block: trace completion of all bios.

Currently only dm and md/raid5 bios trigger
trace_block_bio_complete().  Now that we have bio_chain() and
bio_inc_remaining(), it is not possible, in general, for a driver to
know when the bio is really complete.  Only bio_endio() knows that.

So move the trace_block_bio_complete() call to bio_endio().

Now trace_block_bio_complete() pairs with trace_block_bio_queue().
Any bio for which a 'queue' event is traced, will subsequently
generate a 'complete' event.

There are a few cases where completion tracing is not wanted.
1/ If blk_update_request() has already generated a completion
   trace event at the 'request' level, there is no point generating
   one at the bio level too.  In this case the bi_sector and bi_size
   will have changed, so the bio level event would be wrong

2/ If the bio hasn't actually been queued yet, but is being aborted
   early, then a trace event could be confusing.  Some filesystems
   call bio_endio() but do not want tracing.

3/ The bio_integrity code interposes itself by replacing bi_end_io,
   then restoring it and calling bio_endio() again.  This would produce
   two identical trace events if left like that.

To handle these, we introduce a flag BIO_TRACE_COMPLETION and only
produce the trace event when this is set.
We address point 1 above by clearing the flag in blk_update_request().
We address point 2 above by only setting the flag when
generic_make_request() is called.
We address point 3 above by clearing the flag after generating a
completion event.

When bio_split() is used on a bio, particularly in blk_queue_split(),
there is an extra complication.  A new bio is split off the front, and
may be handle directly without going through generic_make_request().
The old bio, which has been advanced, is passed to
generic_make_request(), so it will trigger a trace event a second
time.
Probably the best result when a split happens is to see a single
'queue' event for the whole bio, then multiple 'complete' events - one
for each component.  To achieve this was can:
- copy the BIO_TRACE_COMPLETION flag to the new bio in bio_split()
- avoid generating a 'queue' event if BIO_TRACE_COMPLETION is already set.
This way, the split-off bio won't create a queue event, the original
won't either even if it re-submitted to generic_make_request(),
but both will produce completion events, each for their own range.

So if generic_make_request() is called (which generates a QUEUED
event), then bi_endio() will create a single COMPLETE event for each
range that the bio is split into, unless the driver has explicitly
requested it not to.

Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
diff --git a/block/blk-core.c b/block/blk-core.c
index 316a539..8654aa0c 100644
--- a/block/blk-core.c
+++ b/block/blk-core.c
@@ -1957,7 +1957,13 @@ generic_make_request_checks(struct bio *bio)
 	if (!blkcg_bio_issue_check(q, bio))
 		return false;
 
-	trace_block_bio_queue(q, bio);
+	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
+		trace_block_bio_queue(q, bio);
+		/* Now that enqueuing has been traced, we need to trace
+		 * completion as well.
+		 */
+		bio_set_flag(bio, BIO_TRACE_COMPLETION);
+	}
 	return true;
 
 not_supported:
@@ -2622,6 +2628,8 @@ bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
 		if (bio_bytes == bio->bi_iter.bi_size)
 			req->bio = bio->bi_next;
 
+		/* Completion has already been traced */
+		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
 		req_bio_endio(req, bio, bio_bytes, error);
 
 		total_bytes += bio_bytes;