not used. The third argument
5078 (<parameter>pos</parameter>) points the
5079 current position offset in frames.
5080 </para>
5081
5082 <para>
5083 The meaning of the fourth argument is different between
5084 playback and capture. For playback, it holds the source data
5085 pointer, and for capture, it's the destination data pointer.
5086 </para>
5087
5088 <para>
5089 The last argument is the number of frames to be copied.
5090 </para>
5091
5092 <para>
5093 What you have to do in this callback is again different
5094 between playback and capture directions. In the case of
5095 playback, you do: copy the given amount of data
5096 (<parameter>count</parameter>) at the specified pointer
5097 (<parameter>src</parameter>) to the specified offset
5098 (<parameter>pos</parameter>) on the hardware buffer. When
5099 coded like memcpy-like way, the copy would be like:
5100
5101 <informalexample>
5102 <programlisting>
5103<![CDATA[
5104 my_memcpy(my_buffer + frames_to_bytes(runtime, pos), src,
5105 frames_to_bytes(runtime, count));
5106]]>
5107 </programlisting>
5108 </informalexample>
5109 </para>
5110
5111 <para>
5112 For the capture direction, you do: copy the given amount of
5113 data (<parameter>count</parameter>) at the specified offset
5114 (<parameter>pos</parameter>) on the hardware buffer to the
5115 specified pointer (<parameter>dst</parameter>).
5116
5117 <informalexample>
5118 <programlisting>
5119<![CDATA[
5120 my_memcpy(dst, my_buffer + frames_to_bytes(runtime, pos),
5121 frames_to_bytes(runtime, count));
5122]]>
5123 </programlisting>
5124 </informalexample>
5125
5126 Note that both of the position and the data amount are given
5127 in frames.
5128 </para>
5129
5130 <para>
5131 In the case of non-interleaved samples, the implementation
5132 will be a bit more complicated.
5133 </para>
5134
5135 <para>
5136 You need to check the channel argument, and if it's -1, copy
5137 the whole channels. Otherwise, you have to copy only the
5138 specified channel. Please check
5139 <filename>isa/gus/gus_pcm.c</filename> as an example.
5140 </para>
5141
5142 <para>
5143 The <structfield>silence</structfield> callback is also
5144 implemented in a similar way.
5145
5146 <informalexample>
5147 <programlisting>
5148<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01005149 static int silence(struct snd_pcm_substream *substream, int channel,
Linus Torvalds1da177e2005-04-16 15:20:36 -07005150 snd_pcm_uframes_t pos, snd_pcm_uframes_t count);
5151]]>
5152 </programlisting>
5153 </informalexample>
5154 </para>
5155
5156 <para>
5157 The meanings of arguments are identical with the
5158 <structfield>copy</structfield>
5159 callback, although there is no <parameter>src/dst</parameter>
5160 argument. In the case of interleaved samples, the channel
5161 argument has no meaning, as well as on
5162 <structfield>copy</structfield> callback.
5163 </para>
5164
5165 <para>
5166 The role of <structfield>silence</structfield> callback is to
5167 set the given amount
5168 (<parameter>count</parameter>) of silence data at the
5169 specified offset (<parameter>pos</parameter>) on the hardware
5170 buffer. Suppose that the data format is signed (that is, the
5171 silent-data is 0), and the implementation using a memset-like
5172 function would be like:
5173
5174 <informalexample>
5175 <programlisting>
5176<![CDATA[
5177 my_memcpy(my_buffer + frames_to_bytes(runtime, pos), 0,
5178 frames_to_bytes(runtime, count));
5179]]>
5180 </programlisting>
5181 </informalexample>
5182 </para>
5183
5184 <para>
5185 In the case of non-interleaved samples, again, the
5186 implementation becomes a bit more complicated. See, for example,
5187 <filename>isa/gus/gus_pcm.c</filename>.
5188 </para>
5189 </section>
5190
5191 <section id="buffer-and-memory-non-contiguous">
5192 <title>Non-Contiguous Buffers</title>
5193 <para>
5194 If your hardware supports the page table like emu10k1 or the
5195 buffer descriptors like via82xx, you can use the scatter-gather
5196 (SG) DMA. ALSA provides an interface for handling SG-buffers.
5197 The API is provided in <filename>&lt;sound/pcm.h&gt;</filename>.
5198 </para>
5199
5200 <para>
5201 For creating the SG-buffer handler, call
5202 <function>snd_pcm_lib_preallocate_pages()</function> or
5203 <function>snd_pcm_lib_preallocate_pages_for_all()</function>
5204 with <constant>SNDRV_DMA_TYPE_DEV_SG</constant>
5205 in the PCM constructor like other PCI pre-allocator.
