xfs: use sync buffer I/O for sync delwri queue submission

If a delwri queue occurs of a buffer that sits on a delwri queue
wait list, the queue sets _XBF_DELWRI_Q without changing the state
of ->b_list. This occurs, for example, if another thread beats the
current delwri waiter thread to the buffer lock after I/O
completion. Once the waiter acquires the lock, it removes the buffer
from the wait list and leaves a buffer with _XBF_DELWRI_Q set but
not populated on a list. This results in a lost buffer submission
and in turn can result in assert failures due to _XBF_DELWRI_Q being
set on buffer reclaim or filesystem lockups if the buffer happens to
cover an item in the AIL.

This problem has been reproduced by repeated iterations of xfs/305
on high CPU count (28xcpu) systems with limited memory (~1GB). Dirty
dquot reclaim races with an xfsaild push of a separate dquot backed
by the same buffer such that the buffer sits on the reclaim wait
list at the time xfsaild attempts to queue it. Since the latter
dquot has been flush locked but the underlying buffer not submitted
for I/O, the dquot pins the AIL and causes the filesystem to
livelock.

This race is essentially made possible by the buffer lock cycle
involved with waiting on a synchronous delwri queue submission.
Close the race by using synchronous buffer I/O for respective delwri
queue submission. This means the buffer remains locked across the
I/O and so is inaccessible from other contexts while in the
intermediate wait list state. The sync buffer I/O wait mechanism is
factored into a helper such that sync delwri buffer submission and
serialization are batched operations.

Designed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
1 file changed