blob: 207b1ad9d990b9abb1582cf6c8c4be69d732680e [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef __LINUX_USB_H
2#define __LINUX_USB_H
3
4#include <linux/mod_devicetable.h>
5#include <linux/usb_ch9.h>
6
7#define USB_MAJOR 180
Kay Sieversfbf82fd2005-07-31 01:05:53 +02008#define USB_DEVICE_MAJOR 189
Linus Torvalds1da177e2005-04-16 15:20:36 -07009
10
11#ifdef __KERNEL__
12
13#include <linux/config.h>
14#include <linux/errno.h> /* for -ENODEV */
15#include <linux/delay.h> /* for mdelay() */
16#include <linux/interrupt.h> /* for in_interrupt() */
17#include <linux/list.h> /* for struct list_head */
18#include <linux/kref.h> /* for struct kref */
19#include <linux/device.h> /* for struct device */
20#include <linux/fs.h> /* for struct file_operations */
21#include <linux/completion.h> /* for struct completion */
22#include <linux/sched.h> /* for current && schedule_timeout */
23
24struct usb_device;
25struct usb_driver;
26
27/*-------------------------------------------------------------------------*/
28
29/*
30 * Host-side wrappers for standard USB descriptors ... these are parsed
31 * from the data provided by devices. Parsing turns them from a flat
32 * sequence of descriptors into a hierarchy:
33 *
34 * - devices have one (usually) or more configs;
35 * - configs have one (often) or more interfaces;
36 * - interfaces have one (usually) or more settings;
37 * - each interface setting has zero or (usually) more endpoints.
38 *
39 * And there might be other descriptors mixed in with those.
40 *
41 * Devices may also have class-specific or vendor-specific descriptors.
42 */
43
44/**
45 * struct usb_host_endpoint - host-side endpoint descriptor and queue
46 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
47 * @urb_list: urbs queued to this endpoint; maintained by usbcore
48 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
49 * with one or more transfer descriptors (TDs) per urb
50 * @extra: descriptors following this endpoint in the configuration
51 * @extralen: how many bytes of "extra" are valid
52 *
53 * USB requests are always queued to a given endpoint, identified by a
54 * descriptor within an active interface in a given USB configuration.
55 */
56struct usb_host_endpoint {
57 struct usb_endpoint_descriptor desc;
58 struct list_head urb_list;
59 void *hcpriv;
Greg Kroah-Hartman094f16492005-06-20 21:15:16 -070060 char *attr_name;
61 struct attribute_group *attr_group;
62 struct attribute **attrs;
63 int num_attrs;
Linus Torvalds1da177e2005-04-16 15:20:36 -070064
65 unsigned char *extra; /* Extra descriptors */
66 int extralen;
67};
68
69/* host-side wrapper for one interface setting's parsed descriptors */
70struct usb_host_interface {
71 struct usb_interface_descriptor desc;
72
73 /* array of desc.bNumEndpoint endpoints associated with this
74 * interface setting. these will be in no particular order.
75 */
76 struct usb_host_endpoint *endpoint;
77
78 char *string; /* iInterface string, if present */
79 unsigned char *extra; /* Extra descriptors */
80 int extralen;
81};
82
83enum usb_interface_condition {
84 USB_INTERFACE_UNBOUND = 0,
85 USB_INTERFACE_BINDING,
86 USB_INTERFACE_BOUND,
87 USB_INTERFACE_UNBINDING,
88};
89
90/**
91 * struct usb_interface - what usb device drivers talk to
92 * @altsetting: array of interface structures, one for each alternate
93 * setting that may be selected. Each one includes a set of
94 * endpoint configurations. They will be in no particular order.
95 * @num_altsetting: number of altsettings defined.
96 * @cur_altsetting: the current altsetting.
97 * @driver: the USB driver that is bound to this interface.
98 * @minor: the minor number assigned to this interface, if this
99 * interface is bound to a driver that uses the USB major number.
100 * If this interface does not use the USB major, this field should
101 * be unused. The driver should set this value in the probe()
102 * function of the driver, after it has been assigned a minor
103 * number from the USB core by calling usb_register_dev().
104 * @condition: binding state of the interface: not bound, binding
105 * (in probe()), bound to a driver, or unbinding (in disconnect())
106 * @dev: driver model's view of this device
107 * @class_dev: driver model's class view of this device.
108 *
109 * USB device drivers attach to interfaces on a physical device. Each
110 * interface encapsulates a single high level function, such as feeding
111 * an audio stream to a speaker or reporting a change in a volume control.
112 * Many USB devices only have one interface. The protocol used to talk to
113 * an interface's endpoints can be defined in a usb "class" specification,
114 * or by a product's vendor. The (default) control endpoint is part of
115 * every interface, but is never listed among the interface's descriptors.
116 *
117 * The driver that is bound to the interface can use standard driver model
118 * calls such as dev_get_drvdata() on the dev member of this structure.
119 *
120 * Each interface may have alternate settings. The initial configuration
121 * of a device sets altsetting 0, but the device driver can change
122 * that setting using usb_set_interface(). Alternate settings are often
123 * used to control the the use of periodic endpoints, such as by having
124 * different endpoints use different amounts of reserved USB bandwidth.
125 * All standards-conformant USB devices that use isochronous endpoints
126 * will use them in non-default settings.
127 *
128 * The USB specification says that alternate setting numbers must run from
129 * 0 to one less than the total number of alternate settings. But some
130 * devices manage to mess this up, and the structures aren't necessarily
131 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
132 * look up an alternate setting in the altsetting array based on its number.
