Merge branch 'linus' into sched/core

Reason: Bring bakc upstream modification to resolve conflicts

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
diff --git a/Documentation/sysctl/kernel.txt b/Documentation/sysctl/kernel.txt
index e55124e..04bf16a 100644
--- a/Documentation/sysctl/kernel.txt
+++ b/Documentation/sysctl/kernel.txt
@@ -441,8 +441,7 @@
 feature is too high then the rate the kernel samples for NUMA hinting
 faults may be controlled by the numa_balancing_scan_period_min_ms,
 numa_balancing_scan_delay_ms, numa_balancing_scan_period_max_ms,
-numa_balancing_scan_size_mb, numa_balancing_settle_count sysctls and
-numa_balancing_migrate_deferred.
+numa_balancing_scan_size_mb, and numa_balancing_settle_count sysctls.
 
 ==============================================================
 
@@ -483,13 +482,6 @@
 numa_balancing_scan_size_mb is how many megabytes worth of pages are
 scanned for a given scan.
 
-numa_balancing_migrate_deferred is how many page migrations get skipped
-unconditionally, after a page migration is skipped because a page is shared
-with other tasks. This reduces page migration overhead, and determines
-how much stronger the "move task near its memory" policy scheduler becomes,
-versus the "move memory near its task" memory management policy, for workloads
-with shared memory.
-
 ==============================================================
 
 osrelease, ostype & version:
diff --git a/arch/arm/kernel/process.c b/arch/arm/kernel/process.c
index 92f7b15..adabeab 100644
--- a/arch/arm/kernel/process.c
+++ b/arch/arm/kernel/process.c
@@ -30,7 +30,6 @@
 #include <linux/uaccess.h>
 #include <linux/random.h>
 #include <linux/hw_breakpoint.h>
-#include <linux/cpuidle.h>
 #include <linux/leds.h>
 #include <linux/reboot.h>
 
@@ -133,7 +132,11 @@
 
 void (*arm_pm_idle)(void);
 
-static void default_idle(void)
+/*
+ * Called from the core idle loop.
+ */
+
+void arch_cpu_idle(void)
 {
 	if (arm_pm_idle)
 		arm_pm_idle();
@@ -168,15 +171,6 @@
 #endif
 
 /*
- * Called from the core idle loop.
- */
-void arch_cpu_idle(void)
-{
-	if (cpuidle_idle_call())
-		default_idle();
-}
-
-/*
  * Called by kexec, immediately prior to machine_kexec().
  *
  * This must completely disable all secondary CPUs; simply causing those CPUs
diff --git a/arch/powerpc/platforms/cell/spufs/sched.c b/arch/powerpc/platforms/cell/spufs/sched.c
index 4931838..4a0a64f 100644
--- a/arch/powerpc/platforms/cell/spufs/sched.c
+++ b/arch/powerpc/platforms/cell/spufs/sched.c
@@ -83,7 +83,6 @@
 #define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
 #define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
 
-#define MAX_USER_PRIO		(MAX_PRIO - MAX_RT_PRIO)
 #define SCALE_PRIO(x, prio) \
 	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
 
diff --git a/arch/powerpc/platforms/pseries/setup.c b/arch/powerpc/platforms/pseries/setup.c
index 972df0ff..2db8cc6 100644
--- a/arch/powerpc/platforms/pseries/setup.c
+++ b/arch/powerpc/platforms/pseries/setup.c
@@ -39,7 +39,6 @@
 #include <linux/irq.h>
 #include <linux/seq_file.h>
 #include <linux/root_dev.h>
-#include <linux/cpuidle.h>
 #include <linux/of.h>
 #include <linux/kexec.h>
 
@@ -356,29 +355,24 @@
 
 static void pseries_lpar_idle(void)
 {
-	/* This would call on the cpuidle framework, and the back-end pseries
-	 * driver to  go to idle states
+	/*
+	 * Default handler to go into low thread priority and possibly
+	 * low power mode by cedeing processor to hypervisor
 	 */
-	if (cpuidle_idle_call()) {
-		/* On error, execute default handler
-		 * to go into low thread priority and possibly
-		 * low power mode by cedeing processor to hypervisor
-		 */
 
-		/* Indicate to hypervisor that we are idle. */
-		get_lppaca()->idle = 1;
+	/* Indicate to hypervisor that we are idle. */
+	get_lppaca()->idle = 1;
 
-		/*
-		 * Yield the processor to the hypervisor.  We return if
-		 * an external interrupt occurs (which are driven prior
-		 * to returning here) or if a prod occurs from another
-		 * processor. When returning here, external interrupts
-		 * are enabled.
-		 */
-		cede_processor();
+	/*
+	 * Yield the processor to the hypervisor.  We return if
+	 * an external interrupt occurs (which are driven prior
+	 * to returning here) or if a prod occurs from another
+	 * processor. When returning here, external interrupts
+	 * are enabled.
+	 */
+	cede_processor();
 
-		get_lppaca()->idle = 0;
-	}
+	get_lppaca()->idle = 0;
 }
 
 /*
diff --git a/arch/sh/kernel/idle.c b/arch/sh/kernel/idle.c
index 2ea4483..be616ee 100644
--- a/arch/sh/kernel/idle.c
+++ b/arch/sh/kernel/idle.c
@@ -16,7 +16,6 @@
 #include <linux/thread_info.h>
 #include <linux/irqflags.h>
 #include <linux/smp.h>
-#include <linux/cpuidle.h>
 #include <linux/atomic.h>
 #include <asm/pgalloc.h>
 #include <asm/smp.h>
@@ -40,8 +39,7 @@
 
 void arch_cpu_idle(void)
 {
-	if (cpuidle_idle_call())
-		sh_idle();
+	sh_idle();
 }
 
 void __init select_idle_routine(void)
diff --git a/arch/x86/kernel/process.c b/arch/x86/kernel/process.c
index 3fb8d95..4505e2a 100644
--- a/arch/x86/kernel/process.c
+++ b/arch/x86/kernel/process.c
@@ -298,10 +298,7 @@
  */
 void arch_cpu_idle(void)
 {
-	if (cpuidle_idle_call())
-		x86_idle();
-	else
-		local_irq_enable();
+	x86_idle();
 }
 
 /*
diff --git a/drivers/cpuidle/cpuidle-pseries.c b/drivers/cpuidle/cpuidle-pseries.c
index 7ab564a..6f7b019 100644
--- a/drivers/cpuidle/cpuidle-pseries.c
+++ b/drivers/cpuidle/cpuidle-pseries.c
@@ -17,6 +17,7 @@
 #include <asm/reg.h>
 #include <asm/machdep.h>
 #include <asm/firmware.h>
+#include <asm/runlatch.h>
 #include <asm/plpar_wrappers.h>
 
 struct cpuidle_driver pseries_idle_driver = {
@@ -29,6 +30,7 @@
 
 static inline void idle_loop_prolog(unsigned long *in_purr)
 {
+	ppc64_runlatch_off();
 	*in_purr = mfspr(SPRN_PURR);
 	/*
 	 * Indicate to the HV that we are idle. Now would be
@@ -45,6 +47,10 @@
 	wait_cycles += mfspr(SPRN_PURR) - in_purr;
 	get_lppaca()->wait_state_cycles = cpu_to_be64(wait_cycles);
 	get_lppaca()->idle = 0;
+
+	if (irqs_disabled())
+		local_irq_enable();
+	ppc64_runlatch_on();
 }
 
 static int snooze_loop(struct cpuidle_device *dev,
diff --git a/include/linux/sched.h b/include/linux/sched.h
index a781dec..c49a258 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -3,6 +3,8 @@
 
 #include <uapi/linux/sched.h>
 
+#include <linux/sched/prio.h>
+
 
 struct sched_param {
 	int sched_priority;
@@ -1077,6 +1079,7 @@
 #endif
 
 #ifdef CONFIG_FAIR_GROUP_SCHED
+	int			depth;
 	struct sched_entity	*parent;
 	/* rq on which this entity is (to be) queued: */
 	struct cfs_rq		*cfs_rq;
@@ -1470,9 +1473,10 @@
 	unsigned int numa_scan_period;
 	unsigned int numa_scan_period_max;
 	int numa_preferred_nid;
-	int numa_migrate_deferred;
 	unsigned long numa_migrate_retry;
 	u64 node_stamp;			/* migration stamp  */
+	u64 last_task_numa_placement;
+	u64 last_sum_exec_runtime;
 	struct callback_head numa_work;
 
 	struct list_head numa_entry;
@@ -1483,15 +1487,22 @@
 	 * Scheduling placement decisions are made based on the these counts.
 	 * The values remain static for the duration of a PTE scan
 	 */
-	unsigned long *numa_faults;
+	unsigned long *numa_faults_memory;
 	unsigned long total_numa_faults;
 