5206 You need to pass the <function>snd_dma_pci_data(pci)</function>,
5207 where pci is the struct <structname>pci_dev</structname> pointer
5208 of the chip as well.
5209 The <type>snd_sg_buf_t</type> instance is created as
5210 substream-&gt;dma_private. You can cast
5211 the pointer like:
5212
5213 <informalexample>
5214 <programlisting>
5215<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01005216 struct snd_sg_buf *sgbuf = (struct snd_sg_buf_t*)substream->dma_private;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005217]]>
5218 </programlisting>
5219 </informalexample>
5220 </para>
5221
5222 <para>
5223 Then call <function>snd_pcm_lib_malloc_pages()</function>
5224 in <structfield>hw_params</structfield> callback
5225 as well as in the case of normal PCI buffer.
5226 The SG-buffer handler will allocate the non-contiguous kernel
5227 pages of the given size and map them onto the virtually contiguous
5228 memory. The virtual pointer is addressed in runtime-&gt;dma_area.
5229 The physical address (runtime-&gt;dma_addr) is set to zero,
5230 because the buffer is physically non-contigous.
5231 The physical address table is set up in sgbuf-&gt;table.
5232 You can get the physical address at a certain offset via
5233 <function>snd_pcm_sgbuf_get_addr()</function>.
5234 </para>
5235
5236 <para>
5237 When a SG-handler is used, you need to set
5238 <function>snd_pcm_sgbuf_ops_page</function> as
5239 the <structfield>page</structfield> callback.
5240 (See <link linkend="pcm-interface-operators-page-callback">
5241 <citetitle>page callback section</citetitle></link>.)
5242 </para>
5243
5244 <para>
5245 For releasing the data, call
5246 <function>snd_pcm_lib_free_pages()</function> in the
5247 <structfield>hw_free</structfield> callback as usual.
5248 </para>
5249 </section>
5250
5251 <section id="buffer-and-memory-vmalloced">
5252 <title>Vmalloc'ed Buffers</title>
5253 <para>
5254 It's possible to use a buffer allocated via
5255 <function>vmalloc</function>, for example, for an intermediate
5256 buffer. Since the allocated pages are not contiguous, you need
5257 to set the <structfield>page</structfield> callback to obtain
5258 the physical address at every offset.
5259 </para>
5260
5261 <para>
5262 The implementation of <structfield>page</structfield> callback
5263 would be like this:
5264
5265 <informalexample>
5266 <programlisting>
5267<![CDATA[
5268 #include <linux/vmalloc.h>
5269
5270 /* get the physical page pointer on the given offset */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01005271 static struct page *mychip_page(struct snd_pcm_substream *substream,
Linus Torvalds1da177e2005-04-16 15:20:36 -07005272 unsigned long offset)
5273 {
5274 void *pageptr = substream->runtime->dma_area + offset;
5275 return vmalloc_to_page(pageptr);
5276 }
5277]]>
5278 </programlisting>
5279 </informalexample>
5280 </para>
5281 </section>
5282
5283 </chapter>
5284
5285
5286<!-- ****************************************************** -->
5287<!-- Proc Interface -->
5288<!-- ****************************************************** -->
5289 <chapter id="proc-interface">
5290 <title>Proc Interface</title>
5291 <para>
5292 ALSA provides an easy interface for procfs. The proc files are
5293 very useful for debugging. I recommend you set up proc files if
5294 you write a driver and want to get a running status or register
5295 dumps. The API is found in
5296 <filename>&lt;sound/info.h&gt;</filename>.
5297 </para>
5298
5299 <para>
5300 For creating a proc file, call
5301 <function>snd_card_proc_new()</function>.
5302
5303 <informalexample>
5304 <programlisting>
5305<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01005306 struct snd_info_entry *entry;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005307 int err = snd_card_proc_new(card, "my-file", &entry);
5308]]>
5309 </programlisting>
5310 </informalexample>
5311
5312 where the second argument specifies the proc-file name to be
5313 created. The above example will create a file
5314 <filename>my-file</filename> under the card directory,
5315 e.g. <filename>/proc/asound/card0/my-file</filename>.
5316 </para>
5317
5318 <para>
5319 Like other components, the proc entry created via
5320 <function>snd_card_proc_new()</function> will be registered and
5321 released automatically in the card registration and release
5322 functions.
5323 </para>
5324
5325 <para>
5326 When the creation is successful, the function stores a new
5327 instance at the pointer given in the third argument.
5328 It is initialized as a text proc file for read only. For using
5329 this proc file as a read-only text file as it is, set the read
5330 callback with a private data via
5331 <function>snd_info_set_text_ops()</function>.