133 */
134struct usb_interface {
135 /* array of alternate settings for this interface,
136 * stored in no particular order */
137 struct usb_host_interface *altsetting;
138
139 struct usb_host_interface *cur_altsetting; /* the currently
140 * active alternate setting */
141 unsigned num_altsetting; /* number of alternate settings */
142
143 int minor; /* minor number this interface is bound to */
144 enum usb_interface_condition condition; /* state of binding */
145 struct device dev; /* interface specific device info */
146 struct class_device *class_dev;
147};
148#define to_usb_interface(d) container_of(d, struct usb_interface, dev)
149#define interface_to_usbdev(intf) \
150 container_of(intf->dev.parent, struct usb_device, dev)
151
152static inline void *usb_get_intfdata (struct usb_interface *intf)
153{
154 return dev_get_drvdata (&intf->dev);
155}
156
157static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
158{
159 dev_set_drvdata(&intf->dev, data);
160}
161
162struct usb_interface *usb_get_intf(struct usb_interface *intf);
163void usb_put_intf(struct usb_interface *intf);
164
165/* this maximum is arbitrary */
166#define USB_MAXINTERFACES 32
167
168/**
169 * struct usb_interface_cache - long-term representation of a device interface
170 * @num_altsetting: number of altsettings defined.
171 * @ref: reference counter.
172 * @altsetting: variable-length array of interface structures, one for
173 * each alternate setting that may be selected. Each one includes a
174 * set of endpoint configurations. They will be in no particular order.
175 *
176 * These structures persist for the lifetime of a usb_device, unlike
177 * struct usb_interface (which persists only as long as its configuration
178 * is installed). The altsetting arrays can be accessed through these
179 * structures at any time, permitting comparison of configurations and
180 * providing support for the /proc/bus/usb/devices pseudo-file.
181 */
182struct usb_interface_cache {
183 unsigned num_altsetting; /* number of alternate settings */
184 struct kref ref; /* reference counter */
185
186 /* variable-length array of alternate settings for this interface,
187 * stored in no particular order */
188 struct usb_host_interface altsetting[0];
189};
190#define ref_to_usb_interface_cache(r) \
191 container_of(r, struct usb_interface_cache, ref)
192#define altsetting_to_usb_interface_cache(a) \
193 container_of(a, struct usb_interface_cache, altsetting[0])
194
195/**
196 * struct usb_host_config - representation of a device's configuration
197 * @desc: the device's configuration descriptor.
198 * @string: pointer to the cached version of the iConfiguration string, if
199 * present for this configuration.
200 * @interface: array of pointers to usb_interface structures, one for each
201 * interface in the configuration. The number of interfaces is stored
202 * in desc.bNumInterfaces. These pointers are valid only while the
203 * the configuration is active.
204 * @intf_cache: array of pointers to usb_interface_cache structures, one
205 * for each interface in the configuration. These structures exist
206 * for the entire life of the device.
207 * @extra: pointer to buffer containing all extra descriptors associated
208 * with this configuration (those preceding the first interface
209 * descriptor).
210 * @extralen: length of the extra descriptors buffer.
211 *
212 * USB devices may have multiple configurations, but only one can be active
213 * at any time. Each encapsulates a different operational environment;
214 * for example, a dual-speed device would have separate configurations for
215 * full-speed and high-speed operation. The number of configurations
216 * available is stored in the device descriptor as bNumConfigurations.
217 *
218 * A configuration can contain multiple interfaces. Each corresponds to
219 * a different function of the USB device, and all are available whenever
220 * the configuration is active. The USB standard says that interfaces
221 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
222 * of devices get this wrong. In addition, the interface array is not
223 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
224 * look up an interface entry based on its number.
225 *
226 * Device drivers should not attempt to activate configurations. The choice
227 * of which configuration to install is a policy decision based on such
228 * considerations as available power, functionality provided, and the user's
229 * desires (expressed through hotplug scripts). However, drivers can call
230 * usb_reset_configuration() to reinitialize the current configuration and
231 * all its interfaces.
232 */
233struct usb_host_config {
234 struct usb_config_descriptor desc;
235
236 char *string;
237 /* the interfaces associated with this configuration,
238 * stored in no particular order */
239 struct usb_interface *interface[USB_MAXINTERFACES];
240
241 /* Interface information available even when this is not the
242 * active configuration */
243 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
244
245 unsigned char *extra; /* Extra descriptors */
246 int extralen;
247};
248
249int __usb_get_extra_descriptor(char *buffer, unsigned size,
250 unsigned char type, void **ptr);
251#define usb_get_extra_descriptor(ifpoint,type,ptr)\
252 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
253 type,(void**)ptr)
254
255/* -------------------------------------------------------------------------- */
256
257struct usb_operations;
258
259/* USB device number allocation bitmap */
260struct usb_devmap {
261 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
262};
263
264/*
265 * Allocated per bus (tree of devices) we have:
266 */
267struct usb_bus {
268 struct device *controller; /* host/master side hardware */
269 int busnum; /* Bus number (in order of reg) */
270 char *bus_name; /* stable id (PCI slot_name etc) */
271 u8 otg_port; /* 0, or number of OTG/HNP port */
272 unsigned is_b_host:1; /* true during some HNP roleswitches */
273 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
274
275 int devnum_next; /* Next open device number in round-robin allocation */
276
277 struct usb_devmap devmap; /* device address allocation map */
278 struct usb_operations *op; /* Operations (specific to the HC) */
279 struct usb_device *root_hub; /* Root hub */
280 struct list_head bus_list; /* list of busses */
281 void *hcpriv; /* Host Controller private data */
282
283 int bandwidth_allocated; /* on this bus: how much of the time
284 * reserved for periodic (intr/iso)
285 * requests is used, on average?