 	/*
 	 * numa_faults_buffer records faults per node during the current
-	 * scan window. When the scan completes, the counts in numa_faults
-	 * decay and these values are copied.
+	 * scan window. When the scan completes, the counts in
+	 * numa_faults_memory decay and these values are copied.
 	 */
-	unsigned long *numa_faults_buffer;
+	unsigned long *numa_faults_buffer_memory;
+
+	/*
+	 * Track the nodes the process was running on when a NUMA hinting
+	 * fault was incurred.
+	 */
+	unsigned long *numa_faults_cpu;
+	unsigned long *numa_faults_buffer_cpu;
 
 	/*
 	 * numa_faults_locality tracks if faults recorded during the last
@@ -1596,8 +1607,8 @@
 extern pid_t task_numa_group_id(struct task_struct *p);
 extern void set_numabalancing_state(bool enabled);
 extern void task_numa_free(struct task_struct *p);
-
-extern unsigned int sysctl_numa_balancing_migrate_deferred;
+extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
+					int src_nid, int dst_cpu);
 #else
 static inline void task_numa_fault(int last_node, int node, int pages,
 				   int flags)
@@ -1613,6 +1624,11 @@
 static inline void task_numa_free(struct task_struct *p)
 {
 }
+static inline bool should_numa_migrate_memory(struct task_struct *p,
+				struct page *page, int src_nid, int dst_cpu)
+{
+	return true;
+}
 #endif
 
 static inline struct pid *task_pid(struct task_struct *task)
@@ -2080,7 +2096,16 @@
 extern bool yield_to(struct task_struct *p, bool preempt);
 extern void set_user_nice(struct task_struct *p, long nice);
 extern int task_prio(const struct task_struct *p);
-extern int task_nice(const struct task_struct *p);
+/**
+ * task_nice - return the nice value of a given task.
+ * @p: the task in question.
+ *
+ * Return: The nice value [ -20 ... 0 ... 19 ].
+ */
+static inline int task_nice(const struct task_struct *p)
+{
+	return PRIO_TO_NICE((p)->static_prio);
+}
 extern int can_nice(const struct task_struct *p, const int nice);
 extern int task_curr(const struct task_struct *p);
 extern int idle_cpu(int cpu);
diff --git a/include/linux/sched/prio.h b/include/linux/sched/prio.h
new file mode 100644
index 0000000..410ccb7
--- /dev/null
+++ b/include/linux/sched/prio.h
@@ -0,0 +1,40 @@
+#ifndef _SCHED_PRIO_H
+#define _SCHED_PRIO_H
+
+/*
+ * Priority of a process goes from 0..MAX_PRIO-1, valid RT
+ * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
+ * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
+ * values are inverted: lower p->prio value means higher priority.
+ *
+ * The MAX_USER_RT_PRIO value allows the actual maximum
+ * RT priority to be separate from the value exported to
+ * user-space.  This allows kernel threads to set their
+ * priority to a value higher than any user task. Note:
+ * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
+ */
+
+#define MAX_USER_RT_PRIO	100
+#define MAX_RT_PRIO		MAX_USER_RT_PRIO
+
+#define MAX_PRIO		(MAX_RT_PRIO + 40)
+#define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
+
+/*
+ * Convert user-nice values [ -20 ... 0 ... 19 ]
+ * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
+ * and back.
+ */
+#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
+#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
+
+/*
+ * 'User priority' is the nice value converted to something we
+ * can work with better when scaling various scheduler parameters,
+ * it's a [ 0 ... 39 ] range.
+ */
+#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
+#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
+#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))
+
+#endif /* _SCHED_PRIO_H */
diff --git a/include/linux/sched/rt.h b/include/linux/sched/rt.h
index 34e4ebea..f7453d4 100644
--- a/include/linux/sched/rt.h
+++ b/include/linux/sched/rt.h
@@ -1,24 +1,7 @@
 #ifndef _SCHED_RT_H
 #define _SCHED_RT_H
 
-/*
- * Priority of a process goes from 0..MAX_PRIO-1, valid RT
- * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
- * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
- * values are inverted: lower p->prio value means higher priority.
- *
- * The MAX_USER_RT_PRIO value allows the actual maximum
- * RT priority to be separate from the value exported to
- * user-space.  This allows kernel threads to set their
- * priority to a value higher than any user task. Note:
- * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
- */
-
-#define MAX_USER_RT_PRIO	100
-#define MAX_RT_PRIO		MAX_USER_RT_PRIO
-
-#define MAX_PRIO		(MAX_RT_PRIO + 40)
-#define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
+#include <linux/sched/prio.h>
 
 static inline int rt_prio(int prio)
 {
diff --git a/kernel/Makefile b/kernel/Makefile
index bc010ee..6f1c7e5 100644
--- a/kernel/Makefile
+++ b/kernel/Makefile
@@ -22,7 +22,6 @@
 obj-y += locking/
 obj-y += power/
 obj-y += printk/
-obj-y += cpu/
 obj-y += irq/
 obj-y += rcu/
 
diff --git a/kernel/cpu/Makefile b/kernel/cpu/Makefile
deleted file mode 100644
index 59ab052..0000000
--- a/kernel/cpu/Makefile
+++ /dev/null
@@ -1 +0,0 @@
-obj-y	= idle.o
diff --git a/kernel/cpu/idle.c b/kernel/cpu/idle.c
index 277f494..b7976a1 100644
--- a/kernel/cpu/idle.c
+++ b/kernel/cpu/idle.c
@@ -3,6 +3,7 @@
  */
 #include <linux/sched.h>
 #include <linux/cpu.h>
+#include <linux/cpuidle.h>
 #include <linux/tick.h>
 #include <linux/mm.h>
 #include <linux/stackprotector.h>
@@ -95,8 +96,10 @@
 				if (!current_clr_polling_and_test()) {
 					stop_critical_timings();
 					rcu_idle_enter();
-					arch_cpu_idle();
-					WARN_ON_ONCE(irqs_disabled());
+					if (cpuidle_idle_call())
+						arch_cpu_idle();
+					if (WARN_ON_ONCE(irqs_disabled()))
+						local_irq_enable();
 					rcu_idle_exit();
 					start_critical_timings();
 				} else {
diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile
index 9a95c8c..ab32b7b 100644
--- a/kernel/sched/Makefile
+++ b/kernel/sched/Makefile
@@ -13,7 +13,7 @@
 
 obj-y += core.o proc.o clock.o cputime.o
 obj-y += idle_task.o fair.o rt.o deadline.o stop_task.o
-obj-y += wait.o completion.o
+obj-y += wait.o completion.o idle.o
 obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o
 obj-$(CONFIG_SCHED_AUTOGROUP) += auto_group.o
 obj-$(CONFIG_SCHEDSTATS) += stats.o
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index b46131e..fb9764f 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -1745,8 +1745,10 @@
 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
 	p->numa_work.next = &p->numa_work;
-	p->numa_faults = NULL;
-	p->numa_faults_buffer = NULL;
+	p->numa_faults_memory = NULL;
+	p->numa_faults_buffer_memory = NULL;
+	p->last_task_numa_placement = 0;
+	p->last_sum_exec_runtime = 0;
 
 	INIT_LIST_HEAD(&p->numa_entry);
 	p->numa_group = NULL;
@@ -2167,13 +2169,6 @@
 
 #ifdef CONFIG_SMP
 
-/* assumes rq->lock is held */
-static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
-{
-	if (prev->sched_class->pre_schedule)
-		prev->sched_class->pre_schedule(rq, prev);
-}
-
 /* rq->lock is NOT held, but preemption is disabled */
 static inline void post_schedule(struct rq *rq)
 {
@@ -2191,10 +2186,6 @@
 
 #else
 
-static inline void pre_schedule(struct rq *rq, struct task_struct *p)
-{
-}
-
 static inline void post_schedule(struct rq *rq)
 {
 }
@@ -2577,18 +2568,11 @@
 	schedstat_inc(this_rq(), sched_count);
 }
 