5332
5333 <informalexample>
5334 <programlisting>
5335<![CDATA[
5336 snd_info_set_text_ops(entry, chip, read_size, my_proc_read);
5337]]>
5338 </programlisting>
5339 </informalexample>
5340
5341 where the second argument (<parameter>chip</parameter>) is the
5342 private data to be used in the callbacks. The third parameter
5343 specifies the read buffer size and the fourth
5344 (<parameter>my_proc_read</parameter>) is the callback function, which
5345 is defined like
5346
5347 <informalexample>
5348 <programlisting>
5349<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01005350 static void my_proc_read(struct snd_info_entry *entry,
5351 struct snd_info_buffer *buffer);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005352]]>
5353 </programlisting>
5354 </informalexample>
5355
5356 </para>
5357
5358 <para>
5359 In the read callback, use <function>snd_iprintf()</function> for
5360 output strings, which works just like normal
5361 <function>printf()</function>. For example,
5362
5363 <informalexample>
5364 <programlisting>
5365<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01005366 static void my_proc_read(struct snd_info_entry *entry,
5367 struct snd_info_buffer *buffer)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005368 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01005369 struct my_chip *chip = entry->private_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005370
5371 snd_iprintf(buffer, "This is my chip!\n");
5372 snd_iprintf(buffer, "Port = %ld\n", chip->port);
5373 }
5374]]>
5375 </programlisting>
5376 </informalexample>
5377 </para>
5378
5379 <para>
5380 The file permission can be changed afterwards. As default, it's
5381 set as read only for all users. If you want to add the write
5382 permission to the user (root as default), set like below:
5383
5384 <informalexample>
5385 <programlisting>
5386<![CDATA[
5387 entry->mode = S_IFREG | S_IRUGO | S_IWUSR;
5388]]>
5389 </programlisting>
5390 </informalexample>
5391
5392 and set the write buffer size and the callback
5393
5394 <informalexample>
5395 <programlisting>
5396<![CDATA[
5397 entry->c.text.write_size = 256;
5398 entry->c.text.write = my_proc_write;
5399]]>
5400 </programlisting>
5401 </informalexample>
5402 </para>
5403
5404 <para>
5405 The buffer size for read is set to 1024 implicitly by
5406 <function>snd_info_set_text_ops()</function>. It should suffice
5407 in most cases (the size will be aligned to
5408 <constant>PAGE_SIZE</constant> anyway), but if you need to handle
5409 very large text files, you can set it explicitly, too.
5410
5411 <informalexample>
5412 <programlisting>
5413<![CDATA[
5414 entry->c.text.read_size = 65536;
5415]]>
5416 </programlisting>
5417 </informalexample>
5418 </para>
5419
5420 <para>
5421 For the write callback, you can use
5422 <function>snd_info_get_line()</function> to get a text line, and
5423 <function>snd_info_get_str()</function> to retrieve a string from
5424 the line. Some examples are found in
5425 <filename>core/oss/mixer_oss.c</filename>, core/oss/and
5426 <filename>pcm_oss.c</filename>.
5427 </para>
5428
5429 <para>
5430 For a raw-data proc-file, set the attributes like the following:
5431
5432 <informalexample>
5433 <programlisting>
5434<![CDATA[
5435 static struct snd_info_entry_ops my_file_io_ops = {
5436 .read = my_file_io_read,
5437 };
5438
5439 entry->content = SNDRV_INFO_CONTENT_DATA;
5440 entry->private_data = chip;
5441 entry->c.ops = &my_file_io_ops;
5442 entry->size = 4096;
5443 entry->mode = S_IFREG | S_IRUGO;
5444]]>
5445 </programlisting>
5446 </informalexample>
5447 </para>
5448
5449 <para>
5450 The callback is much more complicated than the text-file
5451 version. You need to use a low-level i/o functions such as
5452 <function>copy_from/to_user()</function> to transfer the
5453 data.
5454
5455 <informalexample>
5456 <programlisting>
5457<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01005458 static long my_file_io_read(struct snd_info_entry *entry,
Linus Torvalds1da177e2005-04-16 15:20:36 -07005459 void *file_private_data,
5460 struct file *file,
5461 char *buf,
5462 unsigned long count,
5463 unsigned long pos)
5464 {
5465 long size = count;
5466 if (pos + size > local_max_size)
5467 size = local_max_size - pos;
5468 if (copy_to_user(buf, local_data + pos, size))
5469 return -EFAULT;
5470 return size;
5471 }
5472]]>
5473 </programlisting>
5474 </informalexample>
5475 </para>
5476
5477 </chapter>
5478
5479
5480<!-- ****************************************************** -->
5481<!-- Power Management -->
5482<!-- ****************************************************** -->
5483 <chapter id="power-management">
5484 <title>Power Management</title>
5485 <para>
5486 If the chip is supposed to work with with suspend/resume
5487 functions, you need to add the power-management codes to the
5488 driver. The additional codes for the power-management should be
5489 <function>ifdef</function>'ed with
5490 <constant>CONFIG_PM</constant>.