286 * Units: microseconds/frame.
287 * Limits: Full/low speed reserve 90%,
288 * while high speed reserves 80%.
289 */
290 int bandwidth_int_reqs; /* number of Interrupt requests */
291 int bandwidth_isoc_reqs; /* number of Isoc. requests */
292
293 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */
294
gregkh@suse.de8561b102005-03-15 15:10:13 -0800295 struct class_device *class_dev; /* class device for this bus */
296 struct kref kref; /* handles reference counting this bus */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700297 void (*release)(struct usb_bus *bus); /* function to destroy this bus's memory */
Adrian Bunk4749f322005-06-23 11:36:56 +0200298#if defined(CONFIG_USB_MON)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700299 struct mon_bus *mon_bus; /* non-null when associated */
300 int monitored; /* non-zero when monitored */
301#endif
302};
Linus Torvalds1da177e2005-04-16 15:20:36 -0700303
304/* -------------------------------------------------------------------------- */
305
306/* This is arbitrary.
307 * From USB 2.0 spec Table 11-13, offset 7, a hub can
308 * have up to 255 ports. The most yet reported is 10.
309 */
310#define USB_MAXCHILDREN (16)
311
312struct usb_tt;
313
314/*
315 * struct usb_device - kernel's representation of a USB device
316 *
317 * FIXME: Write the kerneldoc!
318 *
319 * Usbcore drivers should not set usbdev->state directly. Instead use
320 * usb_set_device_state().
321 */
322struct usb_device {
323 int devnum; /* Address on USB bus */
324 char devpath [16]; /* Use in messages: /port/port/... */
325 enum usb_device_state state; /* configured, not attached, etc */
326 enum usb_device_speed speed; /* high/full/low (or error) */
327
328 struct usb_tt *tt; /* low/full speed dev, highspeed hub */
329 int ttport; /* device port on that tt hub */
330
331 struct semaphore serialize;
332
333 unsigned int toggle[2]; /* one bit for each endpoint ([0] = IN, [1] = OUT) */
334
335 struct usb_device *parent; /* our hub, unless we're the root */
336 struct usb_bus *bus; /* Bus we're part of */
337 struct usb_host_endpoint ep0;
338
339 struct device dev; /* Generic device interface */
340
341 struct usb_device_descriptor descriptor;/* Descriptor */
342 struct usb_host_config *config; /* All of the configs */
343
344 struct usb_host_config *actconfig;/* the active configuration */
345 struct usb_host_endpoint *ep_in[16];
346 struct usb_host_endpoint *ep_out[16];
347
348 char **rawdescriptors; /* Raw descriptors for each config */
349
350 int have_langid; /* whether string_langid is valid yet */
351 int string_langid; /* language ID for strings */
352
353 char *product;
354 char *manufacturer;
355 char *serial; /* static strings from the device */
356 struct list_head filelist;
Kay Sieversfbf82fd2005-07-31 01:05:53 +0200357 struct class_device *class_dev;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700358 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */
359
360 /*
361 * Child devices - these can be either new devices
362 * (if this is a hub device), or different instances
363 * of this same device.
364 *
365 * Each instance needs its own set of data structures.
366 */
367
368 int maxchild; /* Number of ports if hub */
369 struct usb_device *children[USB_MAXCHILDREN];
370};
371#define to_usb_device(d) container_of(d, struct usb_device, dev)
372
373extern struct usb_device *usb_get_dev(struct usb_device *dev);
374extern void usb_put_dev(struct usb_device *dev);
375
376extern void usb_lock_device(struct usb_device *udev);
377extern int usb_trylock_device(struct usb_device *udev);
378extern int usb_lock_device_for_reset(struct usb_device *udev,
379 struct usb_interface *iface);
380extern void usb_unlock_device(struct usb_device *udev);
381
382/* USB port reset for device reinitialization */
383extern int usb_reset_device(struct usb_device *dev);
384
385extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
386
387/*-------------------------------------------------------------------------*/
388
389/* for drivers using iso endpoints */
390extern int usb_get_current_frame_number (struct usb_device *usb_dev);
391
392/* used these for multi-interface device registration */
393extern int usb_driver_claim_interface(struct usb_driver *driver,
394 struct usb_interface *iface, void* priv);
395
396/**
397 * usb_interface_claimed - returns true iff an interface is claimed
398 * @iface: the interface being checked
399 *
400 * Returns true (nonzero) iff the interface is claimed, else false (zero).
401 * Callers must own the driver model's usb bus readlock. So driver
402 * probe() entries don't need extra locking, but other call contexts
403 * may need to explicitly claim that lock.
404 *
405 */
406static inline int usb_interface_claimed(struct usb_interface *iface) {
407 return (iface->dev.driver != NULL);
408}
409
410extern void usb_driver_release_interface(struct usb_driver *driver,
411 struct usb_interface *iface);
412const struct usb_device_id *usb_match_id(struct usb_interface *interface,
413 const struct usb_device_id *id);
414
415extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
416 int minor);
417extern struct usb_interface *usb_ifnum_to_if(struct usb_device *dev,
418 unsigned ifnum);
419extern struct usb_host_interface *usb_altnum_to_altsetting(
420 struct usb_interface *intf, unsigned int altnum);
421
422
423/**
424 * usb_make_path - returns stable device path in the usb tree
425 * @dev: the device whose path is being constructed
426 * @buf: where to put the string
427 * @size: how big is "buf"?
428 *
429 * Returns length of the string (> 0) or negative if size was too small.