-static void put_prev_task(struct rq *rq, struct task_struct *prev)
-{
-	if (prev->on_rq || rq->skip_clock_update < 0)
-		update_rq_clock(rq);
-	prev->sched_class->put_prev_task(rq, prev);
-}
-
 /*
  * Pick up the highest-prio task:
  */
 static inline struct task_struct *
-pick_next_task(struct rq *rq)
+pick_next_task(struct rq *rq, struct task_struct *prev)
 {
 	const struct sched_class *class;
 	struct task_struct *p;
@@ -2597,14 +2581,15 @@
 	 * Optimization: we know that if all tasks are in
 	 * the fair class we can call that function directly:
 	 */
-	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
-		p = fair_sched_class.pick_next_task(rq);
+	if (likely(prev->sched_class == &fair_sched_class &&
+		   rq->nr_running == rq->cfs.h_nr_running)) {
+		p = fair_sched_class.pick_next_task(rq, prev);
 		if (likely(p))
 			return p;
 	}
 
 	for_each_class(class) {
-		p = class->pick_next_task(rq);
+		p = class->pick_next_task(rq, prev);
 		if (p)
 			return p;
 	}
@@ -2700,13 +2685,10 @@
 		switch_count = &prev->nvcsw;
 	}
 
-	pre_schedule(rq, prev);
+	if (prev->on_rq || rq->skip_clock_update < 0)
+		update_rq_clock(rq);
 
-	if (unlikely(!rq->nr_running))
-		idle_balance(cpu, rq);
-
-	put_prev_task(rq, prev);
-	next = pick_next_task(rq);
+	next = pick_next_task(rq, prev);
 	clear_tsk_need_resched(prev);
 	clear_preempt_need_resched();
 	rq->skip_clock_update = 0;
@@ -2998,7 +2980,7 @@
 	unsigned long flags;
 	struct rq *rq;
 
-	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
+	if (task_nice(p) == nice || nice < -20 || nice > 19)
 		return;
 	/*
 	 * We have to be careful, if called from sys_setpriority(),
@@ -3076,7 +3058,7 @@
 	if (increment > 40)
 		increment = 40;
 
-	nice = TASK_NICE(current) + increment;
+	nice = task_nice(current) + increment;
 	if (nice < -20)
 		nice = -20;
 	if (nice > 19)
@@ -3109,18 +3091,6 @@
 }
 
 /**
- * task_nice - return the nice value of a given task.
- * @p: the task in question.
- *
- * Return: The nice value [ -20 ... 0 ... 19 ].
- */
-int task_nice(const struct task_struct *p)
-{
-	return TASK_NICE(p);
-}
-EXPORT_SYMBOL(task_nice);
-
-/**
  * idle_cpu - is a given cpu idle currently?
  * @cpu: the processor in question.
  *
@@ -3319,7 +3289,7 @@
 	 */
 	if (user && !capable(CAP_SYS_NICE)) {
 		if (fair_policy(policy)) {
-			if (attr->sched_nice < TASK_NICE(p) &&
+			if (attr->sched_nice < task_nice(p) &&
 			    !can_nice(p, attr->sched_nice))
 				return -EPERM;
 		}
@@ -3343,7 +3313,7 @@
 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
 		 */
 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
-			if (!can_nice(p, TASK_NICE(p)))
+			if (!can_nice(p, task_nice(p)))
 				return -EPERM;
 		}
 
@@ -3383,7 +3353,7 @@
 	 * If not changing anything there's no need to proceed further:
 	 */
 	if (unlikely(policy == p->policy)) {
-		if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
+		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
 			goto change;
 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
 			goto change;
@@ -3835,7 +3805,7 @@
 	else if (task_has_rt_policy(p))
 		attr.sched_priority = p->rt_priority;
 	else
-		attr.sched_nice = TASK_NICE(p);
+		attr.sched_nice = task_nice(p);
 
 	rcu_read_unlock();
 
@@ -4751,7 +4721,7 @@
 		if (rq->nr_running == 1)
 			break;
 
-		next = pick_next_task(rq);
+		next = pick_next_task(rq, NULL);
 		BUG_ON(!next);
 		next->sched_class->put_prev_task(rq, next);
 
@@ -4841,7 +4811,7 @@
 static struct ctl_table *
 sd_alloc_ctl_domain_table(struct sched_domain *sd)
 {
-	struct ctl_table *table = sd_alloc_ctl_entry(13);
+	struct ctl_table *table = sd_alloc_ctl_entry(14);
 
 	if (table == NULL)
 		return NULL;
@@ -4869,9 +4839,12 @@
 		sizeof(int), 0644, proc_dointvec_minmax, false);
 	set_table_entry(&table[10], "flags", &sd->flags,
 		sizeof(int), 0644, proc_dointvec_minmax, false);
-	set_table_entry(&table[11], "name", sd->name,
+	set_table_entry(&table[11], "max_newidle_lb_cost",
+		&sd->max_newidle_lb_cost,
+		sizeof(long), 0644, proc_doulongvec_minmax, false);
+	set_table_entry(&table[12], "name", sd->name,
 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
-	/* &table[12] is terminator */
+	/* &table[13] is terminator */
 
 	return table;
 }
@@ -7008,7 +6981,7 @@
 			 * Renice negative nice level userspace
 			 * tasks back to 0:
 			 */
-			if (TASK_NICE(p) < 0 && p->mm)
+			if (task_nice(p) < 0 && p->mm)
 				set_user_nice(p, 0);
 			continue;
 		}
diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c
index 9994791..58624a6 100644
--- a/kernel/sched/cputime.c
+++ b/kernel/sched/cputime.c
@@ -142,7 +142,7 @@
 	p->utimescaled += cputime_scaled;
 	account_group_user_time(p, cputime);
 
-	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
+	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
 
 	/* Add user time to cpustat. */
 	task_group_account_field(p, index, (__force u64) cputime);
@@ -169,7 +169,7 @@
 	p->gtime += cputime;
 
 	/* Add guest time to cpustat. */
-	if (TASK_NICE(p) > 0) {
+	if (task_nice(p) > 0) {
 		cpustat[CPUTIME_NICE] += (__force u64) cputime;
 		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
 	} else {
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
index 0dd5e09..ed31ef6 100644
--- a/kernel/sched/deadline.c
+++ b/kernel/sched/deadline.c
@@ -944,6 +944,8 @@
 	resched_task(rq->curr);
 }
 
+static int pull_dl_task(struct rq *this_rq);
+
 #endif /* CONFIG_SMP */
 
 /*
@@ -990,7 +992,7 @@
 	return rb_entry(left, struct sched_dl_entity, rb_node);
 }
 
-struct task_struct *pick_next_task_dl(struct rq *rq)
+struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
 {
 	struct sched_dl_entity *dl_se;
 	struct task_struct *p;
@@ -998,9 +1000,17 @@
 
 	dl_rq = &rq->dl;
 
+#ifdef CONFIG_SMP
+	if (dl_task(prev))
+		pull_dl_task(rq);
+#endif
+
 	if (unlikely(!dl_rq->dl_nr_running))
 		return NULL;
 
+	if (prev)
+		prev->sched_class->put_prev_task(rq, prev);
+
 	dl_se = pick_next_dl_entity(rq, dl_rq);
 	BUG_ON(!dl_se);
 
@@ -1426,13 +1436,6 @@
 	return ret;
 }
 
-static void pre_schedule_dl(struct rq *rq, struct task_struct *prev)
-{
-	/* Try to pull other tasks here */
-	if (dl_task(prev))
-		pull_dl_task(rq);
-}
-
 static void post_schedule_dl(struct rq *rq)
 {
 	push_dl_tasks(rq);
@@ -1560,7 +1563,7 @@
 	if (unlikely(p->dl.dl_throttled))
 		return;
 
-	if (p->on_rq || rq->curr != p) {
+	if (p->on_rq && rq->curr != p) {
 #ifdef CONFIG_SMP
 		if (rq->dl.overloaded && push_dl_task(rq) && rq != task_rq(p))
 			/* Only reschedule if pushing failed */
@@ -1625,7 +1628,6 @@
 	.set_cpus_allowed       = set_cpus_allowed_dl,
 	.rq_online              = rq_online_dl,
 	.rq_offline             = rq_offline_dl,
-	.pre_schedule		= pre_schedule_dl,
 	.post_schedule		= post_schedule_dl,
 	.task_woken		= task_woken_dl,
 #endif
diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c
index dd52e7f..f3344c3 100644
--- a/kernel/sched/debug.c
+++ b/kernel/sched/debug.c
@@ -321,6 +321,7 @@
 	P(sched_goidle);
 #ifdef CONFIG_SMP
 	P64(avg_idle);
+	P64(max_idle_balance_cost);
 #endif
 
 	P(ttwu_count);
@@ -533,15 +534,15 @@
 			unsigned long nr_faults = -1;
 			int cpu_current, home_node;
 
-			if (p->numa_faults)
-				nr_faults = p->numa_faults[2*node + i];
+			if (p->numa_faults_memory)
+				nr_faults = p->numa_faults_memory[2*node + i];
 
 			cpu_current = !i ? (task_node(p) == node) :
 				(pol && node_isset(node, pol->v.nodes));
 
 			home_node = (p->numa_preferred_nid == node);
 