5491 </para>
5492
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005493 <para>
5494 If the driver supports the suspend/resume
5495 <emphasis>fully</emphasis>, that is, the device can be
5496 properly resumed to the status at the suspend is called,
5497 you can set <constant>SNDRV_PCM_INFO_RESUME</constant> flag
5498 to pcm info field. Usually, this is possible when the
5499 registers of ths chip can be safely saved and restored to the
5500 RAM. If this is set, the trigger callback is called with
5501 <constant>SNDRV_PCM_TRIGGER_RESUME</constant> after resume
5502 callback is finished.
5503 </para>
5504
5505 <para>
5506 Even if the driver doesn't support PM fully but only the
5507 partial suspend/resume is possible, it's still worthy to
5508 implement suspend/resume callbacks. In such a case, applications
5509 would reset the status by calling
5510 <function>snd_pcm_prepare()</function> and restart the stream
5511 appropriately. Hence, you can define suspend/resume callbacks
5512 below but don't set <constant>SNDRV_PCM_INFO_RESUME</constant>
5513 info flag to the PCM.
5514 </para>
5515
5516 <para>
5517 Note that the trigger with SUSPEND can be always called when
5518 <function>snd_pcm_suspend_all</function> is called,
5519 regardless of <constant>SNDRV_PCM_INFO_RESUME</constant> flag.
5520 The <constant>RESUME</constant> flag affects only the behavior
5521 of <function>snd_pcm_resume()</function>.
5522 (Thus, in theory,
5523 <constant>SNDRV_PCM_TRIGGER_RESUME</constant> isn't needed
5524 to be handled in the trigger callback when no
5525 <constant>SNDRV_PCM_INFO_RESUME</constant> flag is set. But,
5526 it's better to keep it for compatibility reason.)
5527 </para>
Linus Torvalds1da177e2005-04-16 15:20:36 -07005528 <para>
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005529 In the earlier version of ALSA drivers, a common
5530 power-management layer was provided, but it has been removed.
5531 The driver needs to define the suspend/resume hooks according to
5532 the bus the device is assigned. In the case of PCI driver, the
5533 callbacks look like below:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005534
5535 <informalexample>
5536 <programlisting>
5537<![CDATA[
5538 #ifdef CONFIG_PM
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005539 static int snd_my_suspend(struct pci_dev *pci, pm_message_t state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005540 {
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005541 .... /* do things for suspsend */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005542 return 0;
5543 }
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005544 static int snd_my_resume(struct pci_dev *pci)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005545 {
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005546 .... /* do things for suspsend */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005547 return 0;
5548 }
5549 #endif
5550]]>
5551 </programlisting>
5552 </informalexample>
5553 </para>
5554
5555 <para>
5556 The scheme of the real suspend job is as following.
5557
5558 <orderedlist>
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005559 <listitem><para>Retrieve the card and the chip data.</para></listitem>
5560 <listitem><para>Call <function>snd_power_change_state()</function> with
5561 <constant>SNDRV_CTL_POWER_D3hot</constant> to change the
5562 power status.</para></listitem>
Linus Torvalds1da177e2005-04-16 15:20:36 -07005563 <listitem><para>Call <function>snd_pcm_suspend_all()</function> to suspend the running PCM streams.</para></listitem>
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005564 <listitem><para>If AC97 codecs are used, call
5565 <function>snd_ac97_resume()</function> for each codec.</para></listitem>
Linus Torvalds1da177e2005-04-16 15:20:36 -07005566 <listitem><para>Save the register values if necessary.</para></listitem>
5567 <listitem><para>Stop the hardware if necessary.</para></listitem>
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005568 <listitem><para>Disable the PCI device by calling
5569 <function>pci_disable_device()</function>. Then, call
5570 <function>pci_save_state()</function> at last.</para></listitem>
Linus Torvalds1da177e2005-04-16 15:20:36 -07005571 </orderedlist>
5572 </para>
5573
5574 <para>
5575 A typical code would be like:
5576
5577 <informalexample>
5578 <programlisting>
5579<![CDATA[
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005580 static int mychip_suspend(strut pci_dev *pci, pm_message_t state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005581 {
5582 /* (1) */
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005583 struct snd_card *card = pci_get_drvdata(pci);
5584 struct mychip *chip = card->private_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005585 /* (2) */
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005586 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005587 /* (3) */
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005588 snd_pcm_suspend_all(chip->pcm);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005589 /* (4) */
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005590 snd_ac97_suspend(chip->ac97);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005591 /* (5) */
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005592 snd_mychip_save_registers(chip);
5593 /* (6) */
5594 snd_mychip_stop_hardware(chip);
5595 /* (7) */
5596 pci_disable_device(pci);
5597 pci_save_state(pci);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005598 return 0;