430 *
431 * This identifier is intended to be "stable", reflecting physical paths in
432 * hardware such as physical bus addresses for host controllers or ports on
433 * USB hubs. That makes it stay the same until systems are physically
434 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
435 * controllers. Adding and removing devices, including virtual root hubs
436 * in host controller driver modules, does not change these path identifers;
437 * neither does rebooting or re-enumerating. These are more useful identifiers
438 * than changeable ("unstable") ones like bus numbers or device addresses.
439 *
440 * With a partial exception for devices connected to USB 2.0 root hubs, these
441 * identifiers are also predictable. So long as the device tree isn't changed,
442 * plugging any USB device into a given hub port always gives it the same path.
443 * Because of the use of "companion" controllers, devices connected to ports on
444 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
445 * high speed, and a different one if they are full or low speed.
446 */
447static inline int usb_make_path (struct usb_device *dev, char *buf, size_t size)
448{
449 int actual;
450 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name, dev->devpath);
451 return (actual >= (int)size) ? -1 : actual;
452}
453
454/*-------------------------------------------------------------------------*/
455
456#define USB_DEVICE_ID_MATCH_DEVICE (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
457#define USB_DEVICE_ID_MATCH_DEV_RANGE (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
458#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
459#define USB_DEVICE_ID_MATCH_DEV_INFO \
460 (USB_DEVICE_ID_MATCH_DEV_CLASS | USB_DEVICE_ID_MATCH_DEV_SUBCLASS | USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
461#define USB_DEVICE_ID_MATCH_INT_INFO \
462 (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS | USB_DEVICE_ID_MATCH_INT_PROTOCOL)
463
464/**
465 * USB_DEVICE - macro used to describe a specific usb device
466 * @vend: the 16 bit USB Vendor ID
467 * @prod: the 16 bit USB Product ID
468 *
469 * This macro is used to create a struct usb_device_id that matches a
470 * specific device.
471 */
472#define USB_DEVICE(vend,prod) \
473 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), .idProduct = (prod)
474/**
475 * USB_DEVICE_VER - macro used to describe a specific usb device with a version range
476 * @vend: the 16 bit USB Vendor ID
477 * @prod: the 16 bit USB Product ID
478 * @lo: the bcdDevice_lo value
479 * @hi: the bcdDevice_hi value
480 *
481 * This macro is used to create a struct usb_device_id that matches a
482 * specific device, with a version range.
483 */
484#define USB_DEVICE_VER(vend,prod,lo,hi) \
485 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, .idVendor = (vend), .idProduct = (prod), .bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
486
487/**
488 * USB_DEVICE_INFO - macro used to describe a class of usb devices
489 * @cl: bDeviceClass value
490 * @sc: bDeviceSubClass value
491 * @pr: bDeviceProtocol value
492 *
493 * This macro is used to create a struct usb_device_id that matches a
494 * specific class of devices.
495 */
496#define USB_DEVICE_INFO(cl,sc,pr) \
497 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), .bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
498
499/**
500 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
501 * @cl: bInterfaceClass value
502 * @sc: bInterfaceSubClass value
503 * @pr: bInterfaceProtocol value
504 *
505 * This macro is used to create a struct usb_device_id that matches a
506 * specific class of interfaces.
507 */
508#define USB_INTERFACE_INFO(cl,sc,pr) \
509 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
510
511/* -------------------------------------------------------------------------- */
512
513/**
514 * struct usb_driver - identifies USB driver to usbcore
515 * @owner: Pointer to the module owner of this driver; initialize
516 * it using THIS_MODULE.
517 * @name: The driver name should be unique among USB drivers,
518 * and should normally be the same as the module name.
519 * @probe: Called to see if the driver is willing to manage a particular
520 * interface on a device. If it is, probe returns zero and uses
521 * dev_set_drvdata() to associate driver-specific data with the
522 * interface. It may also use usb_set_interface() to specify the
523 * appropriate altsetting. If unwilling to manage the interface,
524 * return a negative errno value.
525 * @disconnect: Called when the interface is no longer accessible, usually
526 * because its device has been (or is being) disconnected or the
527 * driver module is being unloaded.
528 * @ioctl: Used for drivers that want to talk to userspace through
529 * the "usbfs" filesystem. This lets devices provide ways to
530 * expose information to user space regardless of where they
531 * do (or don't) show up otherwise in the filesystem.
532 * @suspend: Called when the device is going to be suspended by the system.
533 * @resume: Called when the device is being resumed by the system.
534 * @id_table: USB drivers use ID table to support hotplugging.
535 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
536 * or your driver's probe function will never get called.
537 * @driver: the driver model core driver structure.
538 *
539 * USB drivers must provide a name, probe() and disconnect() methods,
540 * and an id_table. Other driver fields are optional.
541 *
542 * The id_table is used in hotplugging. It holds a set of descriptors,
543 * and specialized data may be associated with each entry. That table
544 * is used by both user and kernel mode hotplugging support.
545 *
546 * The probe() and disconnect() methods are called in a context where
547 * they can sleep, but they should avoid abusing the privilege. Most
548 * work to connect to a device should be done when the device is opened,
549 * and undone at the last close. The disconnect code needs to address
550 * concurrency issues with respect to open() and close() methods, as
551 * well as forcing all pending I/O requests to complete (by unlinking
552 * them as necessary, and blocking until the unlinks complete).