-			SEQ_printf(m, "numa_faults, %d, %d, %d, %d, %ld\n",
+			SEQ_printf(m, "numa_faults_memory, %d, %d, %d, %d, %ld\n",
 				i, node, cpu_current, home_node, nr_faults);
 		}
 	}
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 966cc2b..235cfa7 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -322,13 +322,13 @@
 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
 
 /* Do the two (enqueued) entities belong to the same group ? */
-static inline int
+static inline struct cfs_rq *
 is_same_group(struct sched_entity *se, struct sched_entity *pse)
 {
 	if (se->cfs_rq == pse->cfs_rq)
-		return 1;
+		return se->cfs_rq;
 
-	return 0;
+	return NULL;
 }
 
 static inline struct sched_entity *parent_entity(struct sched_entity *se)
@@ -336,17 +336,6 @@
 	return se->parent;
 }
 
-/* return depth at which a sched entity is present in the hierarchy */
-static inline int depth_se(struct sched_entity *se)
-{
-	int depth = 0;
-
-	for_each_sched_entity(se)
-		depth++;
-
-	return depth;
-}
-
 static void
 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 {
@@ -360,8 +349,8 @@
 	 */
 
 	/* First walk up until both entities are at same depth */
-	se_depth = depth_se(*se);
-	pse_depth = depth_se(*pse);
+	se_depth = (*se)->depth;
+	pse_depth = (*pse)->depth;
 
 	while (se_depth > pse_depth) {
 		se_depth--;
@@ -426,12 +415,6 @@
 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
 
-static inline int
-is_same_group(struct sched_entity *se, struct sched_entity *pse)
-{
-	return 1;
-}
-
 static inline struct sched_entity *parent_entity(struct sched_entity *se)
 {
 	return NULL;
@@ -819,14 +802,6 @@
 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
 unsigned int sysctl_numa_balancing_scan_delay = 1000;
 
-/*
- * After skipping a page migration on a shared page, skip N more numa page
- * migrations unconditionally. This reduces the number of NUMA migrations
- * in shared memory workloads, and has the effect of pulling tasks towards
- * where their memory lives, over pulling the memory towards the task.
- */
-unsigned int sysctl_numa_balancing_migrate_deferred = 16;
-
 static unsigned int task_nr_scan_windows(struct task_struct *p)
 {
 	unsigned long rss = 0;
@@ -893,10 +868,26 @@
 	struct list_head task_list;
 
 	struct rcu_head rcu;
+	nodemask_t active_nodes;
 	unsigned long total_faults;
+	/*
+	 * Faults_cpu is used to decide whether memory should move
+	 * towards the CPU. As a consequence, these stats are weighted
+	 * more by CPU use than by memory faults.
+	 */
+	unsigned long *faults_cpu;
 	unsigned long faults[0];
 };
 
+/* Shared or private faults. */
+#define NR_NUMA_HINT_FAULT_TYPES 2
+
+/* Memory and CPU locality */
+#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
+
+/* Averaged statistics, and temporary buffers. */
+#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
+
 pid_t task_numa_group_id(struct task_struct *p)
 {
 	return p->numa_group ? p->numa_group->gid : 0;
@@ -904,16 +895,16 @@
 
 static inline int task_faults_idx(int nid, int priv)
 {
-	return 2 * nid + priv;
+	return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
 }
 
 static inline unsigned long task_faults(struct task_struct *p, int nid)
 {
-	if (!p->numa_faults)
+	if (!p->numa_faults_memory)
 		return 0;
 
-	return p->numa_faults[task_faults_idx(nid, 0)] +
-		p->numa_faults[task_faults_idx(nid, 1)];
+	return p->numa_faults_memory[task_faults_idx(nid, 0)] +
+		p->numa_faults_memory[task_faults_idx(nid, 1)];
 }
 
 static inline unsigned long group_faults(struct task_struct *p, int nid)
@@ -925,6 +916,12 @@
 		p->numa_group->faults[task_faults_idx(nid, 1)];
 }
 
+static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
+{
+	return group->faults_cpu[task_faults_idx(nid, 0)] +
+		group->faults_cpu[task_faults_idx(nid, 1)];
+}
+
 /*
  * These return the fraction of accesses done by a particular task, or
  * task group, on a particular numa node.  The group weight is given a
@@ -935,7 +932,7 @@
 {
 	unsigned long total_faults;
 
-	if (!p->numa_faults)
+	if (!p->numa_faults_memory)
 		return 0;
 
 	total_faults = p->total_numa_faults;
@@ -954,6 +951,69 @@
 	return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
 }
 
+bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
+				int src_nid, int dst_cpu)
+{
+	struct numa_group *ng = p->numa_group;
+	int dst_nid = cpu_to_node(dst_cpu);
+	int last_cpupid, this_cpupid;
+
+	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
+
+	/*
+	 * Multi-stage node selection is used in conjunction with a periodic
+	 * migration fault to build a temporal task<->page relation. By using
+	 * a two-stage filter we remove short/unlikely relations.
+	 *
+	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
+	 * a task's usage of a particular page (n_p) per total usage of this
+	 * page (n_t) (in a given time-span) to a probability.
+	 *
+	 * Our periodic faults will sample this probability and getting the
+	 * same result twice in a row, given these samples are fully
+	 * independent, is then given by P(n)^2, provided our sample period
+	 * is sufficiently short compared to the usage pattern.
+	 *
+	 * This quadric squishes small probabilities, making it less likely we
+	 * act on an unlikely task<->page relation.
+	 */
+	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
+	if (!cpupid_pid_unset(last_cpupid) &&
+				cpupid_to_nid(last_cpupid) != dst_nid)
+		return false;
+
+	/* Always allow migrate on private faults */
+	if (cpupid_match_pid(p, last_cpupid))
+		return true;
+
+	/* A shared fault, but p->numa_group has not been set up yet. */
+	if (!ng)
+		return true;
+
+	/*
+	 * Do not migrate if the destination is not a node that
+	 * is actively used by this numa group.
+	 */
+	if (!node_isset(dst_nid, ng->active_nodes))
+		return false;
+
+	/*
+	 * Source is a node that is not actively used by this
+	 * numa group, while the destination is. Migrate.
+	 */
+	if (!node_isset(src_nid, ng->active_nodes))
+		return true;
+
+	/*
+	 * Both source and destination are nodes in active
+	 * use by this numa group. Maximize memory bandwidth
+	 * by migrating from more heavily used groups, to less
+	 * heavily used ones, spreading the load around.
+	 * Use a 1/4 hysteresis to avoid spurious page movement.
+	 */
+	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
+}
+
 static unsigned long weighted_cpuload(const int cpu);
 static unsigned long source_load(int cpu, int type);
 static unsigned long target_load(int cpu, int type);
@@ -1267,7 +1327,7 @@
 static void numa_migrate_preferred(struct task_struct *p)
 {
 	/* This task has no NUMA fault statistics yet */
-	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
+	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
 		return;
 
 	/* Periodically retry migrating the task to the preferred node */
@@ -1282,6 +1342,38 @@
 }
 
 /*
+ * Find the nodes on which the workload is actively running. We do this by
+ * tracking the nodes from which NUMA hinting faults are triggered. This can
+ * be different from the set of nodes where the workload's memory is currently
+ * located.
+ *
+ * The bitmask is used to make smarter decisions on when to do NUMA page
+ * migrations, To prevent flip-flopping, and excessive page migrations, nodes
+ * are added when they cause over 6/16 of the maximum number of faults, but
+ * only removed when they drop below 3/16.
+ */
+static void update_numa_active_node_mask(struct numa_group *numa_group)
+{
+	unsigned long faults, max_faults = 0;
+	int nid;
+
+	for_each_online_node(nid) {
+		faults = group_faults_cpu(numa_group, nid);
+		if (faults > max_faults)
+			max_faults = faults;
+	}
+
+	for_each_online_node(nid) {
+		faults = group_faults_cpu(numa_group, nid);
+		if (!node_isset(nid, numa_group->active_nodes)) {
+			if (faults > max_faults * 6 / 16)
+				node_set(nid, numa_group->active_nodes);
+		} else if (faults < max_faults * 3 / 16)
+			node_clear(nid, numa_group->active_nodes);
+	}
+}
+
+/*
  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
  * increments. The more local the fault statistics are, the higher the scan
  * period will be for the next scan window. If local/remote ratio is below
@@ -1355,11 +1447,41 @@
 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
 }
 