5599 }
5600]]>
5601 </programlisting>
5602 </informalexample>
5603 </para>
5604
5605 <para>
5606 The scheme of the real resume job is as following.
5607
5608 <orderedlist>
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005609 <listitem><para>Retrieve the card and the chip data.</para></listitem>
5610 <listitem><para>Set up PCI. First, call <function>pci_restore_state()</function>.
5611 Then enable the pci device again by calling <function>pci_enable_device()</function>.
5612 Call <function>pci_set_master()</function> if necessary, too.</para></listitem>
Linus Torvalds1da177e2005-04-16 15:20:36 -07005613 <listitem><para>Re-initialize the chip.</para></listitem>
5614 <listitem><para>Restore the saved registers if necessary.</para></listitem>
5615 <listitem><para>Resume the mixer, e.g. calling
5616 <function>snd_ac97_resume()</function>.</para></listitem>
5617 <listitem><para>Restart the hardware (if any).</para></listitem>
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005618 <listitem><para>Call <function>snd_power_change_state()</function> with
5619 <constant>SNDRV_CTL_POWER_D0</constant> to notify the processes.</para></listitem>
Linus Torvalds1da177e2005-04-16 15:20:36 -07005620 </orderedlist>
5621 </para>
5622
5623 <para>
5624 A typical code would be like:
5625
5626 <informalexample>
5627 <programlisting>
5628<![CDATA[
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005629 static int mychip_resume(struct pci_dev *pci)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005630 {
5631 /* (1) */
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005632 struct snd_card *card = pci_get_drvdata(pci);
5633 struct mychip *chip = card->private_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005634 /* (2) */
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005635 pci_restore_state(pci);
5636 pci_enable_device(pci);
5637 pci_set_master(pci);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005638 /* (3) */
5639 snd_mychip_reinit_chip(chip);
5640 /* (4) */
5641 snd_mychip_restore_registers(chip);
5642 /* (5) */
5643 snd_ac97_resume(chip->ac97);
5644 /* (6) */
5645 snd_mychip_restart_chip(chip);
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005646 /* (7) */
5647 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005648 return 0;
5649 }
5650]]>
5651 </programlisting>
5652 </informalexample>
5653 </para>
5654
5655 <para>
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005656 As shown in the above, it's better to save registers after
5657 suspending the PCM operations via
5658 <function>snd_pcm_suspend_all()</function> or
5659 <function>snd_pcm_suspend()</function>. It means that the PCM
5660 streams are already stoppped when the register snapshot is
5661 taken. But, remind that you don't have to restart the PCM
5662 stream in the resume callback. It'll be restarted via
5663 trigger call with <constant>SNDRV_PCM_TRIGGER_RESUME</constant>
5664 when necessary.
5665 </para>
5666
5667 <para>
5668 OK, we have all callbacks now. Let's set them up. In the
5669 initialization of the card, make sure that you can get the chip
5670 data from the card instance, typically via
5671 <structfield>private_data</structfield> field, in case you
5672 created the chip data individually.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005673
5674 <informalexample>
5675 <programlisting>
5676<![CDATA[
5677 static int __devinit snd_mychip_probe(struct pci_dev *pci,
5678 const struct pci_device_id *pci_id)
5679 {
5680 ....
Takashi Iwai446ab5f2005-11-17 15:12:54 +01005681 struct snd_card *card;
5682 struct mychip *chip;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005683 ....
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005684 card = snd_card_new(index[dev], id[dev], THIS_MODULE, NULL);
5685 ....
5686 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
5687 ....
5688 card->private_data = chip;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005689 ....
5690 }
5691]]>
5692 </programlisting>
5693 </informalexample>
5694
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005695 When you created the chip data with
5696 <function>snd_card_new()</function>, it's anyway accessible
5697 via <structfield>private_data</structfield> field.
5698
5699 <informalexample>
5700 <programlisting>
5701<![CDATA[
5702 static int __devinit snd_mychip_probe(struct pci_dev *pci,
5703 const struct pci_device_id *pci_id)
5704 {
5705 ....
5706 struct snd_card *card;
5707 struct mychip *chip;
5708 ....