553 */
554struct usb_driver {
555 struct module *owner;
556
557 const char *name;
558
559 int (*probe) (struct usb_interface *intf,
560 const struct usb_device_id *id);
561
562 void (*disconnect) (struct usb_interface *intf);
563
564 int (*ioctl) (struct usb_interface *intf, unsigned int code, void *buf);
565
David Brownell27d72e82005-04-18 17:39:22 -0700566 int (*suspend) (struct usb_interface *intf, pm_message_t message);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700567 int (*resume) (struct usb_interface *intf);
568
569 const struct usb_device_id *id_table;
570
571 struct device_driver driver;
572};
573#define to_usb_driver(d) container_of(d, struct usb_driver, driver)
574
575extern struct bus_type usb_bus_type;
576
577/**
578 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
Greg Kroah-Hartmand6e5bcf2005-06-20 21:15:16 -0700579 * @name: the usb class device name for this driver. Will show up in sysfs.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700580 * @fops: pointer to the struct file_operations of this driver.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700581 * @minor_base: the start of the minor range for this driver.
582 *
583 * This structure is used for the usb_register_dev() and
584 * usb_unregister_dev() functions, to consolidate a number of the
585 * parameters used for them.
586 */
587struct usb_class_driver {
588 char *name;
589 struct file_operations *fops;
Greg Kroah-Hartmand6e5bcf2005-06-20 21:15:16 -0700590 int minor_base;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700591};
592
593/*
594 * use these in module_init()/module_exit()
595 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
596 */
597extern int usb_register(struct usb_driver *);
598extern void usb_deregister(struct usb_driver *);
599
600extern int usb_register_dev(struct usb_interface *intf,
601 struct usb_class_driver *class_driver);
602extern void usb_deregister_dev(struct usb_interface *intf,
603 struct usb_class_driver *class_driver);
604
605extern int usb_disabled(void);
606
607/* -------------------------------------------------------------------------- */
608
609/*
610 * URB support, for asynchronous request completions
611 */
612
613/*
614 * urb->transfer_flags:
615 */
616#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
617#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame ignored */
618#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
619#define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700620#define URB_NO_FSBR 0x0020 /* UHCI-specific */
621#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUTs with short packet */
622#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt needed */
623
624struct usb_iso_packet_descriptor {
625 unsigned int offset;
626 unsigned int length; /* expected length */
627 unsigned int actual_length;
628 unsigned int status;
629};
630
631struct urb;
632struct pt_regs;
633
634typedef void (*usb_complete_t)(struct urb *, struct pt_regs *);
635
636/**
637 * struct urb - USB Request Block
638 * @urb_list: For use by current owner of the URB.
639 * @pipe: Holds endpoint number, direction, type, and more.
640 * Create these values with the eight macros available;
641 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
642 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
643 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
644 * numbers range from zero to fifteen. Note that "in" endpoint two
645 * is a different endpoint (and pipe) from "out" endpoint two.
646 * The current configuration controls the existence, type, and
647 * maximum packet size of any given endpoint.
648 * @dev: Identifies the USB device to perform the request.
649 * @status: This is read in non-iso completion functions to get the
650 * status of the particular request. ISO requests only use it
651 * to tell whether the URB was unlinked; detailed status for
652 * each frame is in the fields of the iso_frame-desc.
653 * @transfer_flags: A variety of flags may be used to affect how URB
654 * submission, unlinking, or operation are handled. Different
655 * kinds of URB can use different flags.
656 * @transfer_buffer: This identifies the buffer to (or from) which
657 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
658 * is set). This buffer must be suitable for DMA; allocate it with
659 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
660 * of this buffer will be modified. This buffer is used for the data
661 * stage of control transfers.
662 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
663 * the device driver is saying that it provided this DMA address,
664 * which the host controller driver should use in preference to the
665 * transfer_buffer.
666 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
667 * be broken up into chunks according to the current maximum packet
668 * size for the endpoint, which is a function of the configuration
669 * and is encoded in the pipe. When the length is zero, neither
670 * transfer_buffer nor transfer_dma is used.
671 * @actual_length: This is read in non-iso completion functions, and
672 * it tells how many bytes (out of transfer_buffer_length) were
673 * transferred. It will normally be the same as requested, unless
674 * either an error was reported or a short read was performed.
675 * The URB_SHORT_NOT_OK transfer flag may be used to make such
676 * short reads be reported as errors.
677 * @setup_packet: Only used for control transfers, this points to eight bytes
678 * of setup data. Control transfers always start by sending this data
679 * to the device. Then transfer_buffer is read or written, if needed.
680 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
681 * device driver has provided this DMA address for the setup packet.
682 * The host controller driver should use this in preference to
683 * setup_packet.
684 * @start_frame: Returns the initial frame for isochronous transfers.
685 * @number_of_packets: Lists the number of ISO transfer buffers.
686 * @interval: Specifies the polling interval for interrupt or isochronous
687 * transfers. The units are frames (milliseconds) for for full and low
688 * speed devices, and microframes (1/8 millisecond) for highspeed ones.
689 * @error_count: Returns the number of ISO transfers that reported errors.
690 * @context: For use in completion functions. This normally points to
691 * request-specific driver context.
692 * @complete: Completion handler. This URB is passed as the parameter to the
693 * completion function. The completion function may then do what
694 * it likes with the URB, including resubmitting or freeing it.
695 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
696 * collect the transfer status for each buffer.
697 *
698 * This structure identifies USB transfer requests. URBs must be allocated by
699 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
700 * Initialization may be done using various usb_fill_*_urb() functions. URBs
701 * are submitted using usb_submit_urb(), and pending requests may be canceled
702 * using usb_unlink_urb() or usb_kill_urb().
703 *
704 * Data Transfer Buffers:
705 *
706 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
707 * taken from the general page pool. That is provided by transfer_buffer
708 * (control requests also use setup_packet), and host controller drivers
709 * perform a dma mapping (and unmapping) for each buffer transferred. Those
710 * mapping operations can be expensive on some platforms (perhaps using a dma
711 * bounce buffer or talking to an IOMMU),
712 * although they're cheap on commodity x86 and ppc hardware.