+/*
+ * Get the fraction of time the task has been running since the last
+ * NUMA placement cycle. The scheduler keeps similar statistics, but
+ * decays those on a 32ms period, which is orders of magnitude off
+ * from the dozens-of-seconds NUMA balancing period. Use the scheduler
+ * stats only if the task is so new there are no NUMA statistics yet.
+ */
+static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
+{
+	u64 runtime, delta, now;
+	/* Use the start of this time slice to avoid calculations. */
+	now = p->se.exec_start;
+	runtime = p->se.sum_exec_runtime;
+
+	if (p->last_task_numa_placement) {
+		delta = runtime - p->last_sum_exec_runtime;
+		*period = now - p->last_task_numa_placement;
+	} else {
+		delta = p->se.avg.runnable_avg_sum;
+		*period = p->se.avg.runnable_avg_period;
+	}
+
+	p->last_sum_exec_runtime = runtime;
+	p->last_task_numa_placement = now;
+
+	return delta;
+}
+
 static void task_numa_placement(struct task_struct *p)
 {
 	int seq, nid, max_nid = -1, max_group_nid = -1;
 	unsigned long max_faults = 0, max_group_faults = 0;
 	unsigned long fault_types[2] = { 0, 0 };
+	unsigned long total_faults;
+	u64 runtime, period;
 	spinlock_t *group_lock = NULL;
 
 	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
@@ -1368,6 +1490,10 @@
 	p->numa_scan_seq = seq;
 	p->numa_scan_period_max = task_scan_max(p);
 
+	total_faults = p->numa_faults_locality[0] +
+		       p->numa_faults_locality[1];
+	runtime = numa_get_avg_runtime(p, &period);
+
 	/* If the task is part of a group prevent parallel updates to group stats */
 	if (p->numa_group) {
 		group_lock = &p->numa_group->lock;
@@ -1379,24 +1505,37 @@
 		unsigned long faults = 0, group_faults = 0;
 		int priv, i;
 
-		for (priv = 0; priv < 2; priv++) {
-			long diff;
+		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
+			long diff, f_diff, f_weight;
 
 			i = task_faults_idx(nid, priv);
-			diff = -p->numa_faults[i];
 
 			/* Decay existing window, copy faults since last scan */
-			p->numa_faults[i] >>= 1;
-			p->numa_faults[i] += p->numa_faults_buffer[i];
-			fault_types[priv] += p->numa_faults_buffer[i];
-			p->numa_faults_buffer[i] = 0;
+			diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
+			fault_types[priv] += p->numa_faults_buffer_memory[i];
+			p->numa_faults_buffer_memory[i] = 0;
 
-			faults += p->numa_faults[i];
-			diff += p->numa_faults[i];
+			/*
+			 * Normalize the faults_from, so all tasks in a group
+			 * count according to CPU use, instead of by the raw
+			 * number of faults. Tasks with little runtime have
+			 * little over-all impact on throughput, and thus their
+			 * faults are less important.
+			 */
+			f_weight = div64_u64(runtime << 16, period + 1);
+			f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
+				   (total_faults + 1);
+			f_diff = f_weight - p->numa_faults_cpu[i] / 2;
+			p->numa_faults_buffer_cpu[i] = 0;
+
+			p->numa_faults_memory[i] += diff;
+			p->numa_faults_cpu[i] += f_diff;
+			faults += p->numa_faults_memory[i];
 			p->total_numa_faults += diff;
 			if (p->numa_group) {
 				/* safe because we can only change our own group */
 				p->numa_group->faults[i] += diff;
+				p->numa_group->faults_cpu[i] += f_diff;
 				p->numa_group->total_faults += diff;
 				group_faults += p->numa_group->faults[i];
 			}
@@ -1416,6 +1555,7 @@
 	update_task_scan_period(p, fault_types[0], fault_types[1]);
 
 	if (p->numa_group) {
+		update_numa_active_node_mask(p->numa_group);
 		/*
 		 * If the preferred task and group nids are different,
 		 * iterate over the nodes again to find the best place.
@@ -1465,7 +1605,7 @@
 
 	if (unlikely(!p->numa_group)) {
 		unsigned int size = sizeof(struct numa_group) +
-				    2*nr_node_ids*sizeof(unsigned long);
+				    4*nr_node_ids*sizeof(unsigned long);
 
 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
 		if (!grp)
@@ -1475,9 +1615,14 @@
 		spin_lock_init(&grp->lock);
 		INIT_LIST_HEAD(&grp->task_list);
 		grp->gid = p->pid;
+		/* Second half of the array tracks nids where faults happen */
+		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
+						nr_node_ids;
 
-		for (i = 0; i < 2*nr_node_ids; i++)
-			grp->faults[i] = p->numa_faults[i];
+		node_set(task_node(current), grp->active_nodes);
+
+		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
+			grp->faults[i] = p->numa_faults_memory[i];
 
 		grp->total_faults = p->total_numa_faults;
 
@@ -1534,9 +1679,9 @@
 
 	double_lock(&my_grp->lock, &grp->lock);
 
-	for (i = 0; i < 2*nr_node_ids; i++) {
-		my_grp->faults[i] -= p->numa_faults[i];
-		grp->faults[i] += p->numa_faults[i];
+	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
+		my_grp->faults[i] -= p->numa_faults_memory[i];
+		grp->faults[i] += p->numa_faults_memory[i];
 	}
 	my_grp->total_faults -= p->total_numa_faults;
 	grp->total_faults += p->total_numa_faults;
@@ -1562,12 +1707,12 @@
 {
 	struct numa_group *grp = p->numa_group;
 	int i;
-	void *numa_faults = p->numa_faults;
+	void *numa_faults = p->numa_faults_memory;
 
 	if (grp) {
 		spin_lock(&grp->lock);
-		for (i = 0; i < 2*nr_node_ids; i++)
-			grp->faults[i] -= p->numa_faults[i];
+		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
+			grp->faults[i] -= p->numa_faults_memory[i];
 		grp->total_faults -= p->total_numa_faults;
 
 		list_del(&p->numa_entry);
@@ -1577,18 +1722,21 @@
 		put_numa_group(grp);
 	}
 
-	p->numa_faults = NULL;
-	p->numa_faults_buffer = NULL;
+	p->numa_faults_memory = NULL;
+	p->numa_faults_buffer_memory = NULL;
+	p->numa_faults_cpu= NULL;
+	p->numa_faults_buffer_cpu = NULL;
 	kfree(numa_faults);
 }
 
 /*
  * Got a PROT_NONE fault for a page on @node.
  */
-void task_numa_fault(int last_cpupid, int node, int pages, int flags)
+void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
 {
 	struct task_struct *p = current;
 	bool migrated = flags & TNF_MIGRATED;
+	int cpu_node = task_node(current);
 	int priv;
 
 	if (!numabalancing_enabled)
@@ -1603,16 +1751,24 @@
 		return;
 
 	/* Allocate buffer to track faults on a per-node basis */
-	if (unlikely(!p->numa_faults)) {
-		int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
+	if (unlikely(!p->numa_faults_memory)) {
+		int size = sizeof(*p->numa_faults_memory) *
+			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
 
-		/* numa_faults and numa_faults_buffer share the allocation */
-		p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
-		if (!p->numa_faults)
+		p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
+		if (!p->numa_faults_memory)
 			return;
 
-		BUG_ON(p->numa_faults_buffer);
-		p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
+		BUG_ON(p->numa_faults_buffer_memory);
+		/*
+		 * The averaged statistics, shared & private, memory & cpu,
+		 * occupy the first half of the array. The second half of the
+		 * array is for current counters, which are averaged into the
+		 * first set by task_numa_placement.
+		 */
+		p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
+		p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
+		p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
 		p->total_numa_faults = 0;
 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
 	}
@@ -1641,7 +1797,8 @@
 	if (migrated)
 		p->numa_pages_migrated += pages;
 
-	p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
+	p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
+	p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
 	p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
 }
 
@@ -2414,7 +2571,8 @@
 	update_rq_runnable_avg(this_rq, 0);
 }
 
-#else
+#else /* CONFIG_SMP */
+
 static inline void update_entity_load_avg(struct sched_entity *se,
 					  int update_cfs_rq) {}
 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
@@ -2426,7 +2584,7 @@
 					   int sleep) {}
 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
 					      int force_update) {}
-#endif
+#endif /* CONFIG_SMP */
 
 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
@@ -2576,10 +2734,10 @@
 {
 	for_each_sched_entity(se) {
 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
-		if (cfs_rq->last == se)
-			cfs_rq->last = NULL;
-		else
+		if (cfs_rq->last != se)
 			break;
+
+		cfs_rq->last = NULL;
 	}
 }
 