5709 card = snd_card_new(index[dev], id[dev], THIS_MODULE,
5710 sizeof(struct mychip));
5711 ....
5712 chip = card->private_data;
5713 ....
5714 }
5715]]>
5716 </programlisting>
5717 </informalexample>
5718
Linus Torvalds1da177e2005-04-16 15:20:36 -07005719 </para>
5720
5721 <para>
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005722 If you need a space for saving the registers, allocate the
5723 buffer for it here, too, since it would be fatal
Linus Torvalds1da177e2005-04-16 15:20:36 -07005724 if you cannot allocate a memory in the suspend phase.
5725 The allocated buffer should be released in the corresponding
5726 destructor.
5727 </para>
5728
5729 <para>
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005730 And next, set suspend/resume callbacks to the pci_driver.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005731
5732 <informalexample>
5733 <programlisting>
5734<![CDATA[
5735 static struct pci_driver driver = {
5736 .name = "My Chip",
5737 .id_table = snd_my_ids,
5738 .probe = snd_my_probe,
5739 .remove = __devexit_p(snd_my_remove),
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005740 #ifdef CONFIG_PM
5741 .suspend = snd_my_suspend,
5742 .resume = snd_my_resume,
5743 #endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07005744 };
5745]]>
5746 </programlisting>
5747 </informalexample>
5748 </para>
5749
5750 </chapter>
5751
5752
5753<!-- ****************************************************** -->
5754<!-- Module Parameters -->
5755<!-- ****************************************************** -->
5756 <chapter id="module-parameters">
5757 <title>Module Parameters</title>
5758 <para>
5759 There are standard module options for ALSA. At least, each
5760 module should have <parameter>index</parameter>,
5761 <parameter>id</parameter> and <parameter>enable</parameter>
5762 options.
5763 </para>
5764
5765 <para>
5766 If the module supports multiple cards (usually up to
5767 8 = <constant>SNDRV_CARDS</constant> cards), they should be
5768 arrays. The default initial values are defined already as
5769 constants for ease of programming:
5770
5771 <informalexample>
5772 <programlisting>
5773<![CDATA[
5774 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
5775 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
5776 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
5777]]>
5778 </programlisting>
5779 </informalexample>
5780 </para>
5781
5782 <para>
5783 If the module supports only a single card, they could be single
5784 variables, instead. <parameter>enable</parameter> option is not
5785 always necessary in this case, but it wouldn't be so bad to have a
5786 dummy option for compatibility.
5787 </para>
5788
5789 <para>
5790 The module parameters must be declared with the standard
5791 <function>module_param()()</function>,
5792 <function>module_param_array()()</function> and
5793 <function>MODULE_PARM_DESC()</function> macros.
5794 </para>
5795
5796 <para>
5797 The typical coding would be like below:
5798
5799 <informalexample>
5800 <programlisting>
5801<![CDATA[
5802 #define CARD_NAME "My Chip"
5803
5804 module_param_array(index, int, NULL, 0444);
5805 MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard.");
5806 module_param_array(id, charp, NULL, 0444);
5807 MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard.");
5808 module_param_array(enable, bool, NULL, 0444);
5809 MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard.");
5810]]>
5811 </programlisting>
5812 </informalexample>
5813 </para>
5814
5815 <para>
5816 Also, don't forget to define the module description, classes,
5817 license and devices. Especially, the recent modprobe requires to
5818 define the module license as GPL, etc., otherwise the system is
5819 shown as <quote>tainted</quote>.
5820
5821 <informalexample>
5822 <programlisting>
5823<![CDATA[
5824 MODULE_DESCRIPTION("My Chip");
5825 MODULE_LICENSE("GPL");
5826 MODULE_SUPPORTED_DEVICE("{{Vendor,My Chip Name}}");
5827]]>
5828 </programlisting>
5829 </informalexample>
5830 </para>
5831
5832 </chapter>
5833
5834
5835<!-- ****************************************************** -->
5836<!-- How To Put Your Driver -->
5837<!-- ****************************************************** -->
5838 <chapter id="how-to-put-your-driver">
5839 <title>How To Put Your Driver Into ALSA Tree</title>
5840 <section>
5841 <title>General</title>
5842 <para>
5843 So far, you've learned how to write the driver codes.
5844 And you might have a question now: how to put my own
5845 driver into the ALSA driver tree?
5846 Here (finally :) the standard procedure is described briefly.
5847 </para>
5848
5849 <para>
5850 Suppose that you'll create a new PCI driver for the card
5851 <quote>xyz</quote>. The card module name would be
5852 snd-xyz. The new driver is usually put into alsa-driver
5853 tree, <filename>alsa-driver/pci</filename> directory in
5854 the case of PCI cards.