713 *
714 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
715 * which tell the host controller driver that no such mapping is needed since
716 * the device driver is DMA-aware. For example, a device driver might
717 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
718 * When these transfer flags are provided, host controller drivers will
719 * attempt to use the dma addresses found in the transfer_dma and/or
720 * setup_dma fields rather than determining a dma address themselves. (Note
721 * that transfer_buffer and setup_packet must still be set because not all
722 * host controllers use DMA, nor do virtual root hubs).
723 *
724 * Initialization:
725 *
726 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
Alan Sternb375a042005-07-29 16:11:07 -0400727 * zero), and complete fields. All URBs must also initialize
Linus Torvalds1da177e2005-04-16 15:20:36 -0700728 * transfer_buffer and transfer_buffer_length. They may provide the
729 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
730 * to be treated as errors; that flag is invalid for write requests.
731 *
732 * Bulk URBs may
733 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
734 * should always terminate with a short packet, even if it means adding an
735 * extra zero length packet.
736 *
737 * Control URBs must provide a setup_packet. The setup_packet and
738 * transfer_buffer may each be mapped for DMA or not, independently of
739 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
740 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
741 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
742 *
743 * Interrupt URBs must provide an interval, saying how often (in milliseconds
744 * or, for highspeed devices, 125 microsecond units)
745 * to poll for transfers. After the URB has been submitted, the interval
746 * field reflects how the transfer was actually scheduled.
747 * The polling interval may be more frequent than requested.
748 * For example, some controllers have a maximum interval of 32 milliseconds,
749 * while others support intervals of up to 1024 milliseconds.
750 * Isochronous URBs also have transfer intervals. (Note that for isochronous
751 * endpoints, as well as high speed interrupt endpoints, the encoding of
752 * the transfer interval in the endpoint descriptor is logarithmic.
753 * Device drivers must convert that value to linear units themselves.)
754 *
755 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
756 * the host controller to schedule the transfer as soon as bandwidth
757 * utilization allows, and then set start_frame to reflect the actual frame
758 * selected during submission. Otherwise drivers must specify the start_frame
759 * and handle the case where the transfer can't begin then. However, drivers
760 * won't know how bandwidth is currently allocated, and while they can
761 * find the current frame using usb_get_current_frame_number () they can't
762 * know the range for that frame number. (Ranges for frame counter values
763 * are HC-specific, and can go from 256 to 65536 frames from "now".)
764 *
765 * Isochronous URBs have a different data transfer model, in part because
766 * the quality of service is only "best effort". Callers provide specially
767 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
768 * at the end. Each such packet is an individual ISO transfer. Isochronous
769 * URBs are normally queued, submitted by drivers to arrange that
770 * transfers are at least double buffered, and then explicitly resubmitted
771 * in completion handlers, so
772 * that data (such as audio or video) streams at as constant a rate as the
773 * host controller scheduler can support.
774 *
775 * Completion Callbacks:
776 *
777 * The completion callback is made in_interrupt(), and one of the first
778 * things that a completion handler should do is check the status field.
779 * The status field is provided for all URBs. It is used to report
780 * unlinked URBs, and status for all non-ISO transfers. It should not
781 * be examined before the URB is returned to the completion handler.
782 *
783 * The context field is normally used to link URBs back to the relevant
784 * driver or request state.
785 *
786 * When the completion callback is invoked for non-isochronous URBs, the
787 * actual_length field tells how many bytes were transferred. This field
788 * is updated even when the URB terminated with an error or was unlinked.
789 *
790 * ISO transfer status is reported in the status and actual_length fields
791 * of the iso_frame_desc array, and the number of errors is reported in
792 * error_count. Completion callbacks for ISO transfers will normally
793 * (re)submit URBs to ensure a constant transfer rate.
Roman Kagan719df462005-05-06 00:55:56 +0400794 *
795 * Note that even fields marked "public" should not be touched by the driver
796 * when the urb is owned by the hcd, that is, since the call to
797 * usb_submit_urb() till the entry into the completion routine.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700798 */
799struct urb
800{
801 /* private, usb core and host controller only fields in the urb */
802 struct kref kref; /* reference count of the URB */
803 spinlock_t lock; /* lock for the URB */
804 void *hcpriv; /* private data for host controller */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700805 int bandwidth; /* bandwidth for INT/ISO request */
806 atomic_t use_count; /* concurrent submissions counter */
807 u8 reject; /* submissions will fail */
808
809 /* public, documented fields in the urb that can be used by drivers */
Roman Kagan719df462005-05-06 00:55:56 +0400810 struct list_head urb_list; /* list head for use by the urb owner */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700811 struct usb_device *dev; /* (in) pointer to associated device */
812 unsigned int pipe; /* (in) pipe information */
813 int status; /* (return) non-ISO status */
814 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
815 void *transfer_buffer; /* (in) associated data buffer */
816 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
817 int transfer_buffer_length; /* (in) data buffer length */
818 int actual_length; /* (return) actual transfer length */
819 unsigned char *setup_packet; /* (in) setup packet (control only) */
820 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
821 int start_frame; /* (modify) start frame (ISO) */
822 int number_of_packets; /* (in) number of ISO packets */
823 int interval; /* (modify) transfer interval (INT/ISO) */
824 int error_count; /* (return) number of ISO errors */
825 void *context; /* (in) context for completion */
826 usb_complete_t complete; /* (in) completion routine */
827 struct usb_iso_packet_descriptor iso_frame_desc[0]; /* (in) ISO ONLY */
828};
829
830/* -------------------------------------------------------------------------- */
831
832/**
833 * usb_fill_control_urb - initializes a control urb
834 * @urb: pointer to the urb to initialize.