@@ -2587,10 +2745,10 @@
 {
 	for_each_sched_entity(se) {
 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
-		if (cfs_rq->next == se)
-			cfs_rq->next = NULL;
-		else
+		if (cfs_rq->next != se)
 			break;
+
+		cfs_rq->next = NULL;
 	}
 }
 
@@ -2598,10 +2756,10 @@
 {
 	for_each_sched_entity(se) {
 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
-		if (cfs_rq->skip == se)
-			cfs_rq->skip = NULL;
-		else
+		if (cfs_rq->skip != se)
 			break;
+
+		cfs_rq->skip = NULL;
 	}
 }
 
@@ -2744,17 +2902,36 @@
  * 3) pick the "last" process, for cache locality
  * 4) do not run the "skip" process, if something else is available
  */
-static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
+static struct sched_entity *
+pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
 {
-	struct sched_entity *se = __pick_first_entity(cfs_rq);
-	struct sched_entity *left = se;
+	struct sched_entity *left = __pick_first_entity(cfs_rq);
+	struct sched_entity *se;
+
+	/*
+	 * If curr is set we have to see if its left of the leftmost entity
+	 * still in the tree, provided there was anything in the tree at all.
+	 */
+	if (!left || (curr && entity_before(curr, left)))
+		left = curr;
+
+	se = left; /* ideally we run the leftmost entity */
 
 	/*
 	 * Avoid running the skip buddy, if running something else can
 	 * be done without getting too unfair.
 	 */
 	if (cfs_rq->skip == se) {
-		struct sched_entity *second = __pick_next_entity(se);
+		struct sched_entity *second;
+
+		if (se == curr) {
+			second = __pick_first_entity(cfs_rq);
+		} else {
+			second = __pick_next_entity(se);
+			if (!second || (curr && entity_before(curr, second)))
+				second = curr;
+		}
+
 		if (second && wakeup_preempt_entity(second, left) < 1)
 			se = second;
 	}
@@ -2776,7 +2953,7 @@
 	return se;
 }
 
-static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
+static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
 
 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
 {
@@ -3431,22 +3608,23 @@
 }
 
 /* conditionally throttle active cfs_rq's from put_prev_entity() */
-static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
+static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
 {
 	if (!cfs_bandwidth_used())
-		return;
+		return false;
 
 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
-		return;
+		return false;
 
 	/*
 	 * it's possible for a throttled entity to be forced into a running
 	 * state (e.g. set_curr_task), in this case we're finished.
 	 */
 	if (cfs_rq_throttled(cfs_rq))
-		return;
+		return true;
 
 	throttle_cfs_rq(cfs_rq);
+	return true;
 }
 
 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
@@ -3556,7 +3734,7 @@
 }
 
 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
-static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
+static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
 
@@ -4492,26 +4670,125 @@
 		set_last_buddy(se);
 }
 
-static struct task_struct *pick_next_task_fair(struct rq *rq)
+static struct task_struct *
+pick_next_task_fair(struct rq *rq, struct task_struct *prev)
 {
-	struct task_struct *p;
 	struct cfs_rq *cfs_rq = &rq->cfs;
 	struct sched_entity *se;
+	struct task_struct *p;
 
+again: __maybe_unused
+#ifdef CONFIG_FAIR_GROUP_SCHED
 	if (!cfs_rq->nr_running)
-		return NULL;
+		goto idle;
+
+	if (!prev || prev->sched_class != &fair_sched_class)
+		goto simple;
+
+	/*
+	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
+	 * likely that a next task is from the same cgroup as the current.
+	 *
+	 * Therefore attempt to avoid putting and setting the entire cgroup
+	 * hierarchy, only change the part that actually changes.
+	 */
 
 	do {
-		se = pick_next_entity(cfs_rq);
+		struct sched_entity *curr = cfs_rq->curr;
+
+		/*
+		 * Since we got here without doing put_prev_entity() we also
+		 * have to consider cfs_rq->curr. If it is still a runnable
+		 * entity, update_curr() will update its vruntime, otherwise
+		 * forget we've ever seen it.
+		 */
+		if (curr && curr->on_rq)
+			update_curr(cfs_rq);
+		else
+			curr = NULL;
+
+		/*
+		 * This call to check_cfs_rq_runtime() will do the throttle and
+		 * dequeue its entity in the parent(s). Therefore the 'simple'
+		 * nr_running test will indeed be correct.
+		 */
+		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
+			goto simple;
+
+		se = pick_next_entity(cfs_rq, curr);
+		cfs_rq = group_cfs_rq(se);
+	} while (cfs_rq);
+
+	p = task_of(se);
+
+	/*
+	 * Since we haven't yet done put_prev_entity and if the selected task
+	 * is a different task than we started out with, try and touch the
+	 * least amount of cfs_rqs.
+	 */
+	if (prev != p) {
+		struct sched_entity *pse = &prev->se;
+
+		while (!(cfs_rq = is_same_group(se, pse))) {
+			int se_depth = se->depth;
+			int pse_depth = pse->depth;
+
+			if (se_depth <= pse_depth) {
+				put_prev_entity(cfs_rq_of(pse), pse);
+				pse = parent_entity(pse);
+			}
+			if (se_depth >= pse_depth) {
+				set_next_entity(cfs_rq_of(se), se);
+				se = parent_entity(se);
+			}
+		}
+
+		put_prev_entity(cfs_rq, pse);
+		set_next_entity(cfs_rq, se);
+	}
+
+	if (hrtick_enabled(rq))
+		hrtick_start_fair(rq, p);
+
+	return p;
+simple:
+	cfs_rq = &rq->cfs;
+#endif
+
+	if (!cfs_rq->nr_running)
+		goto idle;
+
+	if (prev)
+		prev->sched_class->put_prev_task(rq, prev);
+
+	do {
+		se = pick_next_entity(cfs_rq, NULL);
 		set_next_entity(cfs_rq, se);
 		cfs_rq = group_cfs_rq(se);
 	} while (cfs_rq);
 
 	p = task_of(se);
+
 	if (hrtick_enabled(rq))
 		hrtick_start_fair(rq, p);
 
 	return p;
+
+idle:
+#ifdef CONFIG_SMP
+	idle_enter_fair(rq);
+	/*
+	 * We must set idle_stamp _before_ calling idle_balance(), such that we
+	 * measure the duration of idle_balance() as idle time.
+	 */
+	rq->idle_stamp = rq_clock(rq);
+	if (idle_balance(rq)) { /* drops rq->lock */
+		rq->idle_stamp = 0;
+		goto again;
+	}
+#endif
+
+	return NULL;
 }
 
 /*
@@ -4783,7 +5060,7 @@
 {
 	int src_nid, dst_nid;
 
-	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
+	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
 	    !(env->sd->flags & SD_NUMA)) {
 		return false;
 	}
@@ -4814,7 +5091,7 @@
 	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
 		return false;
 
-	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
+	if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
 		return false;
 
 	src_nid = cpu_to_node(env->src_cpu);
@@ -6357,17 +6634,16 @@
  * idle_balance is called by schedule() if this_cpu is about to become
  * idle. Attempts to pull tasks from other CPUs.
  */
-void idle_balance(int this_cpu, struct rq *this_rq)
+int idle_balance(struct rq *this_rq)
 {
 	struct sched_domain *sd;
 	int pulled_task = 0;
 	unsigned long next_balance = jiffies + HZ;
 	u64 curr_cost = 0;
-
-	this_rq->idle_stamp = rq_clock(this_rq);
+	int this_cpu = this_rq->cpu;
 
 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
-		return;
+		return 0;
 
 	/*
 	 * Drop the rq->lock, but keep IRQ/preempt disabled.
@@ -6405,15 +6681,20 @@
 		interval = msecs_to_jiffies(sd->balance_interval);
 		if (time_after(next_balance, sd->last_balance + interval))
 			next_balance = sd->last_balance + interval;
-		if (pulled_task) {
-			this_rq->idle_stamp = 0;
+		if (pulled_task)
 			break;
-		}
 	}
 	rcu_read_unlock();
 
 	raw_spin_lock(&this_rq->lock);
 
+	/*
+	 * While browsing the domains, we released the rq lock.
+	 * A task could have be enqueued in the meantime
+	 */
+	if (this_rq->nr_running && !pulled_task)
+		return 1;
+
 	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
 		/*
 		 * We are going idle. next_balance may be set based on
@@ -6424,6 +6705,8 @@
 
 	if (curr_cost > this_rq->max_idle_balance_cost)
 		this_rq->max_idle_balance_cost = curr_cost;
+
+	return pulled_task;
 }
 