5855 Then the driver is evaluated, audited and tested
5856 by developers and users. After a certain time, the driver
5857 will go to alsa-kernel tree (to the corresponding directory,
5858 such as <filename>alsa-kernel/pci</filename>) and eventually
5859 integrated into Linux 2.6 tree (the directory would be
5860 <filename>linux/sound/pci</filename>).
5861 </para>
5862
5863 <para>
5864 In the following sections, the driver code is supposed
5865 to be put into alsa-driver tree. The two cases are assumed:
5866 a driver consisting of a single source file and one consisting
5867 of several source files.
5868 </para>
5869 </section>
5870
5871 <section>
5872 <title>Driver with A Single Source File</title>
5873 <para>
5874 <orderedlist>
5875 <listitem>
5876 <para>
5877 Modify alsa-driver/pci/Makefile
5878 </para>
5879
5880 <para>
5881 Suppose you have a file xyz.c. Add the following
5882 two lines
5883 <informalexample>
5884 <programlisting>
5885<![CDATA[
5886 snd-xyz-objs := xyz.o
5887 obj-$(CONFIG_SND_XYZ) += snd-xyz.o
5888]]>
5889 </programlisting>
5890 </informalexample>
5891 </para>
5892 </listitem>
5893
5894 <listitem>
5895 <para>
5896 Create the Kconfig entry
5897 </para>
5898
5899 <para>
5900 Add the new entry of Kconfig for your xyz driver.
5901 <informalexample>
5902 <programlisting>
5903<![CDATA[
5904 config SND_XYZ
5905 tristate "Foobar XYZ"
5906 depends on SND
5907 select SND_PCM
5908 help
5909 Say Y here to include support for Foobar XYZ soundcard.
5910
5911 To compile this driver as a module, choose M here: the module
5912 will be called snd-xyz.
5913]]>
5914 </programlisting>
5915 </informalexample>
5916
5917 the line, select SND_PCM, specifies that the driver xyz supports
5918 PCM. In addition to SND_PCM, the following components are
5919 supported for select command:
5920 SND_RAWMIDI, SND_TIMER, SND_HWDEP, SND_MPU401_UART,
5921 SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_AC97_CODEC.
5922 Add the select command for each supported component.
5923 </para>
5924
5925 <para>
5926 Note that some selections imply the lowlevel selections.
5927 For example, PCM includes TIMER, MPU401_UART includes RAWMIDI,
5928 AC97_CODEC includes PCM, and OPL3_LIB includes HWDEP.
5929 You don't need to give the lowlevel selections again.
5930 </para>
5931
5932 <para>
5933 For the details of Kconfig script, refer to the kbuild
5934 documentation.
5935 </para>
5936
5937 </listitem>
5938
5939 <listitem>
5940 <para>
5941 Run cvscompile script to re-generate the configure script and
5942 build the whole stuff again.
5943 </para>
5944 </listitem>
5945 </orderedlist>
5946 </para>
5947 </section>
5948
5949 <section>
5950 <title>Drivers with Several Source Files</title>
5951 <para>
5952 Suppose that the driver snd-xyz have several source files.
5953 They are located in the new subdirectory,
5954 pci/xyz.
5955
5956 <orderedlist>
5957 <listitem>
5958 <para>
5959 Add a new directory (<filename>xyz</filename>) in
5960 <filename>alsa-driver/pci/Makefile</filename> like below
5961
5962 <informalexample>
5963 <programlisting>
5964<![CDATA[
5965 obj-$(CONFIG_SND) += xyz/
5966]]>
5967 </programlisting>
5968 </informalexample>
5969 </para>
5970 </listitem>
5971
5972 <listitem>
5973 <para>
5974 Under the directory <filename>xyz</filename>, create a Makefile
5975
5976 <example>
5977 <title>Sample Makefile for a driver xyz</title>
5978 <programlisting>
5979<![CDATA[
5980 ifndef SND_TOPDIR
5981 SND_TOPDIR=../..
5982 endif
5983
5984 include $(SND_TOPDIR)/toplevel.config
5985 include $(SND_TOPDIR)/Makefile.conf
5986
5987 snd-xyz-objs := xyz.o abc.o def.o
5988
5989 obj-$(CONFIG_SND_XYZ) += snd-xyz.o
5990
5991 include $(SND_TOPDIR)/Rules.make
5992]]>
5993 </programlisting>
5994 </example>
5995 </para>
5996 </listitem>
5997
5998 <listitem>
5999 <para>
6000 Create the Kconfig entry
6001 </para>
6002
6003 <para>
6004 This procedure is as same as in the last section.
6005 </para>
6006 </listitem>
6007
6008 <listitem>
6009 <para>
6010 Run cvscompile script to re-generate the configure script and
6011 build the whole stuff again.