835 * @dev: pointer to the struct usb_device for this urb.
836 * @pipe: the endpoint pipe
837 * @setup_packet: pointer to the setup_packet buffer
838 * @transfer_buffer: pointer to the transfer buffer
839 * @buffer_length: length of the transfer buffer
840 * @complete: pointer to the usb_complete_t function
841 * @context: what to set the urb context to.
842 *
843 * Initializes a control urb with the proper information needed to submit
844 * it to a device.
845 */
846static inline void usb_fill_control_urb (struct urb *urb,
847 struct usb_device *dev,
848 unsigned int pipe,
849 unsigned char *setup_packet,
850 void *transfer_buffer,
851 int buffer_length,
852 usb_complete_t complete,
853 void *context)
854{
855 spin_lock_init(&urb->lock);
856 urb->dev = dev;
857 urb->pipe = pipe;
858 urb->setup_packet = setup_packet;
859 urb->transfer_buffer = transfer_buffer;
860 urb->transfer_buffer_length = buffer_length;
861 urb->complete = complete;
862 urb->context = context;
863}
864
865/**
866 * usb_fill_bulk_urb - macro to help initialize a bulk urb
867 * @urb: pointer to the urb to initialize.
868 * @dev: pointer to the struct usb_device for this urb.
869 * @pipe: the endpoint pipe
870 * @transfer_buffer: pointer to the transfer buffer
871 * @buffer_length: length of the transfer buffer
872 * @complete: pointer to the usb_complete_t function
873 * @context: what to set the urb context to.
874 *
875 * Initializes a bulk urb with the proper information needed to submit it
876 * to a device.
877 */
878static inline void usb_fill_bulk_urb (struct urb *urb,
879 struct usb_device *dev,
880 unsigned int pipe,
881 void *transfer_buffer,
882 int buffer_length,
883 usb_complete_t complete,
884 void *context)
885{
886 spin_lock_init(&urb->lock);
887 urb->dev = dev;
888 urb->pipe = pipe;
889 urb->transfer_buffer = transfer_buffer;
890 urb->transfer_buffer_length = buffer_length;
891 urb->complete = complete;
892 urb->context = context;
893}
894
895/**
896 * usb_fill_int_urb - macro to help initialize a interrupt urb
897 * @urb: pointer to the urb to initialize.
898 * @dev: pointer to the struct usb_device for this urb.
899 * @pipe: the endpoint pipe
900 * @transfer_buffer: pointer to the transfer buffer
901 * @buffer_length: length of the transfer buffer
902 * @complete: pointer to the usb_complete_t function
903 * @context: what to set the urb context to.
904 * @interval: what to set the urb interval to, encoded like
905 * the endpoint descriptor's bInterval value.
906 *
907 * Initializes a interrupt urb with the proper information needed to submit
908 * it to a device.
909 * Note that high speed interrupt endpoints use a logarithmic encoding of
910 * the endpoint interval, and express polling intervals in microframes
911 * (eight per millisecond) rather than in frames (one per millisecond).
912 */
913static inline void usb_fill_int_urb (struct urb *urb,
914 struct usb_device *dev,
915 unsigned int pipe,
916 void *transfer_buffer,
917 int buffer_length,
918 usb_complete_t complete,
919 void *context,
920 int interval)
921{
922 spin_lock_init(&urb->lock);
923 urb->dev = dev;
924 urb->pipe = pipe;
925 urb->transfer_buffer = transfer_buffer;
926 urb->transfer_buffer_length = buffer_length;
927 urb->complete = complete;
928 urb->context = context;
929 if (dev->speed == USB_SPEED_HIGH)
930 urb->interval = 1 << (interval - 1);
931 else
932 urb->interval = interval;
933 urb->start_frame = -1;
934}
935
936extern void usb_init_urb(struct urb *urb);
Al Viro55016f12005-10-21 03:21:58 -0400937extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700938extern void usb_free_urb(struct urb *urb);
939#define usb_put_urb usb_free_urb
940extern struct urb *usb_get_urb(struct urb *urb);
Al Viro55016f12005-10-21 03:21:58 -0400941extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700942extern int usb_unlink_urb(struct urb *urb);
943extern void usb_kill_urb(struct urb *urb);
944
945#define HAVE_USB_BUFFERS
946void *usb_buffer_alloc (struct usb_device *dev, size_t size,
Al Viro55016f12005-10-21 03:21:58 -0400947 gfp_t mem_flags, dma_addr_t *dma);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700948void usb_buffer_free (struct usb_device *dev, size_t size,
949 void *addr, dma_addr_t dma);
950
951#if 0
952struct urb *usb_buffer_map (struct urb *urb);
953void usb_buffer_dmasync (struct urb *urb);
954void usb_buffer_unmap (struct urb *urb);
955#endif
956
957struct scatterlist;
958int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
959 struct scatterlist *sg, int nents);
960#if 0
961void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
962 struct scatterlist *sg, int n_hw_ents);
963#endif
964void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
965 struct scatterlist *sg, int n_hw_ents);
966
967/*-------------------------------------------------------------------*
968 * SYNCHRONOUS CALL SUPPORT *
969 *-------------------------------------------------------------------*/
970
971extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
972 __u8 request, __u8 requesttype, __u16 value, __u16 index,
973 void *data, __u16 size, int timeout);
974extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
975 void *data, int len, int *actual_length,
976 int timeout);
977
Linus Torvalds1da177e2005-04-16 15:20:36 -0700978/* wrappers around usb_control_msg() for the most common standard requests */
979extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
980 unsigned char descindex, void *buf, int size);
981extern int usb_get_status(struct usb_device *dev,
982 int type, int target, void *data);
983extern int usb_get_string(struct usb_device *dev,
984 unsigned short langid, unsigned char index, void *buf, int size);
985extern int usb_string(struct usb_device *dev, int index,
986 char *buf, size_t size);
987
988/* wrappers that also update important state inside usbcore */
989extern int usb_clear_halt(struct usb_device *dev, int pipe);
990extern int usb_reset_configuration(struct usb_device *dev);
991extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
992
993/*
994 * timeouts, in milliseconds, used for sending/receiving control messages
995 * they typically complete within a few frames (msec) after they're issued
996 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
997 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
998 */
999#define USB_CTRL_GET_TIMEOUT 5000
1000#define USB_CTRL_SET_TIMEOUT 5000
1001
1002
1003/**
1004 * struct usb_sg_request - support for scatter/gather I/O
1005 * @status: zero indicates success, else negative errno
1006 * @bytes: counts bytes transferred.