 /*
@@ -7082,7 +7365,9 @@
 #ifdef CONFIG_FAIR_GROUP_SCHED
 static void task_move_group_fair(struct task_struct *p, int on_rq)
 {
+	struct sched_entity *se = &p->se;
 	struct cfs_rq *cfs_rq;
+
 	/*
 	 * If the task was not on the rq at the time of this cgroup movement
 	 * it must have been asleep, sleeping tasks keep their ->vruntime
@@ -7108,23 +7393,24 @@
 	 * To prevent boost or penalty in the new cfs_rq caused by delta
 	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
 	 */
-	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
+	if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
 		on_rq = 1;
 
 	if (!on_rq)
-		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
+		se->vruntime -= cfs_rq_of(se)->min_vruntime;
 	set_task_rq(p, task_cpu(p));
+	se->depth = se->parent ? se->parent->depth + 1 : 0;
 	if (!on_rq) {
-		cfs_rq = cfs_rq_of(&p->se);
-		p->se.vruntime += cfs_rq->min_vruntime;
+		cfs_rq = cfs_rq_of(se);
+		se->vruntime += cfs_rq->min_vruntime;
 #ifdef CONFIG_SMP
 		/*
 		 * migrate_task_rq_fair() will have removed our previous
 		 * contribution, but we must synchronize for ongoing future
 		 * decay.
 		 */
-		p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
-		cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
+		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
+		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
 #endif
 	}
 }
@@ -7220,10 +7506,13 @@
 	if (!se)
 		return;
 
-	if (!parent)
+	if (!parent) {
 		se->cfs_rq = &rq->cfs;
-	else
+		se->depth = 0;
+	} else {
 		se->cfs_rq = parent->my_q;
+		se->depth = parent->depth + 1;
+	}
 
 	se->my_q = cfs_rq;
 	/* guarantee group entities always have weight */
diff --git a/kernel/sched/idle.c b/kernel/sched/idle.c
new file mode 100644
index 0000000..14ca434
--- /dev/null
+++ b/kernel/sched/idle.c
@@ -0,0 +1,144 @@
+/*
+ * Generic entry point for the idle threads
+ */
+#include <linux/sched.h>
+#include <linux/cpu.h>
+#include <linux/cpuidle.h>
+#include <linux/tick.h>
+#include <linux/mm.h>
+#include <linux/stackprotector.h>
+
+#include <asm/tlb.h>
+
+#include <trace/events/power.h>
+
+static int __read_mostly cpu_idle_force_poll;
+
+void cpu_idle_poll_ctrl(bool enable)
+{
+	if (enable) {
+		cpu_idle_force_poll++;
+	} else {
+		cpu_idle_force_poll--;
+		WARN_ON_ONCE(cpu_idle_force_poll < 0);
+	}
+}
+
+#ifdef CONFIG_GENERIC_IDLE_POLL_SETUP
+static int __init cpu_idle_poll_setup(char *__unused)
+{
+	cpu_idle_force_poll = 1;
+	return 1;
+}
+__setup("nohlt", cpu_idle_poll_setup);
+
+static int __init cpu_idle_nopoll_setup(char *__unused)
+{
+	cpu_idle_force_poll = 0;
+	return 1;
+}
+__setup("hlt", cpu_idle_nopoll_setup);
+#endif
+
+static inline int cpu_idle_poll(void)
+{
+	rcu_idle_enter();
+	trace_cpu_idle_rcuidle(0, smp_processor_id());
+	local_irq_enable();
+	while (!tif_need_resched())
+		cpu_relax();
+	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
+	rcu_idle_exit();
+	return 1;
+}
+
+/* Weak implementations for optional arch specific functions */
+void __weak arch_cpu_idle_prepare(void) { }
+void __weak arch_cpu_idle_enter(void) { }
+void __weak arch_cpu_idle_exit(void) { }
+void __weak arch_cpu_idle_dead(void) { }
+void __weak arch_cpu_idle(void)
+{
+	cpu_idle_force_poll = 1;
+	local_irq_enable();
+}
+
+/*
+ * Generic idle loop implementation
+ */
+static void cpu_idle_loop(void)
+{
+	while (1) {
+		tick_nohz_idle_enter();
+
+		while (!need_resched()) {
+			check_pgt_cache();
+			rmb();
+
+			if (cpu_is_offline(smp_processor_id()))
+				arch_cpu_idle_dead();
+
+			local_irq_disable();
+			arch_cpu_idle_enter();
+
+			/*
+			 * In poll mode we reenable interrupts and spin.
+			 *
+			 * Also if we detected in the wakeup from idle
+			 * path that the tick broadcast device expired
+			 * for us, we don't want to go deep idle as we
+			 * know that the IPI is going to arrive right
+			 * away
+			 */
+			if (cpu_idle_force_poll || tick_check_broadcast_expired()) {
+				cpu_idle_poll();
+			} else {
+				if (!current_clr_polling_and_test()) {
+					stop_critical_timings();
+					rcu_idle_enter();
+					if (cpuidle_idle_call())
+						arch_cpu_idle();
+					if (WARN_ON_ONCE(irqs_disabled()))
+						local_irq_enable();
+					rcu_idle_exit();
+					start_critical_timings();
+				} else {
+					local_irq_enable();
+				}
+				__current_set_polling();
+			}
+			arch_cpu_idle_exit();
+			/*
+			 * We need to test and propagate the TIF_NEED_RESCHED
+			 * bit here because we might not have send the
+			 * reschedule IPI to idle tasks.
+			 */
+			if (tif_need_resched())
+				set_preempt_need_resched();
+		}
+		tick_nohz_idle_exit();
+		schedule_preempt_disabled();
+	}
+}
+
+void cpu_startup_entry(enum cpuhp_state state)
+{
+	/*
+	 * This #ifdef needs to die, but it's too late in the cycle to
+	 * make this generic (arm and sh have never invoked the canary
+	 * init for the non boot cpus!). Will be fixed in 3.11
+	 */
+#ifdef CONFIG_X86
+	/*
+	 * If we're the non-boot CPU, nothing set the stack canary up
+	 * for us. The boot CPU already has it initialized but no harm
+	 * in doing it again. This is a good place for updating it, as
+	 * we wont ever return from this function (so the invalid
+	 * canaries already on the stack wont ever trigger).
+	 */
+	boot_init_stack_canary();
+#endif
+	__current_set_polling();
+	arch_cpu_idle_prepare();
+	cpu_idle_loop();
+}
diff --git a/kernel/sched/idle_task.c b/kernel/sched/idle_task.c
index 516c3d9..f7d03af 100644
--- a/kernel/sched/idle_task.c
+++ b/kernel/sched/idle_task.c
@@ -13,18 +13,8 @@
 {
 	return task_cpu(p); /* IDLE tasks as never migrated */
 }
-
-static void pre_schedule_idle(struct rq *rq, struct task_struct *prev)
-{
-	idle_exit_fair(rq);
-	rq_last_tick_reset(rq);
-}
-
-static void post_schedule_idle(struct rq *rq)
-{
-	idle_enter_fair(rq);
-}
 #endif /* CONFIG_SMP */
+
 /*
  * Idle tasks are unconditionally rescheduled:
  */
@@ -33,12 +23,15 @@
 	resched_task(rq->idle);
 }
 
-static struct task_struct *pick_next_task_idle(struct rq *rq)
+static struct task_struct *
+pick_next_task_idle(struct rq *rq, struct task_struct *prev)
 {
+	if (prev)
+		prev->sched_class->put_prev_task(rq, prev);
+
 	schedstat_inc(rq, sched_goidle);
 #ifdef CONFIG_SMP
-	/* Trigger the post schedule to do an idle_enter for CFS */
-	rq->post_schedule = 1;
+	idle_enter_fair(rq);
 #endif
 	return rq->idle;
 }
@@ -58,6 +51,10 @@
 
 static void put_prev_task_idle(struct rq *rq, struct task_struct *prev)
 {
+#ifdef CONFIG_SMP
+	idle_exit_fair(rq);
+	rq_last_tick_reset(rq);
+#endif
 }
 
 static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued)
@@ -101,8 +98,6 @@
 
 #ifdef CONFIG_SMP
 	.select_task_rq		= select_task_rq_idle,
-	.pre_schedule		= pre_schedule_idle,
-	.post_schedule		= post_schedule_idle,
 #endif
 
 	.set_curr_task          = set_curr_task_idle,
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c
index a2740b7..72f9ec7 100644
--- a/kernel/sched/rt.c
+++ b/kernel/sched/rt.c
@@ -229,6 +229,8 @@
 