6012 </para>
6013 </listitem>
6014 </orderedlist>
6015 </para>
6016 </section>
6017
6018 </chapter>
6019
6020<!-- ****************************************************** -->
6021<!-- Useful Functions -->
6022<!-- ****************************************************** -->
6023 <chapter id="useful-functions">
6024 <title>Useful Functions</title>
6025
6026 <section id="useful-functions-snd-printk">
6027 <title><function>snd_printk()</function> and friends</title>
6028 <para>
6029 ALSA provides a verbose version of
6030 <function>printk()</function> function. If a kernel config
6031 <constant>CONFIG_SND_VERBOSE_PRINTK</constant> is set, this
6032 function prints the given message together with the file name
6033 and the line of the caller. The <constant>KERN_XXX</constant>
6034 prefix is processed as
6035 well as the original <function>printk()</function> does, so it's
6036 recommended to add this prefix, e.g.
6037
6038 <informalexample>
6039 <programlisting>
6040<![CDATA[
6041 snd_printk(KERN_ERR "Oh my, sorry, it's extremely bad!\n");
6042]]>
6043 </programlisting>
6044 </informalexample>
6045 </para>
6046
6047 <para>
6048 There are also <function>printk()</function>'s for
6049 debugging. <function>snd_printd()</function> can be used for
6050 general debugging purposes. If
6051 <constant>CONFIG_SND_DEBUG</constant> is set, this function is
6052 compiled, and works just like
6053 <function>snd_printk()</function>. If the ALSA is compiled
6054 without the debugging flag, it's ignored.
6055 </para>
6056
6057 <para>
6058 <function>snd_printdd()</function> is compiled in only when
6059 <constant>CONFIG_SND_DEBUG_DETECT</constant> is set. Please note
6060 that <constant>DEBUG_DETECT</constant> is not set as default
6061 even if you configure the alsa-driver with
6062 <option>--with-debug=full</option> option. You need to give
6063 explicitly <option>--with-debug=detect</option> option instead.
6064 </para>
6065 </section>
6066
6067 <section id="useful-functions-snd-assert">
6068 <title><function>snd_assert()</function></title>
6069 <para>
6070 <function>snd_assert()</function> macro is similar with the
6071 normal <function>assert()</function> macro. For example,
6072
6073 <informalexample>
6074 <programlisting>
6075<![CDATA[
6076 snd_assert(pointer != NULL, return -EINVAL);
6077]]>
6078 </programlisting>
6079 </informalexample>
6080 </para>
6081
6082 <para>
6083 The first argument is the expression to evaluate, and the
6084 second argument is the action if it fails. When
6085 <constant>CONFIG_SND_DEBUG</constant>, is set, it will show an
Takashi Iwai7c22f1a2005-10-10 11:46:31 +02006086 error message such as <computeroutput>BUG? (xxx)</computeroutput>
6087 together with stack trace.
Linus Torvalds1da177e2005-04-16 15:20:36 -07006088 </para>
Linus Torvalds1da177e2005-04-16 15:20:36 -07006089 <para>
Takashi Iwai7c22f1a2005-10-10 11:46:31 +02006090 When no debug flag is set, this macro is ignored.
Linus Torvalds1da177e2005-04-16 15:20:36 -07006091 </para>
6092 </section>
6093
6094 <section id="useful-functions-snd-bug">
6095 <title><function>snd_BUG()</function></title>
6096 <para>
Takashi Iwai7c22f1a2005-10-10 11:46:31 +02006097 It shows <computeroutput>BUG?</computeroutput> message and
6098 stack trace as well as <function>snd_assert</function> at the point.
6099 It's useful to show that a fatal error happens there.
6100 </para>
6101 <para>
6102 When no debug flag is set, this macro is ignored.
Linus Torvalds1da177e2005-04-16 15:20:36 -07006103 </para>
6104 </section>
6105 </chapter>
6106
6107
6108<!-- ****************************************************** -->
6109<!-- Acknowledgments -->
6110<!-- ****************************************************** -->
6111 <chapter id="acknowledments">
6112 <title>Acknowledgments</title>
6113 <para>
6114 I would like to thank Phil Kerr for his help for improvement and
6115 corrections of this document.
6116 </para>
6117 <para>
6118 Kevin Conder reformatted the original plain-text to the
6119 DocBook format.
6120 </para>
6121 <para>
6122 Giuliano Pochini corrected typos and contributed the example codes
6123 in the hardware constraints section.
6124 </para>
6125 </chapter>
6126
6127
6128</book>