1007 *
1008 * These requests are initialized using usb_sg_init(), and then are used
1009 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1010 * members of the request object aren't for driver access.
1011 *
1012 * The status and bytecount values are valid only after usb_sg_wait()
1013 * returns. If the status is zero, then the bytecount matches the total
1014 * from the request.
1015 *
1016 * After an error completion, drivers may need to clear a halt condition
1017 * on the endpoint.
1018 */
1019struct usb_sg_request {
1020 int status;
1021 size_t bytes;
1022
1023 /*
1024 * members below are private to usbcore,
1025 * and are not provided for driver access!
1026 */
1027 spinlock_t lock;
1028
1029 struct usb_device *dev;
1030 int pipe;
1031 struct scatterlist *sg;
1032 int nents;
1033
1034 int entries;
1035 struct urb **urbs;
1036
1037 int count;
1038 struct completion complete;
1039};
1040
1041int usb_sg_init (
1042 struct usb_sg_request *io,
1043 struct usb_device *dev,
1044 unsigned pipe,
1045 unsigned period,
1046 struct scatterlist *sg,
1047 int nents,
1048 size_t length,
Al Viro55016f12005-10-21 03:21:58 -04001049 gfp_t mem_flags
Linus Torvalds1da177e2005-04-16 15:20:36 -07001050);
1051void usb_sg_cancel (struct usb_sg_request *io);
1052void usb_sg_wait (struct usb_sg_request *io);
1053
1054
1055/* -------------------------------------------------------------------------- */
1056
1057/*
1058 * For various legacy reasons, Linux has a small cookie that's paired with
1059 * a struct usb_device to identify an endpoint queue. Queue characteristics
1060 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1061 * an unsigned int encoded as:
1062 *
1063 * - direction: bit 7 (0 = Host-to-Device [Out],
1064 * 1 = Device-to-Host [In] ...
1065 * like endpoint bEndpointAddress)
1066 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1067 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1068 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1069 * 10 = control, 11 = bulk)
1070 *
1071 * Given the device address and endpoint descriptor, pipes are redundant.
1072 */
1073
1074/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1075/* (yet ... they're the values used by usbfs) */
1076#define PIPE_ISOCHRONOUS 0
1077#define PIPE_INTERRUPT 1
1078#define PIPE_CONTROL 2
1079#define PIPE_BULK 3
1080
1081#define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1082#define usb_pipeout(pipe) (!usb_pipein(pipe))
1083
1084#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1085#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1086
1087#define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1088#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1089#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1090#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1091#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1092
1093/* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1094#define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1095#define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep)))
1096#define usb_settoggle(dev, ep, out, bit) ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | ((bit) << (ep)))
1097
1098
1099static inline unsigned int __create_pipe(struct usb_device *dev, unsigned int endpoint)
1100{
1101 return (dev->devnum << 8) | (endpoint << 15);
1102}
1103
1104/* Create various pipes... */
1105#define usb_sndctrlpipe(dev,endpoint) ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
1106#define usb_rcvctrlpipe(dev,endpoint) ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1107#define usb_sndisocpipe(dev,endpoint) ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
1108#define usb_rcvisocpipe(dev,endpoint) ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1109#define usb_sndbulkpipe(dev,endpoint) ((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
1110#define usb_rcvbulkpipe(dev,endpoint) ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1111#define usb_sndintpipe(dev,endpoint) ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
1112#define usb_rcvintpipe(dev,endpoint) ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1113
1114/*-------------------------------------------------------------------------*/
1115
1116static inline __u16
1117usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1118{
1119 struct usb_host_endpoint *ep;
1120 unsigned epnum = usb_pipeendpoint(pipe);
1121
1122 if (is_out) {
1123 WARN_ON(usb_pipein(pipe));
1124 ep = udev->ep_out[epnum];
1125 } else {
1126 WARN_ON(usb_pipeout(pipe));
1127 ep = udev->ep_in[epnum];
1128 }
1129 if (!ep)
1130 return 0;
1131
1132 /* NOTE: only 0x07ff bits are for packet size... */
1133 return le16_to_cpu(ep->desc.wMaxPacketSize);
1134}
1135
1136/* -------------------------------------------------------------------------- */
1137
1138#ifdef DEBUG
1139#define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , __FILE__ , ## arg)
1140#else
1141#define dbg(format, arg...) do {} while (0)
1142#endif
1143
1144#define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , __FILE__ , ## arg)
1145#define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , __FILE__ , ## arg)
1146#define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , __FILE__ , ## arg)
1147
1148
1149#endif /* __KERNEL__ */
1150
1151#endif