 #ifdef CONFIG_SMP
 
+static int pull_rt_task(struct rq *this_rq);
+
 static inline int rt_overloaded(struct rq *rq)
 {
 	return atomic_read(&rq->rd->rto_count);
@@ -1310,15 +1312,7 @@
 {
 	struct sched_rt_entity *rt_se;
 	struct task_struct *p;
-	struct rt_rq *rt_rq;
-
-	rt_rq = &rq->rt;
-
-	if (!rt_rq->rt_nr_running)
-		return NULL;
-
-	if (rt_rq_throttled(rt_rq))
-		return NULL;
+	struct rt_rq *rt_rq  = &rq->rt;
 
 	do {
 		rt_se = pick_next_rt_entity(rq, rt_rq);
@@ -1332,9 +1326,28 @@
 	return p;
 }
 
-static struct task_struct *pick_next_task_rt(struct rq *rq)
+static struct task_struct *
+pick_next_task_rt(struct rq *rq, struct task_struct *prev)
 {
-	struct task_struct *p = _pick_next_task_rt(rq);
+	struct task_struct *p;
+	struct rt_rq *rt_rq = &rq->rt;
+
+#ifdef CONFIG_SMP
+	/* Try to pull RT tasks here if we lower this rq's prio */
+	if (rq->rt.highest_prio.curr > prev->prio)
+		pull_rt_task(rq);
+#endif
+
+	if (!rt_rq->rt_nr_running)
+		return NULL;
+
+	if (rt_rq_throttled(rt_rq))
+		return NULL;
+
+	if (prev)
+		prev->sched_class->put_prev_task(rq, prev);
+
+	p = _pick_next_task_rt(rq);
 
 	/* The running task is never eligible for pushing */
 	if (p)
@@ -1716,13 +1729,6 @@
 	return ret;
 }
 
-static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
-{
-	/* Try to pull RT tasks here if we lower this rq's prio */
-	if (rq->rt.highest_prio.curr > prev->prio)
-		pull_rt_task(rq);
-}
-
 static void post_schedule_rt(struct rq *rq)
 {
 	push_rt_tasks(rq);
@@ -1999,7 +2005,6 @@
 	.set_cpus_allowed       = set_cpus_allowed_rt,
 	.rq_online              = rq_online_rt,
 	.rq_offline             = rq_offline_rt,
-	.pre_schedule		= pre_schedule_rt,
 	.post_schedule		= post_schedule_rt,
 	.task_woken		= task_woken_rt,
 	.switched_from		= switched_from_rt,
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index c2119fd..1bf34c2 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -24,24 +24,6 @@
 extern void update_cpu_load_active(struct rq *this_rq);
 
 /*
- * Convert user-nice values [ -20 ... 0 ... 19 ]
- * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
- * and back.
- */
-#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
-#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
-#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)
-
-/*
- * 'User priority' is the nice value converted to something we
- * can work with better when scaling various scheduler parameters,
- * it's a [ 0 ... 39 ] range.
- */
-#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
-#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
-#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))
-
-/*
  * Helpers for converting nanosecond timing to jiffy resolution
  */
 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
@@ -1123,14 +1105,19 @@
 
 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
 
-	struct task_struct * (*pick_next_task) (struct rq *rq);
+	/*
+	 * It is the responsibility of the pick_next_task() method that will
+	 * return the next task to call put_prev_task() on the @prev task or
+	 * something equivalent.
+	 */
+	struct task_struct * (*pick_next_task) (struct rq *rq,
+						struct task_struct *prev);
 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
 
 #ifdef CONFIG_SMP
 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
 	void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
 
-	void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
 	void (*post_schedule) (struct rq *this_rq);
 	void (*task_waking) (struct task_struct *task);
 	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
@@ -1176,7 +1163,7 @@
 extern void update_group_power(struct sched_domain *sd, int cpu);
 
 extern void trigger_load_balance(struct rq *rq);
-extern void idle_balance(int this_cpu, struct rq *this_rq);
+extern int idle_balance(struct rq *this_rq);
 
 extern void idle_enter_fair(struct rq *this_rq);
 extern void idle_exit_fair(struct rq *this_rq);
diff --git a/kernel/sched/stop_task.c b/kernel/sched/stop_task.c
index fdb6bb0..a4147c9 100644
--- a/kernel/sched/stop_task.c
+++ b/kernel/sched/stop_task.c
@@ -23,16 +23,20 @@
 	/* we're never preempted */
 }
 
-static struct task_struct *pick_next_task_stop(struct rq *rq)
+static struct task_struct *
+pick_next_task_stop(struct rq *rq, struct task_struct *prev)
 {
 	struct task_struct *stop = rq->stop;
 
-	if (stop && stop->on_rq) {
-		stop->se.exec_start = rq_clock_task(rq);
-		return stop;
-	}
+	if (!stop || !stop->on_rq)
+		return NULL;
 
-	return NULL;
+	if (prev)
+		prev->sched_class->put_prev_task(rq, prev);
+
+	stop->se.exec_start = rq_clock_task(rq);
+
+	return stop;
 }
 
 static void
diff --git a/kernel/sysctl.c b/kernel/sysctl.c
index 49e13e1..7754ff1 100644
--- a/kernel/sysctl.c
+++ b/kernel/sysctl.c
@@ -386,13 +386,6 @@
 		.proc_handler	= proc_dointvec,
 	},
 	{
-		.procname       = "numa_balancing_migrate_deferred",
-		.data           = &sysctl_numa_balancing_migrate_deferred,
-		.maxlen         = sizeof(unsigned int),
-		.mode           = 0644,
-		.proc_handler   = proc_dointvec,
-	},
-	{
 		.procname	= "numa_balancing",
 		.data		= NULL, /* filled in by handler */
 		.maxlen		= sizeof(unsigned int),
diff --git a/mm/mempolicy.c b/mm/mempolicy.c
index ae3c8f3..f520b9d 100644
--- a/mm/mempolicy.c
+++ b/mm/mempolicy.c
@@ -2301,35 +2301,6 @@
 	kmem_cache_free(sn_cache, n);
 }
 
-#ifdef CONFIG_NUMA_BALANCING
-static bool numa_migrate_deferred(struct task_struct *p, int last_cpupid)
-{
-	/* Never defer a private fault */
-	if (cpupid_match_pid(p, last_cpupid))
-		return false;
-
-	if (p->numa_migrate_deferred) {
-		p->numa_migrate_deferred--;
-		return true;
-	}
-	return false;
-}
-
-static inline void defer_numa_migrate(struct task_struct *p)
-{
-	p->numa_migrate_deferred = sysctl_numa_balancing_migrate_deferred;
-}
-#else
-static inline bool numa_migrate_deferred(struct task_struct *p, int last_cpupid)
-{
-	return false;
-}
-
-static inline void defer_numa_migrate(struct task_struct *p)
-{
-}
-#endif /* CONFIG_NUMA_BALANCING */
-
 /**
  * mpol_misplaced - check whether current page node is valid in policy
  *
@@ -2403,52 +2374,9 @@
 
 	/* Migrate the page towards the node whose CPU is referencing it */
 	if (pol->flags & MPOL_F_MORON) {
-		int last_cpupid;
-		int this_cpupid;
-
 		polnid = thisnid;
-		this_cpupid = cpu_pid_to_cpupid(thiscpu, current->pid);
 
-		/*
-		 * Multi-stage node selection is used in conjunction
-		 * with a periodic migration fault to build a temporal
-		 * task<->page relation. By using a two-stage filter we
-		 * remove short/unlikely relations.
-		 *
-		 * Using P(p) ~ n_p / n_t as per frequentist
-		 * probability, we can equate a task's usage of a
-		 * particular page (n_p) per total usage of this
-		 * page (n_t) (in a given time-span) to a probability.
-		 *
-		 * Our periodic faults will sample this probability and
-		 * getting the same result twice in a row, given these
-		 * samples are fully independent, is then given by
-		 * P(n)^2, provided our sample period is sufficiently
-		 * short compared to the usage pattern.
-		 *
-		 * This quadric squishes small probabilities, making
-		 * it less likely we act on an unlikely task<->page
-		 * relation.
-		 */
-		last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
-		if (!cpupid_pid_unset(last_cpupid) && cpupid_to_nid(last_cpupid) != thisnid) {
-
-			/* See sysctl_numa_balancing_migrate_deferred comment */
-			if (!cpupid_match_pid(current, last_cpupid))
-				defer_numa_migrate(current);
-
-			goto out;
-		}
-
-		/*
-		 * The quadratic filter above reduces extraneous migration
-		 * of shared pages somewhat. This code reduces it even more,
-		 * reducing the overhead of page migrations of shared pages.
-		 * This makes workloads with shared pages rely more on
-		 * "move task near its memory", and less on "move memory
-		 * towards its task", which is exactly what we want.
-		 */
-		if (numa_migrate_deferred(current, last_cpupid))
+		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
 			goto out;
 	}