Call the filesystem back whenever a page is removed from the page cache

NFS needs to be able to release objects that are stored in the page
cache once the page itself is no longer visible from the page cache.

This patch adds a callback to the address space operations that allows
filesystems to perform page cleanups once the page has been removed
from the page cache.

Original patch by: Linus Torvalds <torvalds@linux-foundation.org>
[trondmy: cover the cases of invalidate_inode_pages2() and
          truncate_inode_pages()]
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
diff --git a/Documentation/filesystems/Locking b/Documentation/filesystems/Locking
index a91f308..b6426f1 100644
--- a/Documentation/filesystems/Locking
+++ b/Documentation/filesystems/Locking
@@ -173,12 +173,13 @@
 	sector_t (*bmap)(struct address_space *, sector_t);
 	int (*invalidatepage) (struct page *, unsigned long);
 	int (*releasepage) (struct page *, int);
+	void (*freepage)(struct page *);
 	int (*direct_IO)(int, struct kiocb *, const struct iovec *iov,
 			loff_t offset, unsigned long nr_segs);
 	int (*launder_page) (struct page *);
 
 locking rules:
-	All except set_page_dirty may block
+	All except set_page_dirty and freepage may block
 
 			BKL	PageLocked(page)	i_mutex
 writepage:		no	yes, unlocks (see below)
@@ -193,6 +194,7 @@
 bmap:			no
 invalidatepage:		no	yes
 releasepage:		no	yes
+freepage:		no	yes
 direct_IO:		no
 launder_page:		no	yes
 
@@ -288,6 +290,9 @@
 indicate that the buffers are (or may be) freeable.  If ->releasepage is zero,
 the kernel assumes that the fs has no private interest in the buffers.
 
+	->freepage() is called when the kernel is done dropping the page
+from the page cache.
+
 	->launder_page() may be called prior to releasing a page if
 it is still found to be dirty. It returns zero if the page was successfully
 cleaned, or an error value if not. Note that in order to prevent the page